From b5d7316bcb09532d9e993ba3b93ba53a1637aafb Mon Sep 17 00:00:00 2001 From: nickclyde Date: Wed, 27 Sep 2023 21:15:35 +0000 Subject: [PATCH] Automated update of docs for v1.0.13 release. --- docs/latest/containers/alerts.html | 4 +- docs/latest/containers/fhir-converter.html | 7 +- docs/latest/containers/ingestion.html | 4 +- docs/latest/containers/message-parser.html | 21 +- docs/latest/containers/orchestration.html | 2266 +++++++++++ docs/latest/containers/record-linkage.html | 6 +- docs/latest/containers/tabulation.html | 4 +- docs/latest/containers/validation.html | 4 +- docs/latest/sdk/phdi.html | 2 +- docs/latest/sdk/phdi/fhir/conversion.html | 304 +- docs/latest/sdk/phdi/linkage.html | 999 ++--- docs/latest/sdk/search.js | 2 +- docs/v1.0.13/containers/alerts.html | 2252 +++++++++++ docs/v1.0.13/containers/fhir-converter.html | 2335 +++++++++++ docs/v1.0.13/containers/ingestion.html | 2320 +++++++++++ docs/v1.0.13/containers/message-parser.html | 2355 +++++++++++ docs/v1.0.13/containers/orchestration.html | 2266 +++++++++++ docs/v1.0.13/containers/record-linkage.html | 2262 +++++++++++ docs/v1.0.13/containers/tabulation.html | 2237 +++++++++++ docs/v1.0.13/containers/validation.html | 2246 +++++++++++ docs/v1.0.13/sdk/index.html | 7 + docs/v1.0.13/sdk/phdi.html | 249 ++ docs/v1.0.13/sdk/phdi/cloud.html | 239 ++ docs/v1.0.13/sdk/phdi/cloud/azure.html | 1243 ++++++ docs/v1.0.13/sdk/phdi/cloud/core.html | 711 ++++ docs/v1.0.13/sdk/phdi/cloud/gcp.html | 1066 +++++ docs/v1.0.13/sdk/phdi/containers.html | 237 ++ .../sdk/phdi/containers/base_service.html | 582 +++ docs/v1.0.13/sdk/phdi/fhir.html | 244 ++ docs/v1.0.13/sdk/phdi/fhir/cloud.html | 318 ++ docs/v1.0.13/sdk/phdi/fhir/conversion.html | 529 +++ docs/v1.0.13/sdk/phdi/fhir/geospatial.html | 1010 +++++ docs/v1.0.13/sdk/phdi/fhir/harmonization.html | 640 +++ docs/v1.0.13/sdk/phdi/fhir/linkage.html | 416 ++ docs/v1.0.13/sdk/phdi/fhir/tabulation.html | 747 ++++ docs/v1.0.13/sdk/phdi/fhir/transport.html | 657 +++ docs/v1.0.13/sdk/phdi/fhir/utils.html | 803 ++++ docs/v1.0.13/sdk/phdi/geospatial.html | 1293 ++++++ docs/v1.0.13/sdk/phdi/harmonization.html | 3179 +++++++++++++++ docs/v1.0.13/sdk/phdi/linkage.html | 3539 +++++++++++++++++ docs/v1.0.13/sdk/phdi/tabulation.html | 543 +++ docs/v1.0.13/sdk/phdi/transport.html | 358 ++ docs/v1.0.13/sdk/phdi/validation.html | 1457 +++++++ docs/v1.0.13/sdk/search.js | 46 + 44 files changed, 41413 insertions(+), 596 deletions(-) create mode 100644 docs/latest/containers/orchestration.html create mode 100644 docs/v1.0.13/containers/alerts.html create mode 100644 docs/v1.0.13/containers/fhir-converter.html create mode 100644 docs/v1.0.13/containers/ingestion.html create mode 100644 docs/v1.0.13/containers/message-parser.html create mode 100644 docs/v1.0.13/containers/orchestration.html create mode 100644 docs/v1.0.13/containers/record-linkage.html create mode 100644 docs/v1.0.13/containers/tabulation.html create mode 100644 docs/v1.0.13/containers/validation.html create mode 100644 docs/v1.0.13/sdk/index.html create mode 100644 docs/v1.0.13/sdk/phdi.html create mode 100644 docs/v1.0.13/sdk/phdi/cloud.html create mode 100644 docs/v1.0.13/sdk/phdi/cloud/azure.html create mode 100644 docs/v1.0.13/sdk/phdi/cloud/core.html create mode 100644 docs/v1.0.13/sdk/phdi/cloud/gcp.html create mode 100644 docs/v1.0.13/sdk/phdi/containers.html create mode 100644 docs/v1.0.13/sdk/phdi/containers/base_service.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir/cloud.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir/conversion.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir/geospatial.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir/harmonization.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir/linkage.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir/tabulation.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir/transport.html create mode 100644 docs/v1.0.13/sdk/phdi/fhir/utils.html create mode 100644 docs/v1.0.13/sdk/phdi/geospatial.html create mode 100644 docs/v1.0.13/sdk/phdi/harmonization.html create mode 100644 docs/v1.0.13/sdk/phdi/linkage.html create mode 100644 docs/v1.0.13/sdk/phdi/tabulation.html create mode 100644 docs/v1.0.13/sdk/phdi/transport.html create mode 100644 docs/v1.0.13/sdk/phdi/validation.html create mode 100644 docs/v1.0.13/sdk/search.js diff --git a/docs/latest/containers/alerts.html b/docs/latest/containers/alerts.html index 09319094f9..5a2188c694 100644 --- a/docs/latest/containers/alerts.html +++ b/docs/latest/containers/alerts.html @@ -2179,7 +2179,7 @@ 55.627 l 55.6165,55.627 -231.245496,231.24803 c -127.185,127.1864 -231.5279,231.248 -231.873,231.248 -0.3451,0 -104.688, -104.0616 -231.873,-231.248 z - " fill="currentColor">

PHDI Alerts Service (1.0.11)

Download OpenAPI specification:Download

PHDI Alerts Container

This Docker container provides a simple API for sending alerts via SMS, Slack, or Microsoft Teams. It can be run as a local service or deployed as part of a full pipeline using PHDI Building Blocks as in CDCgov/phdi-azure.

+ " fill="currentColor">

PHDI Alerts Service (1.0.13)

Download OpenAPI specification:Download

PHDI Alerts Container

This Docker container provides a simple API for sending alerts via SMS, Slack, or Microsoft Teams. It can be run as a local service or deployed as part of a full pipeline using PHDI Building Blocks as in CDCgov/phdi-azure.

Usage

Some manual steps need to be taken to enable alerts in your particular environment.

SMS

In order to send text messages, you'll need to create an Azure Communication Service. Follow this quickstart guide to set up the resource. Once created, you'll need to provide the name of your resource as an environment variable (COMMUNICATION_SERVICE_NAME) to the container.

@@ -2241,7 +2241,7 @@

Sample request

Request samples

Content type
application/json
{
  • "message": "string"
}

Response samples

Content type
application/json
null
+ + + + + +

PHDI Orchestration (1.0.13)

Download OpenAPI specification:Download

Getting Started with the DIBBs Orchestration

Introduction

+

The PHDI Orchestration app offers a REST API for processing messages through a series of microservices.

+

Running the Orchestration

+

The Orchestration app can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

+ +

To run the Orchestration app with Docker, follow these steps.

+
    +
  1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar to what is shown below, follow these instructions to install Docker.
    ❯ docker -v
    +Docker version 20.10.21, build baeda1f
    +
    +
  2. +
  3. Download a copy of the Docker image from the PHDI repository by running docker pull ghcr.io/cdcgov/phdi/orchestration:latest.
  4. +
  5. Run the service with docker run -p 8080:8080 orchestration:latest.
  6. +
+

Congratulations, the Orchestration app should now be running on localhost:8080!

+

Running from Python Source Code

+

We recommend running the Orchestration app from a container, but if that is not feasible for a given use-case, it may also be run directly from Python using the steps below.

+
    +
  1. Ensure that both Git and Python 3.10 or higher are installed.
  2. +
  3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
  4. +
  5. Navigate to /phdi/containers/orchestration/.
  6. +
  7. Make a fresh virtual environment with python -m venv .venv.
  8. +
  9. Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows Power Shell).
  10. +
  11. Install all of the Python dependencies for the Orchestration app with pip install -r requirements.txt into your virtual environment.
  12. +
  13. Run the Orchestration app on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080.
  14. +
+

Building the Docker Image

+

To build the Docker image for the Orchestration app from source instead of downloading it from the PHDI repository follow these steps.

+
    +
  1. Ensure that both Git and Docker are installed.
  2. +
  3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
  4. +
  5. Navigate to /phdi/containers/orchestration/.
  6. +
  7. Run docker build -t orchestration ..
  8. +
+

The API

+

When viewing these docs from the /redoc endpoint on a running instance of the Orchestration app or the PHDI website, detailed documentation on the API will be available below.

+

Health Check

Check service status. If an HTTP 200 status code is returned along with +'{"status": "OK"}' then the service is available and running properly.

+

Responses

Response samples

Content type
application/json
{
  • "status": "OK"
}

Process Message Endpoint

Process message through a series of microservices

+
Request Body schema: application/json
required
Message (string) or Message (object) (Message)

The message to be processed.

+

Responses

Request samples

Content type
application/json

This is a simple custom config

+
{
  • "processing_config": {
    }
}

Response samples

Content type
application/json
Example
{
  • "message": "Processing succeeded!",
  • "content": {
    }
}

List Configs

Get a list of all the process configs currently available. Default configs are ones +that are packaged by default with this service. Custom configs are any additional +config that users have chosen to upload to this service (this feature is not yet +implemented)

+

Responses

Response samples

Content type
application/json
{
  • "default_configs": [
    ],
  • "custom_configs": [ ]
}

Get Config

Get the config specified by 'processing_config_name'.

+
path Parameters
processing_config_name
required
string (Processing Config Name)

Responses

Response samples

Content type
application/json
{
  • "message": "Config found!",
  • "processing_config": {
    }
}

Upload Config

Upload a new processing config to the service or update an existing config.

+
path Parameters
processing_config_name
required
string (Processing Config Name)
Request Body schema: application/json
required
object (Processing Config)

A JSON formatted processing config to upload.

+
overwrite
boolean (Overwrite)
Default: false

When true if a config already exists for the provided name it will be replaced. When false no action will be taken and the response will indicate that a config for the given name already exists. To proceed submit a new request with a different config name or set this field to true.

+

Responses

Request samples

Content type
application/json
Example

This is an example of uploading a simple processing config.

+
{
  • "processing_config": {
    }
}

Response samples

Content type
application/json
{
  • "message": "Config uploaded successfully!"
}
+ + + + \ No newline at end of file diff --git a/docs/latest/containers/record-linkage.html b/docs/latest/containers/record-linkage.html index 96839d5443..dbaa4d4504 100644 --- a/docs/latest/containers/record-linkage.html +++ b/docs/latest/containers/record-linkage.html @@ -2186,7 +2186,7 @@ 55.627 l 55.6165,55.627 -231.245496,231.24803 c -127.185,127.1864 -231.5279,231.248 -231.873,231.248 -0.3451,0 -104.688, -104.0616 -231.873,-231.248 z - " fill="currentColor">

DIBBs Record Linkage Service (1.0.11)

Download OpenAPI specification:Download

Getting Started with the DIBBs Record Linkage Service

Introduction

+ " fill="currentColor">

DIBBs Record Linkage Service (1.0.13)

Download OpenAPI specification:Download

Getting Started with the DIBBs Record Linkage Service

Introduction

The DIBBs record linkage service offers a REST API for linking new health care messages to existing records if a connection exists.

Running the Record Linkage Service

The record linkage service can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

@@ -2222,7 +2222,7 @@

Running from Python Source Code

  • Make a fresh virtual environment with python -m venv .venv.
  • Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows PowerShell).
  • Install all Python dependencies for the record linkage service with pip install -r requirements.txt into your virtual environment.
  • -
  • Run the FHIR Converter on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080.
  • +
  • Run the record linkage service on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080 --log-config app/log_config.yml.
  • Building the Docker Image

    To build the Docker image for the record linkage service from source code instead of downloading it from the DIBBs repository follow these steps.

    @@ -2251,7 +2251,7 @@

    The API

    Request samples

    Content type
    application/json
    Example

    Matches an existing Patient

    {
    • "bundle": {
      }
    }

    Response samples

    Content type
    application/json
    Example
    {
    • "found_match": true,
    • "updated_bundle": {
      }
    }
    + + + + + +

    PHDI Alerts Service (1.0.13)

    Download OpenAPI specification:Download

    PHDI Alerts Container

    This Docker container provides a simple API for sending alerts via SMS, Slack, or Microsoft Teams. It can be run as a local service or deployed as part of a full pipeline using PHDI Building Blocks as in CDCgov/phdi-azure.

    +

    Usage

    Some manual steps need to be taken to enable alerts in your particular environment.

    +

    SMS

    +

    In order to send text messages, you'll need to create an Azure Communication Service. Follow this quickstart guide to set up the resource. Once created, you'll need to provide the name of your resource as an environment variable (COMMUNICATION_SERVICE_NAME) to the container.

    +

    The first time you make a call to /sms-alert, the container will purchase a phone number to use for sending text messages. This will charge your Azure account $2/month to reserve the phone number.

    +

    Support for other SMS providers besides Azure are coming soon!

    +

    Sample request

    +

    POST /sms-alert

    +
    {
    +    "phone_number": "+19168675309",
    +    "message": "Hi this is a test"
    +}
    +
    +

    Slack

    +

    To send alerts to your Slack workspace, you'll need to create a Slack application. Follow this guide to create the Slack app, giving it a name you'll recognize, such as PHDI Alerts. The OAuth access token must be provided to the container as an environment variable (SLACK_BOT_TOKEN). You must also invite the application to any channel you wish to alert (type /invite in the channel and choose "Add apps to channel"). To get the ID of a channel, right click the channel name and choose "View channel details". The ID is at the bottom of the modal that appears.

    +

    Sample request

    +

    POST /slack-alert

    +
    {
    +    "channel_id": "C04GKBFMGRM",
    +    "message": "Hi this is a test"
    +}
    +
    +

    Microsoft Teams

    +

    To send alerts to Microsoft Teams, you'll need to create a webhook in the channel you wish to alert. To add an incoming webhook to a Teams channel:

    +
      +
    1. Navigate to the channel where you want to add the webhook and select (•••) Connectors from the top navigation bar.
    2. +
    3. Search for Incoming Webhook, and add it.
    4. +
    5. Click Configure and provide a name for your webhook.
    6. +
    7. Copy the URL which appears and click "OK".
    8. +
    +

    Provide this URL as an environment variable (TEAMS_WEBHOOK_URL) to the container.

    +

    Sample request

    +

    POST /teams-alert

    +
    {
    +    "message": "Hi this is a test"
    +}
    +
    +

    Health Check

    Check service status. If an HTTP 200 status code is returned along with +'{"status": "OK"}' then the service is available and running properly.

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "status": "OK"
    }

    Sms Alert

    Send an SMS alert to a phone number. +:param input: A JSON formated request body with schema specified by the + SmsAlertInput model.

    +
    Request Body schema: application/json
    phone_number
    required
    string (Phone Number)

    The phone number to send the alert to.

    +
    message
    required
    string (Message)

    The message to send to the phone number.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "phone_number": "string",
    • "message": "string"
    }

    Response samples

    Content type
    application/json
    null

    Slack Alert

    Send a Slack alert to a channel. +:param input: A JSON formated request body with schema specified by the + SlackAlertInput model.

    +
    Request Body schema: application/json
    channel_id
    required
    string (Channel Id)

    The Slack channel ID to send the alert to.

    +
    message
    required
    string (Message)

    The message to send to the Slack channel.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "channel_id": "string",
    • "message": "string"
    }

    Response samples

    Content type
    application/json
    null

    Teams Alert

    Send a Teams alert to a channel. +:param input: A JSON formated request body with schema specified by the + TeamsAlertInput model.

    +
    Request Body schema: application/json
    message
    required
    string (Message)

    The message to send to the Teams channel.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "message": "string"
    }

    Response samples

    Content type
    application/json
    null
    + + + + \ No newline at end of file diff --git a/docs/v1.0.13/containers/fhir-converter.html b/docs/v1.0.13/containers/fhir-converter.html new file mode 100644 index 0000000000..5ba7994ec1 --- /dev/null +++ b/docs/v1.0.13/containers/fhir-converter.html @@ -0,0 +1,2335 @@ + + + + + + PHDI FHIR Converter Service + + + + + + + + + +

    PHDI FHIR Converter Service (0.0.1)

    Download OpenAPI specification:Download

    Getting started with the PHDI FHIR Conversion Service

    This service relies on Microsoft's FHIR converter to convert messages.

    +

    If you plan to run the service via Docker, you can skip to Running with Docker. This container will automatically use the Microsoft FHIR converter without need for additional installation.

