-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathmain_batch.py
64 lines (58 loc) · 2.79 KB
/
main_batch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import torch
import librosa
import argparse
import numpy as np
import soundfile as sf
from ast import literal_eval
from tqdm import tqdm
from tools.infer_tools import DiffusionSVC
if __name__ == '__main__':
# 讲道理应该从命令行读参数的,但是这样文件会很大,所以干脆在文件里写参数吧,还省的反炒饭。
input_path = '' # 目录下必须是只存在可以读的音频文件,如wav,也只推荐wav
output_path = ''
# 模型加载设置
device = 'cuda' # 设备
model_path = '' # 模型位置,会自动读取同目录下的config.yaml
f0_model = 'fcpe' # f0模式
f0_max = 800
f0_min = 65
# 以下设置和main.py一样,但是需要注意,这里推理是不切片的
key = 0
spk_id = 1
spk_mix_dict = None # 如要启用,需要是一个字典
aug_shift = 0
infer_speedup = 1
method = 'dpm-solver'
threhold = -60.0
k_step = None
spk_emb_path = None
spk_emb_dict_path = None
naive_model_path = None
index_ratio = 0 # 大于0则使用检索,需要已经训练过检索
# -------------------------------下面不用动----------------------------------
diffusion_svc = DiffusionSVC(device=device) # 加载模型
diffusion_svc.load_model(model_path=model_path, f0_model=f0_model, f0_max=f0_max, f0_min=f0_min)
if diffusion_svc.args.model.use_speaker_encoder: # 如果使用声纹,则处理声纹选项
diffusion_svc.set_spk_emb_dict(spk_emb_dict_path)
spk_emb = diffusion_svc.encode_spk_from_path(spk_emb_path)
else:
spk_emb = None
if naive_model_path is not None:
if k_step is None:
naive_model_path = None
print(" [WARN] Could not shallow diffusion without k_step value when Only set naive_model path")
else:
diffusion_svc.load_naive_model(naive_model_path=naive_model_path)
for file in tqdm(os.listdir(input_path)):
in_path = os.path.join(input_path, file)
assert os.path.isfile(in_path)
out_path = os.path.join(output_path, file)
in_wav, in_sr = librosa.load(in_path, sr=None)
out_wav, out_sr = diffusion_svc.infer_from_audio(in_wav, sr=in_sr, key=key, spk_id=spk_id,
spk_mix_dict=spk_mix_dict,
aug_shift=aug_shift,
infer_speedup=infer_speedup, method=method, k_step=k_step,
use_tqdm=False, spk_emb=spk_emb, threhold=threhold,
index_ratio=index_ratio)
sf.write(out_path, out_wav, out_sr)