-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmake_subject_fits.py
340 lines (315 loc) · 12.8 KB
/
make_subject_fits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# this is an all-in-one subject aggregating code for GZ: 3D
# Basic idea:
# 1. Loop over all subjects
# 2. Grab all classifications for that subject (from any workflow)
# 3. Aggregate based on workflow
# 4. Save all information for the subject to a FITS file
#
# FITS file structrue:
# HDU 0: SDSS cutout image (that the user saw)
# HDU 1: [image] Pixel mask of clustering resutls for galaxy center(s) ("2 sigma" ellipse about clustered points with value equal to number of points used to make the cluster)
# HDU 2: [image] Pixel mask of clustering resutls for star(s) ("2 sigma" ellipse about clustered points with value equal to number of points used to make the cluster)
# HDU 3: [image] Pixel mask of spiral arm location(s) (cleaned classification counts for each pixel)
# HDU 4: [image] Pixel mask of bar location (cleaned classification counts for each pixel)
# HDU 5: [table] Image metadata
# HDU 6: [table] Center cluster data table (in pix and RA-DEC coords)
# HDU 7: [table] Star cluster data table (in pix and RA-DEC coords)
# HDU 8: [table] raw center and star classifications
# HDU 9: [table] raw spiral arm classifications
# HDU 10: [table] raw bar classifications
from astropy.io import fits
from astropy.wcs import WCS
from astropy.table import Table
import progressbar as pb
from collections import OrderedDict
from sklearn.cluster import DBSCAN
import numpy as np
import scipy.linalg as sl
import matplotlib.pyplot as plt
from matplotlib.path import Path
from shapely.geometry import LineString
import json
import os.path
from subprocess import call
import pandas
widgets = ['Aggregate: ', pb.Percentage(), ' ', pb.Bar(marker='0', left='[', right=']'), ' ', pb.AdaptiveETA()]
# metadata on each subject is in this format
metadata_dtype = [
('ra', '>f4'),
('dec', '>f4'),
('MANGAID', 'S11'),
('IAUNAME', 'S19'),
('IFUDESIGNSIZE', '>f8'),
('#MANGA_TILEID', '>f8'),
('nsa_id', '>i8'),
('explorer_link', 'S90'),
('GZ_total_classifications', '>i2'),
('GZ_bar_votes', '>i2'),
('GZ_spiral_votes', '>i2'),
('sample', 'S70')
]
def define_wcs(ra, dec, scale=0.099, size_pix=np.array([525, 525])):
"""
Given what we know about the scale of the image,
define a nearly-correct world coordinate system to use with it.
"""
w = WCS(naxis=2)
w.wcs.crpix = size_pix / 2
w.wcs.crval = np.array([ra, dec])
w.wcs.cd = np.array([[-1, 0], [0, -1]]) * scale / 3600.
w.wcs.ctype = ['RA---TAN', 'DEC--TAN']
w.wcs.cunit = ['deg', 'deg']
return w
def cov_to_ellipse_params(cov, pos, nstd=1):
eigvec, eigval, V = sl.svd(cov, full_matrices=False)
theta = np.degrees(np.arctan2(eigvec[1, 0], eigvec[0, 0]))
a, b = nstd * np.sqrt(eigval)
return a, b, np.deg2rad(theta)
def inside_ellipse(coords, center, a, b, theta):
# subtract center
t_coords = np.array(coords) - center
# rotate coords by theta
R = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]])
t_coords = np.dot(t_coords, R)
# divide by semi- axies
t_coords /= np.array([a, b])
# in this coord system the ellipse is a unit circle
# check where x**2 + y**2 <= 1
inside = (t_coords**2).sum(axis=1) <= 1
return inside
def make_cluster_table():
return OrderedDict([
('x', []),
('y', []),
('var_x', []),
('var_y', []),
('var_x_y', []),
('ra', []),
('dec', []),
('var_ra', []),
('var_dec', []),
('var_ra_dec', []),
('count', [])
])
def cluster(X, dimensions, coords, wcs):
if X.dtype is np.dtype(object):
X = X.astype(np.float)
X = X[np.isfinite(X).all(axis=1)]
mask = np.zeros(dimensions)
