forked from ChenRocks/UNITER
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain_vcr.py
560 lines (486 loc) · 22.2 KB
/
pretrain_vcr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
UNITER pre-training
"""
import argparse
from collections import defaultdict
import json
import os
from os.path import exists, join
from time import time
import torch
from torch.utils.data import DataLoader
from torch.nn import functional as F
from torch.nn.utils import clip_grad_norm_
from apex import amp
from horovod import torch as hvd
from tqdm import tqdm
from data import (TokenBucketSampler,
MetaLoader, PrefetchLoader, DetectFeatLmdb,
VcrTxtTokLmdb, ImageLmdbGroup, ConcatDatasetWithLens,
MlmDatasetForVCR, mlm_collate_for_vcr,
MrfrDatasetForVCR, mrfr_collate_for_vcr,
MrcDatasetForVCR, mrc_collate_for_vcr)
from model.pretrain_vcr import UniterForPretrainingForVCR
from optim import get_lr_sched
from optim.misc import build_optimizer
from utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
from utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
broadcast_tensors)
from utils.save import ModelSaver, save_training_meta
from utils.misc import NoOp, parse_with_config, set_dropout, set_random_seed
from utils.const import IMG_DIM, IMG_LABEL_DIM, BUCKET_SIZE
NUM_SPECIAL_TOKENS = 81
def build_dataloader(dataset, collate_fn, is_train, opts):
if is_train:
batch_size = opts.train_batch_size
else:
batch_size = opts.val_batch_size
sampler = TokenBucketSampler(dataset.lens, bucket_size=BUCKET_SIZE,
batch_size=batch_size, droplast=is_train)
loader = DataLoader(dataset, batch_sampler=sampler,
num_workers=opts.n_workers, pin_memory=opts.pin_mem,
collate_fn=collate_fn)
return loader
def build_mlm_dataset(txt_db, img_db_gt, img_db, is_train, opts):
if is_train:
collate_fn = mlm_collate_for_vcr
datasets = [MlmDatasetForVCR(t, i_gt, i)
for t, i_gt, i in zip(txt_db, img_db_gt, img_db)]
dataset = ConcatDatasetWithLens(datasets)
else:
collate_fn = mlm_collate_for_vcr
dataset = MlmDatasetForVCR(txt_db, img_db_gt, img_db)
return dataset, collate_fn
def build_mrfr_dataset(txt_db, img_db_gt, img_db, is_train, opts):
if is_train:
datasets = [MrfrDatasetForVCR(opts.mrm_prob, t, i_gt, i)
for t, i_gt, i in zip(txt_db, img_db_gt, img_db)]
dataset = ConcatDatasetWithLens(datasets)
else:
dataset = MrfrDatasetForVCR(opts.mrm_prob, txt_db, img_db_gt, img_db)
return dataset, mrfr_collate_for_vcr
def build_mrc_dataset(txt_db, img_db_gt, img_db, is_train, opts):
if is_train:
datasets = [MrcDatasetForVCR(opts.mrm_prob, t, i_gt, i)
for t, i_gt, i in zip(txt_db, img_db_gt, img_db)]
dataset = ConcatDatasetWithLens(datasets)
else:
dataset = MrcDatasetForVCR(opts.mrm_prob, txt_db, img_db_gt, img_db)
return dataset, mrc_collate_for_vcr
def load_img_feat(db_list, all_img_dbs, opts):
db_ = db_list.split(";")
assert len(db_) <= 2, "More than two img_dbs found"
gt_db_path, db_path = "", ""
for d in db_:
if "gt" in d:
gt_db_path = d
else:
db_path = d
if gt_db_path != "":
img_db_gt = DetectFeatLmdb(
gt_db_path, -1, opts.max_bb, opts.min_bb, 100,
opts.compressed_db)
all_img_dbs.path2imgdb[gt_db_path] = img_db_gt
else:
img_db_gt = None