    +

    If you plan to run the service locally via Python, you'll need to install both the Microsoft FHIR Converter CLI and run the PHDI FHIR Converter service. Read on for installation instructions for both.

    +

    Microsoft FHIR Converter CLI Installation Guide

    This document provides a guide for installing the Microsoft FHIR Converter as a Command Line Interface (CLI) tool on Windows, MacOS, and Linux systems, as well as a brief introduction to using the converter.

    +

    Using the .NET Framework

    +

    We will use the .NET SDK to build the FHIR Converter from source code. If you have already installed a .NET SDK, skip to Download and Build the FHIR Converter, otherwise follow the steps below to install it on your system.

    +

    To check if a .NET SDK is installed, try running dotnet --list-sdks. You should see an output message that lists the .NET SDK version you have installed, as well as where it's located. It should look something like the following, but note that the version number and filepath will differ depending on which operating system you use and when you installed the .NET SDK.

    +
    6.0.40 [C:\Program Files\dotnet\sdk]
    +
    +

    If you see a message like Command 'dotnet' not found (MacOS and Linux) or The term 'dotnet' is not recognized as the name of a cmdlet, function, script file, or operable program (Windows), then .NET has not been installed. Additionally, if running dotnet --list-sdks does not produce any output, then you likely have the .NET runtime installed, but not the SDK. In either event, you should follow the instructions below to install the SDK.

    +

    Install the .NET SDK

    +

    The instructions for installing the .NET SDK will differ depending on whether you're using Windows, MacOS, or Linux. MacOS and Linux users will utilize the command line to install the software, while Windows users should use the installer. Instructions for both approaches are below.

    +

    MacOS and Linux

    +
    Download the .NET Install Script
    +

    Run wget https://dotnet.microsoft.com/download/dotnet/scripts/v1/dotnet-install.sh to download the .NET installation script from Microsoft. +From the directory containing the dotnet-install.sh file, run sh ./dotnet-install.sh to execute the script and install .NET. By default, this script installs the .NET SDK, which is perfect for our needs.

    +

    Note: Bash is required to run the script. If you are using a different shell, such as zsh, it is recommend to switch to using Bash.

    +
    Add .NET to the PATH Environment Variable
    +

    Finally, permanently add .NET to you PATH variable by running echo 'export PATH="$PATH:$HOME/.dotnet"' >> ~/.bashrc.

    +
    Confirm the Installation
    +

    Restart your shell with exec $SHELL and then run dotnet. If you get a response that looks like what is shown below, then .NET was installed successfully.

    +
    Usage: dotnet [options]
    +Usage: dotnet [path-to-application]
    +
    +Options:  
    +  -h|--help         Display help.  
    +  --info            Display .NET Core information.  
    +  --list-sdks       Display the installed SDKs.  
    +  --list-runtimes   Display the installed runtimes.  
    +
    +path-to-application:  
    +  The path to an application .dll file to execute.  
    +
    +

    Windows

    +
    Install the .NET SDK
    +

    Navigate to https://dotnet.microsoft.com/en-us/download and click on the "Download .NET SDK x64" button. Note that the label may read slightly differently if you're using a 32-bit operating system. Clicking this button will download a file with a name similar to dotnet-sdk-6.0.400-win-x64.exe, but note that the name of your file may differ if a new version of the SDK has been released. The most important thing is to ensure that the file is for the dotnet-sdk and for Windows.

    +

    Open this file and follow the instructions that are presented to you. If you're asked if you should allow this program to make changes to your machine, select yes. Once the installer is finished, you'll be presented with a screen that summarizes what was installed and where it was saved. The default location should be "C:\Program Files\dotnet". Open File Explorer, navigate to the installation location (C:\Program Files\dotnet), open the "sdk" folder, and confirm that a folder exists with the .NET SDK version as its name.

    +
    Add .NET to the PATH Environment Variable
    +

    Open your Start Menu and type "Environment Variables" into the search bar. Select "Edit environment variables for your account" from the list of options that appear. In the top section labeled "User variables", click the variable called "Path" and then click the "Edit..." button. A new screen will pop up, and you should click the "New" button on the right-hand side. In the text box that is highlighted, enter "C:\Program Files\dotnet" (without the quotes). Hit enter, click "OK" to close the Path screen, and then click "OK" to close the Environment Variables screen.

    +
    Confirm the Installation
    +

    Open Powershell and run dotnet. If you get a response that looks like when is shown below, then .Net was installed successfully.

    +
    Usage: dotnet [options]
    +Usage: dotnet [path-to-application]
    +
    +Options:  
    +  -h|--help         Display help.  
    +  --info            Display .NET Core information.  
    +  --list-sdks       Display the installed SDKs.  
    +  --list-runtimes   Display the installed runtimes.  
    +
    +path-to-application:  
    +  The path to an application .dll file to execute.  
    +
    +

    Download and Build the FHIR Converter

    +

    Get Microsoft FHIR Converter

    +

    Using whichever command line tool you are comfortable with (Powershell on Windows, or Terminal on Linux and MacOS), download the FHIR Converter source code from Github with the following command.

    +
    git clone https://github.com/microsoft/FHIR-Converter
    +
    +

    This will install the most recent version of the tool. However, if you'd like to use a specific version, you can use a command like this one that specifically downloads the 5.0.4 release (most recent at the time of writing). +git clone https://github.com/microsoft/FHIR-Converter.git --branch v5.0.4 --single-branch

    +

    Build the FHIR Converter Tool

    +

    Navigate to the directory that was just created with the git clone command, which should be a directory named "FHIR-Converter" inside of your current directory, and run dotnet build.

    +

    Note: If you're using Windows, it's important to perform this action using Powershell instead of a tool like Git Bash. Due to Windows' use of the \ as its filepath seperator, other terminals can misinterpret the instructions and fail when trying to access directories.

    +

    Using the Microsoft FHIR Converter

    +

    Two examples have been provided below of using the FHIR Converter via the dotnet run function. Please note that -- is used to deliminate between arguments that should be passed to dotnet as opposed arguments that dotnet should be pass to the application, in this case the FHIR Converter, that it is being used to run. Additionaly, the -p option is only required when not calling dotnet run from the FHIR-Converter/src/Health.Fhir.Liquid.Converter.Tool/ directory. For additional information on dotnet run please refer to this documentation from Microsoft.

    +

    Message in File to FHIR

    +

    The following command can be used to convert a message from a file to FHIR. +dotnet run convert -p path-to-Microsoft.Health.Fhir.Liquid.Converter.Tool/ -- -d path-to-template subdirectory-for-message-type -r root-template -n path-to-file-to-be-converted -f path-to-output

    +

    Covert Message Content Directory to FHIR

    +

    The following command can be used to convert the contents of a message provided directly as a string to FHIR. +dotnet run convert -p path-to-Microsoft.Health.Fhir.Liquid.Converter.Tool/ -- -d path-to-template subdirectory-for-message-type -r root-template -c message-content -f path-to-output

    +

    Note: The use of -- in the command is to separate the command line parameters that are passed to .NET vs those that are passed to the FHIR Converter

    +

    Using an Alias

    +

    To avoid the need for typing dotnet run convert -p path-to-Microsoft.Health.Fhir.Liquid.Converter.Tool/ -- every time you'd like to convert HL7, it is recommended that you create an alias. Instructions for creating an alias on Windows, MacOS, and Linux can be found here, here, and here, respectively.

    +

    Running the PHDI FHIR Conversion Service

    Once the Microsoft FHIR converter is installed, the FHIR conversion service can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

    + +

    To run the FHIR conversion service with Docker follow these steps.

    +
      +
    1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar to what is shown below, follow these instructions to install Docker.
      ❯ docker -v
      +Docker version 20.10.21, build baeda1f
      +
      +
    2. +
    3. Download a copy of the Docker image from the PHDI repository by running docker pull ghcr.io/cdcgov/phdi/fhir-converter:latest.
    4. +
    5. Run the service with docker run -p 8080:8080 ghcr.io/cdcgov/phdi/fhir-converter:latest.
    6. +
    +

    Congratulations, the ingestion service should now be running on localhost:8080!

    +

    Running from Python Source Code

    +

    For local development, it may be preferred to run the service directly from Python. To do so, follow the steps below.

    +
      +
    1. Ensure that both Git and Python 3.10 or higher are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/fhir-converter/.
    6. +
    7. Make a fresh virtual environment with python -m venv .venv.
    8. +
    9. Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows PowerShell).
    10. +
    11. Install all of the Python dependencies for the ingestion service with pip install -r requirements.txt into your virtual environment.
    12. +
    13. Run the FHIR Converter on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080.
    14. +
    +

    Building the Docker Image

    +

    To build the Docker image for the FHIR conversion service from source code instead of downloading it from the PHDI repository, follow these steps.

    +
      +
    1. Ensure that both Git and Docker are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/fhir-converter/.
    6. +
    7. Run docker build -t fhir-converter ..
    8. +
    9. Run the service with docker run -p 8080:8080 fhir-converter.
    10. +
    +

    License (for Microsoft FHIR Converter)

    MIT License

    +

    Copyright (c) Microsoft Corporation. All rights reserved.

    +

    Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions:

    +

    The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software.

    +

    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE

    +

    Health Check

    Check service status. If an HTTP 200 status code is returned along with +'{"status": "OK"}' then the FHIR conversion service is available and running +properly.

    +

    Responses

    Response samples

    Content type
    application/json
    null

    Convert

    Converts an HL7v2 or C-CDA message to FHIR format using the Microsoft FHIR +Converter CLI tool. When conversion is successful, a dictionary containing the +response from the FHIR Converter is returned.

    +

    In order to successfully call this function, the Microsoft FHIR Converter tool +must be installed. For information on how to do this, please refer to the +description.md file. The source code for the converter can be found at +https://github.com/microsoft/FHIR-Converter.

    +
    Request Body schema: application/json
    input_data
    required
    string (Input Data)

    The message to be converted as a string.

    +
    input_type
    required
    string (InputType)
    Enum: "elr" "vxu" "ecr"

    The type of message to be converted.

    +
    root_template
    required
    string (RootTemplate)
    Enum: "ADT_A01" "ADT_A02" "ADT_A03" "ADT_A04" "ADT_A05" "ADT_A06" "ADT_A07" "ADT_A08" "ADT_A09" "ADT_A10" "ADT_A11" "ADT_A13" "ADT_A14" "ADT_A15" "ADT_A16" "ADT_A25" "ADT_A26" "ADT_A27" "ADT_A28" "ADT_A29" "ADT_A31" "ADT_A40" "ADT_A41" "ADT_A45" "ADT_A47" "ADT_A60" "BAR_P01" "BAR_P02" "BAR_P12" "DFT_P03" "DFT_P11" "MDM_T01" "MDM_T02" "MDM_T05" "MDM_T06" "MDM_T09" "MDM_T10" "OMG_O19" "OML_O21" "ORM_O01" "ORU_R01" "OUL_R22" "OUL_R23" "OUL_R24" "RDE_O11" "RDE_O25" "RDS_O13" "REF_I12" "REF_I14" "SIU_S12" "SIU_S13" "SIU_S14" "SIU_S15" "SIU_S16" "SIU_S17" "SIU_S26" "VXU_V04" "CCD" "EICR" "ConsultationNote" "DischargeSummary" "Header" "HistoryandPhysical" "OperativeNote" "ProcedureNote" "ProgressNote" "ReferralNote" "TransferSummary"

    Name of the liquid template within to be used for conversion.

    +
    rr_data
    string (Rr Data)

    If an eICR message, the accompanying Reportability Response data.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "input_data": "MSH|^~\\&|WIR11.3.2^^|WIR^^||WIRPH^^|20200514010000-0400||VXU^V04|2020051411020600|P^|2.4^^|||ER\nPID|||3054790^^^^SR^~^^^^PI^||ZTEST^PEDIARIX^^^^^^|HEPB^DTAP^^^^^^|20180808|M|||||||||||||||||||||\nPD1|||||||||||02^^^^^|Y||||A\nNK1|1||BRO^BROTHER^HL70063^^^^^|^^NEW GLARUS^WI^^^^^^^|\nPV1||R||||||||||||||||||\nRXA|0|999|20180809|20180809|08^HepB pediatric^CVX^90744^HepB pediatric^CPT|1.0|||01^^^^^~38193939^WIR immunization id^IMM_ID^^^|||||||||||NA\n",
    • "input_type": "vxu",
    • "root_template": "V",
    • "rr_data": [
      ]
    }

    Response samples

    Content type
    application/json
    {
    • "response": {
      }
    }
    + + + + \ No newline at end of file diff --git a/docs/v1.0.13/containers/ingestion.html b/docs/v1.0.13/containers/ingestion.html new file mode 100644 index 0000000000..3f65a15808 --- /dev/null +++ b/docs/v1.0.13/containers/ingestion.html @@ -0,0 +1,2320 @@ + + + + + + PHDI Ingestion Service + + + + + + + + + +

    PHDI Ingestion Service (1.0.13)

    Download OpenAPI specification:Download

    Getting Started with the PHDI Ingestion Service

    Introduction

    +

    The PHDI ingestion service offers a REST API with endpoints for standardization and harmonization of FHIR messages. It offers name standardization, date of birth standardization, phone number standardization, geocoding, and several utilities for working with FHIR servers.

    +

    Running the Ingestion Service

    +

    The ingestion service can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

    + +

    To run the ingestion service with Docker follow these steps.

    +
      +
    1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar to what is shown below, follow these instructions to install Docker.
      ❯ docker -v
      +Docker version 20.10.21, build baeda1f
      +
      +
    2. +
    3. Download a copy of the Docker image from the PHDI repository by running docker pull ghcr.io/cdcgov/phdi/ingestion:latest.
    4. +
    5. Run the service with docker run -p 8080:8080 ghcr.io/cdcgov/phdi/ingestion:latest.
    6. +
    +

    Congratulations, the ingestion service should now be running on localhost:8080!

    +

    Running from Python Source Code

    +

    We recommend running the ingestion service from a container, but if that is not feasible for a given use case, it may also be run directly from Python using the steps below.

    +
      +
    1. Ensure that both Git and Python 3.10 or higher are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/ingestion/.
    6. +
    7. Make a fresh virtual environment with python -m venv .venv.
    8. +
    9. Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows PowerShell).
    10. +
    11. Install all of the Python dependencies for the ingestion service with pip install -r requirements.txt into your virtual environment.
    12. +
    13. Run the FHIR Converter on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080.
    14. +
    +

    Building the Docker Image

    +

    To build the Docker image for the ingestion service from source code instead of downloading it from the PHDI repository, follow these steps.

    +
      +
    1. Ensure that both Git and Docker are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/ingestion/.
    6. +
    7. Run docker build -t ingestion ..
    8. +
    +

    The API

    +

    When viewing these docs from the /redoc endpoint on a running instance of the ingestion service or the PHDI website, detailed documentation on the API will be available below.

    +

    Health Check

    Check service status. If an HTTP 200 status code is returned along with +'{"status": "OK"}' then the service is available and running properly.

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "status": "OK"
    }

    fhir/harmonization

    Standardize Names Endpoint

    Standardize the names in the provided FHIR bundle or resource.

    +

    :param input: A dictionary with the schema specified by the StandardizeNamesInput + model.

    +

    :return: A FHIR bundle or resource with standardized names.

    +
    Request Body schema: application/json
    data
    required
    object (Data)

    A FHIR resource or bundle in JSON format.

    +
    trim
    boolean (Trim)
    Default: true

    When true, leading and trailing spaces are removed.

    +
    overwrite
    boolean (Overwrite)
    Default: true

    If true, data is modified in-place; if false, a copy of data is modified and returned.

    +
    case
    string (Case)
    Default: "upper"
    Enum: "upper" "lower" "title"
    remove_numbers
    boolean (Remove Numbers)
    Default: true

    If true, delete numeric characters; if false leave numbers in place.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "data": {
      },
    • "trim": true,
    • "overwrite": true,
    • "case": "upper",
    • "remove_numbers": true
    }

    Response samples

    Content type
    application/json
    {
    • "status_code": "200",
    • "bundle": {
      }
    }

    Standardize Phones Endpoint

    Standardize the phone numbers in the provided FHIR bundle or resource.

    +

    Requires an address so that country code can be generated.

    +

    :param input: A dictionary with the schema specified by the StandardizePhonesInput + model.

    +

    :return: A FHIR bundle with standardized phone numbers.

    +
    Request Body schema: application/json
    data
    required
    object (Data)

    A FHIR resource or bundle in JSON format.

    +
    overwrite
    boolean (Overwrite)
    Default: true

    If true, data is modified in-place; if false, a copy of data is modified and returned.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "data": {
      },
    • "overwrite": true
    }

    Response samples

    Content type
    application/json
    {
    • "status_code": "200",
    • "bundle": {
      }
    }

    Standardize Dob Endpoint

    Standardize the patient date of birth in the provided FHIR bundle or resource.

    +

    Dates are changed to the FHIR standard of YYYY-MM-DD.

    +

    Returns a FHIR bundle with standardized birth dates.

