-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathplotSNR.py
executable file
·77 lines (55 loc) · 2.26 KB
/
plotSNR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python3
# Generates a summary plot comparing the relative number of covid reads in all samples
# Useful to judge if the SNR ove -ve control is sufficient.
import numpy as np
import matplotlib.pyplot as plt
import sys
dataIn = sys.argv[1:]
sample_names = dataIn[0::2]
numCovidReads = [float(x) for x in dataIn[1::2]]
numSamples = len(numCovidReads)
# Plot the absolute covid read counts as a bar graph
FDAblue = (0, 124/255, 186/255) # RGB color representation of the logo
plt.rcParams.update({'font.size': 14})
plt.bar(np.arange(1,numSamples+1), numCovidReads, color=FDAblue)
plt.xlabel('Sample number')
plt.xticks(np.arange(1,numSamples+1, int(max(1,numSamples/10))))
# If read numbers are too high, scale the axes for a better view
ylocs, labels = plt.yticks()
if ylocs[-1] > 5000:
plt.ylabel('# covid reads (1000)')
plt.yticks(ylocs, (ylocs/1000).astype('int') )
else:
plt.ylabel('# covid reads')
# SNR calculation
# Check if there is a negative control sample
def is_neg_control(name):
for neg_word in ['water', 'negative', 'blank', 'ntc']:
if neg_word in name.lower():
return True
return False
neg_control_idx = []
for name_idx in range(len(sample_names)):
if is_neg_control (sample_names[name_idx]):
neg_control_idx.append(name_idx)
# If it was clearly marked, then draw baseline levels as well.
if len(neg_control_idx)>0:
mean_bg_reads = max(0.001,np.mean([ numCovidReads[x] for x in neg_control_idx ]))
SNR = [ int(x/mean_bg_reads) for x in numCovidReads]
plt.plot([0,numSamples+1], [mean_bg_reads,mean_bg_reads], 'k--')
plt.xlim(0,numSamples+1)
text_ylevel = max(1.2*mean_bg_reads, ylocs[-1]/3)
for i in range(len(sample_names)):
if i not in neg_control_idx:
plt.text(i+1, text_ylevel, 'SNR=%d' % SNR[i], rotation=90,
horizontalalignment='center', verticalalignment='center')
else:
plt.text(i+1, text_ylevel, '-control', rotation=90, horizontalalignment='center',
verticalalignment='center')
else:
SNR = 1000000*np.ones(len(numCovidReads))
# Print the SNR's of individual samples to stdout
print(SNR)
# Save the bar plot to file
plt.tight_layout()
plt.savefig('./covidReadsSummary.png', dpi=200)