db = DBSCAN(eps=5, min_samples=3).fit(X)
cluster_table = make_cluster_table()
X_ra_dec = wcs.wcs_pix2world(X, 1)
for k in set(db.labels_):
if k > -1:
idx = db.labels_ == k
cluster_table['count'].append(idx.sum())
m = X[idx].mean(axis=0)
cluster_table['x'].append(m[0])
cluster_table['y'].append(m[1])
cov = np.cov(X[idx].T)
cluster_table['var_x'].append(cov[0, 0])
cluster_table['var_y'].append(cov[1, 1])
cluster_table['var_x_y'].append(cov[0, 1])
a, b, theta = cov_to_ellipse_params(cov, m, nstd=2)
if (a > 0) and (b > 0):
inside = inside_ellipse(coords, m, a, b, theta).reshape(*dimensions)
mask += inside * idx.sum()
# now calculate center and cov in RA DEC
m_ra_dec = X_ra_dec[idx].mean(axis=0)
cluster_table['ra'].append(m_ra_dec[0])
cluster_table['dec'].append(m_ra_dec[1])
cov_ra_dec = np.cov(X_ra_dec[idx].T)
cluster_table['var_ra'].append(cov_ra_dec[0, 0])
cluster_table['var_dec'].append(cov_ra_dec[1, 1])
cluster_table['var_ra_dec'].append(cov_ra_dec[0, 1])
return mask, fits.table_to_hdu(Table(cluster_table))
def path(X, dimensions, coords):
# X is list of lists
mask = np.zeros(dimensions)
# remove self intersecting paths
for p in X:
codes = [Path.MOVETO] + [Path.LINETO] * len(p)
if len(p) > 1:
if not LineString(p).is_simple:
continue
p_closed = p + [p[0]]
mpl_path = Path(p_closed, codes=codes)
inside = mpl_path.contains_points(coords).reshape(*dimensions)
mask += inside
return mask
def make_classification_table(*args):
table = OrderedDict([
('classification_id', []),
# ('user_name', []),
# ('user_id', []),
('time_stamp', [])
])
for a in args:
table[a] = []
return table
def record_base_classification(c, table):
table['classification_id'].append(c.classification_id)
# table['user_name'].append(c.user_name)
# table['user_id'].append(c.user_id)
table['time_stamp'].append(c.created_at)
def mask_process(classifications, subject_id, column_name, wcs_header, dimensions, coords):
classifications_table = make_classification_table(column_name)
all_paths = []
cdx = classifications.subject_ids == subject_id
for c, classification in classifications[cdx].iterrows():
record_base_classification(classification, classifications_table)
paths = []
annotations = json.loads(classification['annotations'])[0]
if 'value' in annotations:
for a in annotations['value']:
if 'points' in a:
points = [[p['x'], p['y']] for p in a['points']]
paths.append(points)
all_paths.append(points)
classifications_table[column_name].append(json.dumps(paths))
table_hdu = fits.table_to_hdu(Table(classifications_table))
if len(all_paths):
path_mask = path(all_paths, dimensions, coords)
else:
path_mask = np.zeros(dimensions)
mask_hdu = fits.ImageHDU(data=path_mask, header=wcs_header)
return table_hdu, mask_hdu
def make_subject_fits(
subject_data_location,
center_data_location,
spiral_data_location,
bar_data_location,
image_location,
full_subject_set_id=16409,
dimensions=[525, 525],
output='MPL5_fits'
):
subjects_data = pandas.read_csv(subject_data_location)
classifications = {
'center': pandas.read_csv(center_data_location),
'bar': pandas.read_csv(bar_data_location),
'spiral': pandas.read_csv(spiral_data_location)
}
blank_mask = np.zeros(dimensions)
coords = [[x, y] for y in range(dimensions[1]) for x in range(dimensions[0])]
sdx = subjects_data.subject_set_id == full_subject_set_id
pbar = pb.ProgressBar(widgets=widgets, maxval=sdx.sum())
pbar.start()
idx = 0
for s, subject in subjects_data[sdx].iterrows():
subject_metadata = Table(dtype=metadata_dtype)
metadata = json.loads(subject.metadata)
subject_metadata.add_row(tuple(metadata[key] for key in subject_metadata.dtype.names))
subject_metadata.rename_column('#MANGA_TILEID', 'MANGA_TILEID')
