-
Notifications
You must be signed in to change notification settings - Fork 8
/
resnet_run_loop.py
859 lines (750 loc) · 34.1 KB
/
resnet_run_loop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains utility and supporting functions for ResNet.
This module contains ResNet code which does not directly build layers. This
includes dataset management, hyperparameter and optimizer code, and argument
parsing. Code for defining the ResNet layers can be found in resnet_model.py.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import math
import multiprocessing
import os
import string
# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf
from tensorflow.contrib.data.python.ops import threadpool
import resnet_model
import imagenet_preprocessing
from utils.flags import core as flags_core
from utils.export import export
from utils.logs import hooks_helper
from utils.logs import logger
from utils.misc import distribution_utils
from utils.misc import model_helpers
################################################################################
# Functions for input processing.
################################################################################
def process_record_dataset(dataset,
is_training,
batch_size,
shuffle_buffer,
parse_record_fn,
num_epochs=1,
dtype=tf.float32,
datasets_num_private_threads=None,
num_parallel_batches=1):
"""Given a Dataset with raw records, return an iterator over the records.
Args:
dataset: A Dataset representing raw records
is_training: A boolean denoting whether the input is for training.
batch_size: The number of samples per batch.
shuffle_buffer: The buffer size to use when shuffling records. A larger
value results in better randomness, but smaller values reduce startup
time and use less memory.
parse_record_fn: A function that takes a raw record and returns the
corresponding (image, label) pair.
num_epochs: The number of epochs to repeat the dataset.
dtype: Data type to use for images/features.
datasets_num_private_threads: Number of threads for a private
threadpool created for all datasets computation.
num_parallel_batches: Number of parallel batches for tf.data.
Returns:
Dataset of (image, label) pairs ready for iteration.
"""
# Prefetches a batch at a time to smooth out the time taken to load input
# files for shuffling and processing.
dataset = dataset.prefetch(buffer_size=batch_size)
if is_training:
# Shuffles records before repeating to respect epoch boundaries.
dataset = dataset.shuffle(buffer_size=shuffle_buffer)
# Repeats the dataset for the number of epochs to train.
dataset = dataset.repeat(num_epochs)
# Parses the raw records into images and labels.
dataset = dataset.apply(
tf.contrib.data.map_and_batch(
lambda value: parse_record_fn(value, is_training, dtype),
batch_size=batch_size,
num_parallel_batches=num_parallel_batches,
drop_remainder=False))
# Operations between the final prefetch and the get_next call to the iterator
# will happen synchronously during run time. We prefetch here again to
# background all of the above processing work and keep it out of the
# critical training path. Setting buffer_size to tf.contrib.data.AUTOTUNE
# allows DistributionStrategies to adjust how many batches to fetch based
# on how many devices are present.
dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
# Defines a specific size thread pool for tf.data operations.
if datasets_num_private_threads:
tf.logging.info('datasets_num_private_threads: %s',
datasets_num_private_threads)
dataset = threadpool.override_threadpool(
dataset,
threadpool.PrivateThreadPool(
datasets_num_private_threads,
display_name='input_pipeline_thread_pool'))
return dataset
def get_synth_input_fn(height, width, num_channels, num_classes,
dtype=tf.float32):
"""Returns an input function that returns a dataset with random data.
This input_fn returns a data set that iterates over a set of random data and
bypasses all preprocessing, e.g. jpeg decode and copy. The host to device
copy is still included. This used to find the upper throughput bound when
tunning the full input pipeline.
Args:
height: Integer height that will be used to create a fake image tensor.
width: Integer width that will be used to create a fake image tensor.
num_channels: Integer depth that will be used to create a fake image tensor.
num_classes: Number of classes that should be represented in the fake labels
tensor
dtype: Data type for features/images.
Returns:
An input_fn that can be used in place of a real one to return a dataset
that can be used for iteration.
"""
# pylint: disable=unused-argument
def input_fn(is_training, data_dir, batch_size, *args, **kwargs):
"""Returns dataset filled with random data."""