    +
    Request Body schema: application/json
    data
    required
    object (Data)

    A FHIR resource or bundle in JSON format.

    +
    overwrite
    boolean (Overwrite)
    Default: true

    If true, data is modified in-place; if false, a copy of data is modified and returned.

    +
    format
    string (Format)
    Default: "Y%-m%-d%"

    Responses

    Request samples

    Content type
    application/json
    {
    • "data": {
      },
    • "overwrite": true,
    • "format": "%m/%d/%Y"
    }

    Response samples

    Content type
    application/json
    {
    • "status_code": "200",
    • "bundle": {
      }
    }

    fhir/geospatial

    Geocode Bundle Endpoint

    Given a FHIR bundle and a specified geocode method, geocode all patient addresses +across all patient resources in the bundle.

    +

    Two geocode methods are currently supported - Smarty and the U.S. Census.

    +

    If using the Smarty provider, an smarty_auth_id, smarty_auth_token and license_type +must be provided. If they are not provided as request parameters, then the service +will attempt to obtain them through environment variables. If they cannot be found +in either the request parameters or environment variables, an HTTP 400 status will +be returned.

    +
    Request Body schema: application/json
    bundle
    required
    object (Bundle)

    A FHIR resource or bundle in JSON format.

    +
    geocode_method
    required
    string (Geocode Method)
    Enum: "smarty" "census"

    The geocoding service to be used.

    +
    smarty_auth_id
    string (Smarty Auth Id)
    Default: ""

    Authentication ID for the geocoding service. Must be provided in the request body or set as an environment variable of the service if geocode_method is smarty.

    +
    smarty_auth_token
    string (Smarty Auth Token)
    Default: ""

    Authentication Token for the geocoding service. Must be provided in the request body or set as an environment variable of the service if geocode_method is smarty.

    +
    license_type
    string (License Type)
    Default: "us-rooftop-geocoding-enterprise-cloud"
    Enum: "us-standard-cloud" "us-core-cloud" "us-rooftop-geocoding-cloud" "us-rooftop-geocoding-enterprise-cloud" "us-autocomplete-pro-cloud" "international-global-plus-cloud"

    License type for the geocoding service. Must be provided in the request body or set as an environment variable of the service if geocode_method is smarty.

    +
    overwrite
    boolean (Overwrite)
    Default: true

    If true, data is modified in-place; if false, a copy of data modified and returned.

    +

    Responses

    Request samples

    Content type
    application/json
    Example

    Geocode using the Smarty geocode provider. You must provide the authentication id and token. For more information, see https://www.smarty.com/products/us-rooftop-geocoding.

    +
    {
    • "bundle": {
      },
    • "geocode_method": "smarty",
    • "smarty_auth_id": "$SMARTY_AUTH_ID",
    • "smarty_auth_token": "$SMARTY_AUTH_TOKEN",
    • "license_type": "us-rooftop-geocoding-enterprise-cloud"
    }

    Response samples

    Content type
    application/json
    Example
    {
    • "status_code": "200",
    • "bundle": {
      }
    }

    fhir/linkage

    Add Patient Identifier In Bundle Endpoint

    Add a salted hash identifier to every patient resource in a FHIR bundle using. If +a salt is not provided in the request the value of the 'SALT_STR' environment +variable will be used. In the case where a salt is not provided and 'SALT_STR' is +not defined an HTTP 500 status code is returned.

    +

    :param input: A JSON formated request body with schema specified by the + AddPatientIdentifierInBundleInput model. +:return: A FHIR bundle where every patient resource contains a hashed identifier.

    +
    Request Body schema: application/json
    bundle
    required
    object (Bundle)

    A FHIR bundle

    +
    salt_str
    string (Salt Str)
    Default: ""

    The salt to use with the hash. This is intended to prevent reverse engineering of the PII used to create the hash.

    +
    overwrite
    boolean (Overwrite)
    Default: true

    If true, data is modified in-place; if false, a copy of data modified and returned.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "bundle": { },
    • "salt_str": "",
    • "overwrite": true
    }

    Response samples

    Content type
    application/json
    {
    • "status_code": "string",
    • "message": "string",
    • "bundle": { }
    }

    fhir/transport

    Upload Bundle To Fhir Server Endpoint

    Upload all of the resources in a FHIR bundle to a FHIR server.

    +

    :param input: A JSON formated request body with schema specified by the + UploadBundleToFhirServerInput model. +:return: A dictionary containing the status code and body of the response received + from the FHIR server.

    +
    Request Body schema: application/json
    bundle
    required
    object (Bundle)

    A FHIR bundle (type 'batch' or 'transaction') to post. Each entry in the bundle must contain a request element in addition to a resource. The FHIR API provides additional details on creating FHIR-conformant batch/transaction bundles.

    +
    cred_manager
    string (Cred Manager)
    Enum: "azure" "gcp"

    The credential manager used to authenticate to the FHIR server.

    +
    fhir_url
    string (Fhir Url)

    The url of the FHIR server to upload to.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "bundle": { },
    • "cred_manager": "azure",
    • "fhir_url": "string"
    }

    Response samples

    Content type
    application/json
    {
    • "status_code": "string",
    • "message": "string",
    • "bundle": { }
    }

    cloud/storage

    Write Blob To Cloud Storage Endpoint

    Upload the information from a blob into a specified cloud providers storage +organizing it by a bucket name as well as a file name.

    +

    :param input: A JSON formated request body (blob) with schema specified by the + WriteBlobToStorageInput model. +:return: A dictionary containing the status code and body of the response received + from the cloud provider.

    +
    Request Body schema: application/json
    blob
    required
    object (Blob)

    Contents of a blob to be written to cloud storage.

    +
    cloud_provider
    string (Cloud Provider)
    Enum: "azure" "gcp"

    The cloud provider hosting the storage resource that the blob will be uploaded to. Must be provided in the request body or set as an environment variable of the service.

    +
    bucket_name
    string (Bucket Name)

    Name of the cloud storage bucket that the blob should be uploaded to. Must be provided in the request body or set as an environment variable of the service.

    +
    file_name
    required
    string (File Name)

    Name of the blob

    +
    storage_account_url
    string (Storage Account Url)
    Default: ""

    The URL of an Azure storage account. Must be provided in the request body or set as an environment variable of the service is 'cloud_provider' is 'azure'.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "blob": { },
    • "cloud_provider": "azure",
    • "bucket_name": "string",
    • "file_name": "string",
    • "storage_account_url": ""
    }

    Response samples

    Content type
    application/json
    {
    • "status_code": "string",
    • "message": "string",
    • "bundle": { }
    }
    + + + + \ No newline at end of file diff --git a/docs/v1.0.13/containers/message-parser.html b/docs/v1.0.13/containers/message-parser.html new file mode 100644 index 0000000000..150ff080d3 --- /dev/null +++ b/docs/v1.0.13/containers/message-parser.html @@ -0,0 +1,2355 @@ + + + + + + PHDI Message Parser + + + + + + + + + +

    PHDI Message Parser (1.0.13)

    Download OpenAPI specification:Download

    Getting Started with the DIBBs Message Parser

    Introduction

    +

    The PHDI message parser offers a REST API for extracting desired fields from a given message. The service natively supports extracting values from FHIR bundles, but it can support parsing Hl7v2 (eLR, VXU, ADT, etc.) and CDA(eCR) messages by first using the DIBBs FHIR converter to convert them to FHIR. Fields are extracted using a "parsing schema" which is simply a mapping in key:value format between desired field names (keys) and the FHIRPaths within the bundle to the values. In addition the data type of value (string, integer, float, boolean, date, timestamp) as well as whether the value can be null (true, false) must be specified. A simple example of a schema for extracting a patient's first and last name from messages is shown below.

    +
    {
    +  "first_name": {
    +    "fhir_path": "Bundle.entry.resource.where(resourceType = 'Patient').name.first().given.first()",
    +    "data_type": "string",
    +    "nullable": true
    +  },
    +  "last_name": {
    +    "fhir_path": "Bundle.entry.resource.where(resourceType = 'Patient').name.first().family",
    +    "data_type": "string",
    +    "nullable": true
    +  }
    +}
    +
    +

    Using this schema on a message about a patient named John Doe yield a result like this.

    +
    {
    +  "first_name": "John",
    +  "last_name": "Doe"
    +}
    +
    +

    Nested Data

    +

    Sometimes healthcare messages can be large and complex. A single message might contain several lab results that all must be extracted. We could do this by mapping each lab to its own column, "lab_result_1", "lab_result_2", "lab_result_3" and so on. However, this is cumbersome and often a poor solution if the possible number of labs is unknown or very large. To address this the message parser can return multiple values found in equivalent locations in a FHIR bundle as an array. To do this we can add the "secondary_schema" key to the field of a parsing schema that should contain multiple values. The schema below demonstrates extracting a patient's first name, last name, as well as all of their labs.

    +
    {
    +  "first_name": {
    +    "fhir_path": "Bundle.entry.resource.where(resourceType = 'Patient').name.first().given.first()",
    +    "data_type": "string",
    +    "nullable": true
    +  },
    +  "last_name": {
    +    "fhir_path": "Bundle.entry.resource.where(resourceType = 'Patient').name.first().family",
    +    "data_type": "string",
    +    "nullable": true
    +  },
    +  "labs": {
    +        "fhir_path": "Bundle.entry.resource.where(resourceType='Observation').where(category.coding.code='laboratory')",
    +        "data_type": "array",
    +        "nullable": true,
    +        "secondary_schema": {
    +          "test_type": {
    +              "fhir_path": "Observation.code.coding.display",
    +              "data_type": "string",
    +              "nullable": true
    +          },
    +          "test_type_code": {
    +              "fhir_path": "Observation.code.coding.code",
    +              "data_type": "string",
    +              "nullable": true
    +          },
    +          "test_result": {
    +              "fhir_path": "Observation.valueString",
    +              "data_type": "string",
    +              "nullable": true
    +          },
    +          "specimen_collection_date": {
    +              "fhir_path": "Observation.extension.where(url='http://hl7.org/fhir/R4/specimen.html').extension.where(url='specimen collection time').valueDateTime",
    +              "data_type": "datetime",
    +              "nullable": true
    +          }
    +        }
    +    }
    +}
    +
    +

    If this parsing schema is used on a message about a patient named Jane Doe with two labs the service would a return a result like this.

    +
    {
    +  "first_name": "Jane",
    +  "last_name": "Doe",
    +  "labs": [
    +    {
    +      "test_type": "Campylobacter, NAAT",
    +      "test_type_code": "82196-7",
    +      "test_result": "Not Detected",
    +      "specimen_collection_date": "2023-01-31T18:52:00Z"
    +    },
    +    {
    +      "test_type": "C. Diff Toxin A/B, NAAT",
    +      "test_type_code": "82197-5",
    +      "test_result": "Not Detected",
    +      "specimen_collection_date": "2023-01-31T18:52:00Z"
    +    }
    +  ]
    +}
    +
    +

    Running the Message Parser

    +

    The message parser can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

    + +

    To run the message parser with Docker, follow these steps.

    +
      +
    1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar to what is shown below, follow these instructions to install Docker.
      ❯ docker -v
      +Docker version 20.10.21, build baeda1f
      +
      +
    2. +
    3. Download a copy of the Docker image from the PHDI repository by running docker pull ghcr.io/cdcgov/phdi/message-parser:latest.
    4. +
    5. Run the service with docker run -p 8080:8080 message-parser:latest.
    6. +
    +

    Congratulations, the message parser should now be running on localhost:8080!

    +

    Running from Python Source Code

    +

    We recommend running the message parser from a container, but if that is not feasible for a given use-case, it may also be run directly from Python using the steps below.

    +
      +
    1. Ensure that both Git and Python 3.10 or higher are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/message-parser/.
    6. +
    7. Make a fresh virtual environment with python -m venv .venv.
    8. +
    9. Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows Power Shell).
    10. +
    11. Install all of the Python dependencies for the message parser with pip install -r requirements.txt into your virtual environment.
    12. +
    13. Run the FHIR Converter on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080.
    14. +
    +

    Building the Docker Image

    +

    To build the Docker image for the message parser from source instead of downloading it from the PHDI repository follow these steps.

    +
      +
    1. Ensure that both Git and Docker are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/message-parser/.
    6. +
    7. Run docker build -t message-parser ..
    8. +
    +

    The API

    +

    When viewing these docs from the /redoc endpoint on a running instance of the message parser or the PHDI website, detailed documentation on the API will be available below.

    +

    Health Check

    Check service status. If an HTTP 200 status code is returned along with +'{"status": "OK"}' then the service is available and running properly.

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "status": "OK"
    }

    Parse Message Endpoint

    Extract the desired values from a message. If the message is not already in +FHIR format, convert it to FHIR first. You can either provide a parsing schema +or the name of a previously loaded parsing schema.

    +
    Request Body schema: application/json
    message_format
    required
    string (Message Format)
    Enum: "fhir" "hl7v2" "ecr"

    The format of the message.

    +
    message_type
    string (Message Type)
    Enum: "ecr" "elr" "vxu"

    The type of message that values will be extracted from. Required when 'message_format is not FHIR.

    +
    parsing_schema
    object (Parsing Schema)
    Default: {}

    A schema describing which fields to extract from the message. This must be a JSON object with key:value pairs of the form :.

    +
    parsing_schema_name
    string (Parsing Schema Name)
    Default: ""

    The name of a schema that was previously loaded in the service to use to extract fields from the message.

    +
    fhir_converter_url
    string (Fhir Converter Url)
    Default: ""

    The URL of an instance of the PHDI FHIR converter. Required when the message is not already in FHIR format.

    +
    credential_manager
    string (Credential Manager)
    Enum: "azure" "gcp"

    The type of credential manager to use for authentication with a FHIR converter when conversion to FHIR is required.

    +
    required
    Message (string) or Message (object) (Message)

    The message to be parsed.

    +

    Responses

    Request samples

    Content type
    application/json
    Example

    This is a simple custom schema that can be used to parse a FHIR Patient resource.

    +
    {
    • "parsing_schema": {
      },
    • "message_format": "fhir",
    • "message": {
      }
    }

    Response samples

    Content type
    application/json
    Example
    {
    • "message": "Parsing succeeded!",
    • "parsed_values": {
      }
    }

    List Schemas

    Get a list of all the parsing schemas currently available. Default schemas are ones +that are packaged by default with this service. Custom schemas are any additional +schema that users have chosen to upload to this service (this feature is not yet +implemented)

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "default_schemas": [
      ],
    • "custom_schemas": [ ]
    }

    Get Schema

    Get the schema specified by 'parsing_schema_name'.

    +
    path Parameters
    parsing_schema_name
    required
    string (Parsing Schema Name)

    Responses

    Response samples

    Content type
    application/json
    {
    • "message": "Schema found!",
    • "parsing_schema": {
      }
    }

    Upload Schema

    Upload a new parsing schema to the service or update an existing schema.

    +
    path Parameters
    parsing_schema_name
    required
    string (Parsing Schema Name)
    Request Body schema: application/json
    required
    object (Parsing Schema)

    A JSON formatted parsing schema to upload.

    +
    overwrite
    boolean (Overwrite)
    Default: false

    When true if a schema already exists for the provided name it will be replaced. When false no action will be taken and the response will indicate that a schema for the given name already exists. To proceed submit a new request with a different schema name or set this field to true.

    +

    Responses

    Request samples

    Content type
    application/json
    Example

    This is an example of uploading a simple parsing schema.

    +
    {
    • "parsing_schema": {
      }
    }

    Response samples

    Content type
    application/json
    {
    • "message": "Schema uploaded successfully!"
    }
    + + + + \ No newline at end of file diff --git a/docs/v1.0.13/containers/orchestration.html b/docs/v1.0.13/containers/orchestration.html new file mode 100644 index 0000000000..bc539cbfba --- /dev/null +++ b/docs/v1.0.13/containers/orchestration.html @@ -0,0 +1,2266 @@ + + + + + + PHDI Orchestration + + + + + + + + + +

    PHDI Orchestration (1.0.13)

    Download OpenAPI specification:Download

    Getting Started with the DIBBs Orchestration

    Introduction

    +

    The PHDI Orchestration app offers a REST API for processing messages through a series of microservices.

    +

    Running the Orchestration

    +

    The Orchestration app can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

    + +

    To run the Orchestration app with Docker, follow these steps.

    +
      +
    1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar to what is shown below, follow these instructions to install Docker.
      ❯ docker -v
      +Docker version 20.10.21, build baeda1f
      +
      +
    2. +
    3. Download a copy of the Docker image from the PHDI repository by running docker pull ghcr.io/cdcgov/phdi/orchestration:latest.
    4. +
    5. Run the service with docker run -p 8080:8080 orchestration:latest.
    6. +
    +

    Congratulations, the Orchestration app should now be running on localhost:8080!

    +

    Running from Python Source Code

    +

    We recommend running the Orchestration app from a container, but if that is not feasible for a given use-case, it may also be run directly from Python using the steps below.