img_db = all_img_dbs[db_path] if db_path != "" else None
all_img_dbs.path2imgdb[db_path] = img_db
return img_db, img_db_gt
def create_dataloaders(datasets, is_train, opts, all_img_dbs=None):
if all_img_dbs is None:
all_img_dbs = ImageLmdbGroup(opts.conf_th, opts.max_bb, opts.min_bb,
opts.num_bb, opts.compressed_db)
dataloaders = {}
for dset in datasets:
for vcr_task in ["qa", "qar"]:
if is_train:
assert len(dset['db']) == len(dset['img'])
assert len(dset['tasks']) == len(dset['mix_ratio'])
img_db, img_db_gt = [], []
for img_path in dset['img']:
curr_img_db, curr_img_db_gt = load_img_feat(
img_path, all_img_dbs, opts)
img_db.append(curr_img_db)
img_db_gt.append(curr_img_db_gt)
else:
assert len(dset['db']) == len(dset['img']) == 1
img_db, img_db_gt = load_img_feat(
dset['img'][0], all_img_dbs, opts)
for i, t in enumerate(dset['tasks']):
task = f'{t}_{dset["name"]}'
if is_train:
LOGGER.info(
f"Loading {task} train dataset with vcr_{vcr_task}, "
f"{dset['db']}, {[img.img_dir for img in img_db]},"
f"{[img.img_dir for img in img_db_gt]}")
txt_db = [VcrTxtTokLmdb(path, opts.max_txt_len,
task=vcr_task)
for path in dset['db']]
else:
LOGGER.info(
f"Loading {task} val dataset with vcr_{vcr_task}, "
f"{dset['db']}, {img_db.img_dir},"
f"{img_db_gt.img_dir}")
txt_db = VcrTxtTokLmdb(dset['db'][0], -1,
task=vcr_task)
if task.startswith('mlm'):
dataset = build_mlm_dataset(
txt_db, img_db_gt, img_db, is_train, opts)
elif task.startswith('mrfr'):
dataset = build_mrfr_dataset(
txt_db, img_db_gt, img_db, is_train, opts)
elif task.startswith('mrc'):
dataset = build_mrc_dataset(
txt_db, img_db_gt, img_db, is_train, opts)
else:
raise ValueError(f'Undefined task {task}')
LOGGER.info(f"{len(dataset[0])*hvd.size()} samples loaded")
loader = build_dataloader(*dataset, is_train, opts)
if is_train:
ratio = dset['mix_ratio'][i]
dataloaders[task] = (loader, ratio)
else:
dataloaders[task] = PrefetchLoader(loader)
return dataloaders, all_img_dbs
def main(opts):
hvd.init()
n_gpu = hvd.size()
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
rank = hvd.rank()
opts.rank = rank
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
"16-bits training: {}".format(
device, n_gpu, hvd.rank(), opts.fp16))
if opts.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, "
"should be >= 1".format(
opts.gradient_accumulation_steps))
set_random_seed(opts.seed)
if rank == 0:
save_training_meta(opts)
TB_LOGGER.create(join(opts.output_dir, 'log'))
pbar = tqdm(total=opts.num_train_steps)
model_saver = ModelSaver(join(args.output_dir, 'ckpt'))
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
else:
LOGGER.disabled = True
pbar = NoOp()
model_saver = NoOp()
all_dbs = [db for datasets in [opts.train_datasets, opts.val_datasets]
for dset in datasets for db in dset['db']]
tokenizer = json.load(open(f'{all_dbs[0]}/meta.json'))['bert']
assert all(tokenizer == json.load(open(f'{db}/meta.json'))['bert']
for db in all_dbs)
# build data loaders
train_dataloaders, all_img_dbs = create_dataloaders(
opts.train_datasets, True, opts)
val_dataloaders, _ = create_dataloaders(
opts.val_datasets, False, opts, all_img_dbs)
meta_loader = MetaLoader(train_dataloaders,