# Synthetic input should be within [0, 255].
inputs = tf.truncated_normal(
[batch_size] + [height, width, num_channels],
dtype=dtype,
mean=127,
stddev=60,
name='synthetic_inputs')
labels = tf.random_uniform(
[batch_size],
minval=0,
maxval=num_classes - 1,
dtype=tf.int32,
name='synthetic_labels')
data = tf.data.Dataset.from_tensors((inputs, labels)).repeat()
data = data.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
return data
return input_fn
def image_bytes_serving_input_fn(image_shape, dtype=tf.float32):
"""Serving input fn for raw jpeg images."""
def _preprocess_image(image_bytes):
"""Preprocess a single raw image."""
# Bounding box around the whole image.
bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=dtype, shape=[1, 1, 4])
height, width, num_channels = image_shape
image = imagenet_preprocessing.preprocess_image(
image_bytes, bbox, height, width, num_channels, is_training=False)
return image
image_bytes_list = tf.placeholder(
shape=[None], dtype=tf.string, name='input_tensor')
images = tf.map_fn(
_preprocess_image, image_bytes_list, back_prop=False, dtype=dtype)
return tf.estimator.export.TensorServingInputReceiver(
images, {'image_bytes': image_bytes_list})
def override_flags_and_set_envars_for_gpu_thread_pool(flags_obj):
"""Override flags and set env_vars for performance.
These settings exist to test the difference between using stock settings
and manual tuning. It also shows some of the ENV_VARS that can be tweaked to
squeeze a few extra examples per second. These settings are defaulted to the
current platform of interest, which changes over time.
On systems with small numbers of cpu cores, e.g. under 8 logical cores,
setting up a gpu thread pool with `tf_gpu_thread_mode=gpu_private` may perform
poorly.
Args:
flags_obj: Current flags, which will be adjusted possibly overriding
what has been set by the user on the command-line.
"""
cpu_count = multiprocessing.cpu_count()
tf.logging.info('Logical CPU cores: %s', cpu_count)
# Sets up thread pool for each GPU for op scheduling.
per_gpu_thread_count = 1
total_gpu_thread_count = per_gpu_thread_count * flags_obj.num_gpus
os.environ['TF_GPU_THREAD_MODE'] = flags_obj.tf_gpu_thread_mode
os.environ['TF_GPU_THREAD_COUNT'] = str(per_gpu_thread_count)
tf.logging.info('TF_GPU_THREAD_COUNT: %s', os.environ['TF_GPU_THREAD_COUNT'])
tf.logging.info('TF_GPU_THREAD_MODE: %s', os.environ['TF_GPU_THREAD_MODE'])
# Reduces general thread pool by number of threads used for GPU pool.
main_thread_count = cpu_count - total_gpu_thread_count
flags_obj.inter_op_parallelism_threads = main_thread_count
# Sets thread count for tf.data. Logical cores minus threads assign to the
# private GPU pool along with 2 thread per GPU for event monitoring and
# sending / receiving tensors.
num_monitoring_threads = 2 * flags_obj.num_gpus
flags_obj.datasets_num_private_threads = (cpu_count - total_gpu_thread_count
- num_monitoring_threads)
################################################################################
# Functions for running training/eval/validation loops for the model.
################################################################################
def learning_rate_with_decay(
batch_size, batch_denom, num_images, boundary_epochs, decay_rates,
base_lr=0.1, warmup=False):
"""Get a learning rate that decays step-wise as training progresses.
Args:
batch_size: the number of examples processed in each training batch.
batch_denom: this value will be used to scale the base learning rate.
`0.1 * batch size` is divided by this number, such that when
batch_denom == batch_size, the initial learning rate will be 0.1.
num_images: total number of images that will be used for training.
boundary_epochs: list of ints representing the epochs at which we
decay the learning rate.
decay_rates: list of floats representing the decay rates to be used
for scaling the learning rate. It should have one more element
than `boundary_epochs`, and all elements should have the same type.
base_lr: Initial learning rate scaled based on batch_denom.
warmup: Run a 5 epoch warmup to the initial lr.
Returns:
Returns a function that takes a single argument - the number of batches
trained so far (global_step)- and returns the learning rate to be used
for training the next batch.
