-
Notifications
You must be signed in to change notification settings - Fork 5
/
play.py
113 lines (82 loc) · 3.14 KB
/
play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
'''
MIT License
Copyright (c) 2020 Junyoeb Baek
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
'''
# Implementation of DDPG(Deep Deterministic Policy Gradient)
# on OpenAI gym framwork
import roboschool, gym
import numpy as np, time, os
from tqdm import tqdm
import argparse
from agent.ddpg import ddpgAgent
NUM_EPISODES_ = 1000
def model_play(pretrained_):
# Create Environments
models = { 'cheetah':"RoboschoolHalfCheetah-v1",
'ant':'RoboschoolAnt-v1',
'pong':"RoboschoolPong-v1",
'walker':"RoboschoolWalker2d-v1",
'hopper':"RoboschoolHopper-v1",
'humanoid':"RoboschoolHumanoid-v1",
'humanoidflag':"RoboschoolHumanoidFlagrun-v1"}
env = gym.make(models['ant'])
# Create Agent model
agent = ddpgAgent(env)
if not pretrained_ == None:
agent.load_weights(pretrained_)
# Initialize Environments
steps = env._max_episode_steps # steps per episode
num_act_ = env.action_space.shape[0]
num_obs_ = env.observation_space.shape[0]
print("============ENVIRONMENT===============")
print("num_of_action_spaces : %d"%num_act_)
print("num_of_observation_spaces: %d"%num_obs_)
print("max_steps_per_episode: %d"%steps)
print("======================================")
try:
act_range = env.action_space.high
for epi in range(NUM_EPISODES_):
obs = env.reset()
actions, states, rewards, dones, new_states = [],[],[],[],[]
epi_reward = 0
while True:
# environment rendering on Graphics
env.render()
# Make action from the current policy
action = agent.make_action(obs)#env.action_space.sample()#
# do step on gym at t-time
new_obs, reward, done, info = env.step(action)
# grace finish and go to t+1 time
obs = new_obs
epi_reward = epi_reward + reward
if done: break
except KeyboardInterrupt as e:
print(e)
finally:
env.close()
argparser = argparse.ArgumentParser(
description='Train DDPG Agent on the openai gym')
argparser.add_argument(
'-w', '--weights',help='path to pretrained weights')
if __name__ == '__main__':
#################################
# Parse Configurations
#################################
args = argparser.parse_args()
weights_path = args.weights
model_play(pretrained_=weights_path)