-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmonitor.h
343 lines (301 loc) · 11.1 KB
/
monitor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
* Copyright 2008-2009 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*! \file monitor.h
* \brief Monitor iterative solver convergence
*/
#pragma once
#include <cusp/detail/config.h>
#include <cusp/blas.h>
#include <limits>
#include <iostream>
#include <iomanip>
// Classes to monitor iterative solver progress, check for convergence, etc.
// Follows the implementation of Iteration in the ITL:
// http://www.osl.iu.edu/research/itl/doc/Iteration.html
namespace cusp
{
/*! \addtogroup iterative_solvers Iterative Solvers
* \addtogroup monitors Monitors
* \ingroup iterative_solvers
* \{
*/
/*! \p default_monitor : Implements standard convergence criteria
* and reporting for iterative solvers.
*
* \tparam ValueType scalar type used in the solver (e.g. \c float or \c cusp::complex<double>).
*
* The following code snippet demonstrates how to configure
* the \p default_monitor and use it with an iterative solver.
*
* \code
* #include <cusp/csr_matrix.h>
* #include <cusp/monitor.h>
* #include <cusp/krylov/cg.h>
* #include <cusp/gallery/poisson.h>
*
* int main(void)
* {
* // create an empty sparse matrix structure (CSR format)
* cusp::csr_matrix<int, float, cusp::device_memory> A;
*
* // initialize matrix
* cusp::gallery::poisson5pt(A, 10, 10);
*
* // allocate storage for solution (x) and right hand side (b)
* cusp::array1d<float, cusp::device_memory> x(A.num_rows, 0);
* cusp::array1d<float, cusp::device_memory> b(A.num_rows, 1);
*
* // set stopping criteria:
* // iteration_limit = 100
* // relative_tolerance = 1e-6
* cusp::default_monitor<float> monitor(b, 100, 1e-6);
*
* // solve the linear system A x = b
* cusp::krylov::cg(A, x, b, monitor);
*
* // report solver results
* if (monitor.converged())
* {
* std::cout << "Solver converged to " << monitor.relative_tolerance() << " relative tolerance";
* std::cout << " after " << monitor.iteration_count() << " iterations" << std::endl;
* }
* else
* {
* std::cout << "Solver reached iteration limit " << monitor.iteration_limit() << " before converging";
* std::cout << " to " << monitor.relative_tolerance() << " relative tolerance " << std::endl;
* }
*
* return 0;
* }
* \endcode
*
* \see \p verbose_monitor
*
*/
template <typename ValueType>
class default_monitor
{
public:
typedef typename norm_type<ValueType>::type Real;
/*! Construct a \p default_monitor for a given right-hand-side \p b
*
* The \p default_monitor terminates iteration when the residual norm
* satisfies the condition
* ||b - A x|| <= absolute_tolerance + relative_tolerance * ||b||
* or when the iteration limit is reached.
*
* \param b right-hand-side of the linear system A x = b
* \param iteration_limit maximum number of solver iterations to allow
* \param relative_tolerance determines convergence criteria
* \param absolute_tolerance determines convergence criteria
*
* \tparam VectorType vector
*/
template <typename Vector>
default_monitor(const Vector& b, size_t iteration_limit = 500, Real relative_tolerance = 1e-5, Real absolute_tolerance = 0)
: b_norm(cusp::blas::nrm2(b)),
r_norm(std::numeric_limits<Real>::max()),
iteration_limit_(iteration_limit),
iteration_count_(0),
relative_tolerance_(relative_tolerance),
absolute_tolerance_(absolute_tolerance)
{}
/*! increment the iteration count
*/
void operator++(void) { ++iteration_count_; } // prefix increment
/*! applies convergence criteria to determine whether iteration is finished
*
* \param r residual vector of the linear system (r = b - A x)
* \tparam Vector vector
*/
template <typename Vector>
bool finished(const Vector& r)
{
r_norm = cusp::blas::nrm2(r);
return converged() || iteration_count() >= iteration_limit();
}
/*! whether the last tested residual satifies the convergence tolerance
*/
bool converged() const
{
return residual_norm() <= tolerance();
}
/*! Euclidean norm of last residual
*/
Real residual_norm() const { return r_norm; }
/*! number of iterations
*/
size_t iteration_count() const { return iteration_count_; }
/*! maximum number of iterations
*/
size_t iteration_limit() const { return iteration_limit_; }
/*! relative tolerance
*/
Real relative_tolerance() const { return relative_tolerance_; }
/*! absolute tolerance
*/
Real absolute_tolerance() const { return absolute_tolerance_; }
/*! tolerance
*
* Equal to absolute_tolerance() + relative_tolerance() * ||b||
*
*/
Real tolerance() const { return absolute_tolerance() + relative_tolerance() * b_norm; }
protected:
Real r_norm;
Real b_norm;
Real relative_tolerance_;
Real absolute_tolerance_;
size_t iteration_limit_;
size_t iteration_count_;
};
/*! \p verbose_monitor is similar to \p default monitor except that
* it displays the solver status during iteration and reports a
* summary after iteration has stopped.
