From 968558613900a4a1b07655467eae8fc926b3c13a Mon Sep 17 00:00:00 2001 From: nautolycus <98825550+nautolycus@users.noreply.github.com> Date: Thu, 14 Mar 2024 13:26:19 +0000 Subject: [PATCH] Mostly style changes for International Tables G. (#74) * Style changes and fixed typos. Also changed some symCIF analogous tags to coreCIF and updated _definition.update dates. * _divtionary_audit.revision updated Replace other instances of U+2019 RIGHT SINGLE QUOTATION MARK with ASCII ' in this file Co-authored-by: Antanas Vaitkus --- cif_mag.dic | 652 +++++++++++++++++++++++++++------------------------- 1 file changed, 338 insertions(+), 314 deletions(-) diff --git a/cif_mag.dic b/cif_mag.dic index 1f82c88..d3547f0 100644 --- a/cif_mag.dic +++ b/cif_mag.dic @@ -10,7 +10,7 @@ data_MAGNETIC_CIF _dictionary.title MAGNETIC_CIF _dictionary.class Instance _dictionary.version 0.9.9 - _dictionary.date 2024-02-07 + _dictionary.date 2024-03-13 _dictionary.uri https://raw.githubusercontent.com/COMCIFS/magnetic_dic/main/cif_mag.dic _dictionary.ddl_conformance 4.1.0 @@ -61,21 +61,21 @@ save_ATOM_SITE_FOURIER_WAVE_VECTOR _description_example.detail ; loop_ - _cell_wave_vector.seq_id - _cell_wave_vector.x - _cell_wave_vector.y - _cell_wave_vector.z - 1 0.30000 0.30000 0.00000 - 2 -0.60000 0.30000 0.00000 + _cell_wave_vector.seq_id + _cell_wave_vector.x + _cell_wave_vector.y + _cell_wave_vector.z + 1 0.30000 0.30000 0.00000 + 2 -0.60000 0.30000 0.00000 loop_ - _atom_site_Fourier_wave_vector.seq_id - _atom_site_Fourier_wave_vector.x - _atom_site_Fourier_wave_vector.y - _atom_site_Fourier_wave_vector.z - _atom_site_Fourier_wave_vector.q_coeff - 1 -0.30000 0.60000 0.00000 [1 1] - 2 -0.60000 0.30000 0.00000 [0 1] - 3 -0.30000 -0.30000 0.00000 [-1 0] + _atom_site_Fourier_wave_vector.seq_id + _atom_site_Fourier_wave_vector.x + _atom_site_Fourier_wave_vector.y + _atom_site_Fourier_wave_vector.z + _atom_site_Fourier_wave_vector.q_coeff + 1 -0.30000 0.60000 0.00000 [1 1] + 2 -0.60000 0.30000 0.00000 [0 1] + 3 -0.30000 -0.30000 0.00000 [-1 0] ; ; Example 1 - Hypothetical example showing the modulation wave vector @@ -84,25 +84,25 @@ save_ATOM_SITE_FOURIER_WAVE_VECTOR ; ; loop_ - _cell_wave_vector.seq_id - _cell_wave_vector.x - _cell_wave_vector.y - _cell_wave_vector.z - 1 0.30000 0.30000 0.00000 - 2 -0.60000 0.30000 0.00000 + _cell_wave_vector.seq_id + _cell_wave_vector.x + _cell_wave_vector.y + _cell_wave_vector.z + 1 0.30000 0.30000 0.00000 + 2 -0.60000 0.30000 0.00000 loop_ - _atom_site_Fourier_wave_vector.seq_id - _atom_site_Fourier_wave_vector.x - _atom_site_Fourier_wave_vector.y - _atom_site_Fourier_wave_vector.z - _atom_site_Fourier_wave_vector.q1_coeff - _atom_site_Fourier_wave_vector.q2_coeff - 1 -0.30000 0.60000 0.00000 1 1 - 2 -0.60000 0.30000 0.00000 0 1 - 3 -0.30000 -0.30000 0.00000 -1 0 -; -; - Example 1 - As example 1, but using separate data items for each + _atom_site_Fourier_wave_vector.seq_id + _atom_site_Fourier_wave_vector.x + _atom_site_Fourier_wave_vector.y + _atom_site_Fourier_wave_vector.z + _atom_site_Fourier_wave_vector.q1_coeff + _atom_site_Fourier_wave_vector.q2_coeff + 1 -0.30000 0.60000 0.00000 1 1 + 2 -0.60000 0.30000 0.00000 0 1 + 3 -0.30000 -0.30000 0.00000 -1 0 +; +; + Example 2 - As example 1, but using separate data items for each individual component of the modulation wave vector. ; @@ -268,7 +268,7 @@ save_atom_site_moment.cartn _definition.update 2016-05-24 _description.text ; - The atom-site magnetic moment vector specified according to a set + The atom-site magnetic-moment vector specified according to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. ; @@ -296,7 +296,7 @@ save_atom_site_moment.cartn_x _definition.update 2016-05-24 _description.text ; - The x component of the atom-site magnetic moment vector + The x component of the atom-site magnetic-moment vector (see _atom_site_moment.Cartn). ; _name.category_id atom_site_moment @@ -316,7 +316,7 @@ save_atom_site_moment.cartn_y _definition.update 2016-05-24 _description.text ; - The y component of the atom-site magnetic moment vector + The y component of the atom-site magnetic-moment vector (see _atom_site_moment.Cartn). ; _name.category_id atom_site_moment @@ -336,7 +336,7 @@ save_atom_site_moment.cartn_z _definition.update 2016-05-24 _description.text ; - The z component of the atom-site magnetic moment vector + The z component of the atom-site magnetic-moment vector (see _atom_site_moment.Cartn). ; _name.category_id atom_site_moment @@ -356,8 +356,8 @@ save_atom_site_moment.crystalaxis _definition.update 2016-05-24 _description.text ; - The atom-site magnetic moment vector specified using components - parallel to each of the unit cell axes. This is the recommended + The atom-site magnetic-moment vector specified using components + parallel to each of the unit-cell axes. This is the recommended coordinate system for most magnetic structures. ; _name.category_id atom_site_moment @@ -455,7 +455,7 @@ save_atom_site_moment.magnitude _definition.update 2018-07-18 _description.text ; - The magnitude of a magnetic moment vector. + The magnitude of a magnetic-moment vector. ; _name.category_id atom_site_moment _name.object_id magnitude @@ -515,7 +515,7 @@ save_atom_site_moment.refinement_flags_magnetic _enumeration_set.state _enumeration_set.detail . 'no constraint on magnetic moment' - S 'special position constraint on magnetic moment' + S 'special-position constraint on magnetic moment' M 'modulus restraint on magnetic moment' A 'direction restraints on magnetic moment' SM 'superposition of S and M constraints/restraints' @@ -532,7 +532,7 @@ save_atom_site_moment.spherical_azimuthal _definition.update 2023-06-01 _description.text ; - The azimuthal angle of the atom-site magnetic moment vector + The azimuthal angle of the atom-site magnetic-moment vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. The azimuthal angle is a right-handed rotation @@ -556,7 +556,7 @@ save_atom_site_moment.spherical_modulus _definition.update 2016-05-24 _description.text ; - The modulus of the atom-site magnetic moment vector specified in + The modulus of the atom-site magnetic-moment vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. ; @@ -577,7 +577,7 @@ save_atom_site_moment.spherical_polar _definition.update 2023-06-01 _description.text ; - The polar angle of the atom-site magnetic moment vector specified + The polar angle of the atom-site magnetic-moment vector specified in spherical coordinates relative to a set of orthogonal Cartesian axes where x||a and z||c* with y completing a right-hand set. The polar angle is measured relative to the +z axis. @@ -601,7 +601,7 @@ save_atom_site_moment.symmform _description.text ; A symbolic expression that indicates the symmetry-restricted form - of the components of the magnetic moment vector of the atom. + of the components of the magnetic-moment vector of the atom. Unlike the positional coordinates of an atom, its magnetic moment has no translational component to be represented. ; @@ -643,14 +643,14 @@ save_ATOM_SITE_ROTATION rotations in several coordinate systems. Such axial vectors can be applied to describe the rotations of molecular or polyhedral rigid