accum_steps=opts.gradient_accumulation_steps,
distributed=n_gpu > 1)
meta_loader = PrefetchLoader(meta_loader)
# Prepare model
if opts.checkpoint:
checkpoint = torch.load(opts.checkpoint)
else:
checkpoint = {}
model = UniterForPretrainingForVCR.from_pretrained(
opts.model_config, checkpoint,
img_dim=IMG_DIM, img_label_dim=IMG_LABEL_DIM)
model.init_type_embedding()
model.init_word_embedding(NUM_SPECIAL_TOKENS)
model.to(device)
model.train()
# make sure every process has same model parameters in the beginning
broadcast_tensors([p.data for p in model.parameters()], 0)
set_dropout(model, opts.dropout)
# Prepare optimizer
optimizer = build_optimizer(model, opts)
task2scaler = {t: i for i, t in enumerate(train_dataloaders.keys())}
model, optimizer = amp.initialize(model, optimizer,
num_losses=len(task2scaler),
enabled=opts.fp16, opt_level='O2')
global_step = 0
LOGGER.info(f"***** Running training with {n_gpu} GPUs *****")
LOGGER.info(" Batch size = %d", opts.train_batch_size)
LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps)
LOGGER.info(" Num steps = %d", opts.num_train_steps)
# to compute training statistics
task2loss = {task: RunningMeter(f'loss/{task}')
for task in train_dataloaders.keys()}
n_examples = defaultdict(int)
n_in_units = defaultdict(int)
n_loss_units = defaultdict(int)
grad_norm = 0
start = time()
# quick hack for amp delay_unscale bug
optimizer.zero_grad()
optimizer.step()
for step, (name, batch) in enumerate(meta_loader):
# forward pass
n_examples[name] += batch['input_ids'].size(0)
n_in_units[name] += (batch['attn_masks'] == 1).sum().item()
task = name.split('_')[0]
loss = model(batch, task=task, compute_loss=True)
n_loss_units[name] += loss.size(0)
loss = loss.mean() # loss is not normalized in model
# backward pass
delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0
with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale,
loss_id=task2scaler[name]) as scaled_loss:
scaled_loss.backward()
if not delay_unscale:
# gather gradients from every processes
# do this before unscaling to make sure every process uses
# the same gradient scale
grads = [p.grad.data for p in model.parameters()
if p.requires_grad and p.grad is not None]
all_reduce_and_rescale_tensors(grads, float(1))
task2loss[name](loss.item())
# optimizer update and logging
if (step + 1) % opts.gradient_accumulation_steps == 0:
global_step += 1
# learning rate scheduling
lr_this_step = get_lr_sched(global_step, opts)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
# log loss
# NOTE: not gathered across GPUs for efficiency
TB_LOGGER.log_scaler_dict({ll.name: ll.val
for ll in task2loss.values()
if ll.val is not None})
TB_LOGGER.step()
# update model params
if opts.grad_norm != -1:
grad_norm = clip_grad_norm_(amp.master_params(optimizer),
opts.grad_norm)
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
optimizer.step()
optimizer.zero_grad()
pbar.update(1)
if global_step % 100 == 0:
# monitor training throughput
LOGGER.info(f'==============Step {global_step}===============')
for t in train_dataloaders.keys():
assert all(tt == t for tt in all_gather_list(t))
tot_ex = sum(all_gather_list(n_examples[t]))