"""
initial_learning_rate = base_lr * batch_size / batch_denom
batches_per_epoch = num_images / batch_size
# Reduce the learning rate at certain epochs.
# CIFAR-10: divide by 10 at epoch 100, 150, and 200
# ImageNet: divide by 10 at epoch 30, 60, 80, and 90
boundaries = [int(batches_per_epoch * epoch) for epoch in boundary_epochs]
vals = [initial_learning_rate * decay for decay in decay_rates]
def learning_rate_fn(global_step):
"""Builds scaled learning rate function with 5 epoch warm up."""
lr = tf.train.piecewise_constant(global_step, boundaries, vals)
if warmup:
warmup_steps = int(batches_per_epoch * 5)
warmup_lr = (
initial_learning_rate * tf.cast(global_step, tf.float32) / tf.cast(
warmup_steps, tf.float32))
return tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr)
return lr
return learning_rate_fn
def resnet_model_fn(features, labels, mode, model_class,
resnet_size, weight_decay, learning_rate_fn, momentum,
data_format, resnet_version, loss_scale,
loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE,
fine_tune=False, reconst_loss_scale=1.0, use_ce=False,
opt_chos='sgd', clip_grad=False, spectral_norm=False,
ce_scale=1.0, sep_grad_nrom=False, norm_teach_feature=False,
compress_ratio=0.05):
"""Shared functionality for different resnet model_fns.
Initializes the ResnetModel representing the model layers
and uses that model to build the necessary EstimatorSpecs for
the `mode` in question. For training, this means building losses,
the optimizer, and the train op that get passed into the EstimatorSpec.
For evaluation and prediction, the EstimatorSpec is returned without
a train op, but with the necessary parameters for the given mode.
Args:
features: tensor representing input images
labels: tensor representing class labels for all input images
mode: current estimator mode; should be one of
`tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT`
model_class: a class representing a TensorFlow model that has a __call__
function. We assume here that this is a subclass of ResnetModel.
resnet_size: A single integer for the size of the ResNet model.
weight_decay: weight decay loss rate used to regularize learned variables.
learning_rate_fn: function that returns the current learning rate given
the current global_step
momentum: momentum term used for optimization
data_format: Input format ('channels_last', 'channels_first', or None).
If set to None, the format is dependent on whether a GPU is available.
resnet_version: Integer representing which version of the ResNet network to
use. See README for details. Valid values: [1, 2]
loss_scale: The factor to scale the loss for numerical stability. A detailed
summary is present in the arg parser help text.
loss_filter_fn: function that takes a string variable name and returns
True if the var should be included in loss calculation, and False
otherwise. If None, batch_normalization variables will be excluded
from the loss.
dtype: the TensorFlow dtype to use for calculations.
fine_tune: If True only train the dense layers(final layers).
Returns:
EstimatorSpec parameterized according to the input params and the
current mode.
"""
# Generate a summary node for the images
tf.summary.image('images', features, max_outputs=6)
# tf.summary.scalar('images0_max', tf.reduce_max(features[:,:,:,0]))
# tf.summary.scalar('images0_min', tf.reduce_min(features[:,:,:,0]))
# tf.summary.scalar('images1_max', tf.reduce_max(features[:,:,:,1]))
# tf.summary.scalar('images1_min', tf.reduce_min(features[:,:,:,1]))
# tf.summary.scalar('images2_max', tf.reduce_max(features[:,:,:,2]))
# tf.summary.scalar('images2_min', tf.reduce_min(features[:,:,:,2]))
# Checks that features/images have same data type being used for calculations.
assert features.dtype == dtype
model = model_class(resnet_size, data_format, spectral_norm=spectral_norm,
resnet_version=resnet_version, dtype=dtype,
reuse=False, offload=True, compress_ratio=compress_ratio)
model_teach = model_class(resnet_size, data_format, spectral_norm=spectral_norm,
resnet_version=resnet_version, dtype=dtype,
reuse=True, offload=False)
logits, reconst, interF = model(features, mode == tf.estimator.ModeKeys.TRAIN)
logits_teach, interF_teach = model_teach(features, mode == tf.estimator.ModeKeys.TRAIN)
tf.summary.image('reconstruction', reconst, max_outputs=6)
# This acts as a no-op if the logits are already in fp32 (provided logits are
# not a SparseTensor). If dtype is is low precision, logits must be cast to
# fp32 for numerical stability.
logits = tf.cast(logits, tf.float32)
predictions = {
'classes': tf.argmax(logits, axis=1),
'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
}
if mode == tf.estimator.ModeKeys.PREDICT:
# Return the predictions and the specification for serving a SavedModel
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
export_outputs={
'predict': tf.estimator.export.PredictOutput(predictions)
})