bodies about their pivot atoms or sites, though the use of this - category to describe patterns of rotations does not require the - that rigid bodies be explicitly defined. Because magnetic moments + category to describe patterns of rotations does not require that + the rigid bodies be explicitly defined. Because magnetic moments and rotations are both axial rather than polar vectors, their descriptive requirements are highly analogous, except that static rotations are insensitive to time-reversal, so that normal (non-magnetic) symmetry groups are appropriate. This is a child category of the ATOM_SITE category, though pivot-site rotations will typically - be listed in a separate loop; the category items mirror those of defined + be listed in a separate loop; the category items mirror those defined for the ATOM_SITE_MOMENT category. ; _name.category_id ATOM_SITE @@ -755,7 +755,7 @@ save_atom_site_rotation.crystalaxis _description.text ; The atom-site rotation vector specified using the components parallel - to each of the unit cell axes. This is the recommended coordinate + to each of the unit-cell axes. This is the recommended coordinate system for presenting axial rotation vectors. ; _name.category_id atom_site_rotation @@ -802,7 +802,7 @@ save_atom_site_rotation.crystalaxis_y _definition.update 2018-07-18 _description.text ; - The component of the atom-site rotation vector parallel to the second + The component of the atom-site rotation vector parallel to the second unit-cell axis. See _atom_site_rotation.crystalaxis. ; _name.category_id atom_site_rotation @@ -915,7 +915,7 @@ save_atom_site_rotation.refinement_flags_rotational _enumeration_set.state _enumeration_set.detail . 'no constraint on rotation' - S 'special position constraint on rotation' + S 'special-position constraint on rotation' M 'modulus restraint on rotation' A 'direction restraints on rotation' SM 'superposition of S and M constraints/restraints' @@ -1087,7 +1087,7 @@ save_atom_site_moment_fourier.axis Analogous tags: msCIF:_atom_site_displace_Fourier.axis, msCIF:_atom_site_rot_Fourier.axis, - msCIF:_atom_site_U_Fourier.tens_elem + msCIF:_atom_site_U_Fourier.tens_elem. ; _name.category_id atom_site_moment_Fourier _name.object_id axis @@ -1156,7 +1156,7 @@ save_atom_site_moment_fourier.wave_vector_seq_id msCIF:_atom_site_displace_Fourier_wave_vector.seq_id, msCIF:_atom_site_rot_Fourier_wave_vector.seq_id, msCIF:_atom_site_occ_Fourier_wave_vector.seq_id, - msCIF:_atom_site_U_Fourier_wave_vector.seq_id + msCIF:_atom_site_U_Fourier_wave_vector.seq_id. ; _name.category_id atom_site_moment_Fourier _name.object_id wave_vector_seq_id @@ -1188,7 +1188,7 @@ save_ATOM_SITE_MOMENT_FOURIER_PARAM Analogous tags: _atom_site_displace_Fourier_param.*, _atom_site_rot_Fourier_param.*, _atom_site_occ_Fourier_param.*, - _atom_site_U_Fourier_param.* + _atom_site_U_Fourier_param.*. ; _name.category_id ATOM_SITE_MOMENT_FOURIER _name.object_id ATOM_SITE_MOMENT_FOURIER_PARAM @@ -1255,7 +1255,7 @@ save_atom_site_moment_fourier_param.cos Analogous tags: msCIF:_atom_site_displace_Fourier_param.cos, msCIF:_atom_site_rot_Fourier_param.cos, msCIF:_atom_site_occ_Fourier_param.cos, - msCIF:_atom_site_U_Fourier_param.cos + msCIF:_atom_site_U_Fourier_param.cos. Also see the technical descriptions of the analogous tags. ; _name.category_id atom_site_moment_Fourier_param @@ -1278,8 +1278,8 @@ save_atom_site_moment_fourier_param.cos_symmform A symbolic expression that indicates the symmetry-restricted form of this modulation component for the affected Wyckoff site. - For a given magnetic vector component of the modulation corresponding to - given propagation vector, symmetry constraints require the cosine part to + For a given magnetic-vector component of the modulation corresponding to + a given propagation vector, symmetry constraints require the cosine part to be proportional to one of the independent cosine or sine parameters of the modulation. The value of this item indicates both the independent parameter and the proportionality constant, which may be zero. @@ -1295,9 +1295,9 @@ save_atom_site_moment_fourier_param.cos_symmform (4) The 4th character is an integer code that identifies the modulation vector (see _atom_site_moment_Fourier.wave_vector_seq_id). - To use the same symbol with modulation components belonging to symmetry - related axes and/or wave vectors, is to point out symmetry relationships - amongst them. Obviously, modulation components belonging to + To use the same symbol with modulation components belonging to + symmetry-related axes and/or wave vectors, is to point out symmetry + relationships amongst them. Obviously, modulation components belonging to symmetry-distinct atoms, axes, or wave vectors cannot be related by symmetry. @@ -1322,7 +1322,7 @@ save_atom_site_moment_fourier_param.cos_symmform ; mxm2 ; - Equal to the modulus of the x component of the magnetic vector + Equal to the modulus of the x component of the magnetic-vector amplitude of modulation identified by numeric code 2. ; -0.5*mzm1 @@ -1380,7 +1380,7 @@ save_atom_site_moment_fourier_param.modulus Analogous tags: msCIF:_atom_site_displace_Fourier_param.modulus, msCIF:_atom_site_rot_Fourier_param.modulus, msCIF:_atom_site_occ_Fourier_param.modulus, - msCIF:_atom_site_U_Fourier_param.modulus + msCIF:_atom_site_U_Fourier_param.modulus. Also see the technical descriptions of the analogous tags. ; _name.category_id atom_site_moment_Fourier_param @@ -1405,10 +1405,10 @@ save_atom_site_moment_fourier_param.modulus_symmform A symbolic expression that indicates the symmetry-restricted form of this modulation component for the affected Wyckoff site. - For a given magnetic vector component of the modulation corresponding to - given propagation vector, symmetry constraints require the modulus to either - be zero or equal to one of the independent moduli of the modulation. The - value of this item indicates both the independent modulus and the + For a given magnetic-vector component of the modulation corresponding to + a given propagation vector, symmetry constraints require the modulus to + be either zero or equal to one of the independent moduli of the modulation. + The value of this item indicates both the independent modulus and the proportionality constant. The expression can include a zero, a symbol, or a symbol multiplied ('*') @@ -1418,13 +1418,13 @@ save_atom_site_moment_fourier_param.modulus_symmform (1) The 1st character is "m" for magnetic. (2) The 2nd character is one of "x", "y", or "z", to indicate the magnetic component to be modulated. - (3) The 3rd character is one of "m" for modulus. + (3) The 3rd character is "m" for modulus. (4) The 4th character is an integer code that identifies the modulation vector (see _atom_site_moment_Fourier.wave_vector_seq_id). - To use the same symbol with modulation components belonging to symmetry - related axes and/or wave vectors, is to point out symmetry relationships - amongst them. Obviously, modulation components belonging to + To use the same symbol with modulation components belonging to + symmetry-related axes and/or wave vectors, is to point out symmetry + relationships amongst