*
* \tparam ValueType scalar type used in the solver (e.g. \c float or \c cusp::complex<double>).
*
* \see \p default_monitor
*/
template <typename ValueType>
class verbose_monitor : public default_monitor<ValueType>
{
typedef typename norm_type<ValueType>::type Real;
typedef cusp::default_monitor<ValueType> super;
public:
/*! Construct a \p verbose_monitor for a given right-hand-side \p b
*
* The \p verbose_monitor terminates iteration when the residual norm
* satisfies the condition
* ||b - A x|| <= absolute_tolerance + relative_tolerance * ||b||
* or when the iteration limit is reached.
*
* \param b right-hand-side of the linear system A x = b
* \param iteration_limit maximum number of solver iterations to allow
* \param relative_tolerance determines convergence criteria
* \param absolute_tolerance determines convergence criteria
*
* \tparam VectorType vector
*/
template <typename Vector>
verbose_monitor(const Vector& b, size_t iteration_limit = 500, Real relative_tolerance = 1e-5, Real absolute_tolerance = 0)
: super(b, iteration_limit, relative_tolerance, absolute_tolerance)
{
std::cout << "Solver will continue until ";
std::cout << "residual norm " << super::tolerance() << " or reaching ";
std::cout << super::iteration_limit() << " iterations " << std::endl;
std::cout << " Iteration Number | Residual Norm" << std::endl;
}
template <typename Vector>
bool finished(const Vector& r)
{
super::r_norm = cusp::blas::nrm2(r);
std::cout << " " << std::setw(10) << super::iteration_count();
std::cout << " " << std::setw(10) << std::scientific << super::residual_norm() << std::endl;
if (super::converged())
{
std::cout << "Successfully converged after " << super::iteration_count() << " iterations." << std::endl;
return true;
}
else if (super::iteration_count() >= super::iteration_limit())
{
std::cout << "Failed to converge after " << super::iteration_count() << " iterations." << std::endl;
return true;
}
else
{
return false;
}
}
};
/*! \}
*/
/*! \p convergence_monitor is similar to \p default monitor except that
* it displays the solver status during iteration and reports a
* summary after iteration has stopped.
*
* \tparam ValueType scalar type used in the solver (e.g. \c float or \c cusp::complex<double>).
*
* \see \p default_monitor
*/
template <typename ValueType>
class convergence_monitor : public default_monitor<ValueType>
{
typedef typename norm_type<ValueType>::type Real;
typedef cusp::default_monitor<ValueType> super;
public:
/*! Construct a \p convergence_monitor for a given right-hand-side \p b
*
* The \p convergence_monitor terminates iteration when the residual norm
* satisfies the condition
* ||b - A x|| <= absolute_tolerance + relative_tolerance * ||b||
* or when the iteration limit is reached.
*
* \param b right-hand-side of the linear system A x = b
* \param iteration_limit maximum number of solver iterations to allow
* \param relative_tolerance determines convergence criteria
* \param absolute_tolerance determines convergence criteria
*
* \tparam VectorType vector
*/
cusp::array1d<Real,cusp::host_memory> residuals;
template <typename Vector>
convergence_monitor(const Vector& b, size_t iteration_limit = 500, Real relative_tolerance = 1e-5, Real absolute_tolerance = 0)
: super(b, iteration_limit, relative_tolerance, absolute_tolerance)
{
residuals.reserve(iteration_limit);
}
template <typename Vector>
bool finished(const Vector& r)
{
super::r_norm = cusp::blas::nrm2(r);
residuals.push_back(super::r_norm);
return super::converged() || super::iteration_count() >= super::iteration_limit();
}
void print(void)
{
std::cout << "Solver will continue until ";
std::cout << "residual norm " << super::tolerance() << " or reaching ";
std::cout << super::iteration_limit() << " iterations " << std::endl;
std::cout << "Ran " << super::iteration_count();
std::cout << " iterations with a final residual of ";
std::cout << super::r_norm << std::endl;
std::cout << "geometric convergence factor : " << geometric_rate() << std::endl;
std::cout << "immediate convergence factor : " << immediate_rate() << std::endl;
std::cout << "average convergence factor : " << average_rate() << std::endl;
}
Real immediate_rate(void)
{
size_t num = residuals.size();
return residuals[num-1] / residuals[num-2];
}
Real geometric_rate(void)
{
size_t num = residuals.size();
return std::pow(residuals[num-1] / residuals[0], Real(1.0)/num);
}
Real average_rate(void)
{
size_t num = residuals.size();
cusp::array1d<Real,cusp::host_memory> avg_vec(num-1);
thrust::transform(residuals.begin() + 1, residuals.end(), residuals.begin(), avg_vec.begin(), thrust::divides<Real>());
Real sum = thrust::reduce(avg_vec.begin(), avg_vec.end(), Real(0), thrust::plus<Real>());
return sum / Real(avg_vec.size());
}
};
/*! \}
*/
} // end namespace cusp