ex_per_sec = int(tot_ex / (time()-start))
tot_in = sum(all_gather_list(n_in_units[t]))
in_per_sec = int(tot_in / (time()-start))
tot_l = sum(all_gather_list(n_loss_units[t]))
l_per_sec = int(tot_l / (time()-start))
LOGGER.info(f'{t}: {tot_ex} examples trained at '
f'{ex_per_sec} ex/s')
TB_LOGGER.add_scalar(f'perf/{t}_ex_per_s', ex_per_sec,
global_step)
TB_LOGGER.add_scalar(f'perf/{t}_in_per_s', in_per_sec,
global_step)
TB_LOGGER.add_scalar(f'perf/{t}_loss_per_s', l_per_sec,
global_step)
LOGGER.info('===============================================')
if global_step % opts.valid_steps == 0:
LOGGER.info(f'Step {global_step}: start validation')
validate(model, val_dataloaders)
model_saver.save(model, global_step)
if global_step >= opts.num_train_steps:
break
if global_step % opts.valid_steps != 0:
LOGGER.info(f'Step {global_step}: start validation')
validate(model, val_dataloaders)
model_saver.save(model, global_step)
def validate(model, val_dataloaders):
model.eval()
for task, loader in val_dataloaders.items():
LOGGER.info(f"validate on {task} task")
if task.startswith('mlm'):
val_log = validate_mlm(model, loader)
elif task.startswith('mrfr'):
val_log = validate_mrfr(model, loader)
elif task.startswith('mrc'):
val_log = validate_mrc(model, loader, task)
else:
raise ValueError(f'Undefined task {task}')
val_log = {f'{task}_{k}': v for k, v in val_log.items()}
TB_LOGGER.log_scaler_dict(
{f'valid_{task}/{k}': v for k, v in val_log.items()})
model.train()
@torch.no_grad()
def validate_mlm(model, val_loader):
LOGGER.info("start running MLM validation...")
val_loss = 0
n_correct = 0
n_word = 0
st = time()
for i, batch in enumerate(val_loader):
scores = model(batch, task='mlm', compute_loss=False)
labels = batch['txt_labels']
labels = labels[labels != -1]
loss = F.cross_entropy(scores, labels, reduction='sum')
val_loss += loss.item()
n_correct += (scores.max(dim=-1)[1] == labels).sum().item()
n_word += labels.numel()
val_loss = sum(all_gather_list(val_loss))
n_correct = sum(all_gather_list(n_correct))
n_word = sum(all_gather_list(n_word))
tot_time = time()-st
val_loss /= n_word
acc = n_correct / n_word
val_log = {'loss': val_loss,
'acc': acc,
'tok_per_s': n_word/tot_time}
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
f"acc: {acc*100:.2f}")
return val_log
def accuracy_count(out, labels):
outputs = out.max(dim=-1)[1]
mask = labels != -1
n_correct = (outputs == labels).masked_select(mask).sum().item()
return n_correct
@torch.no_grad()
def validate_mrfr(model, val_loader):
LOGGER.info("start running MRFR validation...")
val_loss = 0
n_feat = 0
st = time()
for i, batch in enumerate(val_loader):
loss = model(batch, task='mrfr', compute_loss=True)
val_loss += loss.sum().item() / IMG_DIM
n_feat += batch['img_mask_tgt'].sum().item()
val_loss = sum(all_gather_list(val_loss))
n_feat = sum(all_gather_list(n_feat))
tot_time = time()-st
val_loss /= n_feat
val_log = {'loss': val_loss,
'feat_per_s': n_feat/tot_time}
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
f"loss: {val_loss:.2f}")
return val_log
@torch.no_grad()
def validate_mrc(model, val_loader, task):
LOGGER.info("start running MRC validation...")