them. Obviously, modulation components belonging to symmetry-distinct atoms, axes, or wave vectors cannot be related by symmetry. ; @@ -1444,7 +1444,7 @@ save_atom_site_moment_fourier_param.modulus_symmform ; mxm2 ; - Equal to the modulus of the x component of the magnetic vector + Equal to the modulus of the x component of the magnetic-vector amplitude of modulation identified by numeric code 2. ; -0.5*mzm1 @@ -1476,7 +1476,7 @@ save_atom_site_moment_fourier_param.phase Analogous tags: msCIF:_atom_site_displacive_Fourier_param.phase, msCIF:_atom_site_rot_Fourier_param.phase, msCIF:_atom_site_occ_Fourier_param.phase, - msCIF:_atom_site_U_Fourier_param.phase + msCIF:_atom_site_U_Fourier_param.phase. Also see the technical descriptions of the analogous tags. ; _name.category_id atom_site_moment_Fourier_param @@ -1502,8 +1502,8 @@ save_atom_site_moment_fourier_param.phase_symmform A symbolic expression that indicates the symmetry-restricted form of this modulation component for the affected Wyckoff site. - For a given magnetic vector component of the modulation corresponding to - given propagation vector, symmetry constraints require the phase to be a + For a given magnetic-vector component of the modulation corresponding to + a given propagation vector, symmetry constraints require the phase to be a linear function of one of the independent phases of the modulation. The value of this item indicates both the slope (must be +1, 0, or -1) and the intercept of this linear function. @@ -1521,9 +1521,9 @@ save_atom_site_moment_fourier_param.phase_symmform (4) The 4th character is an integer code that identifies the modulation vector (see _atom_site_moment_Fourier.wave_vector_seq_id). - To use the same symbol with modulation components belonging to symmetry - related axes and/or wave vectors, is to point out symmetry relationships - amongst them. Obviously, modulation components belonging to + To use the same symbol with modulation components belonging to + symmetry-related axes and/or wave vectors, is to point out symmetry + relationships amongst them. Obviously, modulation components belonging to symmetry-distinct atoms, axes, or wave vectors cannot be related by symmetry. ; @@ -1547,13 +1547,13 @@ save_atom_site_moment_fourier_param.phase_symmform ; mxp2 ; - Equal to the phase of the x component of the magnetic vector amplitude + Equal to the phase of the x component of the magnetic-vector amplitude of modulation identified by numeric code 2. ; -myp3+15.01938 ; Equal to 15.01938 degrees minus the phase of the y component of the - magnetic vector amplitude of modulation identified by numeric code 3. + magnetic-vector amplitude of modulation identified by numeric code 3. ; save_ @@ -1573,7 +1573,7 @@ save_atom_site_moment_fourier_param.sin Analogous tags: msCIF:_atom_site_displace_Fourier_param.sin, msCIF:_atom_site_rot_Fourier_param.sin, msCIF:_atom_site_occ_Fourier_param.sin, - msCIF:_atom_site_U_Fourier_param.sin + msCIF:_atom_site_U_Fourier_param.sin. Also see the technical descriptions of the analogous tags. ; _name.category_id atom_site_moment_Fourier_param @@ -1596,8 +1596,8 @@ save_atom_site_moment_fourier_param.sin_symmform A symbolic expression that indicates the symmetry-restricted form of this modulation component for the affected Wyckoff site. - For a given magnetic vector component of the modulation corresponding to - given propagation vector, symmetry constraints require the sine part to be + For a given magnetic-vector component of the modulation corresponding to + a given propagation vector, symmetry constraints require the sine part to be proportional to one of the independent cosine or sine parameters of the modulation. The value of this item indicates both the independent parameter and the proportionality constant, which may be zero. @@ -1613,9 +1613,9 @@ save_atom_site_moment_fourier_param.sin_symmform (4) The 4th character is an integer code that identifies the modulation vector (see _atom_site_moment_Fourier.wave_vector_seq_id). - To use the same symbol with modulation components belonging to symmetry - related axes and/or wave vectors, is to point out symmetry relationships - amongst them. Obviously, modulation components belonging to + To use the same symbol with modulation components belonging to + symmetry-related axes and/or wave vectors, is to point out symmetry + relationships amongst them. Obviously, modulation components belonging to symmetry-distinct atoms, axes, or wave vectors cannot be related by symmetry. @@ -1637,18 +1637,19 @@ save_atom_site_moment_fourier_param.sin_symmform ; mxc2 ; - Equal to the cosine part of the x component of the magnetic vector + Equal to the cosine part of the x component of the magnetic-vector amplitude of modulation identified by numeric code 2. ; -0.5*mzs1 ; - Equal to -0.5 times the sine part of the z component of the magnetic - vector amplitude of modulation identified by numeric code 1. + Equal to -0.5 times the sine part of the z component of the + magnetic-vector amplitude of modulation identified by numeric + code 1. ; 0.03271*myc3 ; Equal to 0.03271 times the cosine part of the y component of the - magnetic vector amplitude of modulation identified by numeric code 3. + magnetic-vector amplitude of modulation identified by numeric code 3. ; save_ @@ -1681,8 +1682,8 @@ save_ATOM_SITE_MOMENT_SPECIAL_FUNC and rigid groups. Both of these only apply to one-dimensional modulated structures. - Analogous tags: _atom_site_displace_special_func.*, - _atom_site_occ_special_func.* + Analogous tags: msCIF:_atom_site_displace_special_func.*, + msCIF:_atom_site_occ_special_func.* ; _name.category_id MAGNETIC _name.object_id ATOM_SITE_MOMENT_SPECIAL_FUNC @@ -1709,29 +1710,33 @@ save_atom_site_moment_special_func.sawtooth_ax _definition.update 2016-05-24 _description.text ; - _atom_site_moment_special_func.sawtooth items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the + _atom_site_moment_special_func.sawtooth_* items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + + mx=2*ax[(x4-c)/w] + my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) + + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton + + Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + Analogous tags: msCIF:_atom_site_displace_special_func.sawtooth_*, + msCIF:_atom_site_occ_special_func.crenel_*. ; _name.category_id atom_site_moment_special_func _name.object_id sawtooth_ax @@ -1750,29 +1755,33 @@ save_atom_site_moment_special_func.sawtooth_ay _definition.update 2016-05-24 _description.text ; - _atom_site_moment_special_func.sawtooth_ items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the + _atom_site_moment_special_func.sawtooth_* items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + + mx=2*ax[(x4-c)/w] + my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) + + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton + + Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + Analogous tags: msCIF:_atom_site_displace_special_func.sawtooth_*, + msCIF:_atom_site_occ_special_func.crenel_*. ; _name.category_id atom_site_moment_special_func _name.object_id sawtooth_ay @@ -1791,29 +1800,33 @@ save_atom_site_moment_special_func.sawtooth_az _definition.update 2016-05-24 _description.text ; - _atom_site_moment_special_func.sawtooth_ items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the + _atom_site_moment_special_func.sawtooth_* items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + + mx=2*ax[(x4-c)/w] + my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) + + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton + + Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + Analogous tags: msCIF:_atom_site_displace_special_func.sawtooth_*, + msCIF:_atom_site_occ_special_func.crenel_*. ; _name.category_id atom_site_moment_special_func _name.object_id sawtooth_az @@ -1832,29 +1845,33 @@ save_atom_site_moment_special_func.sawtooth_c _definition.update 2016-05-24 _description.text ; - _atom_site_moment_special_func.sawtooth_ items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the + _atom_site_moment_special_func.sawtooth_* items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + + mx=2*ax[(x4-c)/w] + my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) + + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in - internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see + internal space. The use of this function is restricted to + one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton + + Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + Analogous tags: msCIF:_atom_site_displace_special_func.sawtooth_*, + msCIF:_atom_site_occ_special_func.crenel_*. ; _name.category_id atom_site_moment_special_func _name.object_id sawtooth_c @@ -1873,29 +1890,33 @@ save_atom_site_moment_special_func.sawtooth_w _definition.update 2016-05-24 _description.text ; - _atom_site_moment_special_func.sawtooth_ items are the - adjustable parameters of a magnetic sawtooth function. A - magnetic sawtooth function is only used when working in the - crystal-axis coordinate system. It is defined along the + _atom_site_moment_special_func.sawtooth_* items are the + adjustable parameters of a magnetic sawtooth function. A + magnetic sawtooth function is only used when working in the + crystal-axis coordinate system. It is defined along the internal space direction as follows: - mx=2*ax[(x4-c)/w] my=2*ay[(x4-c)/w] + + mx=2*ax[(x4-c)/w] + my=2*ay[(x4-c)/w] mz=2*az[(x4-c)/w] - with x4 belonging to the interval [c-(w/2), c+(w/2)], where - ax, ay and az are the amplitudes (maximum magnetic moments) + + with x4 belonging to the interval [c-(w/2), c+(w/2)], where + ax, ay and az are the amplitudes (maximum magnetic moments) along each crystallographic axis, w is its width, x4 is the internal coordinate and c is the centre of the function in internal space. The use of this function is restricted to - one-dimensional modulated structures. For more details, see + one-dimensional modulated structures. For more details, see the manual for JANA2000 (Petricek & Dusek, 2000). - Calculated parameters mx, my and mz must be in Bohr-magneton + + Calculated parameters mx, my and mz must be in Bohr-magneton units and can vary in the range (-infinity,infinity). Ref: Petricek, V. & Dusek, M. (2000). JANA2000. The crystallographic computing system. Institute of Physics, Prague, Czech Republic. - Analogous tags: _atom_site_displace_special_func.sawtooth_*, - _atom_site_occ_special_func.cresnel_* + Analogous tags: msCIF:_atom_site_displace_special_func.sawtooth_*, + msCIF:_atom_site_occ_special_func.crenel_*. ; _name.category_id atom_site_moment_special_func _name.object_id sawtooth_w @@ -1921,9 +1942,9 @@ save_ATOM_SITES_MOMENT_FOURIER Details for individual atom sites are described by data items in the ATOM_SITE_MOMENT_FOURIER category. - Analogous tags: _atom_sites_displace_Fourier.*, - _atom_sites_rot_Fourier.*, _atom_sites_occ_Fourier.*, - _atom_sites_U_Fourier.* + Analogous tags: msCIF:_atom_sites_displace_Fourier.*, + msCIF:_atom_sites_rot_Fourier.*, msCIF:_atom_sites_occ_Fourier.*, + msCIF:_atom_sites_U_Fourier.*. ; _name.category_id MAGNETIC _name.object_id ATOM_SITES_MOMENT_FOURIER @@ -1942,7 +1963,7 @@ save_atom_sites_moment_fourier.axes_description _atom_site_moment_Fourier.axis. Analogous tags: - msCIF:_atom_sites_displace_Fourier.axes_description + msCIF:_atom_sites_displace_Fourier.axes_description. It is not difficult to imagine an _atom_sites_rot_Fourier.axes_description tag. @@ -1974,13 +1995,15 @@ save_atom_type_scat.neutron_magnetic_j0_a1 averages of spherical Bessel functions over the electronic wave functions of unpaired electrons of the given atom type as a function of s = sin(theta)/lambda. - = [A1*e^(-a2*s^2) + B1*e^(-b2*s^2) + C1*e^(-c2*s^2) + + + = [A1*exp(-a2*s^2) + B1*exp(-b2*s^2) + C1*exp(-c2*s^2) + D]*[1 if n=0, s^2 if n=2,4,6] + The are then combined to determine the spin and orbital contributions to the magnetic form factor of the atom. The "e" parameter is a measure of error in the approximation. - Analogous tags: coreCIF:_atom_site.scat_Cromer_Mann_* + Analogous tags: coreCIF:_atom_site.scat_Cromer_Mann_*. Ref: International Tables for Crystallography (2006). Vol. C, Sections 4.4.5 and 6.1.2.3 (and references therein). @@ -2562,7 +2585,7 @@ save_atom_type_scat.neutron_magnetic_source Reference to the source of magnetic neutron scattering factors for a given atom type. - Analogous tags: coreCIF:_atom_site.scat_source + Analogous tags: coreCIF:_atom_site.scat_source. ; _name.category_id atom_type_scat _name.object_id neutron_magnetic_source @@ -2667,7 +2690,7 @@ save_PARENT_SPACE_GROUP space-group settings by conveying an appropriate inter-data-block basis transformation in each data block. - Analogous tags: none + Analogous tags: none. ; _name.category_id MAGNETIC _name.object_id PARENT_SPACE_GROUP @@ -2693,7 +2716,7 @@ save_parent_space_group.child_transform_pp_abc transformation applies to the present setting of the basic space group of the incommensurate structure. - Analogous tags: symCIF:_space_group.transform_Pp_abc + Analogous tags: symCIF:_space_group.transform_Pp_abc. ; _name.category_id parent_space_group _name.object_id child_transform_Pp_abc @@ -2707,11 +2730,11 @@ save_ save_parent_space_group.it_number _definition.id '_parent_space_group.IT_number' - _definition.update 2016-06-09 + _definition.update 2024-03-13 _description.text ; Analogous tags: Perfectly analogous to - symCIF:_space_group.IT_number except that it applies to the + coreCIF:_space_group.IT_number except that it applies to the parent structure. ; _name.category_id parent_space_group @@ -2726,11 +2749,11 @@ save_ save_parent_space_group.name_h-m_alt _definition.id '_parent_space_group.name_H-M_alt' - _definition.update 2023-07-17 + _definition.update 2024-03-13 _description.text ; Analogous tags: Perfectly analogous to - symCIF:_space_group.name_H-M_alt except that it applies + coreCIF:_space_group.name_H-M_alt except that it applies to the parent structure. ; _name.category_id parent_space_group @@ -2795,19 +2818,19 @@ save_SPACE_GROUP_MAGN There are 1651 distinct equivalence classes of MSGs, each of which can be referred to as an MSG "type" following the usage of - this word in the International Tables of Crystallography. Similarly, - there are over 300000 distinct equivalence