-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsim_tensor_4pop_linear.m
154 lines (132 loc) · 5.2 KB
/
sim_tensor_4pop_linear.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
function [Z_prime, X_firing, X_firing_conv, weight_evolution, spatial, W] = ...
sim_tensor_4pop_linear(Rank_1_approx,noise_level)
%------------------------------------------------------------------
%Changes from sim_tensor_4pop_feed_forward.m:
%This function uses real Kernels & Approximations
%------------------------------------------------------------------
% Defining the model
t = linspace(0, 1, 1000); % Evrim requested 1000 time points
ft = t; % stepsize time
n_trials = 30; % number trials
n_channels = 16; % CHANGE: Back to 16 for real Kernels
% BEGIN BIG CHANGE -----------------------------------------------
kernel_list = {'/TC/L4E','/L4E/L6E','/L6E/L5E','/L5E/L23E'}; %New list from Alex and neurology 2/3/2020
n_pop = 4;
kernels = cell(n_pop,1); %Getting the kernels from the .h5 file
if Rank_1_approx == 0
for p = 1:n_pop
kernels{p} = h5read('kernels.h5', char(kernel_list(p)))';
end
norms = zeros(n_pop,1);
for p = 1:n_pop
norms(p) = norm(kernels{p},'fro');
end
p=2;
K = h5read('kernels.h5', char(kernel_list(p)))';
kernels{p} = K.*mean(norms([1,3:4]))/norms(p);
elseif Rank_1_approx == 1
for p = [1,3:n_pop]
K = h5read('kernels.h5', char(kernel_list(p)))';
[U,S,V] = svd(K);
kernels{p} = U(:,1)*S(1)*V(:,1)';
end
norms = zeros(n_pop,1);
for p = 1:n_pop
norms(p) = norm(kernels{p}); %Get two norm
end
p=2;
K = h5read('kernels.h5', char(kernel_list(p)))';
[U,~,V] = svd(K);
kernels{p} = U(:,1)*mean(norms([1,3:n_pop]))*V(:,1)'; %Make singular value mean of others
else
disp('Place either 0 or 1 for this input')
end
%The below line was incorperated in the original project from SSCP
%It implicitely implies that the kernel is rank 1, may or may not be
%good,but I don't know how we would construct the ktensor for FMS without it
spatial = zeros(size(kernels{1},1),n_pop);
temporal = zeros(size(kernels{1},2),n_pop);
for i = 1:n_pop
[U,~,V] = svd(kernels{i});
spatial(:,i) = U(:,1);
temporal(:,i) = V(:,1);
end
% END BIG CHANGE -------------------------------------------------
W = zeros(n_trials, 4, 4); % we have a weight matrix for each trial (so a weight tensor)
W(:, 2, 1) = 3 * (0.5 * sin(linspace(0, pi/2, n_trials)) + 0.5); % connection population 1 -> 2
W(:, 3, 2) = 2 * (0.7 * linspace(0, 0.9, n_trials) + 0.3); % connection population 2 -> 3
W(:, 4, 3) = 2 * (0.7 * linspace(0.9, 0., n_trials) + 0.3); % connection population 2 -> 4
weight_evolution = [ones(n_trials,1,1), W(:, 2, 1), W(:, 3, 2), W(:, 4, 3)];
weight_evolution = cumprod(weight_evolution, 2);
tau = [0.1; 0.3; 0.3; 0.2]; % this parameter defines how fast a neural popualtion rechts to a change
f_1 = rectPulse(0.0, 0.2, t);
f_2 = rectPulse(0.0, 0.2, t);
f = [f_1; 0.*f_1; 0.*f_1; 0.*f_1];
% Compute firing
[X, ~] = create_population_tensor(W, tau, f, t, ft);
X_firing = X;
%Creating the convulated vectors
X_firing_conv = cell(size(X_firing));
for i = 1:n_trials
m = zeros(size(X_firing{1}));
for j = 1:size(X_firing{1},2)
m(:,j) = conv(X_firing{i}(:,j)',temporal(:,j),'same');
X_firing_conv{i} = m;
end
end
% Compute tensor
%BIG CHANGE - BACK TO CONVOLUTION
X = zeros(n_trials, n_channels, size(t,2)); %Creating tensor
for r = 1:n_trials
for c = 1:n_channels
for p = 1:n_pop
k = conv(X_firing{r}(:,p)', kernels{p}(c,:), 'same');
X(r,c,:) = X(r,c,:) + reshape(k, [1,1,length(k)]);
end
end
end
noise = randn(size(X));
noise_fro = norm(reshape(noise,[],1),'fro');
X_fro = norm(reshape(X,[],1),'fro');
Z_prime = tensor(X + noise*(noise_level*X_fro/noise_fro));
end
function [population_tensor, stimulus_tensor] = create_population_tensor(W, tau, f, t, ft)
for i=1:size(W, 1)
%d = rand(1,4);
d = ones(1,4);
mu_0 = d .* f.';
noise = randn(size(mu_0));
mu = mu_0;% + mu_noise.*noise/norm(noise,'fro')*norm(mu_0,'fro'); %Mu noise next paper? But not this one
y= create_single_trial(squeeze(W(i,:,:)), tau, mu, t, ft);
stimulus_tensor{i} = mu;
population_tensor{i} = y;
end
end
function single_trial = create_single_trial(W, tau, mu, t, ft)
tau = power(tau, -1);
tspan = t;
y0 = [0 0 0 0];
options=odeset('RelTol',1e-4,'AbsTol',1e-6);
[t,y] = ode45(@(t,y) myODE(t, y, W, tau, mu, ft),tspan, y0, options);
single_trial = y;
end
function dydt = myODE(t, y, W, tau, mu, ft)
f = interp1(ft, mu, t);
dydt = zeros(4,1);
dydt = tau .* (-1*y + ReLu(W*y + f.'));
end
function r_plus = ReLu(x)
r_plus = x .* (x>0);
end
function f = rectPulse(a,b,x)
%rectangular pulse function in the symbolic toolbox
for i=1:length(x)
if x(i)<b && x(i)>a
f(i)=1;
elseif x(i)==a || x(i)==b && a<b
f(i)=0.5;
else
f(i)=0;
end
end
end