-
Notifications
You must be signed in to change notification settings - Fork 0
/
01_cartpole_pg.py
executable file
·134 lines (106 loc) · 4.52 KB
/
01_cartpole_pg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#!/usr/bin/env python3
import gym
import ptan
import argparse
import numpy as np
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 8
REWARD_STEPS = 10
class PGN(nn.Module):
def __init__(self, input_size, n_actions):
super(PGN, self).__init__()
self.net = nn.Sequential(
nn.Linear(input_size, 128),
nn.ReLU(),
nn.Linear(128, n_actions)
)
def forward(self, x):
return self.net(x)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--baseline", default=False, action='store_true', help="Enable mean baseline")
args = parser.parse_args()
env = gym.make("CartPole-v0")
writer = SummaryWriter(comment="-cartpole-pg" + "-baseline=%s" % args.baseline)
net = PGN(env.observation_space.shape[0], env.action_space.n)
print(net)
agent = ptan.agent.PolicyAgent(net, preprocessor=ptan.agent.float32_preprocessor,
apply_softmax=True)
exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
total_rewards = []
step_rewards = []
step_idx = 0
done_episodes = 0
reward_sum = 0.0
batch_states, batch_actions, batch_scales = [], [], []
for step_idx, exp in enumerate(exp_source):
reward_sum += exp.reward
baseline = reward_sum / (step_idx + 1)
writer.add_scalar("baseline", baseline, step_idx)
batch_states.append(exp.state)
batch_actions.append(int(exp.action))
if args.baseline:
batch_scales.append(exp.reward - baseline)
else:
batch_scales.append(exp.reward)
# handle new rewards
new_rewards = exp_source.pop_total_rewards()
if new_rewards:
done_episodes += 1
reward = new_rewards[0]
total_rewards.append(reward)
mean_rewards = float(np.mean(total_rewards[-100:]))
print("%d: reward: %6.2f, mean_100: %6.2f, episodes: %d" % (
step_idx, reward, mean_rewards, done_episodes))
writer.add_scalar("reward", reward, step_idx)
writer.add_scalar("reward_100", mean_rewards, step_idx)
writer.add_scalar("episodes", done_episodes, step_idx)
if mean_rewards > 195:
print("Solved in %d steps and %d episodes!" % (step_idx, done_episodes))
break
if len(batch_states) < BATCH_SIZE:
continue
states_v = torch.FloatTensor(batch_states)
batch_actions_t = torch.LongTensor(batch_actions)
batch_scale_v = torch.FloatTensor(batch_scales)
optimizer.zero_grad()
logits_v = net(states_v)
log_prob_v = F.log_softmax(logits_v, dim=1)
log_prob_actions_v = batch_scale_v * log_prob_v[range(BATCH_SIZE), batch_actions_t]
loss_policy_v = -log_prob_actions_v.mean()
loss_policy_v.backward(retain_graph=True)
grads = np.concatenate([p.grad.data.numpy().flatten()
for p in net.parameters()
if p.grad is not None])
prob_v = F.softmax(logits_v, dim=1)
entropy_v = -(prob_v * log_prob_v).sum(dim=1).mean()
entropy_loss_v = -ENTROPY_BETA * entropy_v
entropy_loss_v.backward()
optimizer.step()
loss_v = loss_policy_v + entropy_loss_v
# calc KL-div
new_logits_v = net(states_v)
new_prob_v = F.softmax(new_logits_v, dim=1)
kl_div_v = -((new_prob_v / prob_v).log() * prob_v).sum(dim=1).mean()
writer.add_scalar("kl", kl_div_v.item(), step_idx)
writer.add_scalar("baseline", baseline, step_idx)
writer.add_scalar("entropy", entropy_v.item(), step_idx)
writer.add_scalar("batch_scales", np.mean(batch_scales), step_idx)
writer.add_scalar("loss_entropy", entropy_loss_v.item(), step_idx)
writer.add_scalar("loss_policy", loss_policy_v.item(), step_idx)
writer.add_scalar("loss_total", loss_v.item(), step_idx)
writer.add_scalar("grad_l2", np.sqrt(np.mean(np.square(grads))), step_idx)
writer.add_scalar("grad_max", np.max(np.abs(grads)), step_idx)
writer.add_scalar("grad_var", np.var(grads), step_idx)
batch_states.clear()
batch_actions.clear()
batch_scales.clear()
writer.close()