classes of MSSGs with + this word in the International Tables for Crystallography. Similarly, + there are over 300,000 distinct equivalence classes of MSSGs with up to 3 independent modulations, each of which can be referred to as an MSSG "type". - However, it is important to appreciate that the word “type” is commonly + However, it is important to appreciate that the word "type" is commonly used in an entirely different way in the context of MSGs and MSSGs. Any magnetic group can be constructed by starting with a non-magnetic space group F, and then by adding the time-reversal operation to half or all or none of its elements. The four ways of doing this give rise to four distinct "construct types", which we refer to simply as type-1, type-2, type-3, and type-4, - though some refer to type-3 as type-3a and type-4 as and type3b. + though some refer to type-3 as type-3a and type-4 as type3b. For a type-1 MSG/MSSG, M = F, so that there are no time-reversed elements. For a type-2 MSG/MSSG, M = F + F1', so that there is both a time-reversed @@ -2817,19 +2840,19 @@ save_SPACE_GROUP_MAGN element in F – D (the complement of D in F) is time reversed. For a type-3 MSG/MSSG, F and D have the same translation subgroup (lattice) but different point groups. - For a type-4 MSG/MSSG, F and D and the same point groups but different + For a type-4 MSG/MSSG, F and D have the same point groups but different translation subgroups. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. - ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. ; _name.category_id MAGNETIC _name.object_id SPACE_GROUP_MAGN save_ -save__space_group_magn.hall_symbol +save_space_group_magn.hall_symbol _definition.id '_space_group_magn.Hall_symbol' _definition.update 2023-06-01 @@ -2838,18 +2861,18 @@ save__space_group_magn.hall_symbol The magnetic Hall symbol provides an unambiguous representation of the generators of a three-dimensional MSG, and largely follows the conventions developed for non-magnetic Hall symbols, except - that the prime symbol "’" has been replaced by the carat symbol + that the prime symbol "'" has been replaced by the caret symbol "^" in order to reserve the prime symbol to indicate time-reversal. For a type-2 or type-4 MSG, the time reversal - element is listed separately as "1’" at the end of the magnetic + element is listed separately as "1'" at the end of the magnetic Hall symbol, along with a character to indicate the non-lattice translational component of the anti-translation in the case of a type-4 MSG. - Ref: González-Platas, Katcho & Rodríguez-Carvajal, J. Appl. Cryst 54, - 338-342 (2020). - Hall, Acta Cryst. A37, 517-525 (1981). - Campbell et al., Acta Cryst. A78, 99–106 (2022), Table S3. + Ref: González-Platas, J., Katcho, N. A. & Rodríguez-Carvajal, J. + (2021). J. Appl. Cryst. 54, 338-342. + Hall. S. R. (1981). Acta Cryst. A37, 517-525. + Campbell, B. J. et al. (2022). Acta Cryst. A78, 99-106, Table S3. ; _name.category_id space_group_magn _name.object_id hall_symbol @@ -2876,7 +2899,7 @@ save_ save_space_group_magn.name_bns _definition.id '_space_group_magn.name_BNS' - _definition.update 2023-06-01 + _definition.update 2024-03-13 _description.text ; The Belov-Neronova-Smirnova (BNS) symbol for a MSG is based on @@ -2896,14 +2919,12 @@ save_space_group_magn.name_bns translational part of the generator whose point part is the pure time reversal. - Analogous tags: symCIF:_space_group.name_H-M_ref + Analogous tags: coreCIF:_space_group.name_H-M_ref. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. - Campbell et al., Acta Cryst. A78, 99–106 (2022). - https://doi.org/10.1107/S2053273321012912 - https://www.iucr.org/paper?ib5106 - ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + Campbell, B. J. et al. (2022). Acta Cryst. A78, 99-106. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. ; _name.category_id space_group_magn _name.object_id name_BNS @@ -2929,7 +2950,7 @@ save_ save_space_group_magn.name_og _definition.id '_space_group_magn.name_OG' - _definition.update 2023-06-01 + _definition.update 2024-03-13 _description.text ; The Opechowski-Guccione (OG) symbol for an @@ -2950,14 +2971,12 @@ save_space_group_magn.name_og MSG. The value of this subscript indicates the magnetic lattice of the MSG. - Analogous tags: symCIF:_space_group.name_H-M_ref + Analogous tags: coreCIF:_space_group.name_H-M_ref. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. - Campbell et al., Acta Cryst. A78, 99–106 (2022). - https://doi.org/10.1107/S2053273321012912 - https://www.iucr.org/paper?ib5106 - ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + Campbell, B. J. et al. (2022). Acta Cryst. A78, 99–106. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. ; _name.category_id space_group_magn _name.object_id name_OG @@ -2983,7 +3002,7 @@ save_ save_space_group_magn.name_uni _definition.id '_space_group_magn.name_UNI' - _definition.update 2023-06-01 + _definition.update 2024-03-13 _description.text ; The Unified (UNI) symbol for an MSG is an improvement of the @@ -2997,12 +3016,12 @@ save_space_group_magn.name_uni identical to the corresponding BNS and OG symbols. The time-reversal group consists of the identity operation 1 - and the time-reversal operation 1’. For type-1, type-2, and + and the time-reversal operation 1'. For type-1, type-2, and type-4 MSGs, the appropriate generator of the time-reversal group is always explicitly displayed after the space-group generators of F, and separated from the generators of F by a dot ("."). Furthermore, for a type-4 MSG, the anti-translation subscript is - attached to the 1’ generator at the end of the UNI symbol rather + attached to the 1' generator at the end of the UNI symbol rather than to the lattice symbol at the front, and always conveys an unambiguous translation. @@ -3019,10 +3038,10 @@ save_space_group_magn.name_uni the end of the UNI symbol of a type-4 MSG makes it clear that the MPG is of type 2 (grey). - Analogous tags: symCIF:_space_group.name_H-M_ref + Analogous tags: coreCIF:_space_group.name_H-M_ref. - Ref: Campbell et al., Acta Cryst. A78, 99–106 (2022). - ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu + Ref: Campbell, B. J. et al. (2022). Acta Cryst. A78, 99-106. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu ; _name.category_id space_group_magn _name.object_id name_UNI @@ -3048,12 +3067,12 @@ save_ save_space_group_magn.number_bns _definition.id '_space_group_magn.number_BNS' - _definition.update 2023-06-01 + _definition.update 2024-03-13 _description.text ; The Belov-Neronova-Smirnova (BNS) number for an MSG is composed of two positive integers separated by a - period. The first integer lies in the range [1-230] and indicates + period. The first integer lies in the range 1-230 and indicates the non-magnetic space group F for MSGs of types 1-3 or the non-magnetic space group of the subgroup D for MSGs of type 4. The second integer is sequential over all MSGs associated with the @@ -3067,15 +3086,14 @@ save_space_group_magn.number_bns To avoid confusion, the word "type" is only used in the latter sense here. - Analogous tags: symCIF:_space_group.number_IT + Analogous tags: coreCIF:_space_group.IT_number. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. - Belov, Neronova & Smirnova, Sov. Phys. Crystallogr. 2, 311–322 (1957). - Campbell et al., Acta Cryst. A78, 99–106 (2022). - https://doi.org/10.1107/S2053273321012912 - https://www.iucr.org/paper?ib5106 - ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + Belov, N. V., Neronova, N. N. & Smirnova, T. S. (1957). Sov. Phys. + Crystallogr. 2, 311–322. + Campbell, B. J. et al. (2022). Acta Cryst. A78, 99-106. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. ; _name.category_id space_group_magn _name.object_id number_BNS @@ -3101,17 +3119,17 @@ save_ save_space_group_magn.number_og _definition.id '_space_group_magn.number_OG' - _definition.update 2023-06-01 + _definition.update 2024-03-13 _description.text ; The Opechowski-Guccione (OG) number for a MSG comprises three positive integers separated by periods. The first integer lies in the range - [1-230] and indicates the space group F. The second integer is + 1-230 and indicates the space group F. The second integer is sequential over all MSGs associated with the same space group F. The third integer is sequential over all MSGs, and therefore lies in the - range [1-1651], but is not necessary for uniqueness. + range 1-1651, but is not necessary for uniqueness. - Analogous tags: symCIF:_space_group.number_IT + Analogous tags: coreCIF:_space_group.IT_number. ; _name.category_id space_group_magn _name.object_id number_OG @@ -3148,8 +3166,8 @@ save_space_group_magn.og_wavevector_kxkykz of the direct-space OG lattice and k is defined in the unitless coordinates of the corresponding reciprocal-space lattice. If 2*k.x has a non-integer value for any OG lattice (or centering) translation, - the definition of k is incorrect. The value of OG wave vector is - essential to the OG(k) description of the magnetic space group + the definition of k is incorrect. The value of the OG wave vector is + essential to the OG(k) description of the magnetic space-group symmetry; it cannot be omitted from such a description without ambiguity. ; @@ -3169,7 +3187,7 @@ save_space_group_magn.point_group_name_h-m _definition.id '_space_group_magn.point_group_name_H-M' _alias.definition_id '_space_group_magn.point_group_name' _alias.deprecation_date 2023-06-01 - _definition.update 2024-01-19 + _definition.update 2024-03-13 _description.text ; Any magnetic point group (MPG) can be constructed by starting @@ -3186,10 +3204,10 @@ save_space_group_magn.point_group_name_h-m type-3 MPG, the symbol is that of P with a prime added to each time-reversed generator. - Analogous tags: symCIF:_space_group.point_group_H-M + Analogous tags: coreCIF:_space_group.point_group_H-M. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. ; _name.category_id space_group_magn _name.object_id point_group_name_H_M @@ -3214,7 +3232,7 @@ save_ save_space_group_magn.point_group_name_uni _definition.id '_space_group_magn.point_group_name_UNI' - _definition.update 2023-06-01 + _definition.update 2024-03-13 _description.text ; Any magnetic point group (MPG) can be constructed by starting @@ -3228,24 +3246,22 @@ save_space_group_magn.point_group_name_uni in P-Q are time reversed. The time-reversal group consists of the identity operation 1 - and the time-reversal operation 1’. The UNI symbol of an MPG is a slight + and the time-reversal operation 1'. The UNI symbol of an MPG is a slight modification of the earlier H-M MPG symbol, and only differs from the H-M MPG symbol for type-1 and type2 MPGs, so that the appropriate generator of the time-reversal group is always explicitly displayed after the space-group generators of P, and separated from the generators of P by a dot ("."). For a type-1 MPG or type-2 MPG, the UNI symbol is that of - non-magnetic point group P, followed by ".1" or ".1’", respectively. + non-magnetic point group P, followed by ".1" or ".1'", respectively. For a type-3 MPG, the UNI MPG symbol is that of P with a prime added to each time-reversed generator. - Analogous tags: symCIF:_space_group.point_group_H-M + Analogous tags: coreCIF:_space_group.point_group_H-M. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 - Campbell et al., Acta Cryst. A78, 99–106 (2022). - https://doi.org/10.1107/S2053273321012912 - https://www.iucr.org/paper?ib5106 + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + Campbell, B. J. et al. (2022). Acta Cryst. A78, 99-106. ; _name.category_id space_group_magn _name.object_id point_group_name_UNI @@ -3280,18 +3296,16 @@ save_space_group_magn.point_group_number_litvin group by removing the time-reversal component from each group operator. The identifying number for each such group is taken from the "Survey of 3-dimensional magnetic point group types" - from the "Magnetic Group Tables" of D.B. Litvin. This number is + from the "Magnetic Group Tables" of D. B. Litvin. This number is composed of three integers: (1) an integer from 1 to 32 that corresponds to the non-magnetic point group; (2) an integer that runs sequentially over each of the magnetic point groups associated with a given non-magnetic point group; and (3) a redundant third integer that runs from 1 to 122. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 - Campbell et al., Acta Cryst. A78, 99–106 (2022). - https://doi.org/10.1107/S2053273321012912 - https://www.iucr.org/paper?ib5106 + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + Campbell, B. J. et al. (2022). Acta Cryst. A78, 99-106. ; _name.category_id space_group_magn _name.object_id point_group_number_Litvin @@ -3329,11 +3343,12 @@ save_space_group_magn.ssg_name unique MSSG identifier rather than relying on the MSSG symbol alone. The examples are based on SSG 47.1.9.3 Pmmm(0,0,g)ss0 in (3+1)D. - Analogous tags: msCIF:_space_group.ssg_name + Analogous tags: msCIF:_space_group.ssg_name. - Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. - ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. - H.T. Stokes and B.J. Campbell, Acta Cryst. A 78, 364-370 (2022). + Ref: ISO-MAG tables of H. T. Stokes and B. J. Campbell at + https://iso.byu.edu. + ISO(3+d)D tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. + Stokes, H. T. & Campbell, B. J. (2022). Acta Cryst. A78, 364-370. ; _name.category_id space_group_magn _name.object_id ssg_name @@ -3384,7 +3399,7 @@ save_space_group_magn.ssg_number separated by periods: (1-4) the four parts of the superspace group (SSG) number of its family superspace group (FSSG) or maximal superspace subgroup (XSSG), - (5) the letter ‘m’ followed by the second part of the BNS number + (5) the letter 'm' followed by the second part of the BNS number of its basic magnetic space group (BMSG), and (6) an integer that enumerates the MSSGs derived from the same combination of BMSG and FSSG/XSSG. @@ -3400,22 +3415,22 @@ save_space_group_magn.ssg_number The BNS number of the BMSG has two parts, separated by a period: (1) the SG number of its FSG/XSG, and (2) an integer that enumerates distinct MSGs of the same crystal system, - which was tabulated by Stokes and Campbell (2022). + which was tabulated by Stokes & Campbell (2022). Because it is common to employ a user-defined superspace setting for an