val_loss = 0
n_feat = 0
st = time()
tot_score = 0
for i, batch in enumerate(val_loader):
prediction_soft_label = model(
batch, task=task, compute_loss=False)
if "kl" in task:
prediction_soft_label = F.log_softmax(
prediction_soft_label, dim=-1)
label_targets = batch['label_targets']
loss = F.kl_div(
prediction_soft_label, label_targets, reduction='sum')
tot_score += compute_accuracy_for_soft_targets(
prediction_soft_label, label_targets)
else:
# background class should not be the target
cls_label_targets = label_targets[:, 1:].max(dim=-1)[1] + 1
loss = F.cross_entropy(
prediction_soft_label, cls_label_targets,
ignore_index=0, reduction='sum')
tot_score += compute_accuracy_for_soft_targets(
prediction_soft_label[:, 1:], label_targets[:, 1:])
val_loss += loss.item()
n_feat += batch['img_mask_tgt'].sum().item()
val_loss = sum(all_gather_list(val_loss))
tot_score = sum(all_gather_list(tot_score))
n_feat = sum(all_gather_list(n_feat))
tot_time = time()-st
val_loss /= n_feat
val_acc = tot_score / n_feat
val_log = {'loss': val_loss,
'acc': val_acc,
'feat_per_s': n_feat/tot_time}
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
f"score: {val_acc*100:.2f}")
return val_log
def compute_accuracy_for_soft_targets(out, labels):
outputs = out.max(dim=-1)[1]
labels = labels.max(dim=-1)[1] # argmax
n_correct = (outputs == labels).sum().item()
return n_correct
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
# NOTE: train tasks and val tasks cannot take command line arguments
parser.add_argument('--compressed_db', action='store_true',
help='use compressed LMDB')
parser.add_argument("--model_config", type=str,
help="path to model structure config json")
parser.add_argument("--checkpoint", default=None, type=str,
help="path to model checkpoint (*.pt)")
parser.add_argument(
"--output_dir", default=None, type=str,
help="The output directory where the model checkpoints will be "
"written.")
parser.add_argument('--mrm_prob', default=0.15, type=float,
help='probability to mask in MRM training')
# Prepro parameters
parser.add_argument('--max_txt_len', type=int, default=60,
help='max number of tokens in text (BERT BPE)')
parser.add_argument('--conf_th', type=float, default=0.2,
help='threshold for dynamic bounding boxes '
'(-1 for fixed)')
parser.add_argument('--max_bb', type=int, default=100,
help='max number of bounding boxes')
parser.add_argument('--min_bb', type=int, default=10,
help='min number of bounding boxes')
parser.add_argument('--num_bb', type=int, default=36,
help='static number of bounding boxes')
# training parameters
parser.add_argument("--train_batch_size", default=4096, type=int,
help="Total batch size for training. "
"(batch by tokens)")
parser.add_argument("--val_batch_size", default=4096, type=int,
help="Total batch size for validation. "
"(batch by tokens)")
parser.add_argument('--gradient_accumulation_steps', type=int, default=16,
help="Number of updates steps to accumualte before "
"performing a backward/update pass.")
parser.add_argument("--learning_rate", default=3e-5, type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--valid_steps", default=1000, type=int,
help="Run validation every X steps")
parser.add_argument("--num_train_steps", default=100000, type=int,
help="Total number of training updates to perform.")
parser.add_argument("--optim", default='adamw',
choices=['adam', 'adamax', 'adamw'],
help="optimizer")
parser.add_argument("--betas", default=[0.9, 0.98], nargs='+',
help="beta for adam optimizer")
parser.add_argument("--dropout", default=0.1, type=float,
help="tune dropout regularization")
parser.add_argument("--weight_decay", default=0.01, type=float,
help="weight decay (L2) regularization")
parser.add_argument("--grad_norm", default=2.0, type=float,
help="gradient clipping (-1 for no clipping)")
parser.add_argument("--warmup_steps", default=10000, type=int,
help="Number of training steps to perform linear "
"learning rate warmup for.")
# device parameters
parser.add_argument('--seed', type=int, default=42,
help="random seed for initialization")
parser.add_argument('--fp16', action='store_true',
help="Whether to use 16-bit float precision instead "
"of 32-bit")
parser.add_argument('--n_workers', type=int, default=4,
help="number of data workers")
parser.add_argument('--pin_mem', action='store_true', help="pin memory")
# can use config files
parser.add_argument('--config', required=True, help='JSON config files')
args = parse_with_config(parser)
if exists(args.output_dir) and os.listdir(args.output_dir):
raise ValueError("Output directory ({}) already exists and is not "
"empty.".format(args.output_dir))
# options safe guard
if args.conf_th == -1:
assert args.max_bb + args.max_txt_len + 2 <= 512
else:
assert args.num_bb + args.max_txt_len + 2 <= 512
main(args)