    +
      +
    1. Ensure that both Git and Python 3.10 or higher are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/orchestration/.
    6. +
    7. Make a fresh virtual environment with python -m venv .venv.
    8. +
    9. Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows Power Shell).
    10. +
    11. Install all of the Python dependencies for the Orchestration app with pip install -r requirements.txt into your virtual environment.
    12. +
    13. Run the Orchestration app on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080.
    14. +
    +

    Building the Docker Image

    +

    To build the Docker image for the Orchestration app from source instead of downloading it from the PHDI repository follow these steps.

    +
      +
    1. Ensure that both Git and Docker are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/orchestration/.
    6. +
    7. Run docker build -t orchestration ..
    8. +
    +

    The API

    +

    When viewing these docs from the /redoc endpoint on a running instance of the Orchestration app or the PHDI website, detailed documentation on the API will be available below.

    +

    Health Check

    Check service status. If an HTTP 200 status code is returned along with +'{"status": "OK"}' then the service is available and running properly.

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "status": "OK"
    }

    Process Message Endpoint

    Process message through a series of microservices

    +
    Request Body schema: application/json
    required
    Message (string) or Message (object) (Message)

    The message to be processed.

    +

    Responses

    Request samples

    Content type
    application/json

    This is a simple custom config

    +
    {
    • "processing_config": {
      }
    }

    Response samples

    Content type
    application/json
    Example
    {
    • "message": "Processing succeeded!",
    • "content": {
      }
    }

    List Configs

    Get a list of all the process configs currently available. Default configs are ones +that are packaged by default with this service. Custom configs are any additional +config that users have chosen to upload to this service (this feature is not yet +implemented)

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "default_configs": [
      ],
    • "custom_configs": [ ]
    }

    Get Config

    Get the config specified by 'processing_config_name'.

    +
    path Parameters
    processing_config_name
    required
    string (Processing Config Name)

    Responses

    Response samples

    Content type
    application/json
    {
    • "message": "Config found!",
    • "processing_config": {
      }
    }

    Upload Config

    Upload a new processing config to the service or update an existing config.

    +
    path Parameters
    processing_config_name
    required
    string (Processing Config Name)
    Request Body schema: application/json
    required
    object (Processing Config)

    A JSON formatted processing config to upload.

    +
    overwrite
    boolean (Overwrite)
    Default: false

    When true if a config already exists for the provided name it will be replaced. When false no action will be taken and the response will indicate that a config for the given name already exists. To proceed submit a new request with a different config name or set this field to true.

    +

    Responses

    Request samples

    Content type
    application/json
    Example

    This is an example of uploading a simple processing config.

    +
    {
    • "processing_config": {
      }
    }

    Response samples

    Content type
    application/json
    {
    • "message": "Config uploaded successfully!"
    }
    + + + + \ No newline at end of file diff --git a/docs/v1.0.13/containers/record-linkage.html b/docs/v1.0.13/containers/record-linkage.html new file mode 100644 index 0000000000..dbaa4d4504 --- /dev/null +++ b/docs/v1.0.13/containers/record-linkage.html @@ -0,0 +1,2262 @@ + + + + + + DIBBs Record Linkage Service + + + + + + + + + +

    DIBBs Record Linkage Service (1.0.13)

    Download OpenAPI specification:Download

    Getting Started with the DIBBs Record Linkage Service

    Introduction

    +

    The DIBBs record linkage service offers a REST API for linking new health care messages to existing records if a connection exists.

    +

    Running the Record Linkage Service

    +

    The record linkage service can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

    + +

    To run the record linkage service with Docker Compose follow these steps.

    +
      +
    1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar what is shown below, follow these instructions to install Docker.

      +
      ❯ docker -v
      +Docker version 20.10.21, build baeda1f
      +
      +
    2. +
    3. Navigate to the containers/record-linkage folder and start the service by running docker compose up --build

      +
    4. +
    +

    Congratulations the record-linkage should now be running on localhost:8080!

    +

    Running with Docker

    +

    To run the record linkage service with Docker follow these steps.

    +
      +
    1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar to what is shown below, follow these instructions to install Docker.
      ❯ docker -v
      +Docker version 20.10.21, build baeda1f
      +
      +
    2. +
    3. Download a copy of the Docker image from the DIBBs repository by running docker pull ghcr.io/cdcgov/phdi/record-linkage:latest.
    4. +
    5. Run the service with docker run -p 8080:8080 record-linkage:latest.
    6. +
    +

    Congratulations, the record linkage service should now be running on localhost:8080!

    +

    Running from Python Source Code

    +

    We recommend running the record linkage service from a container, but if that is not feasible for a given use case, it may also be run directly from Python using the steps below.

    +
      +
    1. Ensure that both Git and Python 3.10 or higher are installed.
    2. +
    3. Clone the DIBBs repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/record-linkage/.
    6. +
    7. Make a fresh virtual environment with python -m venv .venv.
    8. +
    9. Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows PowerShell).
    10. +
    11. Install all Python dependencies for the record linkage service with pip install -r requirements.txt into your virtual environment.
    12. +
    13. Run the record linkage service on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080 --log-config app/log_config.yml.
    14. +
    +

    Building the Docker Image

    +

    To build the Docker image for the record linkage service from source code instead of downloading it from the DIBBs repository follow these steps.

    +
      +
    1. Ensure that both Git and Docker are installed.
    2. +
    3. Clone the DIBBs repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/record-linkage/.
    6. +
    7. Run docker build -t record-linkage ..
    8. +
    +

    The API

    +

    When viewing these docs from the /redoc endpoint on a running instance of the record linkage service or the DIBBs website, detailed documentation on the API will be available below.

    +

    Health Check

    Check the status of this service and its connection to Master Patient Index(MPI). If +an HTTP 200 status code is returned along with '{"status": "OK"}' then the record +linkage service is available and running properly. The mpi_connection_status field +contains a description of the connection health to the MPI database.

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "status": "string",
    • "mpi_connection_status": "string"
    }

    Link Record

    Compare a FHIR bundle with records in the Master Patient Index (MPI) to +check for matches with existing patient records If matches are found, +returns the bundle with updated references to existing patients.

    +
    Request Body schema: application/json
    bundle
    required
    object (Bundle)

    A FHIR bundle containing a patient resource to be checked for links to existing patient records

    +
    use_enhanced
    boolean (Use Enhanced)
    Default: false

    Optionally, a boolean flag indicating whether to use the DIBBs enhanced algorithm (with statistical correction) for record linkage. If False and no optional algo_config is provided, the service will use the DIBBs basic algorithm. If this parameter is set to True, the enhanced algorithm will be used in place of any configuration supplied in algo_config.

    +
    algo_config
    object (Algo Config)
    Default: {}

    A JSON dictionary containing the specification for a linkage algorithm, as defined in the SDK functions read_algo_config and write_algo_config. Default value uses the DIBBS in-house basic algorithm.

    +
    external_person_id
    string (External Person Id)

    The External Identifier, provided by the client, for a unique patient/person that is linked to patient(s)

    +

    Responses

    Request samples

    Content type
    application/json
    Example

    Matches an existing Patient

    +
    {
    • "bundle": {
      }
    }

    Response samples

    Content type
    application/json
    Example
    {
    • "found_match": true,
    • "updated_bundle": {
      }
    }
    + + + + \ No newline at end of file diff --git a/docs/v1.0.13/containers/tabulation.html b/docs/v1.0.13/containers/tabulation.html new file mode 100644 index 0000000000..3bf44c27e5 --- /dev/null +++ b/docs/v1.0.13/containers/tabulation.html @@ -0,0 +1,2237 @@ + + + + + + PHDI Tabulation Service + + + + + + + + + +

    PHDI Tabulation Service (1.0.13)

    Download OpenAPI specification:Download

    Getting Started with the PHDI Tabulation Service

    Introduction

    +

    The PHDI tabulation service offers a REST API to extract and tabulate data from a FHIR server according to a user-defined schema, and then persist the data in one of serveral supported formats. More information about this process and writing schemas can be found here.

    +

    Running the Tabulation Service

    +

    The tabulation service can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

    + +

    To run the tabulation service with Docker follow these steps.

    +
      +
    1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar to what is shown below, follow these instructions to install Docker.
      ❯ docker -v
      +Docker version 20.10.21, build baeda1f
      +
      +
    2. +
    3. Download a copy of the Docker image from the PHDI repository by running docker pull ghcr.io/cdcgov/phdi/tabulation:latest.
    4. +
    5. Run the service with docker run -p 8080:8080 -v $(pwd):/code tabulation:latest.
    6. +
    +

    Congratulations, the tabulation service should now be running on localhost:8080!

    +

    Running from Python Source Code

    +

    We recommend running the tabulation service from a container, but if that is not feasible for a given use case, it may also be run directly from Python using the steps below.

    +
      +
    1. Ensure that both Git and Python 3.10 or higher are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/tabulation/.
    6. +
    7. Make a fresh virtual environment with python -m venv .venv.
    8. +
    9. Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows PowerShell).
    10. +
    11. Install all of the Python dependencies for the tabulation service with pip install -r requirements.txt into your virtual environment.
    12. +
    13. Run the FHIR Converter on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080.
    14. +
    +

    Building the Docker Image

    +

    To build the Docker image for the tabulation service from source code instead of downloading it from the PHDI repository, follow these steps.

    +
      +
    1. Ensure that both Git and Docker are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/tabulation/.
    6. +
    7. Run docker build -t tabulation ..
    8. +
    +

    The API

    +

    When viewing these docs from the /redoc endpoint on a running instance of the tabulation service or the PHDI website, detailed documentation on the API will be available below.

    +

    Health Check

    Check service status. If an HTTP 200 status code is returned along with +'{"status": "OK"}' then the service is available and running properly.

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "status": "OK"
    }

    Validate Schema Endpoint

    Request Body schema: application/json
    schema
    required
    object (Schema)

    A JSON formatted PHDI schema.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "schema": { }
    }

    Response samples

    Content type
    application/json
    null

    Tabulate Endpoint

    This endpoint will extract, tabulate, and persist data from a FHIR server according +to a user-defined schema in the method of the user's choosing.

    +
    Request Body schema: application/json
    schema
    required
    object (Schema)

    A JSON formatted PHDI schema.

    +
    output_type
    required
    string (Output Type)
    Enum: "parquet" "csv" "sql"

    Method for persisting data after extraction from the FHIR server and tabulation.

    +
    fhir_url
    string (Fhir Url)

    The URL of the FHIR server from which data should be extracted, should end with '/fhir'. If not provided here then it must be set as an environment variable.

    +
    cred_manager
    string (Cred Manager)
    Enum: "azure" "gcp"

    Chose a PHDI credential manager to use for authentication with the FHIR. May be set here or as an environment variable. If not provided anywhere then un-authenticated FHIR server requests will be attempted.

    +

    Responses

    Request samples

    Content type
    application/json
    {
    • "schema": { },
    • "output_type": "parquet",
    • "fhir_url": "string",
    • "cred_manager": "azure"
    }

    Response samples

    Content type
    application/json
    null
    + + + + \ No newline at end of file diff --git a/docs/v1.0.13/containers/validation.html b/docs/v1.0.13/containers/validation.html new file mode 100644 index 0000000000..942c4d4780 --- /dev/null +++ b/docs/v1.0.13/containers/validation.html @@ -0,0 +1,2246 @@ + + + + + + PHDI Validation Service + + + + + + + + + +

    PHDI Validation Service (1.0.13)

    Download OpenAPI specification:Download

    Getting Started with the PHDI Validation Service

    Introduction

    +

    The PHDI validation service offers a REST API for validating health care messages (e.g., whether health care messages are in the proper format and contain user-defined fields of interest).

    +

    Running the Validation Service

    +

    The validation service can be run using Docker (or any other OCI container runtime e.g., Podman), or directly from the Python source code.

    + +

    To run the validation service with Docker follow these steps.

    +
      +
    1. Confirm that you have Docker installed by running docker -v. If you do not see a response similar to what is shown below, follow these instructions to install Docker.
      ❯ docker -v
      +Docker version 20.10.21, build baeda1f
      +
      +
    2. +
    3. Download a copy of the Docker image from the PHDI repository by running docker pull ghcr.io/cdcgov/phdi/validation:latest.
    4. +
    5. Run the service with docker run -p 8080:8080 validation:latest.
    6. +
    +

    Congratulations, the validation service should now be running on localhost:8080!

    +

    Running from Python Source Code

    +

    We recommend running the validation service from a container, but if that is not feasible for a given use case, it may also be run directly from Python using the steps below.

    +
      +
    1. Ensure that both Git and Python 3.10 or higher are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/validation/.
    6. +
    7. Make a fresh virtual environment with python -m venv .venv.
    8. +
    9. Activate the virtual environment with source .venv/bin/activate (MacOS and Linux), venv\Scripts\activate (Windows Command Prompt), or .venv\Scripts\Activate.ps1 (Windows PowerShell).
    10. +
    11. Install all Python dependencies for the validation service with pip install -r requirements.txt into your virtual environment.
    12. +
    13. Run the FHIR Converter on localhost:8080 with python -m uvicorn app.main:app --host 0.0.0.0 --port 8080.
    14. +
    +

    Building the Docker Image

    +

    To build the Docker image for the validation service from source code instead of downloading it from the PHDI repository, follow these steps.

    +
      +
    1. Ensure that both Git and Docker are installed.
    2. +
    3. Clone the PHDI repository with git clone https://github.com/CDCgov/phdi.
    4. +
    5. Navigate to /phdi/containers/validation/.
    6. +
    7. Run docker build -t validation ..
    8. +
    +

    The API

    +

    When viewing these docs from the /redoc endpoint on a running instance of the validation service or the PHDI website, detailed documentation on the API will be available below.

    +

    Health Check

    Check service status. If an HTTP 200 status code is returned along with +'{"status": "OK"}' then the service is available and running properly.

    +

    Responses

    Response samples

    Content type
    application/json
    {
    • "status": "OK"
    }

    Validate Endpoint

    Check if the value presented in the 'message' key is a valid example +of the type of message specified in the 'message_type'.

    +
    Request Body schema: application/json
    message_type
    required
    string (Message Type)
    Enum: "ecr" "elr" "vxu" "fhir"

    The type of message to be validated.

    +
    include_error_types
    required
    string (Include Error Types)

    A comma separated list of the types of errors that should be included in the return response. Valid types are fatal, errors, warnings, information

    +
    message
    required
    string (Message)

    The message to be validated.

    +

    Responses

    Request samples

    Content type
    application/json
    Example

    Validate a valid ECR message

    +
    {
    • "message_type": "ecr",
    • "included_error_types": "errors",
    • "message": "{\n \"message\": \"<ClinicalDocument xmlns=\\\"urn:hl7-org:v3\\\" xmlns:xsi=\\\"http://www.w3.org/2001/XMLSchema-instance\\\">\\n <realmCode code=\\\"US\\\"/>\\n <typeId extension=\\\"POCD_HD000040\\\" root=\\\"2.16.840.1.113883.1.3\\\"/>\\n <templateId root=\\\"1.2.840.114350.1.72.1.51693\\\"/>\\n <templateId root=\\\"2.16.840.1.113883.10.20.22.1.1\\\"/>\\n <templateId extension=\\\"2015-08-01\\\" root=\\\"2.16.840.1.113883.10.20.22.1.1\\\"/>\\n <templateId extension=\\\"2016-12-01\\\" root=\\\"2.16.840.1.113883.10.20.15.2\\\"/>\\n <id root=\\\"8675309a-7754-r2d2-c3p0-973d9f777777\\\"/>\\n <code code=\\\"55751-2\\\" codeSystem=\\\"2.16.840.1.113883.6.1\\\" codeSystemName=\\\"LOINC\\\" displayName=\\\"Initial Public Health Case Report\\\"/>\\n <title>Initial Public Health Case Report</title>\\n <effectiveTime value=\\\"20230409130417-0700\\\"/>\\n <confidentialityCode code=\\\"N\\\" codeSystem=\\\"2.16.840.1.113883.5.25\\\" displayName=\\\"Normal\\\"/>\\n <languageCode code=\\\"en-US\\\"/>\\n <setId assigningAuthorityName=\\\"EPC\\\" extension=\\\"8675309a-7754-r2d2-c3p0-973d9f777777\\\" root=\\\"1.2.840.114350.1.13.297.3.7.1.1\\\"/>\\n <versionNumber value=\\\"2\\\"/>\\n <recordTarget>\\n <patientRole>\\n <id extension=\\\"MRN1234567890\\\" root=\\\"1.2.840.114350.1.13.297.3.7.3.688884.100\\\"/>\\n <addr use=\\\"HP\\\">\\n <streetAddressLine>4720 MEGA ST. NW</streetAddressLine>\\n <city>NORTH CANTON</city>\\n <state>OH</state>\\n <postalCode>44720</postalCode>\\n <country>USA</country>\\n <useablePeriod xmlns:xsi=\\\"http://www.w3.org/2001/XMLSchema-instance\\\" xsi:type=\\\"IVL_TS\\\">\\n <low value=\\\"20181129\\\"/>\\n <high nullFlavor=\\\"NA\\\"/>\\n </useablePeriod>\\n </addr>\\n <telecom nullFlavor=\\\"UNK\\\"/>\\n <patient>\\n <name use=\\\"L\\\">\\n <given>Jon</given>\\n <family>Shepherd</family>\\n <validTime>\\n <low nullFlavor=\\\"NA\\\"/>\\n <high nullFlavor=\\\"NA\\\"/>\\n </validTime>\\n </name> ... </ClinicalDocument>\",\n \"message_type\": \"ecr\",\n \"include_error_types\": \"fatal, errors\"\n}"
    }