# Calculate loss, which includes softmax cross entropy and L2 regularization.
# cross_entropy = ce_scale * tf.losses.sparse_softmax_cross_entropy(
# logits=logits, labels=labels)
# pred_porb = tf.nn.softmax(logits)
# teach_prob = tf.nn.softmax(logits_teach)
# cross_entropy = ce_scale*tf.reduce_mean(-tf.reduce_sum(pred_porb*teach_prob, -1))
# cross_entropy = ce_scale*tf.reduce_mean(-tf.reduce_sum(teach_prob*tf.log(pred_porb), -1))
gamma_list = ['resnet_model/batch_normalization_21/gamma']
beta_list = ['resnet_model/batch_normalization_21/beta']
cross_entropy = 0.
print('data_format: '+str(data_format))
cross_entropy = ce_scale*tf.reduce_mean(tf.square(logits - logits_teach))
if fine_tune:
cross_entropy = tf.losses.sparse_softmax_cross_entropy(
logits=logits, labels=labels)
tf.logging.info('cross_entropy: '+str(cross_entropy)+str(cross_entropy.get_shape().as_list()))
# reconst_loss = tf.nn.l2_loss(reconst - features)
reconst_loss = reconst_loss_scale*tf.reduce_mean(tf.square((reconst - features)/127.5))
# Solve NaN problem
# cross_entropy = tf.where(tf.is_nan(cross_entropy), tf.zeros_like(cross_entropy), cross_entropy)
reconst_loss = tf.where(tf.is_nan(reconst_loss), tf.zeros_like(reconst_loss), reconst_loss)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy')
tf.summary.scalar('cross_entropy', cross_entropy)
# tf.summary.scalar('feature_loss', feature_loss)
tf.summary.scalar('reconst_loss', reconst_loss)
# If no loss_filter_fn is passed, assume we want the default behavior,
# which is that batch_normalization variables are excluded from loss.
def exclude_batch_norm(name):
if fine_tune:
return 'resnet_model/dense' in name
else:
return 'endecoder' in name
# return 'batch_normalization' not in name
loss_filter_fn = loss_filter_fn or exclude_batch_norm
# Add weight decay to the loss.
l2_loss = weight_decay * tf.add_n(
# loss is computed using fp32 for numerical stability.
[tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables()
if loss_filter_fn(v.name)])
# Solve NaN problem
l2_loss = tf.where(tf.is_nan(l2_loss), tf.zeros_like(l2_loss), l2_loss)
tf.summary.scalar('l2_loss', l2_loss)
# if use_ce and not sep_grad_nrom:
if fine_tune:
loss = l2_loss + cross_entropy
else:
if use_ce:
loss = reconst_loss + cross_entropy
else:
loss = reconst_loss
for v in tf.trainable_variables():
print(v.name, str(v.get_shape().as_list()))
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
# learning_rate = learning_rate_fn(global_step)
if opt_chos == 'sgd':
learning_rate = learning_rate_fn(global_step)
elif opt_chos == 'fast_sgd_warmup':
# if sep_grad_nrom:
# lr = tf.train.piecewise_constant(global_step,
# [int(14*1281167/32), int(20*1281167/32)],
# [0.016, 0.0016, 0.00016])
# warmup_steps = int(1281167/32 * 8)
# warmup_lr = (
# 0.016 * tf.cast(global_step, tf.float32) / tf.cast(
# warmup_steps, tf.float32))
# else:
lr = tf.train.piecewise_constant(global_step,
[int(7*1281167/32), int(10*1281167/32)],
[0.016, 0.0016, 0.00016])
warmup_steps = int(1281167/32 * 4)
warmup_lr = (
0.016 * tf.cast(global_step, tf.float32) / tf.cast(
warmup_steps, tf.float32))
learning_rate = tf.cond(global_step < warmup_steps, lambda: warmup_lr, lambda: lr)
elif opt_chos == 'adam':
learning_rate = 0.0001
if use_ce:
learning_rate = 0.0001
# learning_rate = 0.00005
# learning_rate = 0.000001
# learning_rate = 0.00001
# learning_rate = 0.000005
# Create a tensor named learning_rate for logging purposes
tf.identity(learning_rate, name='learning_rate')
tf.summary.scalar('learning_rate', learning_rate)
if opt_chos == 'sgd':
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=momentum
)
elif opt_chos == 'fast_sgd_warmup':
optimizer = tf.train.MomentumOptimizer(
learning_rate=learning_rate,
momentum=momentum
)
elif opt_chos == 'adam':
if fine_tune:
optimizer = tf.train.AdamOptimizer(
learning_rate=learning_rate)
else:
optimizer = tf.train.AdamOptimizer(
beta1=0.0,
beta2=0.9,
learning_rate=learning_rate)
endecoder_var = [var for var in tf.trainable_variables()
if 'endecoder' in var.name]
def _dense_grad_filter(gvs):
"""Only apply gradient updates to the final layer.
