-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmpl6_star_overlay.py
71 lines (65 loc) · 2.85 KB
/
mpl6_star_overlay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import pandas
from panoptes_aggregation.csv_utils import unjson_dataframe
from astropy.wcs import WCS
import numpy as np
from gz3d_fits import cov_to_ellipse
from plot_fits_files import set_up_axes
from make_subject_fits import define_wcs
import matplotlib.pyplot as plt
import mpl_style
import progressbar as pb
plt.style.use(mpl_style.style1)
path = '/Volumes/Work/GZ3D'
data = pandas.read_csv(path + '/point_reducer_galaxy_and_star_mpl6.csv')
unjson_dataframe(data)
widgets = ['Plot: ', pb.Percentage(), ' ', pb.Bar(marker='0', left='[', right=']'), ' ', pb.ETA()]
pbar = pb.ProgressBar(widgets=widgets, max_value=len(data))
subjects = pandas.read_csv(path + '/galaxy-zoo-3d-subjects-mpl5-mpl6.csv')
subjects.columns = [
'subject_id',
'project_id',
'workflow_id',
'subject_set_id',
'data.metadata',
'data.locations',
'classifications_count',
'retired_at',
'retirement_reason'
]
unjson_dataframe(subjects)
pbar.start()
for index, reduction in data.iterrows():
if (not np.isnan(reduction['data.T0_tool1_clusters_count']).any()) and (max(reduction['data.T0_tool1_clusters_count']) >= 10):
for idx, count in enumerate(reduction['data.T0_tool1_clusters_count']):
x_list = []
y_list = []
ellip_list = []
if count >= 10:
x = reduction['data.T0_tool1_clusters_x'][idx]
y = reduction['data.T0_tool1_clusters_y'][idx]
x_list.append(x)
y_list.append(y)
pos = np.array([x, y])
cov = np.array([
[reduction['data.T0_tool1_clusters_var_x'][idx], reduction['data.T0_tool1_clusters_var_x_y'][idx]],
[reduction['data.T0_tool1_clusters_var_x_y'][idx], reduction['data.T0_tool1_clusters_var_y'][idx]]
])
ellip_list.append(cov_to_ellipse(cov, pos, nstd=2, edgecolor='C3', facecolor='none', lw=2, alpha=0.75))
# plot original image
sdx = (subjects.subject_id == reduction.subject_id) & (subjects.workflow_id == reduction.workflow_id) & (subjects.subject_set_id == 8215)
subject_metadata = subjects['data.metadata'].loc[sdx].item()
wcs = define_wcs(float(subject_metadata['ra']), float(subject_metadata['dec']))
manga_name = '{0}_{1}'.format(subject_metadata['MANGAID'], int(float(subject_metadata['IFUDESIGNSIZE'])))
loc = '/Volumes/SD_Extra/manga_images_production/non_MPL5/{0}.jpg'.format(manga_name)
image = plt.imread(loc, format='jpeg')
fig = plt.figure(1)
ax = plt.subplot(111, projection=wcs)
set_up_axes(ax, color_grid='C7')
ax.imshow(image)
ax.plot(x, y, 'x', color='C3')
for e in ellip_list:
ax.add_artist(e)
plt.savefig('{0}/MPL6_stars/{1}.png'.format(path, manga_name))
plt.close(fig)
pbar.update(index + 1)
pbar.finish()