    Response samples

    Content type
    application/json
    Example
    {
    • "message_valid": "True",
    • "validation_results": {
      }
    }
    + + + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/index.html b/docs/v1.0.13/sdk/index.html new file mode 100644 index 0000000000..f1d2f7bc22 --- /dev/null +++ b/docs/v1.0.13/sdk/index.html @@ -0,0 +1,7 @@ + + + + + + + diff --git a/docs/v1.0.13/sdk/phdi.html b/docs/v1.0.13/sdk/phdi.html new file mode 100644 index 0000000000..adced33f59 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi.html @@ -0,0 +1,249 @@ + + + + + + + phdi API documentation + + + + + + + + + +
    +
    +

    +phdi

    + + + + + + +
    1__version__ = "1.0.13"
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/cloud.html b/docs/v1.0.13/sdk/phdi/cloud.html new file mode 100644 index 0000000000..1cd224f2bf --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/cloud.html @@ -0,0 +1,239 @@ + + + + + + + phdi.cloud API documentation + + + + + + + + + +
    +
    +

    +phdi.cloud

    + + + + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/cloud/azure.html b/docs/v1.0.13/sdk/phdi/cloud/azure.html new file mode 100644 index 0000000000..f2316fcb94 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/cloud/azure.html @@ -0,0 +1,1243 @@ + + + + + + + phdi.cloud.azure API documentation + + + + + + + + + +
    +
    +

    +phdi.cloud.azure

    + + + + + + +
      1import json
    +  2
    +  3from phdi.cloud.core import BaseCredentialManager, BaseCloudStorageConnection
    +  4from azure.core.credentials import AccessToken
    +  5from azure.keyvault.secrets import SecretClient
    +  6from azure.identity import DefaultAzureCredential
    +  7from azure.storage.blob import ContainerClient, BlobServiceClient
    +  8from datetime import datetime, timezone
    +  9from typing import List, Union
    + 10
    + 11
    + 12class AzureCredentialManager(BaseCredentialManager):
    + 13    """
    + 14    Defines a credential manager used for connecting to Azure.
    + 15    """
    + 16
    + 17    @property
    + 18    def resource_location(self) -> str:
    + 19        return self.__resource_location
    + 20
    + 21    @property
    + 22    def scope(self) -> str:
    + 23        return self.__scope
    + 24
    + 25    @property
    + 26    def access_token(self) -> AccessToken:
    + 27        return self.__access_token
    + 28
    + 29    def __init__(self, resource_location: str = None, scope: str = None):
    + 30        """
    + 31        Creates a new AzureCredentialManager object.
    + 32
    + 33        :param resource_location: The URL or other location of the requested resource.
    + 34        :param scope: A space-delimited list of scopes to limit access to resource.
    + 35          Default: `None`
    + 36        """
    + 37        self.__resource_location = resource_location
    + 38        self.__scope = scope
    + 39        self.__access_token = None
    + 40
    + 41        if self.scope is None:
    + 42            self.__scope = f"{self.resource_location}/.default"
    + 43
    + 44    def get_credential_object(self) -> object:
    + 45        """
    + 46        Gets an Azure-specific credential object.
    + 47
    + 48        :return: An instance of one of the \\*Credential objects from the
    + 49          `azure.identity` package.
    + 50        """
    + 51        return DefaultAzureCredential()
    + 52
    + 53    def get_access_token(self, force_refresh: bool = False) -> str:
    + 54        """
    + 55        Obtains an access token from the Azure identity provider. Returns the
    + 56        access token string, refreshed if expired or force_refresh is specified.
    + 57
    + 58        :param force_refresh: `True` if a new token should be requested, regardless
    + 59          of expiration timestamp. `False` otherwise. Default: `False`
    + 60        :return: An Azure access token.
    + 61        """
    + 62        if force_refresh or (self.access_token is None) or self._need_new_token():
    + 63            creds = self.get_credential_object()
    + 64            self.__access_token = creds.get_token(self.scope)
    + 65
    + 66        return self.access_token.token
    + 67
    + 68    def _need_new_token(self) -> bool:
    + 69        """
    + 70        Determines whether the token already stored for this object can be reused,
    + 71        or if it needs to be re-requested. A new token is needed if a token has not
    + 72        yet been created, or if the current token has expired.
    + 73
    + 74        :return: True if a new Azure access token is needed; false otherwise.
    + 75        """
    + 76        try:
    + 77            current_time_utc = datetime.now(timezone.utc).timestamp()
    + 78            return self.access_token.expires_on < current_time_utc
    + 79        except AttributeError:
    + 80            # access_token not set
    + 81            return True
    + 82
    + 83    def get_secret(self, secret_name: str, key_vault_name: str) -> str:
    + 84        """
    + 85        Get the value of a secret from an Azure key vault given the names of the vault
    + 86        and the secret.
    + 87
    + 88        :param secret_name: The name of the secret whose value should be retrieved from
    + 89            the key vault.
    + 90        :param key_vault_name: The name of the key vault where the secret is stored.
    + 91        :return: The value of the secret specified by secret_name.
    + 92        """
    + 93
    + 94        vault_url = f"https://{key_vault_name}.vault.azure.net"
    + 95        secret_client = SecretClient(
    + 96            vault_url=vault_url, credential=self.get_credential_object()
    + 97        )
    + 98        return secret_client.get_secret(secret_name).value
    + 99
    +100
    +101class AzureCloudContainerConnection(BaseCloudStorageConnection):
    +102    """
    +103    Defines a connection used for interacting with cloud storage in Azure.
    +104    """
    +105
    +106    @property
    +107    def storage_account_url(self) -> str:
    +108        return self.__storage_account_url
    +109
    +110    @property
    +111    def cred_manager(self) -> AzureCredentialManager:
    +112        return self.__cred_manager
    +113
    +114    def __init__(self, storage_account_url: str, cred_manager: AzureCredentialManager):
    +115        """
    +116        Creates a new AzureCloudContainerConnection object.
    +117
    +118        :param storage_account_url: The storage account location of the requested
    +119          resource.
    +120        :param cred_manager: The credential manager used to authenticate to the
    +121          FHIR server.
    +122        """
    +123        self.__storage_account_url = storage_account_url
    +124        self.__cred_manager = cred_manager
    +125
    +126    def _get_container_client(self, container_url: str) -> ContainerClient:
    +127        """
    +128        Obtains a client connected to an Azure storage container by
    +129        utilizing the first valid credentials Azure can find. For
    +130        more information on the order in which the credentials are
    +131        checked, see the Azure documentation:
    +132        https://docs.microsoft.com/en-us/azure/developer/python/sdk/authentication-overview#sequence-of-authentication-methods-when-using-defaultazurecredential
    +133
    +134        :param container_url: The url at which to access the container.
    +135        :return: The Azure `ContainerClient`.
    +136        """
    +137        creds = self.cred_manager.get_credential_object()
    +138        return ContainerClient.from_container_url(container_url, credential=creds)
    +139
    +140    def download_object(
    +141        self, container_name: str, filename: str, encoding: str = "UTF-8"
    +142    ) -> str:
    +143        """
    +144        Downloads a character blob from storage and returns it as a string.
    +145
    +146        :param container_name: The name of the container containing object to download.
    +147        :param filename: The location of the file within Azure blob storage.
    +148        :param encoding: The encoding applied to the downloaded content. Default: UTF-8
    +149        :return: A character blob as a string from the given container and filename.
    +150        """
    +151        container_location = f"{self.storage_account_url}/{container_name}"
    +152        container_client = self._get_container_client(container_location)
    +153        blob_client = container_client.get_blob_client(filename)
    +154
    +155        downloader = blob_client.download_blob()
    +156
    +157        downloaded_text = downloader.content_as_text(encoding=encoding)
    +158
    +159        return downloaded_text
    +160
    +161    def upload_object(
    +162        self,
    +163        message: Union[str, dict],
    +164        container_name: str,
    +165        filename: str,
    +166    ) -> None:
    +167        """
    +168        Uploads the content of a given message to Azure blob storage.
    +169        The message can be passed either as a raw string or as JSON.
    +170
    +171        :param message: The contents of a message, encoded either as a
    +172          string or a JSON-formatted dictionary.
    +173        :param container_name: The name of the target container for upload.
    +174        :param filename: The location of file to upload within Azure blob storage.
    +175        """
    +176        container_location = f"{self.storage_account_url}/{container_name}"
    +177        container_client = self._get_container_client(container_location)
    +178        blob_client = container_client.get_blob_client(filename)
    +179
    +180        if isinstance(message, str):
    +181            blob_client.upload_blob(bytes(message, "utf-8"), overwrite=True)
    +182        elif isinstance(message, dict):
    +183            blob_client.upload_blob(json.dumps(message).encode("utf-8"), overwrite=True)
    +184
    +185    def list_containers(self) -> List[str]:
    +186        """
    +187        Lists names for this CloudContainerConnection's containers.
    +188
    +189        :return: A list of container names.
    +190        """
    +191        creds = self.cred_manager.get_credential_object()
    +192        service_client = BlobServiceClient(
    +193            account_url=self.storage_account_url, credential=creds
    +194        )
    +195        container_properties_generator = service_client.list_containers()
    +196
    +197        container_name_list = []
    +198        for container_propreties in container_properties_generator:
    +199            container_name_list.append(container_propreties.name)
    +200
    +201        return container_name_list
    +202
    +203    def list_objects(self, container_name: str, prefix: str = "") -> List[str]:
    +204        """
    +205        Lists names for objects within a container.
    +206
    +207        :param container_name: The name of the container to look for objects.
    +208        :param prefix: Filter the objects returned to filenames beginning
    +209          with this value.
    +210        :return: A list of names for objects in given container.
    +211        """
    +212        container_location = f"{self.storage_account_url}/{container_name}"
    +213        container_client = self._get_container_client(container_location)
    +214
    +215        blob_properties_generator = container_client.list_blobs(name_starts_with=prefix)
    +216
    +217        blob_name_list = []
    +218        for blob_propreties in blob_properties_generator:
    +219            blob_name_list.append(blob_propreties.name)
    +220
    +221        return blob_name_list
    +222
    +223    def blob_exists(self, container_name: str, filename: str) -> bool:
    +224        """
    +225        Check if a blob exists within a container given its name and the name of the
    +226        container.
    +227
    +228        :param container_name: The name of the container to look for the blob in.
    +229        :param filename: The name of the blob to check the existence of.
    +230        :param prefix: Filter the objects returned to filenames beginning
    +231          with this value.
    +232        :return: A boolean of true if the file exists and false if it does not.
    +233        """
    +234
    +235        container_location = f"{self.storage_account_url}/{container_name}"
    +236        container_client = self._get_container_client(container_location)
    +237        blob_client = container_client.get_blob_client(filename)
    +238        return blob_client.exists()
    +
    + + +
    +
    + +
    + + class + AzureCredentialManager(phdi.cloud.core.BaseCredentialManager): + + + +
    + +
    13class AzureCredentialManager(BaseCredentialManager):
    +14    """
    +15    Defines a credential manager used for connecting to Azure.
    +16    """
    +17
    +18    @property
    +19    def resource_location(self) -> str:
    +20        return self.__resource_location
    +21
    +22    @property
    +23    def scope(self) -> str:
    +24        return self.__scope
    +25
    +26    @property
    +27    def access_token(self) -> AccessToken:
    +28        return self.__access_token
    +29
    +30    def __init__(self, resource_location: str = None, scope: str = None):
    +31        """
    +32        Creates a new AzureCredentialManager object.
    +33
    +34        :param resource_location: The URL or other location of the requested resource.
    +35        :param scope: A space-delimited list of scopes to limit access to resource.
    +36          Default: `None`
    +37        """
    +38        self.__resource_location = resource_location
    +39        self.__scope = scope
    +40        self.__access_token = None
    +41
    +42        if self.scope is None:
    +43            self.__scope = f"{self.resource_location}/.default"
    +44
    +45    def get_credential_object(self) -> object:
    +46        """
    +47        Gets an Azure-specific credential object.
    +48
    +49        :return: An instance of one of the \\*Credential objects from the
    +50          `azure.identity` package.
    +51        """
    +52        return DefaultAzureCredential()
    +53
    +54    def get_access_token(self, force_refresh: bool = False) -> str:
    +55        """
    +56        Obtains an access token from the Azure identity provider. Returns the
    +57        access token string, refreshed if expired or force_refresh is specified.
    +58
    +59        :param force_refresh: `True` if a new token should be requested, regardless
    +60          of expiration timestamp. `False` otherwise. Default: `False`
    +61        :return: An Azure access token.
    +62        """
    +63        if force_refresh or (self.access_token is None) or self._need_new_token():
    +64            creds = self.get_credential_object()
    +65            self.__access_token = creds.get_token(self.scope)
    +66
    +67        return self.access_token.token
    +68
    +69    def _need_new_token(self) -> bool:
    +70        """
    +71        Determines whether the token already stored for this object can be reused,
    +72        or if it needs to be re-requested. A new token is needed if a token has not
    +73        yet been created, or if the current token has expired.
    +74
    +75        :return: True if a new Azure access token is needed; false otherwise.
    +76        """
    +77        try:
    +78            current_time_utc = datetime.now(timezone.utc).timestamp()
    +79            return self.access_token.expires_on < current_time_utc
    +80        except AttributeError:
    +81            # access_token not set
    +82            return True
    +83
    +84    def get_secret(self, secret_name: str, key_vault_name: str) -> str:
    +85        """
    +86        Get the value of a secret from an Azure key vault given the names of the vault
    +87        and the secret.
    +88
    +89        :param secret_name: The name of the secret whose value should be retrieved from
    +90            the key vault.
    +91        :param key_vault_name: The name of the key vault where the secret is stored.
    +92        :return: The value of the secret specified by secret_name.
    +93        """
    +94
    +95        vault_url = f"https://{key_vault_name}.vault.azure.net"
    +96        secret_client = SecretClient(
    +97            vault_url=vault_url, credential=self.get_credential_object()
    +98        )
    +99        return secret_client.get_secret(secret_name).value
    +
    + + +

    Defines a credential manager used for connecting to Azure.

    +
    + + +
    + +
    + + AzureCredentialManager(resource_location: str = None, scope: str = None) + + + +
    + +
    30    def __init__(self, resource_location: str = None, scope: str = None):
    +31        """
    +32        Creates a new AzureCredentialManager object.
    +33
    +34        :param resource_location: The URL or other location of the requested resource.
    +35        :param scope: A space-delimited list of scopes to limit access to resource.
    +36          Default: `None`
    +37        """
    +38        self.__resource_location = resource_location
    +39        self.__scope = scope
    +40        self.__access_token = None
    +41
    +42        if self.scope is None:
    +43            self.__scope = f"{self.resource_location}/.default"
    +
    + + +

    Creates a new AzureCredentialManager object.

    + +
    Parameters
    + +
      +
    • resource_location: The URL or other location of the requested resource.
    • +
    • scope: A space-delimited list of scopes to limit access to resource. +Default: None
    • +
    +
    + + +
    +
    + +
    + + def + get_credential_object(self) -> object: + + + +
    + +
    45    def get_credential_object(self) -> object:
    +46        """
    +47        Gets an Azure-specific credential object.
    +48
    +49        :return: An instance of one of the \\*Credential objects from the
    +50          `azure.identity` package.
    +51        """
    +52        return DefaultAzureCredential()
    +
    + + +

    Gets an Azure-specific credential object.

    + +
    Returns
    + +
    +

    An instance of one of the *Credential objects from the + azure.identity package.

    +
    +
    + + +
    +
    + +
    + + def + get_access_token(self, force_refresh: bool = False) -> str: + + + +
    + +
    54    def get_access_token(self, force_refresh: bool = False) -> str:
    +55        """
    +56        Obtains an access token from the Azure identity provider. Returns the
    +57        access token string, refreshed if expired or force_refresh is specified.
    +58
    +59        :param force_refresh: `True` if a new token should be requested, regardless
    +60          of expiration timestamp. `False` otherwise. Default: `False`
    +61        :return: An Azure access token.
    +62        """
    +63        if force_refresh or (self.access_token is None) or self._need_new_token():
    +64            creds = self.get_credential_object()
    +65            self.__access_token = creds.get_token(self.scope)
    +66
    +67        return self.access_token.token
    +
    + + +

    Obtains an access token from the Azure identity provider. Returns the +access token string, refreshed if expired or force_refresh is specified.