This function is used for fine tuning.
Args:
gvs: list of tuples with gradients and variable info
Returns:
filtered gradients so that only the dense layer remains
"""
return [(g, v) for g, v in gvs if 'resnet_model/dense' in v.name]
if loss_scale != 1:
if fine_tune:
scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale)
else:
scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale,
var_list=endecoder_var)
if fine_tune:
scaled_grad_vars = _dense_grad_filter(scaled_grad_vars)
# Once the gradient computation is complete we can scale the gradients
# back to the correct scale before passing them to the optimizer.
unscaled_grad_vars = [(grad / loss_scale, var)
for grad, var in scaled_grad_vars]
if clip_grad:
capped_unscaled_grad_vars = []
for grad, var in unscaled_grad_vars:
capped_unscaled_grad_vars.append((tf.clip_by_value(grad, -1., 1.), var))
minimize_op = optimizer.apply_gradients(capped_unscaled_grad_vars, global_step)
else:
minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step)
else:
if fine_tune:
grad_vars = optimizer.compute_gradients(loss)
else:
grad_vars = optimizer.compute_gradients(loss,
var_list=endecoder_var)
if fine_tune:
grad_vars = _dense_grad_filter(grad_vars)
if clip_grad:
capped_grad_vars = []
for grad, var in grad_vars:
capped_grad_vars.append((tf.clip_by_value(grad, -1., 1.), var))
minimize_op = optimizer.apply_gradients(capped_grad_vars, global_step)
else:
minimize_op = optimizer.apply_gradients(grad_vars, global_step)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
train_op = tf.group(minimize_op, update_ops)
else:
train_op = None
accuracy = tf.metrics.accuracy(labels, predictions['classes'])
accuracy_top_5 = tf.metrics.mean(tf.nn.in_top_k(predictions=logits,
targets=labels,
k=5,
name='top_5_op'))
metrics = {'accuracy': accuracy,
'accuracy_top_5': accuracy_top_5}
# Create a tensor named train_accuracy for logging purposes
tf.identity(accuracy[1], name='train_accuracy')
tf.identity(accuracy_top_5[1], name='train_accuracy_top_5')
tf.summary.scalar('train_accuracy', accuracy[1])
tf.summary.scalar('train_accuracy_top_5', accuracy_top_5[1])
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=loss,
train_op=train_op,
eval_metric_ops=metrics)
def resnet_main(
flags_obj, model_function, input_function, dataset_name, shape=None):
"""Shared main loop for ResNet Models.
Args:
flags_obj: An object containing parsed flags. See define_resnet_flags()
for details.
model_function: the function that instantiates the Model and builds the
ops for train/eval. This will be passed directly into the estimator.
input_function: the function that processes the dataset and returns a
dataset that the estimator can train on. This will be wrapped with
all the relevant flags for running and passed to estimator.
dataset_name: the name of the dataset for training and evaluation. This is
used for logging purpose.
shape: list of ints representing the shape of the images used for training.
This is only used if flags_obj.export_dir is passed.