MSSG, it is strongly recommended that the MSSG number be accompanied by - the transformation to the standard MSSG setting of Stokes and Campbell + the transformation to the standard MSSG setting of Stokes & Campbell (2022), which is specified with _space_group_magn_ssg_transforms.Pp_superspace. - Analogous tags: msCIF:_space_group.ssg_number + Analogous tags: msCIF:_space_group.ssg_number. Ref: - ISO-MAG tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. - ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. - H.T. Stokes, B.J. Campbell, and S. van Smaalen, Acta Cryst. A67, - 45–55 (2011). - H.T. Stokes and B.J. Campbell, Acta Cryst. A 78, 364-370 (2022). + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. + ISO(3+d)D tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. + Stokes, H. T., Campbell, B. J. & van Smaalen, S. (2011). Acta Cryst. A67, + 45–55. + Stokes, H. T. & Campbell, B. J. (2022). Acta Cryst. A78, 364-370. ; _name.category_id space_group_magn _name.object_id ssg_number @@ -3453,13 +3468,13 @@ save_space_group_magn.transform_bns_pp where (a,b,c) are the current basis vectors. - Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at - http://iso.byu.edu + Ref: ISO-MAG tables of H. T. Stokes and B. J. Campbell at + https://iso.byu.edu. - Wondratschek, H., Aroyo, M. I., Souvignier, B. and Chapuis, G. + Wondratschek, H., Aroyo, M. I., Souvignier, B. & Chapuis, G. (2016). Transformation of coordinate systems. In International Tables for - Crystallography (2016). Volume A, Space-group symmetry, edited - by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. + Crystallography. Volume A, Space-group symmetry, edited + by M. Aroyo, 6th ed. ch. 1.5. Chichester: Wiley. ; _name.category_id space_group_magn _name.object_id transform_BNS_Pp @@ -3502,10 +3517,10 @@ save_space_group_magn.transform_bns_pp_abc except that the point and translational components are separated by a semicolon. - Analogous tags: symCIF:_space_group.transform_Pp_abc + Analogous tags: symCIF:_space_group.transform_Pp_abc. - Ref: ISO-MAG tables of H.T. Stokes and B.J. Campbell at - http://iso.byu.edu + Ref: ISO-MAG tables of H. T. Stokes and B. J. Campbell at + https://iso.byu.edu. ; _name.category_id space_group_magn _name.object_id transform_BNS_Pp_abc @@ -3525,20 +3540,20 @@ save_space_group_magn.transform_og_pp This item specifies the transformation (P,p) of the basis vectors and origin of the current setting to those of the Opechowski-Guccione setting presented in the - Magnetic Group Tables of D.B. Litvin. The basis vectors + Magnetic Group Tables of D. B. Litvin. The basis vectors (a',b',c') of the OG setting are obtained as (a',b',c',1) = Pp (a,b,c,1) where (a,b,c) are the current basis vectors. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. - Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G. + Wondratschek, H., Maroto, M. I., Souvignier, B. & Chapuis, G. (2016). Transformation of coordinate systems. In International Tables for - Crystallography (2016). Volume A, Space-group symmetry, edited - by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. + Crystallography. Volume A, Space-group symmetry, edited + by M. Aroyo, 6th ed. ch. 1.5. Chichester: Wiley. ; _name.category_id space_group_magn _name.object_id transform_OG_Pp @@ -3560,7 +3575,7 @@ save_space_group_magn.transform_og_pp_abc This item specifies the transformation (P,p) of the basis vectors and origin of the current setting to those of the Opechowski-Guccione setting presented in the - Magnetic Group Tables of D.B. Litvin. The basis vectors + Magnetic Group Tables of D. B. Litvin. The basis vectors (a',b',c') of the reference setting are described as linear combinations of the current basis vectors (a,b,c), and the origin shift (ox,oy,oz) is displayed in the @@ -3569,10 +3584,10 @@ save_space_group_magn.transform_og_pp_abc symCIF:_space_group.transform_Pp_abc, except that the point and translational components are separated by a semicolon. - Analogous tags: symCIF:_space_group.transform_Pp_abc + Analogous tags: symCIF:_space_group.transform_Pp_abc. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0 + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. ; _name.category_id space_group_magn _name.object_id transform_OG_Pp_abc @@ -3669,11 +3684,11 @@ save_space_group_magn_ssg_transforms.pp_superspace setting. The notation and usage are analogous to those of _space_group.transform_Pp_abc, except that P now represents a - superspace point operation, that p now represents a superspace - translation, and that the point and translational components + superspace point operation, p now represents a superspace + translation, and the point and translational components are now separated with a semicolon. - Analogous tags: symCIF:_space_group.transform_Pp_abc + Analogous tags: symCIF:_space_group.transform_Pp_abc. ; _name.category_id space_group_magn_ssg_transforms _name.object_id Pp_superspace @@ -3709,11 +3724,11 @@ save_space_group_magn_ssg_transforms.source If the reference source does not appear in the list below, use _space_group_magn_ssg_transforms.description - Ref: 'Magnetic Group Tables' of D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. - ISO(3+d)D tables of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. - H.T. Stokes and B.J. Campbell, Acta Cryst. A 78, 364-370 (2022). + Ref: 'Magnetic Group Tables' of D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. + ISO(3+d)D tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. + Stokes, H. T. & Campbell, B. J. (2022). Acta Cryst. A78, 364-370. ; _name.category_id space_group_magn_ssg_transforms _name.object_id source @@ -3724,7 +3739,7 @@ save_space_group_magn_ssg_transforms.source _enumeration_set.state ISO(3+d)D-MAG _enumeration_set.detail ; - For any magnetic superspace group (MSSG), as enumerated by Stokes and + For any magnetic superspace group (MSSG), as enumerated by Stokes & Campbell (2022), this superspace transformation simultaneously takes the setting of the basic magnetic space group (BMSG) to the setting of the corresponding entry in the ISO-MAG tables, and takes the setting of its @@ -3760,17 +3775,17 @@ save_SPACE_GROUP_MAGN_TRANSFORMS _category_key.name '_space_group_magn_transforms.id' _description_example.case ; - loop_ - _space_group_magn_transforms.id - _space_group_magn_transforms.Pp_abc - _space_group_magn_transforms.description - _space_group_magn_transforms.source - 1 'a,b,c;0,0,0' . "data_block_CURRENT" + loop_ + _space_group_magn_transforms.id + _space_group_magn_transforms.Pp_abc + _space_group_magn_transforms.description + _space_group_magn_transforms.source + 1 'a,b,c;0,0,0' . "data_block_CURRENT" 2 'a/2,b,c;0,0,0' "data_block_205763" . 