    + +
    Parameters
    + +
      +
    • force_refresh: True if a new token should be requested, regardless +of expiration timestamp. False otherwise. Default: False
    • +
    + +
    Returns
    + +
    +

    An Azure access token.

    +
    +
    + + +
    +
    + +
    + + def + get_secret(self, secret_name: str, key_vault_name: str) -> str: + + + +
    + +
    84    def get_secret(self, secret_name: str, key_vault_name: str) -> str:
    +85        """
    +86        Get the value of a secret from an Azure key vault given the names of the vault
    +87        and the secret.
    +88
    +89        :param secret_name: The name of the secret whose value should be retrieved from
    +90            the key vault.
    +91        :param key_vault_name: The name of the key vault where the secret is stored.
    +92        :return: The value of the secret specified by secret_name.
    +93        """
    +94
    +95        vault_url = f"https://{key_vault_name}.vault.azure.net"
    +96        secret_client = SecretClient(
    +97            vault_url=vault_url, credential=self.get_credential_object()
    +98        )
    +99        return secret_client.get_secret(secret_name).value
    +
    + + +

    Get the value of a secret from an Azure key vault given the names of the vault +and the secret.

    + +
    Parameters
    + +
      +
    • secret_name: The name of the secret whose value should be retrieved from +the key vault.
    • +
    • key_vault_name: The name of the key vault where the secret is stored.
    • +
    + +
    Returns
    + +
    +

    The value of the secret specified by secret_name.

    +
    +
    + + +
    +
    +
    + +
    + + class + AzureCloudContainerConnection(phdi.cloud.core.BaseCloudStorageConnection): + + + +
    + +
    102class AzureCloudContainerConnection(BaseCloudStorageConnection):
    +103    """
    +104    Defines a connection used for interacting with cloud storage in Azure.
    +105    """
    +106
    +107    @property
    +108    def storage_account_url(self) -> str:
    +109        return self.__storage_account_url
    +110
    +111    @property
    +112    def cred_manager(self) -> AzureCredentialManager:
    +113        return self.__cred_manager
    +114
    +115    def __init__(self, storage_account_url: str, cred_manager: AzureCredentialManager):
    +116        """
    +117        Creates a new AzureCloudContainerConnection object.
    +118
    +119        :param storage_account_url: The storage account location of the requested
    +120          resource.
    +121        :param cred_manager: The credential manager used to authenticate to the
    +122          FHIR server.
    +123        """
    +124        self.__storage_account_url = storage_account_url
    +125        self.__cred_manager = cred_manager
    +126
    +127    def _get_container_client(self, container_url: str) -> ContainerClient:
    +128        """
    +129        Obtains a client connected to an Azure storage container by
    +130        utilizing the first valid credentials Azure can find. For
    +131        more information on the order in which the credentials are
    +132        checked, see the Azure documentation:
    +133        https://docs.microsoft.com/en-us/azure/developer/python/sdk/authentication-overview#sequence-of-authentication-methods-when-using-defaultazurecredential
    +134
    +135        :param container_url: The url at which to access the container.
    +136        :return: The Azure `ContainerClient`.
    +137        """
    +138        creds = self.cred_manager.get_credential_object()
    +139        return ContainerClient.from_container_url(container_url, credential=creds)
    +140
    +141    def download_object(
    +142        self, container_name: str, filename: str, encoding: str = "UTF-8"
    +143    ) -> str:
    +144        """
    +145        Downloads a character blob from storage and returns it as a string.
    +146
    +147        :param container_name: The name of the container containing object to download.
    +148        :param filename: The location of the file within Azure blob storage.
    +149        :param encoding: The encoding applied to the downloaded content. Default: UTF-8
    +150        :return: A character blob as a string from the given container and filename.
    +151        """
    +152        container_location = f"{self.storage_account_url}/{container_name}"
    +153        container_client = self._get_container_client(container_location)
    +154        blob_client = container_client.get_blob_client(filename)
    +155
    +156        downloader = blob_client.download_blob()
    +157
    +158        downloaded_text = downloader.content_as_text(encoding=encoding)
    +159
    +160        return downloaded_text
    +161
    +162    def upload_object(
    +163        self,
    +164        message: Union[str, dict],
    +165        container_name: str,
    +166        filename: str,
    +167    ) -> None:
    +168        """
    +169        Uploads the content of a given message to Azure blob storage.
    +170        The message can be passed either as a raw string or as JSON.
    +171
    +172        :param message: The contents of a message, encoded either as a
    +173          string or a JSON-formatted dictionary.
    +174        :param container_name: The name of the target container for upload.
    +175        :param filename: The location of file to upload within Azure blob storage.
    +176        """
    +177        container_location = f"{self.storage_account_url}/{container_name}"
    +178        container_client = self._get_container_client(container_location)
    +179        blob_client = container_client.get_blob_client(filename)
    +180
    +181        if isinstance(message, str):
    +182            blob_client.upload_blob(bytes(message, "utf-8"), overwrite=True)
    +183        elif isinstance(message, dict):
    +184            blob_client.upload_blob(json.dumps(message).encode("utf-8"), overwrite=True)
    +185
    +186    def list_containers(self) -> List[str]:
    +187        """
    +188        Lists names for this CloudContainerConnection's containers.
    +189
    +190        :return: A list of container names.
    +191        """
    +192        creds = self.cred_manager.get_credential_object()
    +193        service_client = BlobServiceClient(
    +194            account_url=self.storage_account_url, credential=creds
    +195        )
    +196        container_properties_generator = service_client.list_containers()
    +197
    +198        container_name_list = []
    +199        for container_propreties in container_properties_generator:
    +200            container_name_list.append(container_propreties.name)
    +201
    +202        return container_name_list
    +203
    +204    def list_objects(self, container_name: str, prefix: str = "") -> List[str]:
    +205        """
    +206        Lists names for objects within a container.
    +207
    +208        :param container_name: The name of the container to look for objects.
    +209        :param prefix: Filter the objects returned to filenames beginning
    +210          with this value.
    +211        :return: A list of names for objects in given container.
    +212        """
    +213        container_location = f"{self.storage_account_url}/{container_name}"
    +214        container_client = self._get_container_client(container_location)
    +215
    +216        blob_properties_generator = container_client.list_blobs(name_starts_with=prefix)
    +217
    +218        blob_name_list = []
    +219        for blob_propreties in blob_properties_generator:
    +220            blob_name_list.append(blob_propreties.name)
    +221
    +222        return blob_name_list
    +223
    +224    def blob_exists(self, container_name: str, filename: str) -> bool:
    +225        """
    +226        Check if a blob exists within a container given its name and the name of the
    +227        container.
    +228
    +229        :param container_name: The name of the container to look for the blob in.
    +230        :param filename: The name of the blob to check the existence of.
    +231        :param prefix: Filter the objects returned to filenames beginning
    +232          with this value.
    +233        :return: A boolean of true if the file exists and false if it does not.
    +234        """
    +235
    +236        container_location = f"{self.storage_account_url}/{container_name}"
    +237        container_client = self._get_container_client(container_location)
    +238        blob_client = container_client.get_blob_client(filename)
    +239        return blob_client.exists()
    +
    + + +

    Defines a connection used for interacting with cloud storage in Azure.

    +
    + + +
    + +
    + + AzureCloudContainerConnection( storage_account_url: str, cred_manager: phdi.cloud.azure.AzureCredentialManager) + + + +
    + +
    115    def __init__(self, storage_account_url: str, cred_manager: AzureCredentialManager):
    +116        """
    +117        Creates a new AzureCloudContainerConnection object.
    +118
    +119        :param storage_account_url: The storage account location of the requested
    +120          resource.
    +121        :param cred_manager: The credential manager used to authenticate to the
    +122          FHIR server.
    +123        """
    +124        self.__storage_account_url = storage_account_url
    +125        self.__cred_manager = cred_manager
    +
    + + +

    Creates a new AzureCloudContainerConnection object.

    + +
    Parameters
    + +
      +
    • storage_account_url: The storage account location of the requested +resource.
    • +
    • cred_manager: The credential manager used to authenticate to the +FHIR server.
    • +
    +
    + + +
    +
    + +
    + + def + download_object(self, container_name: str, filename: str, encoding: str = 'UTF-8') -> str: + + + +
    + +
    141    def download_object(
    +142        self, container_name: str, filename: str, encoding: str = "UTF-8"
    +143    ) -> str:
    +144        """
    +145        Downloads a character blob from storage and returns it as a string.
    +146
    +147        :param container_name: The name of the container containing object to download.
    +148        :param filename: The location of the file within Azure blob storage.
    +149        :param encoding: The encoding applied to the downloaded content. Default: UTF-8
    +150        :return: A character blob as a string from the given container and filename.
    +151        """
    +152        container_location = f"{self.storage_account_url}/{container_name}"
    +153        container_client = self._get_container_client(container_location)
    +154        blob_client = container_client.get_blob_client(filename)
    +155
    +156        downloader = blob_client.download_blob()
    +157
    +158        downloaded_text = downloader.content_as_text(encoding=encoding)
    +159
    +160        return downloaded_text
    +
    + + +

    Downloads a character blob from storage and returns it as a string.

    + +
    Parameters
    + +
      +
    • container_name: The name of the container containing object to download.
    • +
    • filename: The location of the file within Azure blob storage.
    • +
    • encoding: The encoding applied to the downloaded content. Default: UTF-8
    • +
    + +
    Returns
    + +
    +

    A character blob as a string from the given container and filename.

    +
    +
    + + +
    +
    + +
    + + def + upload_object( self, message: Union[str, dict], container_name: str, filename: str) -> None: + + + +
    + +
    162    def upload_object(
    +163        self,
    +164        message: Union[str, dict],
    +165        container_name: str,
    +166        filename: str,
    +167    ) -> None:
    +168        """
    +169        Uploads the content of a given message to Azure blob storage.
    +170        The message can be passed either as a raw string or as JSON.
    +171
    +172        :param message: The contents of a message, encoded either as a
    +173          string or a JSON-formatted dictionary.
    +174        :param container_name: The name of the target container for upload.
    +175        :param filename: The location of file to upload within Azure blob storage.
    +176        """
    +177        container_location = f"{self.storage_account_url}/{container_name}"
    +178        container_client = self._get_container_client(container_location)
    +179        blob_client = container_client.get_blob_client(filename)
    +180
    +181        if isinstance(message, str):
    +182            blob_client.upload_blob(bytes(message, "utf-8"), overwrite=True)
    +183        elif isinstance(message, dict):
    +184            blob_client.upload_blob(json.dumps(message).encode("utf-8"), overwrite=True)
    +
    + + +

    Uploads the content of a given message to Azure blob storage. +The message can be passed either as a raw string or as JSON.

    + +
    Parameters
    + +
      +
    • message: The contents of a message, encoded either as a +string or a JSON-formatted dictionary.
    • +
    • container_name: The name of the target container for upload.
    • +
    • filename: The location of file to upload within Azure blob storage.
    • +
    +
    + + +
    +
    + +
    + + def + list_containers(self) -> List[str]: + + + +
    + +
    186    def list_containers(self) -> List[str]:
    +187        """
    +188        Lists names for this CloudContainerConnection's containers.
    +189
    +190        :return: A list of container names.
    +191        """
    +192        creds = self.cred_manager.get_credential_object()
    +193        service_client = BlobServiceClient(
    +194            account_url=self.storage_account_url, credential=creds
    +195        )
    +196        container_properties_generator = service_client.list_containers()
    +197
    +198        container_name_list = []
    +199        for container_propreties in container_properties_generator:
    +200            container_name_list.append(container_propreties.name)
    +201
    +202        return container_name_list
    +
    + + +

    Lists names for this CloudContainerConnection's containers.

    + +
    Returns
    + +
    +

    A list of container names.

    +
    +
    + + +
    +
    + +
    + + def + list_objects(self, container_name: str, prefix: str = '') -> List[str]: + + + +
    + +
    204    def list_objects(self, container_name: str, prefix: str = "") -> List[str]:
    +205        """
    +206        Lists names for objects within a container.
    +207
    +208        :param container_name: The name of the container to look for objects.
    +209        :param prefix: Filter the objects returned to filenames beginning
    +210          with this value.
    +211        :return: A list of names for objects in given container.
    +212        """
    +213        container_location = f"{self.storage_account_url}/{container_name}"
    +214        container_client = self._get_container_client(container_location)
    +215
    +216        blob_properties_generator = container_client.list_blobs(name_starts_with=prefix)
    +217
    +218        blob_name_list = []
    +219        for blob_propreties in blob_properties_generator:
    +220            blob_name_list.append(blob_propreties.name)
    +221
    +222        return blob_name_list
    +
    + + +

    Lists names for objects within a container.

    + +
    Parameters
    + +
      +
    • container_name: The name of the container to look for objects.
    • +
    • prefix: Filter the objects returned to filenames beginning +with this value.
    • +
    + +
    Returns
    + +
    +

    A list of names for objects in given container.

    +
    +
    + + +
    +
    + +
    + + def + blob_exists(self, container_name: str, filename: str) -> bool: + + + +
    + +
    224    def blob_exists(self, container_name: str, filename: str) -> bool:
    +225        """
    +226        Check if a blob exists within a container given its name and the name of the
    +227        container.
    +228
    +229        :param container_name: The name of the container to look for the blob in.
    +230        :param filename: The name of the blob to check the existence of.
    +231        :param prefix: Filter the objects returned to filenames beginning
    +232          with this value.
    +233        :return: A boolean of true if the file exists and false if it does not.
    +234        """
    +235
    +236        container_location = f"{self.storage_account_url}/{container_name}"
    +237        container_client = self._get_container_client(container_location)
    +238        blob_client = container_client.get_blob_client(filename)
    +239        return blob_client.exists()
    +
    + + +

    Check if a blob exists within a container given its name and the name of the +container.

    + +
    Parameters
    + +
      +
    • container_name: The name of the container to look for the blob in.
    • +
    • filename: The name of the blob to check the existence of.
    • +
    • prefix: Filter the objects returned to filenames beginning +with this value.
    • +
    + +
    Returns
    + +
    +

    A boolean of true if the file exists and false if it does not.

    +
    +
    + + +
    +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/cloud/core.html b/docs/v1.0.13/sdk/phdi/cloud/core.html new file mode 100644 index 0000000000..39793cd865 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/cloud/core.html @@ -0,0 +1,711 @@ + + + + + + + phdi.cloud.core API documentation + + + + + + + + + +
    +
    +

    +phdi.cloud.core

    + + + + + + +
     1from abc import ABC, abstractmethod
    + 2from typing import List, Union
    + 3
    + 4
    + 5class BaseCredentialManager(ABC):
    + 6    """
    + 7    Provides a common interface for managing service credentials.
    + 8    """
    + 9
    +10    @abstractmethod
    +11    def get_credential_object(self) -> object:
    +12        """
    +13        Gets a cloud-specific credential object.
    +14
    +15        :return: A credential object.
    +16        """
    +17        pass  # pragma: no cover
    +18
    +19    @abstractmethod
    +20    def get_access_token(self) -> str:
    +21        """
    +22        Gets an access token using the managed credentials.
    +23
    +24        :return: An access token.
    +25        """
    +26        pass  # pragma: no cover
    +27
    +28
    +29class BaseCloudStorageConnection(ABC):
    +30    @abstractmethod
    +31    def download_object(
    +32        self, container_name: str, filename: str, encoding: str = "utf-8"
    +33    ) -> str:
    +34        """
    +35        Downloads a blob from storage.
    +36
    +37        :param container_name: The name of the container containing object to download.
    +38        :param filename: The location of file within storage.
    +39        :param encoding: The character encoding applied to the downloaded content.
    +40        :return: The `stream` parameter, if supplied. Otherwise a new stream object
    +41          containing blob content.
    +42        """
    +43        pass  # pragma: no cover
    +44
    +45    @abstractmethod
    +46    def upload_object(
    +47        self,
    +48        message: Union[str, dict],
    +49        container_name: str,
    +50        filename: str,
    +51    ) -> None:
    +52        """
    +53        Uploads the content of a given message to blob storage.
    +54        The message can be passed either as a raw string or as JSON.
    +55
    +56        :param message: The contents of a message, encoded either as a
    +57          string or in a JSON format.
    +58        :param container_name: The name of the target container for upload.
    +59        :param filename: The location of file within storage container.
    +60        """
    +61        pass  # pragma: no cover
    +62
    +63    @abstractmethod
    +64    def list_containers(self) -> List[str]:
    +65        """
    +66        Lists names for this CloudContainerConnection's containers.
    +67
    +68        :return: A list of container names.
    +69        """
    +70        pass  # pragma: no cover
    +71
    +72    @abstractmethod
    +73    def list_objects(self, container_name: str, prefix: str) -> List[str]:
    +74        """
    +75        Lists names for objects within a container.
    +76
    +77        :param container_name: The name of the container to look for objects.
    +78        :param prefix: Filter the objects returned to filenames beginning
    +79          with this value.
    +80        :return: A list of objects within a container.
    +81        """
    +82        pass  # pragma: no cover
    +
    + + +
    +
    + +
    + + class + BaseCredentialManager(abc.ABC): + + + +
    + +
     6class BaseCredentialManager(ABC):
    + 7    """
    + 8    Provides a common interface for managing service credentials.
    + 9    """
    +10
    +11    @abstractmethod
    +12    def get_credential_object(self) -> object:
    +13        """
    +14        Gets a cloud-specific credential object.
    +15
    +16        :return: A credential object.
    +17        """
    +18        pass  # pragma: no cover
    +19
    +20    @abstractmethod
    +21    def get_access_token(self) -> str:
    +22        """
    +23        Gets an access token using the managed credentials.
    +24
    +25        :return: An access token.
    +26        """
    +27        pass  # pragma: no cover
    +
    + + +

    Provides a common interface for managing service credentials.