"""
model_helpers.apply_clean(flags.FLAGS)
# Ensures flag override logic is only executed if explicitly triggered.
if flags_obj.tf_gpu_thread_mode:
override_flags_and_set_envars_for_gpu_thread_pool(flags_obj)
# Creates session config. allow_soft_placement = True, is required for
# multi-GPU and is not harmful for other modes.
session_config = tf.ConfigProto(
inter_op_parallelism_threads=flags_obj.inter_op_parallelism_threads,
intra_op_parallelism_threads=flags_obj.intra_op_parallelism_threads,
allow_soft_placement=True)
distribution_strategy = distribution_utils.get_distribution_strategy(
flags_core.get_num_gpus(flags_obj), flags_obj.all_reduce_alg)
# Creates a `RunConfig` that checkpoints every 24 hours which essentially
# results in checkpoints determined only by `epochs_between_evals`.
run_config = tf.estimator.RunConfig(
train_distribute=distribution_strategy,
session_config=session_config,
save_checkpoints_secs=60*60*24)
# Initializes model with all but the dense layer from pretrained ResNet.
if flags_obj.pretrained_model_checkpoint_path is not None:
if flags_obj.fine_tune:
if string.lower(flags_obj.optimizer) == 'adam':
if flags_obj.no_dense_init:
warm_start_settings = tf.estimator.WarmStartSettings(
flags_obj.pretrained_model_checkpoint_path,
vars_to_warm_start=['^(?!.*(resnet_model/dense|beta1_power|beta2_power|Adam|global_step))'])
# vars_to_warm_start=['^(?!.*(resnet_model/dense|global_step))'])
else:
warm_start_settings = tf.estimator.WarmStartSettings(
flags_obj.pretrained_model_checkpoint_path,
vars_to_warm_start=['^(?!.*(resnet_model/dense/kernel/Momentum|resnet_model/dense/bias/Momentum|beta1_power|beta2_power|Adam|global_step))'])
# vars_to_warm_start=['^(?!.*(resnet_model/dense|global_step))'])
else:
if flags_obj.no_dense_init:
warm_start_settings = tf.estimator.WarmStartSettings(
flags_obj.pretrained_model_checkpoint_path,
vars_to_warm_start=['^(?!.*(resnet_model/dense|Momentum|global_step))'])
else:
warm_start_settings = tf.estimator.WarmStartSettings(
flags_obj.pretrained_model_checkpoint_path,
vars_to_warm_start=['^(?!.*(resnet_model/dense/kernel/Momentum|resnet_model/dense/bias/Momentum|global_step))'])
# vars_to_warm_start=['^(?!.*(resnet_model/dense|global_step))'])
else:
if string.lower(flags_obj.optimizer) == 'adam':
warm_start_settings = tf.estimator.WarmStartSettings(
flags_obj.pretrained_model_checkpoint_path,
vars_to_warm_start=['^(?!.*(endecoder|Momentum|beta1_power|beta2_power|global_step))'])
# vars_to_warm_start='^(?!.*dense)')
else:
warm_start_settings = tf.estimator.WarmStartSettings(
flags_obj.pretrained_model_checkpoint_path,
vars_to_warm_start=['^(?!.*(endecoder|global_step))'])
# vars_to_warm_start='^(?!.*dense)')
else:
warm_start_settings = None
classifier = tf.estimator.Estimator(
model_fn=model_function, model_dir=flags_obj.model_dir, config=run_config,
warm_start_from=warm_start_settings, params={
'resnet_size': int(flags_obj.resnet_size),
'data_format': flags_obj.data_format,
'batch_size': flags_obj.batch_size,
'resnet_version': int(flags_obj.resnet_version),
'loss_scale': flags_core.get_loss_scale(flags_obj),
'dtype': flags_core.get_tf_dtype(flags_obj),
'fine_tune': flags_obj.fine_tune,
'reconst_loss_scale': flags_obj.reconst_loss_scale,
'use_ce': flags_obj.use_ce,
'optimizer': string.lower(flags_obj.optimizer),