subject_metadata_hdu = fits.table_to_hdu(subject_metadata)
output_name = '{0}/{1}_{2}_{3}.fits'.format(
output,
subject_metadata['MANGAID'][0].strip(),
int(subject_metadata['IFUDESIGNSIZE'][0]),
subject.subject_id
)
if os.path.isfile('{0}.gz'.format(output_name)):
# don't process the file if it already exists
idx += 1
pbar.update(idx)
continue
loc = '{0}/{1}_{2}.jpg'.format(
image_location,
subject_metadata['MANGAID'][0].strip(),
int(subject_metadata['IFUDESIGNSIZE'][0])
)
image = plt.imread(loc, format='jpeg')
# url = json.loads(subject.locations)['0']
# image = io.imread(url)
wcs = define_wcs(subject_metadata['ra'][0], subject_metadata['dec'][0])
wcs_header = wcs.to_header()
orig_image_hdu = fits.PrimaryHDU(data=image, header=wcs_header)
# process data from center(s) and star(s) points
center_classifications = make_classification_table('center_points', 'star_points')
all_center = []
all_star = []
cdx = classifications['center'].subject_ids == subject.subject_id
for c, classification in classifications['center'][cdx].iterrows():
record_base_classification(classification, center_classifications)
center_points = []
star_points = []
points = json.loads(classification['annotations'])[0]
if 'value' in points:
for p in points['value']:
if ('x' in p) and ('y' in p):
if p['tool'] == 0:
# somehow the workflow_id got messed up for some classifications
# so a try statement is needed
loc = [p['x'], p['y']]
center_points.append(loc)
all_center.append(loc)
elif p['tool'] == 1:
loc = [p['x'], p['y']]
star_points.append(loc)
all_star.append(loc)
center_classifications['center_points'].append(json.dumps(center_points))
center_classifications['star_points'].append(json.dumps(star_points))
center_star_table_hdu = fits.table_to_hdu(Table(center_classifications))
# cluster points and make image masks
if len(all_center):
center_mask, center_table_hdu = cluster(np.array(all_center), dimensions, coords, wcs)
else:
center_mask = blank_mask
center_table_hdu = fits.table_to_hdu(Table(make_cluster_table()))
center_hdu = fits.ImageHDU(data=center_mask, header=wcs_header)
if len(all_star):
star_mask, star_table_hdu = cluster(np.array(all_star), dimensions, coords, wcs)
else:
star_mask = blank_mask
star_table_hdu = fits.table_to_hdu(Table(make_cluster_table()))
star_hdu = fits.ImageHDU(data=star_mask, header=wcs_header)
# spiral arms
spiral_table_hdu, spiral_hdu = mask_process(
classifications['spiral'],
subject.subject_id,
'spiral_paths',
wcs_header,
dimensions,
coords
)
# bars
bar_table_hdu, bar_hdu = mask_process(
classifications['bar'],
subject.subject_id,
'bar_paths',
wcs_header,
dimensions,
coords
)
# make fits file
hdu_list = fits.HDUList([
orig_image_hdu,
center_hdu,
star_hdu,
spiral_hdu,
bar_hdu,
subject_metadata_hdu,
center_table_hdu,
star_table_hdu,
center_star_table_hdu,
spiral_table_hdu,
bar_table_hdu
])
hdu_list.writeto(output_name)
# compress the fits file
call(['gzip', output_name])
# update progressbar
idx += 1
pbar.update(idx)
pbar.finish()
if __name__ == '__main__':
make_subject_fits(
'/Volumes/Work/GZ3D/data_dumps_run_final/galaxy-zoo-3d-subjects.csv',
'/Volumes/Work/GZ3D/data_dumps_run_final/mark-galaxy-centers-and-foreground-stars-data-run-2-classifications.csv',
'/Volumes/Work/GZ3D/data_dumps_run_final/mark-spiral-arms-data-run-2-classifications.csv',
'/Volumes/Work/GZ3D/data_dumps_run_final/mark-galaxy-bars-data-run-2-classifications.csv',
'/Users/coleman/Desktop/SD_Extra/manga_images_produciton_round2/all_manga_cutouts',
full_subject_set_id=16409,
dimensions=[525, 525],
output='/Volumes/Work/GZ3D/Data_run_final_fits_no_user'
)