Skip to content

Latest commit

 

History

History
184 lines (125 loc) · 6.4 KB

README.md

File metadata and controls

184 lines (125 loc) · 6.4 KB

policy-distillation-baselines

Pytorch Implementation of Policy Distillation for control, which has well-trained teachers via stable_baselines3.

STATUS : DONE

Notice

This repository is based on Mee321/policy-distillation and integrated with DLR-RM/rl-baselines3-zoo environment.

Demonstration

Trained Agent(left) and Distilled Agent(right), see more demo..

Trained agent uses 400 x 300 parameters, while distilled agent uses 64 x 64 parameters.

And it just takes 6,000 iteration(about 100 seconds on intel i7) to receive 100% of performance.

teacher_text_cutpd_baselines_compact

Overview

ZOOM In

Installation

git clone https://github.com/CUN-bjy/policy-distillation-baselines.git
cd policy-distillation-baselines
git submodule update --init
virtualenv venv
source venv/bin/active
venv/bin/pip install -r requirements.txt

You don't need to use virtual environment but recommended.

With every moment of using this package, you should source the venv. plz source venv/bin/active.

Play a Trained Agent

If you want to play trained_agent from stable_baselines3,

python playground.py --mode teacher --algo algo_name --env env_name
# For example,
# python playground.py --mode teacher --algo td3 --env AntBulletEnv-v0 (default)
# python playground.py --mode teacher --algo sac --env Pendulum-v0

See the details below!

usage: playground.py [-h] -m {teacher,student} [--env ENV]
                     [--algo {a2c,ddpg,dqn,ppo,her,sac,td3,qrdqn,tqc}]
                     [-f FOLDER] [-p PATH_TO_STUDENT] [--render RENDER]
                     [--testing-batch-size N]

optional arguments:
  -h, --help            show this help message and exit
  -m {teacher,student}, --mode {teacher,student}
                        playground mode
  --env ENV             environment ID
  --algo {a2c,ddpg,dqn,ppo,her,sac,td3,qrdqn,tqc}
                        RL Algorithm
  -f FOLDER, --folder FOLDER
                        well trained teachers storage
  -p PATH_TO_STUDENT, --path-to-student PATH_TO_STUDENT
                        well trained students sotrage
  --render RENDER       render the environment(default: true)
  --testing-batch-size N
                        batch size for testing student policy (default: 1000)

Policy Distillation

Distillation from trained teacher agent to pure student agent.

python policy_distillation.py --algo algo_name --env env_name 

I only tested on TD3, AntBulletEnv-v0(default) environment so I cannot not sure that it work on other algorithms. PR is welcome!

See the details below!

usage: policy_distillation.py [-h] [--env ENV] [-f FOLDER]
                              [--algo {a2c,ddpg,dqn,ppo,her,sac,td3,qrdqn,tqc}]
                              [--hidden-size HIDDEN_SIZE]
                              [--num-layers NUM_LAYERS] [--seed N]
                              [--agent-count N] [--num-teachers N]
                              [--sample-batch-size N] [--render] [--lr G]
                              [--test-interval N] [--student-batch-size N]
                              [--sample-interval N] [--testing-batch-size N]
                              [--num-student-episodes N]
                              [--loss-metric LOSS_METRIC]

Policy distillation

optional arguments:
  -h, --help            show this help message and exit
  --env ENV             environment ID
  -f FOLDER, --folder FOLDER
                        Log folder
  --algo {a2c,ddpg,dqn,ppo,her,sac,td3,qrdqn,tqc}
                        RL Algorithm
  --hidden-size HIDDEN_SIZE
                        number of hidden units per layer
  --num-layers NUM_LAYERS
                        number of hidden layers
  --seed N              random seed (default: 1)
  --agent-count N       number of agents (default: 100)
  --num-teachers N      number of teacher policies (default: 1)
  --sample-batch-size N
                        expert batch size for each teacher (default: 10000)
  --render              render the environment
  --lr G                adam learnig rate (default: 1e-3)
  --test-interval N     interval between training status logs (default: 10)
  --student-batch-size N
                        per-iteration batch size for student (default: 1000)
  --sample-interval N   frequency to update expert data (default: 10)
  --testing-batch-size N
                        batch size for testing student policy (default: 10000)
  --num-student-episodes N
                        num of teacher training episodes (default: 1000)
  --loss-metric LOSS_METRIC
                        metric to build student objective

Play a Distilled Agent

If you want to play a distilled_agent that we call trained_student,

python playground.py --mode student -p path-to-student
# For example,
# python playground.py --mode student -p '/home/user/git_storage/policy-distillation-for-control/distilled-agents/AntBulletEnv-v0_td3_1618214113.531515/student_7500_3205.61.pkl' 
# (path to ckpoint! drag & drop the file on bash terminal)
# if you changed the algorithm or environment from default, you also shold change.

See the details on above!

References

[1]

@misc{rusu2016policy,
      title={Policy Distillation}, 
      author={Andrei A. Rusu and Sergio Gomez Colmenarejo and Caglar Gulcehre and Guillaume Desjardins and James Kirkpatrick and Razvan Pascanu and Volodymyr Mnih and Koray Kavukcuoglu and Raia Hadsell},
      year={2016},
      eprint={1511.06295},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

[2] Mee321/policy-distillation

[3] DLR-RM/stable-baselines3 / DLR-RM/rl-baselines3-zoo / DLR-RM/rl-trained-agents