'clip_grad': flags_obj.clip_grad,
'spectral_norm': flags_obj.spectral_norm,
'ce_scale': flags_obj.ce_scale,
'sep_grad_nrom': flags_obj.sep_grad_nrom,
'norm_teach_feature':flags_obj.norm_teach_feature,
'no_dense_init':flags_obj.no_dense_init,
'compress_ratio':flags_obj.compress_ratio
})
run_params = {
'batch_size': flags_obj.batch_size,
'dtype': flags_core.get_tf_dtype(flags_obj),
'resnet_size': flags_obj.resnet_size,
'resnet_version': flags_obj.resnet_version,
'synthetic_data': flags_obj.use_synthetic_data,
'train_epochs': flags_obj.train_epochs,
'fine_tune': flags_obj.fine_tune,
'reconst_loss_scale': flags_obj.reconst_loss_scale,
'use_ce': flags_obj.use_ce,
'optimizer': string.lower(flags_obj.optimizer),
'clip_grad': flags_obj.clip_grad,
'spectral_norm': flags_obj.spectral_norm,
'ce_scale':flags_obj.ce_scale,
'sep_grad_nrom': flags_obj.sep_grad_nrom,
'norm_teach_feature': flags_obj.norm_teach_feature,
'no_dense_init': flags_obj.no_dense_init,
'compress_ratio': flags_obj.compress_ratio,
}
if flags_obj.use_synthetic_data:
dataset_name = dataset_name + '-synthetic'
benchmark_logger = logger.get_benchmark_logger()
benchmark_logger.log_run_info('resnet', dataset_name, run_params,
test_id=flags_obj.benchmark_test_id)
train_hooks = hooks_helper.get_train_hooks(
flags_obj.hooks,
model_dir=flags_obj.model_dir,
batch_size=flags_obj.batch_size)
def input_fn_train(num_epochs):
return input_function(
is_training=True,
data_dir=flags_obj.data_dir,
batch_size=distribution_utils.per_device_batch_size(
flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
num_epochs=num_epochs,
dtype=flags_core.get_tf_dtype(flags_obj),
datasets_num_private_threads=flags_obj.datasets_num_private_threads,
num_parallel_batches=flags_obj.datasets_num_parallel_batches)
def input_fn_eval():
return input_function(
is_training=False,
data_dir=flags_obj.data_dir,
batch_size=distribution_utils.per_device_batch_size(
flags_obj.batch_size, flags_core.get_num_gpus(flags_obj)),
num_epochs=1,
dtype=flags_core.get_tf_dtype(flags_obj))
if flags_obj.eval_only or not flags_obj.train_epochs:
# If --eval_only is set, perform a single loop with zero train epochs.
schedule, n_loops = [0], 1
else:
# Compute the number of times to loop while training. All but the last
# pass will train for `epochs_between_evals` epochs, while the last will
# train for the number needed to reach `training_epochs`. For instance if
# train_epochs = 25 and epochs_between_evals = 10
# schedule will be set to [10, 10, 5]. That is to say, the loop will:
# Train for 10 epochs and then evaluate.
# Train for another 10 epochs and then evaluate.
# Train for a final 5 epochs (to reach 25 epochs) and then evaluate.
n_loops = math.ceil(flags_obj.train_epochs / flags_obj.epochs_between_evals)
schedule = [flags_obj.epochs_between_evals for _ in range(int(n_loops))]
schedule[-1] = flags_obj.train_epochs - sum(schedule[:-1]) # over counting.
print('schedule: ', schedule, flags_obj.epochs_between_evals, flags_obj.max_train_steps)
for cycle_index, num_train_epochs in enumerate(schedule):
tf.logging.info('Starting cycle: %d/%d', cycle_index, int(n_loops))
if num_train_epochs:
classifier.train(input_fn=lambda: input_fn_train(num_train_epochs),
hooks=train_hooks, max_steps=flags_obj.max_train_steps)
tf.logging.info('Starting to evaluate.')