3 'a,b,c;0,0,0' . "BNS" 4 'a/2,b,c;0,0,0' . "OG" 5 'a/4,b,c;0,0,0' - "literature citation to a nuclear parent structure" . + "literature citation to a nuclear parent structure" . ; save_ @@ -3844,10 +3859,10 @@ save_space_group_magn_transforms.pp where (a,b,c) are the current basis vectors. - Ref: Wondratschek, H., Maroto, M. I., Souvignier, B. and Chapuis, G. + Ref: Wondratschek, H., Maroto, M. I., Souvignier, B. & Chapuis, G. (2016). Transformation of coordinate systems. In International Tables for - Crystallography (2016). Volume A, Space-group symmetry, edited - by M. Aroyo, 6th ed. ch 1.5. Chichester: Wiley. + Crystallography. Volume A, Space-group symmetry, edited + by M. Aroyo, 6th ed. ch. 1.5. Chichester: Wiley. ; _name.category_id space_group_magn_transforms _name.object_id Pp @@ -3880,7 +3895,7 @@ save_space_group_magn_transforms.pp_abc except that the point and translational components are separated by a semicolon. - Analogous tags: symCIF:_space_group.transform_Pp_abc + Analogous tags: symCIF:_space_group.transform_Pp_abc. ; _name.category_id space_group_magn_transforms _name.object_id Pp_abc @@ -3902,10 +3917,10 @@ save_space_group_magn_transforms.source tag. If the reference source does not appear in the list below, use _space_group_magn_transforms.description - Ref: 'Magnetic Group Tables' of D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. ISO(3+d)D tables - of H.T. Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' of D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. + ISO(3+d)D tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. ; _name.category_id space_group_magn_transforms _name.object_id source @@ -3932,7 +3947,7 @@ save_space_group_magn_transforms.source 'OG' ; The Opechowski-Guccione group setting presented in the Magnetic Group - Tables of D.B. Litvin. + Tables of D. B. Litvin. ; save_ @@ -3965,7 +3980,7 @@ save_SPACE_GROUP_SYMOP_MAGN_CENTERING resulting list of operators very long and unintuitive, especially when working in non-standard settings. One could argue that anti-centering operations belong in the main - representative- point-operation loop since they are not actually + representative-point-operation loop since they are not actually translations of the magnetic lattice. In fact, a pure time reversal is a generator of the magnetic point group of a type-4 magnetic space group. Nevertheless, this centering loop is @@ -3997,7 +4012,7 @@ save_space_group_symop_magn_centering.description _definition.update 2016-05-24 _description.text ; - An optional free text description of a particular centering or + An optional free-text description of a particular centering or anti-centering translation in the BNS-supercell description of a magnetic space group. ; @@ -4186,23 +4201,24 @@ save_space_group_symop_magn_operation.description _definition.id '_space_group_symop_magn_operation.description' - _definition.update 2016-05-24 + _definition.update 2024-03-13 _description.text ; The description of a particular symmetry operation of - the magnetic space group, which can be presented in - either the geometric notation presented in the - International Tables for Crystallography (2006), - Volume A, section 11.1.2, or the Seitz notation as - presented in Acta Cryst. (2014), A70, 300-302. + the magnetic space group, which can be given in either + the geometric notation presented by Fischer & Koch (2006) + or the Seitz notation as presented by Glazer et al. (2014). This tag is intended for use with the BNS-supercell description of a magnetic structure. - Analogous tags: symCIF:_space_group_symop.operation_description + Analogous tags: coreCIF:_space_group_symop.operation_description. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. + Fischer, W. & Koch, E. (2006). International Tables for Crystallography. + Volume A, Space-group symmetry, section 11.1.2. Dordrecht: Springer. + Glazer, A. M., Aroyo, M. I. & Authier, A. (2014). Acta Cryst. A70, 300-302. ; _name.category_id space_group_symop_magn_operation _name.object_id description @@ -4240,7 +4256,7 @@ save_ save_space_group_symop_magn_operation.xyz _definition.id '_space_group_symop_magn_operation.xyz' - _definition.update 2016-05-24 + _definition.update 2024-03-13 _description.text ; A parsable string giving one of the symmetry operations of the @@ -4252,11 +4268,11 @@ save_space_group_symop_magn_operation.xyz This tag is intended for use with the BNS-supercell description of a magnetic structure. - Analogous tags: symCIF:_space_group_symop.operation_xyz + Analogous tags: coreCIF:_space_group_symop.operation_xyz. - Ref: 'Magnetic Group Tables' by D.B. Litvin at - http://www.iucr.org/publ/978-0-9553602-2-0. ISO-MAG tables of H.T. - Stokes and B.J. Campbell at http://iso.byu.edu. + Ref: 'Magnetic Group Tables' by D. B. Litvin at + https://www.iucr.org/publ/978-0-9553602-2-0. + ISO-MAG tables of H. T. Stokes and B. J. Campbell at https://iso.byu.edu. ; _name.category_id space_group_symop_magn_operation _name.object_id xyz @@ -4293,7 +4309,7 @@ save_SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING _description.text ; This loop provides a list of the centering and anti-centering - translations of a magnetic superspace-group. + translations of a magnetic superspace group. ; _name.category_id MAGNETIC _name.object_id SPACE_GROUP_SYMOP_MAGN_SSG_CENTERING @@ -4360,7 +4376,7 @@ save_space_group_symop_magn_ssg_centering.id _description.text ; An arbitrary identifier that uniquely labels each centering or - anti-centering translations in a looped list of magnetic + anti-centering translation in a looped list of magnetic superspace-group symmetry operations. Most commonly, a sequence of positive integers is used for this identification. This tag is intended for use with the BNS description of the magnetic @@ -4391,7 +4407,7 @@ save_SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION ; A looped list of magnetic superspace-group symmetry operations. - Analogous tags: msCIF:_space_group_symop.ssg_* + Analogous tags: msCIF:_space_group_symop.ssg_*. ; _name.category_id MAGNETIC _name.object_id SPACE_GROUP_SYMOP_MAGN_SSG_OPERATION @@ -4415,7 +4431,7 @@ save_space_group_symop_magn_ssg_operation.algebraic respectively. This tag is intended for use with the BNS description of the magnetic basic cell. - Analogous tags: msCIF:_space_group_symop.ssg_operation_algebraic + Analogous tags: msCIF:_space_group_symop.ssg_operation_algebraic. ; _name.category_id space_group_symop_magn_ssg_operation _name.object_id algebraic @@ -4466,7 +4482,7 @@ save_space_group_symop_magn_ssg_operation.id The _space_group_symop_magn_ssg.id alias provides backwards compatibility with the established magCIF prototype. - Analogous tags: msCIF:_space_group_symop_ssg_id + Analogous tags: msCIF:_space_group_symop_ssg_id. ; _name.category_id space_group_symop_magn_ssg_operation _name.object_id id @@ -4529,7 +4545,7 @@ save_ _atom_site_moment.Cartn* items, corrected and improved *_symmform descriptions. Created the atom_site_rotation category. (B Campbell) ; - 0.9.9 2024-02-07 + 0.9.9 2024-03-13 ; Changed several instances of "Jones-Faithful notation" to "Jones faithful notation". @@ -4559,4 +4575,12 @@ save_ _atom_site_moment_Fourier_param.modulus_symmform and _atom_site_moment_Fourier_param.phase_symmform data items. Update example of the ATOM_SITE_MOMENT_FOURIER_PARAM category. + + 2024-03-13 editorial changes by B. McMahon: + Frame header for _space_group_magn.hall_symbol fixed (save__ -> save_). + + Analogous tags in symCIF changed to coreCIF where appropriate. Not + all symCIF items yet in coreCIF. + + Many style changes, typos and spelling errors fixed. ;