    +
    + + +
    + +
    +
    @abstractmethod
    + + def + get_credential_object(self) -> object: + + + +
    + +
    11    @abstractmethod
    +12    def get_credential_object(self) -> object:
    +13        """
    +14        Gets a cloud-specific credential object.
    +15
    +16        :return: A credential object.
    +17        """
    +18        pass  # pragma: no cover
    +
    + + +

    Gets a cloud-specific credential object.

    + +
    Returns
    + +
    +

    A credential object.

    +
    +
    + + +
    +
    + +
    +
    @abstractmethod
    + + def + get_access_token(self) -> str: + + + +
    + +
    20    @abstractmethod
    +21    def get_access_token(self) -> str:
    +22        """
    +23        Gets an access token using the managed credentials.
    +24
    +25        :return: An access token.
    +26        """
    +27        pass  # pragma: no cover
    +
    + + +

    Gets an access token using the managed credentials.

    + +
    Returns
    + +
    +

    An access token.

    +
    +
    + + +
    +
    +
    + +
    + + class + BaseCloudStorageConnection(abc.ABC): + + + +
    + +
    30class BaseCloudStorageConnection(ABC):
    +31    @abstractmethod
    +32    def download_object(
    +33        self, container_name: str, filename: str, encoding: str = "utf-8"
    +34    ) -> str:
    +35        """
    +36        Downloads a blob from storage.
    +37
    +38        :param container_name: The name of the container containing object to download.
    +39        :param filename: The location of file within storage.
    +40        :param encoding: The character encoding applied to the downloaded content.
    +41        :return: The `stream` parameter, if supplied. Otherwise a new stream object
    +42          containing blob content.
    +43        """
    +44        pass  # pragma: no cover
    +45
    +46    @abstractmethod
    +47    def upload_object(
    +48        self,
    +49        message: Union[str, dict],
    +50        container_name: str,
    +51        filename: str,
    +52    ) -> None:
    +53        """
    +54        Uploads the content of a given message to blob storage.
    +55        The message can be passed either as a raw string or as JSON.
    +56
    +57        :param message: The contents of a message, encoded either as a
    +58          string or in a JSON format.
    +59        :param container_name: The name of the target container for upload.
    +60        :param filename: The location of file within storage container.
    +61        """
    +62        pass  # pragma: no cover
    +63
    +64    @abstractmethod
    +65    def list_containers(self) -> List[str]:
    +66        """
    +67        Lists names for this CloudContainerConnection's containers.
    +68
    +69        :return: A list of container names.
    +70        """
    +71        pass  # pragma: no cover
    +72
    +73    @abstractmethod
    +74    def list_objects(self, container_name: str, prefix: str) -> List[str]:
    +75        """
    +76        Lists names for objects within a container.
    +77
    +78        :param container_name: The name of the container to look for objects.
    +79        :param prefix: Filter the objects returned to filenames beginning
    +80          with this value.
    +81        :return: A list of objects within a container.
    +82        """
    +83        pass  # pragma: no cover
    +
    + + +

    Helper class that provides a standard way to create an ABC using +inheritance.

    +
    + + +
    + +
    +
    @abstractmethod
    + + def + download_object(self, container_name: str, filename: str, encoding: str = 'utf-8') -> str: + + + +
    + +
    31    @abstractmethod
    +32    def download_object(
    +33        self, container_name: str, filename: str, encoding: str = "utf-8"
    +34    ) -> str:
    +35        """
    +36        Downloads a blob from storage.
    +37
    +38        :param container_name: The name of the container containing object to download.
    +39        :param filename: The location of file within storage.
    +40        :param encoding: The character encoding applied to the downloaded content.
    +41        :return: The `stream` parameter, if supplied. Otherwise a new stream object
    +42          containing blob content.
    +43        """
    +44        pass  # pragma: no cover
    +
    + + +

    Downloads a blob from storage.

    + +
    Parameters
    + +
      +
    • container_name: The name of the container containing object to download.
    • +
    • filename: The location of file within storage.
    • +
    • encoding: The character encoding applied to the downloaded content.
    • +
    + +
    Returns
    + +
    +

    The stream parameter, if supplied. Otherwise a new stream object + containing blob content.

    +
    +
    + + +
    +
    + +
    +
    @abstractmethod
    + + def + upload_object( self, message: Union[str, dict], container_name: str, filename: str) -> None: + + + +
    + +
    46    @abstractmethod
    +47    def upload_object(
    +48        self,
    +49        message: Union[str, dict],
    +50        container_name: str,
    +51        filename: str,
    +52    ) -> None:
    +53        """
    +54        Uploads the content of a given message to blob storage.
    +55        The message can be passed either as a raw string or as JSON.
    +56
    +57        :param message: The contents of a message, encoded either as a
    +58          string or in a JSON format.
    +59        :param container_name: The name of the target container for upload.
    +60        :param filename: The location of file within storage container.
    +61        """
    +62        pass  # pragma: no cover
    +
    + + +

    Uploads the content of a given message to blob storage. +The message can be passed either as a raw string or as JSON.

    + +
    Parameters
    + +
      +
    • message: The contents of a message, encoded either as a +string or in a JSON format.
    • +
    • container_name: The name of the target container for upload.
    • +
    • filename: The location of file within storage container.
    • +
    +
    + + +
    +
    + +
    +
    @abstractmethod
    + + def + list_containers(self) -> List[str]: + + + +
    + +
    64    @abstractmethod
    +65    def list_containers(self) -> List[str]:
    +66        """
    +67        Lists names for this CloudContainerConnection's containers.
    +68
    +69        :return: A list of container names.
    +70        """
    +71        pass  # pragma: no cover
    +
    + + +

    Lists names for this CloudContainerConnection's containers.

    + +
    Returns
    + +
    +

    A list of container names.

    +
    +
    + + +
    +
    + +
    +
    @abstractmethod
    + + def + list_objects(self, container_name: str, prefix: str) -> List[str]: + + + +
    + +
    73    @abstractmethod
    +74    def list_objects(self, container_name: str, prefix: str) -> List[str]:
    +75        """
    +76        Lists names for objects within a container.
    +77
    +78        :param container_name: The name of the container to look for objects.
    +79        :param prefix: Filter the objects returned to filenames beginning
    +80          with this value.
    +81        :return: A list of objects within a container.
    +82        """
    +83        pass  # pragma: no cover
    +
    + + +

    Lists names for objects within a container.

    + +
    Parameters
    + +
      +
    • container_name: The name of the container to look for objects.
    • +
    • prefix: Filter the objects returned to filenames beginning +with this value.
    • +
    + +
    Returns
    + +
    +

    A list of objects within a container.

    +
    +
    + + +
    +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/cloud/gcp.html b/docs/v1.0.13/sdk/phdi/cloud/gcp.html new file mode 100644 index 0000000000..ef610c9dfd --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/cloud/gcp.html @@ -0,0 +1,1066 @@ + + + + + + + phdi.cloud.gcp API documentation + + + + + + + + + +
    +
    +

    +phdi.cloud.gcp

    + + + + + + +
      1from typing import List, Union
    +  2import json
    +  3from .core import BaseCredentialManager, BaseCloudStorageConnection
    +  4import google.auth
    +  5import google.auth.transport.requests
    +  6from google.auth.credentials import Credentials
    +  7from google.cloud import storage
    +  8
    +  9
    + 10class GcpCredentialManager(BaseCredentialManager):
    + 11    """
    + 12    Provides a GCP-specific credential manager.
    + 13    """
    + 14
    + 15    @property
    + 16    def scope(self) -> str:
    + 17        return self.__scope
    + 18
    + 19    @property
    + 20    def scoped_credentials(self) -> Credentials:
    + 21        return self.__scoped_credentials
    + 22
    + 23    @property
    + 24    def project_id(self) -> str:
    + 25        return self.__project_id
    + 26
    + 27    def __init__(self, scope: list = None):
    + 28        """
    + 29        Creates a new GcpCredentialManager object.
    + 30
    + 31        :param scope: A list of scopes to limit access to resource.
    + 32        """
    + 33        self.__scope = scope
    + 34        self.__scoped_credentials = None
    + 35        self.__project_id = None
    + 36
    + 37        if self.scope is None:
    + 38            self.__scope = ["https://www.googleapis.com/auth/cloud-platform"]
    + 39
    + 40    def get_credential_object(self) -> Credentials:
    + 41        """
    + 42        Gets a GCP-specific credential object.
    + 43
    + 44        :return: A scoped instance of the Credentials class from google.auth
    + 45            package, refreshed if necessary.
    + 46        """
    + 47        # Get credentials if they don't exist or are expired.
    + 48        if self.__scoped_credentials is None:
    + 49            self.__scoped_credentials, self.__project_id = google.auth.default(
    + 50                scopes=self.scope
    + 51            )
    + 52        elif self.__scoped_credentials.expired:
    + 53            self.__scoped_credentials, self.__project_id = google.auth.default(
    + 54                scopes=self.scope
    + 55            )
    + 56
    + 57        return self.__scoped_credentials
    + 58
    + 59    def get_project_id(self) -> str:
    + 60        """
    + 61        Gets the ID of the current GCP project.
    + 62
    + 63        :return: The current GCP project ID.
    + 64        """
    + 65
    + 66        if self.__project_id is None:
    + 67            self.__scoped_credentials, self.__project_id = google.auth.default(
    + 68                scopes=self.scope
    + 69            )
    + 70        return self.__project_id
    + 71
    + 72    def get_access_token(self) -> str:
    + 73        """
    + 74        Obtains an access token from GCP.
    + 75
    + 76        :return: The access token, refreshed if necessary.
    + 77        """
    + 78
    + 79        creds = self.get_credential_object()
    + 80        if not creds.valid:
    + 81            request = google.auth.transport.requests.Request()
    + 82            creds.refresh(request=request)
    + 83
    + 84        access_token = creds.token
    + 85
    + 86        return access_token
    + 87
    + 88
    + 89class GcpCloudStorageConnection(BaseCloudStorageConnection):
    + 90    """
    + 91    Defines a connection used for interacting with cloud storage in GCP.
    + 92    """
    + 93
    + 94    @property
    + 95    def storage_client(self) -> storage.Client:
    + 96        return self.__storage_client
    + 97
    + 98    def __init__(self):
    + 99        """
    +100        Creates a new GcpCloudContainerConnection object.
    +101        """
    +102
    +103        self.__storage_client = None
    +104
    +105    def _get_storage_client(self) -> storage.Client:
    +106        """
    +107        Obtains a client connected to an GCP storage container by
    +108        utilizing the first valid credentials GCP can find. Credential validation
    +109        is handeled by GCP.
    +110
    +111        :return: The GCP storage client.
    +112        """
    +113
    +114        if self.__storage_client is None:
    +115            self.__storage_client = storage.Client()
    +116
    +117        return self.__storage_client
    +118
    +119    def download_object(
    +120        self, container_name: str, filename: str, encoding: str = "utf-8"
    +121    ) -> str:
    +122        """
    +123        Downloads a character blob from storage and returns it as a string.
    +124
    +125        :param container_name: The name of the bucket containing object to download.
    +126        :param filename: The location of file within GCP blob storage.
    +127        :param encoding: The encoding applied to the downloaded content.
    +128        :return: A character blob (as a string) from given bucket and filename.
    +129        """
    +130        storage_client = self._get_storage_client()
    +131        blob = storage_client.bucket(container_name).blob(filename)
    +132        return blob.download_as_text(encoding=encoding)
    +133
    +134    def upload_object(
    +135        self,
    +136        message: Union[str, dict],
    +137        container_name: str,
    +138        filename: str,
    +139        content_type="application/json",
    +140    ) -> None:
    +141        """
    +142        Uploads the content of a given message to GCP blob storage.
    +143        The message can be passed either as a raw string or as JSON.
    +144
    +145        :param message: The contents of a message, encoded either as a
    +146          string or in a JSON-formatted dictionary.
    +147        :param container_name: The name of the target bucket for upload.
    +148        :param filename: The location of file within GCP blob storage.
    +149        """
    +150
    +151        storage_client = self._get_storage_client()
    +152        bucket = storage_client.bucket(container_name)
    +153
    +154        blob = bucket.blob(filename)
    +155
    +156        if isinstance(message, dict):
    +157            message = json.dumps(message).encode("utf-8")
    +158
    +159        blob.upload_from_string(data=message, content_type=content_type)
    +160
    +161    def list_containers(self) -> List[str]:
    +162        """
    +163        Lists bucket names in storage.
    +164
    +165        :return: A list of bucket names in storage.
    +166        """
    +167        storage_client = self._get_storage_client()
    +168
    +169        bucket_name_list = []
    +170        for bucket in storage_client.list_buckets():
    +171            bucket_name_list.append(bucket)
    +172        return bucket_name_list
    +173
    +174    def list_objects(self, container_name: str, prefix: str = "") -> List[str]:
    +175        """
    +176        Lists names for objects within a bucket.
    +177
    +178        :param container_name: The name of the bucket to look for objects.
    +179        :param prefix: Filter the objects returned to filenames beginning
    +180          with this value.
    +181        :return: A list of names for objects in given bucket.
    +182        """
    +183        storage_client = self._get_storage_client()
    +184
    +185        blob_properties_generator = storage_client.list_blobs(
    +186            container_name, prefix=prefix
    +187        )
    +188
    +189        blob_name_list = []
    +190        for blob_propreties in blob_properties_generator:
    +191            blob_name_list.append(blob_propreties.name)
    +192
    +193        return blob_name_list
    +
    + + +
    +
    + +
    + + class + GcpCredentialManager(phdi.cloud.core.BaseCredentialManager): + + + +
    + +
    11class GcpCredentialManager(BaseCredentialManager):
    +12    """
    +13    Provides a GCP-specific credential manager.
    +14    """
    +15
    +16    @property
    +17    def scope(self) -> str:
    +18        return self.__scope
    +19
    +20    @property
    +21    def scoped_credentials(self) -> Credentials:
    +22        return self.__scoped_credentials
    +23
    +24    @property
    +25    def project_id(self) -> str:
    +26        return self.__project_id
    +27
    +28    def __init__(self, scope: list = None):
    +29        """
    +30        Creates a new GcpCredentialManager object.
    +31
    +32        :param scope: A list of scopes to limit access to resource.
    +33        """
    +34        self.__scope = scope
    +35        self.__scoped_credentials = None
    +36        self.__project_id = None
    +37
    +38        if self.scope is None:
    +39            self.__scope = ["https://www.googleapis.com/auth/cloud-platform"]
    +40
    +41    def get_credential_object(self) -> Credentials:
    +42        """
    +43        Gets a GCP-specific credential object.
    +44
    +45        :return: A scoped instance of the Credentials class from google.auth
    +46            package, refreshed if necessary.
    +47        """
    +48        # Get credentials if they don't exist or are expired.
    +49        if self.__scoped_credentials is None:
    +50            self.__scoped_credentials, self.__project_id = google.auth.default(
    +51                scopes=self.scope
    +52            )
    +53        elif self.__scoped_credentials.expired:
    +54            self.__scoped_credentials, self.__project_id = google.auth.default(
    +55                scopes=self.scope
    +56            )
    +57
    +58        return self.__scoped_credentials
    +59
    +60    def get_project_id(self) -> str:
    +61        """
    +62        Gets the ID of the current GCP project.
    +63
    +64        :return: The current GCP project ID.
    +65        """
    +66
    +67        if self.__project_id is None:
    +68            self.__scoped_credentials, self.__project_id = google.auth.default(
    +69                scopes=self.scope
    +70            )
    +71        return self.__project_id
    +72
    +73    def get_access_token(self) -> str:
    +74        """
    +75        Obtains an access token from GCP.
    +76
    +77        :return: The access token, refreshed if necessary.
    +78        """
    +79
    +80        creds = self.get_credential_object()
    +81        if not creds.valid:
    +82            request = google.auth.transport.requests.Request()
    +83            creds.refresh(request=request)
    +84
    +85        access_token = creds.token
    +86
    +87        return access_token
    +
    + + +

    Provides a GCP-specific credential manager.