# flags_obj.max_train_steps is generally associated with testing and
# profiling. As a result it is frequently called with synthetic data, which
# will iterate forever. Passing steps=flags_obj.max_train_steps allows the
# eval (which is generally unimportant in those circumstances) to terminate.
# Note that eval will run for max_train_steps each loop, regardless of the
# global_step count.
eval_results = classifier.evaluate(input_fn=input_fn_eval,
steps=flags_obj.max_train_steps)
benchmark_logger.log_evaluation_result(eval_results)
if model_helpers.past_stop_threshold(
flags_obj.stop_threshold, eval_results['accuracy']):
break
if flags_obj.export_dir is not None:
# Exports a saved model for the given classifier.
export_dtype = flags_core.get_tf_dtype(flags_obj)
if flags_obj.image_bytes_as_serving_input:
input_receiver_fn = functools.partial(
image_bytes_serving_input_fn, shape, dtype=export_dtype)
else:
input_receiver_fn = export.build_tensor_serving_input_receiver_fn(
shape, batch_size=flags_obj.batch_size, dtype=export_dtype)
classifier.export_savedmodel(flags_obj.export_dir, input_receiver_fn,
strip_default_attrs=True)
def define_resnet_flags(resnet_size_choices=None):
"""Add flags and validators for ResNet."""
flags_core.define_base()
flags_core.define_performance(num_parallel_calls=False,
tf_gpu_thread_mode=True,
datasets_num_private_threads=True,
datasets_num_parallel_batches=True)
flags_core.define_image()
flags_core.define_benchmark()
flags.adopt_module_key_flags(flags_core)
flags.DEFINE_enum(
name='resnet_version', short_name='rv', default='2',
enum_values=['1', '2'],
help=flags_core.help_wrap(
'Version of ResNet. (1 or 2) See README.md for details.'))
flags.DEFINE_bool(
name='fine_tune', short_name='ft', default=False,
help=flags_core.help_wrap(
'If True do not train any parameters except for the final layer.'))
flags.DEFINE_string(
name='pretrained_model_checkpoint_path', short_name='pmcp', default=None,
help=flags_core.help_wrap(
'If not None initialize all the network except the final layer with '
'these values'))
flags.DEFINE_boolean(
name='eval_only', default=False,
help=flags_core.help_wrap('Skip training and only perform evaluation on '
'the latest checkpoint.'))
flags.DEFINE_boolean(
name='image_bytes_as_serving_input', default=False,
help=flags_core.help_wrap(
'If True exports savedmodel with serving signature that accepts '
'JPEG image bytes instead of a fixed size [HxWxC] tensor that '
'represents the image. The former is easier to use for serving at '
'the expense of image resize/cropping being done as part of model '
'inference. Note, this flag only applies to ImageNet and cannot '
'be used for CIFAR.'))
flags.DEFINE_float(
name='reconst_loss_scale', default=10.0,
help=flags_core.help_wrap(
'scale the reconst_loss'
))
flags.DEFINE_boolean(
name='use_ce', default=False,
help=flags_core.help_wrap(
'use cross entropy loss for compressive sensing training'))
flags.DEFINE_string(
name='optimizer', short_name='opt',
# default='sgd',
default='adam',
help=flags_core.help_wrap('Choose optimizer for training'))
flags.DEFINE_boolean(
name='clip_grad', default=False,
help=flags_core.help_wrap(
'whether to clip weights during training'))
flags.DEFINE_boolean(
name='spectral_norm', short_name='sn', default=True,
help=flags_core.help_wrap(
'whether to user spectral norm in the cs part'))
flags.DEFINE_float(
name='ce_scale', default=1.0,
help=flags_core.help_wrap(
'scale the cross_entropy'
))
flags.DEFINE_boolean(
name='sep_grad_nrom', default=False,
help=flags_core.help_wrap(
'spearate the gradients from reconstruction and ce, and norm the ce grad'))
flags.DEFINE_boolean(
name='norm_teach_feature', default=False,
help=flags_core.help_wrap(
'norm each channel of teaching feature with BN params'))
flags.DEFINE_boolean(
name='no_dense_init', default=False,
help=flags_core.help_wrap(
'dont init resenet/dense during fine tuning'))
flags.DEFINE_float(
name='compress_ratio', default=0.1,
help=flags_core.help_wrap(
'the compress ratio of the offloading layer'))
choice_kwargs = dict(
name='resnet_size', short_name='rs', default='50',
help=flags_core.help_wrap('The size of the ResNet model to use.'))
if resnet_size_choices is None:
flags.DEFINE_string(**choice_kwargs)
else:
flags.DEFINE_enum(enum_values=resnet_size_choices, **choice_kwargs)