-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_instance_segmentation.py
114 lines (94 loc) · 3.3 KB
/
main_instance_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import logging
import os
from hashlib import md5
from uuid import uuid4
import hydra
from dotenv import load_dotenv
from omegaconf import DictConfig, OmegaConf
from trainer.opentrainer import InstanceSegmentation, RegularCheckpointing
from pytorch_lightning.callbacks import ModelCheckpoint
from utils.utils import (
flatten_dict,
load_baseline_model,
load_checkpoint_with_missing_or_exsessive_keys,
load_backbone_checkpoint_with_missing_or_exsessive_keys,
)
from pytorch_lightning import Trainer, seed_everything
def get_parameters(cfg: DictConfig):
logger = logging.getLogger(__name__)
load_dotenv(".env")
# parsing input parameters
seed_everything(cfg.general.seed)
# getting basic configuration
if cfg.general.get("gpus", None) is None:
cfg.general.gpus = os.environ.get("CUDA_VISIBLE_DEVICES", None)
loggers = []
# cfg.general.experiment_id = "0" # str(Repo("./").commit())[:8]
# params = flatten_dict(OmegaConf.to_container(cfg, resolve=True))
# create unique id for experiments that are run locally
# unique_id = "_" + str(uuid4())[:4]
# cfg.general.version = md5(str(params).encode("utf-8")).hexdigest()[:8] + unique_id
if not os.path.exists(cfg.general.save_dir):
os.makedirs(cfg.general.save_dir)
else:
print("EXPERIMENT ALREADY EXIST")
cfg["trainer"][
"resume_from_checkpoint"
] = f"{cfg.general.save_dir}/last-epoch.ckpt"
for log in cfg.logging:
print(log)
loggers.append(hydra.utils.instantiate(log))
loggers[-1].log_hyperparams(
flatten_dict(OmegaConf.to_container(cfg, resolve=True))
)
model = InstanceSegmentation(cfg)
if cfg.general.backbone_checkpoint is not None:
cfg, model = load_backbone_checkpoint_with_missing_or_exsessive_keys(
cfg, model
)
if cfg.general.checkpoint is not None:
cfg, model = load_checkpoint_with_missing_or_exsessive_keys(cfg, model)
logger.info(flatten_dict(OmegaConf.to_container(cfg, resolve=True)))
return cfg, model, loggers
@hydra.main(
config_path="conf", config_name="config_base_instance_segmentation.yaml"
)
def train(cfg: DictConfig):
os.chdir(hydra.utils.get_original_cwd())
cfg, model, loggers = get_parameters(cfg)
callbacks = []
for cb in cfg.callbacks:
callbacks.append(hydra.utils.instantiate(cb))
callbacks.append(RegularCheckpointing())
runner = Trainer(
logger=loggers,
gpus=cfg.general.gpus,
callbacks=callbacks,
weights_save_path=str(cfg.general.save_dir),
**cfg.trainer,
)
runner.fit(model)
@hydra.main(
config_path="conf", config_name="config_base_instance_segmentation.yaml"
)
def test(cfg: DictConfig):
# because hydra wants to change dir for some reason
os.chdir(hydra.utils.get_original_cwd())
cfg, model, loggers = get_parameters(cfg)
runner = Trainer(
gpus=cfg.general.gpus,
logger=loggers,
weights_save_path=str(cfg.general.save_dir),
**cfg.trainer,
)
runner.test(model)
@hydra.main(
config_path="conf", config_name="config_base_instance_segmentation.yaml"
)
def main(cfg: DictConfig):
if cfg["general"]["train_mode"]:
train(cfg)
else:
test(cfg)
if __name__ == "__main__":
main()