    +
    + + +
    + +
    + + GcpCredentialManager(scope: list = None) + + + +
    + +
    28    def __init__(self, scope: list = None):
    +29        """
    +30        Creates a new GcpCredentialManager object.
    +31
    +32        :param scope: A list of scopes to limit access to resource.
    +33        """
    +34        self.__scope = scope
    +35        self.__scoped_credentials = None
    +36        self.__project_id = None
    +37
    +38        if self.scope is None:
    +39            self.__scope = ["https://www.googleapis.com/auth/cloud-platform"]
    +
    + + +

    Creates a new GcpCredentialManager object.

    + +
    Parameters
    + +
      +
    • scope: A list of scopes to limit access to resource.
    • +
    +
    + + +
    +
    + +
    + + def + get_credential_object(self) -> google.auth.credentials.Credentials: + + + +
    + +
    41    def get_credential_object(self) -> Credentials:
    +42        """
    +43        Gets a GCP-specific credential object.
    +44
    +45        :return: A scoped instance of the Credentials class from google.auth
    +46            package, refreshed if necessary.
    +47        """
    +48        # Get credentials if they don't exist or are expired.
    +49        if self.__scoped_credentials is None:
    +50            self.__scoped_credentials, self.__project_id = google.auth.default(
    +51                scopes=self.scope
    +52            )
    +53        elif self.__scoped_credentials.expired:
    +54            self.__scoped_credentials, self.__project_id = google.auth.default(
    +55                scopes=self.scope
    +56            )
    +57
    +58        return self.__scoped_credentials
    +
    + + +

    Gets a GCP-specific credential object.

    + +
    Returns
    + +
    +

    A scoped instance of the Credentials class from google.auth + package, refreshed if necessary.

    +
    +
    + + +
    +
    + +
    + + def + get_project_id(self) -> str: + + + +
    + +
    60    def get_project_id(self) -> str:
    +61        """
    +62        Gets the ID of the current GCP project.
    +63
    +64        :return: The current GCP project ID.
    +65        """
    +66
    +67        if self.__project_id is None:
    +68            self.__scoped_credentials, self.__project_id = google.auth.default(
    +69                scopes=self.scope
    +70            )
    +71        return self.__project_id
    +
    + + +

    Gets the ID of the current GCP project.

    + +
    Returns
    + +
    +

    The current GCP project ID.

    +
    +
    + + +
    +
    + +
    + + def + get_access_token(self) -> str: + + + +
    + +
    73    def get_access_token(self) -> str:
    +74        """
    +75        Obtains an access token from GCP.
    +76
    +77        :return: The access token, refreshed if necessary.
    +78        """
    +79
    +80        creds = self.get_credential_object()
    +81        if not creds.valid:
    +82            request = google.auth.transport.requests.Request()
    +83            creds.refresh(request=request)
    +84
    +85        access_token = creds.token
    +86
    +87        return access_token
    +
    + + +

    Obtains an access token from GCP.

    + +
    Returns
    + +
    +

    The access token, refreshed if necessary.

    +
    +
    + + +
    +
    +
    + +
    + + class + GcpCloudStorageConnection(phdi.cloud.core.BaseCloudStorageConnection): + + + +
    + +
     90class GcpCloudStorageConnection(BaseCloudStorageConnection):
    + 91    """
    + 92    Defines a connection used for interacting with cloud storage in GCP.
    + 93    """
    + 94
    + 95    @property
    + 96    def storage_client(self) -> storage.Client:
    + 97        return self.__storage_client
    + 98
    + 99    def __init__(self):
    +100        """
    +101        Creates a new GcpCloudContainerConnection object.
    +102        """
    +103
    +104        self.__storage_client = None
    +105
    +106    def _get_storage_client(self) -> storage.Client:
    +107        """
    +108        Obtains a client connected to an GCP storage container by
    +109        utilizing the first valid credentials GCP can find. Credential validation
    +110        is handeled by GCP.
    +111
    +112        :return: The GCP storage client.
    +113        """
    +114
    +115        if self.__storage_client is None:
    +116            self.__storage_client = storage.Client()
    +117
    +118        return self.__storage_client
    +119
    +120    def download_object(
    +121        self, container_name: str, filename: str, encoding: str = "utf-8"
    +122    ) -> str:
    +123        """
    +124        Downloads a character blob from storage and returns it as a string.
    +125
    +126        :param container_name: The name of the bucket containing object to download.
    +127        :param filename: The location of file within GCP blob storage.
    +128        :param encoding: The encoding applied to the downloaded content.
    +129        :return: A character blob (as a string) from given bucket and filename.
    +130        """
    +131        storage_client = self._get_storage_client()
    +132        blob = storage_client.bucket(container_name).blob(filename)
    +133        return blob.download_as_text(encoding=encoding)
    +134
    +135    def upload_object(
    +136        self,
    +137        message: Union[str, dict],
    +138        container_name: str,
    +139        filename: str,
    +140        content_type="application/json",
    +141    ) -> None:
    +142        """
    +143        Uploads the content of a given message to GCP blob storage.
    +144        The message can be passed either as a raw string or as JSON.
    +145
    +146        :param message: The contents of a message, encoded either as a
    +147          string or in a JSON-formatted dictionary.
    +148        :param container_name: The name of the target bucket for upload.
    +149        :param filename: The location of file within GCP blob storage.
    +150        """
    +151
    +152        storage_client = self._get_storage_client()
    +153        bucket = storage_client.bucket(container_name)
    +154
    +155        blob = bucket.blob(filename)
    +156
    +157        if isinstance(message, dict):
    +158            message = json.dumps(message).encode("utf-8")
    +159
    +160        blob.upload_from_string(data=message, content_type=content_type)
    +161
    +162    def list_containers(self) -> List[str]:
    +163        """
    +164        Lists bucket names in storage.
    +165
    +166        :return: A list of bucket names in storage.
    +167        """
    +168        storage_client = self._get_storage_client()
    +169
    +170        bucket_name_list = []
    +171        for bucket in storage_client.list_buckets():
    +172            bucket_name_list.append(bucket)
    +173        return bucket_name_list
    +174
    +175    def list_objects(self, container_name: str, prefix: str = "") -> List[str]:
    +176        """
    +177        Lists names for objects within a bucket.
    +178
    +179        :param container_name: The name of the bucket to look for objects.
    +180        :param prefix: Filter the objects returned to filenames beginning
    +181          with this value.
    +182        :return: A list of names for objects in given bucket.
    +183        """
    +184        storage_client = self._get_storage_client()
    +185
    +186        blob_properties_generator = storage_client.list_blobs(
    +187            container_name, prefix=prefix
    +188        )
    +189
    +190        blob_name_list = []
    +191        for blob_propreties in blob_properties_generator:
    +192            blob_name_list.append(blob_propreties.name)
    +193
    +194        return blob_name_list
    +
    + + +

    Defines a connection used for interacting with cloud storage in GCP.

    +
    + + +
    + +
    + + GcpCloudStorageConnection() + + + +
    + +
     99    def __init__(self):
    +100        """
    +101        Creates a new GcpCloudContainerConnection object.
    +102        """
    +103
    +104        self.__storage_client = None
    +
    + + +

    Creates a new GcpCloudContainerConnection object.

    +
    + + +
    +
    + +
    + + def + download_object(self, container_name: str, filename: str, encoding: str = 'utf-8') -> str: + + + +
    + +
    120    def download_object(
    +121        self, container_name: str, filename: str, encoding: str = "utf-8"
    +122    ) -> str:
    +123        """
    +124        Downloads a character blob from storage and returns it as a string.
    +125
    +126        :param container_name: The name of the bucket containing object to download.
    +127        :param filename: The location of file within GCP blob storage.
    +128        :param encoding: The encoding applied to the downloaded content.
    +129        :return: A character blob (as a string) from given bucket and filename.
    +130        """
    +131        storage_client = self._get_storage_client()
    +132        blob = storage_client.bucket(container_name).blob(filename)
    +133        return blob.download_as_text(encoding=encoding)
    +
    + + +

    Downloads a character blob from storage and returns it as a string.

    + +
    Parameters
    + +
      +
    • container_name: The name of the bucket containing object to download.
    • +
    • filename: The location of file within GCP blob storage.
    • +
    • encoding: The encoding applied to the downloaded content.
    • +
    + +
    Returns
    + +
    +

    A character blob (as a string) from given bucket and filename.

    +
    +
    + + +
    +
    + +
    + + def + upload_object( self, message: Union[str, dict], container_name: str, filename: str, content_type='application/json') -> None: + + + +
    + +
    135    def upload_object(
    +136        self,
    +137        message: Union[str, dict],
    +138        container_name: str,
    +139        filename: str,
    +140        content_type="application/json",
    +141    ) -> None:
    +142        """
    +143        Uploads the content of a given message to GCP blob storage.
    +144        The message can be passed either as a raw string or as JSON.
    +145
    +146        :param message: The contents of a message, encoded either as a
    +147          string or in a JSON-formatted dictionary.
    +148        :param container_name: The name of the target bucket for upload.
    +149        :param filename: The location of file within GCP blob storage.
    +150        """
    +151
    +152        storage_client = self._get_storage_client()
    +153        bucket = storage_client.bucket(container_name)
    +154
    +155        blob = bucket.blob(filename)
    +156
    +157        if isinstance(message, dict):
    +158            message = json.dumps(message).encode("utf-8")
    +159
    +160        blob.upload_from_string(data=message, content_type=content_type)
    +
    + + +

    Uploads the content of a given message to GCP blob storage. +The message can be passed either as a raw string or as JSON.

    + +
    Parameters
    + +
      +
    • message: The contents of a message, encoded either as a +string or in a JSON-formatted dictionary.
    • +
    • container_name: The name of the target bucket for upload.
    • +
    • filename: The location of file within GCP blob storage.
    • +
    +
    + + +
    +
    + +
    + + def + list_containers(self) -> List[str]: + + + +
    + +
    162    def list_containers(self) -> List[str]:
    +163        """
    +164        Lists bucket names in storage.
    +165
    +166        :return: A list of bucket names in storage.
    +167        """
    +168        storage_client = self._get_storage_client()
    +169
    +170        bucket_name_list = []
    +171        for bucket in storage_client.list_buckets():
    +172            bucket_name_list.append(bucket)
    +173        return bucket_name_list
    +
    + + +

    Lists bucket names in storage.

    + +
    Returns
    + +
    +

    A list of bucket names in storage.

    +
    +
    + + +
    +
    + +
    + + def + list_objects(self, container_name: str, prefix: str = '') -> List[str]: + + + +
    + +
    175    def list_objects(self, container_name: str, prefix: str = "") -> List[str]:
    +176        """
    +177        Lists names for objects within a bucket.
    +178
    +179        :param container_name: The name of the bucket to look for objects.
    +180        :param prefix: Filter the objects returned to filenames beginning
    +181          with this value.
    +182        :return: A list of names for objects in given bucket.
    +183        """
    +184        storage_client = self._get_storage_client()
    +185
    +186        blob_properties_generator = storage_client.list_blobs(
    +187            container_name, prefix=prefix
    +188        )
    +189
    +190        blob_name_list = []
    +191        for blob_propreties in blob_properties_generator:
    +192            blob_name_list.append(blob_propreties.name)
    +193
    +194        return blob_name_list
    +
    + + +

    Lists names for objects within a bucket.

    + +
    Parameters
    + +
      +
    • container_name: The name of the bucket to look for objects.
    • +
    • prefix: Filter the objects returned to filenames beginning +with this value.
    • +
    + +
    Returns
    + +
    +

    A list of names for objects in given bucket.

    +
    +
    + + +
    +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/containers.html b/docs/v1.0.13/sdk/phdi/containers.html new file mode 100644 index 0000000000..308ad7e4c5 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/containers.html @@ -0,0 +1,237 @@ + + + + + + + phdi.containers API documentation + + + + + + + + + +
    +
    +

    +phdi.containers

    + + + + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/containers/base_service.html b/docs/v1.0.13/sdk/phdi/containers/base_service.html new file mode 100644 index 0000000000..538c036228 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/containers/base_service.html @@ -0,0 +1,582 @@ + + + + + + + phdi.containers.base_service API documentation + + + + + + + + + +
    +
    +

    +phdi.containers.base_service

    + + + + + + +
     1from fastapi import FastAPI
    + 2from pydantic import BaseModel
    + 3from pathlib import Path
    + 4from importlib import metadata
    + 5from typing import Literal
    + 6
    + 7
    + 8# create a class with the DIBBs default Creative Commons Zero v1.0 and
    + 9# MIT license to be used by the BaseService class
    +10LICENSES = {
    +11    "CreativeCommonsZero": {
    +12        "name": "Creative Commons Zero v1.0 Universal",
    +13        "url": "https://creativecommons.org/publicdomain/zero/1.0/",
    +14    },
    +15    "MIT": {"name": "The MIT License", "url": "https://mit-license.org/"},
    +16}
    +17
    +18DIBBS_CONTACT = {
    +19    "name": "CDC Public Health Data Infrastructure",
    +20    "url": "https://cdcgov.github.io/phdi-site/",
    +21    "email": "dmibuildingblocks@cdc.gov",
    +22}
    +23
    +24
    +25STATUS_OK = {"status": "OK"}
    +26
    +27
    +28class StatusResponse(BaseModel):
    +29    """
    +30    The schema for the response from the health check endpoint.
    +31    """
    +32
    +33    status: Literal["OK"]
    +34
    +35
    +36class BaseService:
    +37    def __init__(
    +38        self,
    +39        service_name: str,
    +40        description_path: str,
    +41        include_health_check_endpoint: bool = True,
    +42        license_info: Literal["CreativeCommonsZero", "MIT"] = "CreativeCommonsZero",
    +43    ):
    +44        """
    +45        Initialize a BaseService instance.
    +46
    +47        :param service_name: The name of the service.
    +48        :param description_path: The path to a markdown file containing a description of
    +49            the service.
    +50        :param include_health_check_endpoint: If True, the standard DIBBs health check
    +51            endpoint will be added.
    +52        :param license_info: If empty, the standard DIBBs Creative Commons Zero v1.0
    +53            Universal license will be used. The other available option is to use the
    +54            MIT license.
    +55        """
    +56        description = Path(description_path).read_text(encoding="utf-8")
    +57        self.include_health_check_endpoint = include_health_check_endpoint
    +58        self.app = FastAPI(
    +59            title=service_name,
    +60            version=metadata.version("phdi"),
    +61            contact=DIBBS_CONTACT,
    +62            license_info=LICENSES[license_info],
    +63            description=description,
    +64        )
    +65
    +66    def add_health_check_endpoint(self):
    +67        @self.app.get("/")
    +68        async def health_check() -> StatusResponse:
    +69            """
    +70            Check service status. If an HTTP 200 status code is returned along with
    +71            '{"status": "OK"}' then the service is available and running properly.
    +72            """
    +73            return STATUS_OK
    +74
    +75    def start(self) -> FastAPI:
    +76        """
    +77        Return a FastAPI instance with DIBBs metadata set. If
    +78        `include_health_check_endpoint` is True, then the health check endpoint
    +79        will be added.
    +80
    +81        :return: The FastAPI instance.
    +82        """
    +83        if self.include_health_check_endpoint:
    +84            self.add_health_check_endpoint()
    +85        return self.app
    +
    + + +
    +
    + +
    + + class + StatusResponse(pydantic.main.BaseModel): + + + +
    + +
    29class StatusResponse(BaseModel):
    +30    """
    +31    The schema for the response from the health check endpoint.
    +32    """
    +33
    +34    status: Literal["OK"]
    +
    + + +

    The schema for the response from the health check endpoint.

    +
    + + +
    +
    Inherited Members
    +
    +
    pydantic.main.BaseModel
    +
    BaseModel
    +
    dict
    +
    json
    +
    parse_obj
    +
    parse_raw
    +
    parse_file
    +
    from_orm
    +
    construct
    +
    copy
    +
    schema
    +
    schema_json
    +
    validate
    +
    update_forward_refs
    + +
    +
    +
    +
    +
    + +
    + + class + BaseService: + + + +
    + +
    37class BaseService:
    +38    def __init__(
    +39        self,
    +40        service_name: str,
    +41        description_path: str,
    +42        include_health_check_endpoint: bool = True,
    +43        license_info: Literal["CreativeCommonsZero", "MIT"] = "CreativeCommonsZero",
    +44    ):
    +45        """
    +46        Initialize a BaseService instance.
    +47
    +48        :param service_name: The name of the service.
    +49        :param description_path: The path to a markdown file containing a description of
    +50            the service.
    +51        :param include_health_check_endpoint: If True, the standard DIBBs health check
    +52            endpoint will be added.
    +53        :param license_info: If empty, the standard DIBBs Creative Commons Zero v1.0
    +54            Universal license will be used. The other available option is to use the
    +55            MIT license.
    +56        """
    +57        description = Path(description_path).read_text(encoding="utf-8")
    +58        self.include_health_check_endpoint = include_health_check_endpoint
    +59        self.app = FastAPI(
    +60            title=service_name,
    +61            version=metadata.version("phdi"),
    +62            contact=DIBBS_CONTACT,
    +63            license_info=LICENSES[license_info],
    +64            description=description,
    +65        )
    +66
    +67    def add_health_check_endpoint(self):
    +68        @self.app.get("/")
    +69        async def health_check() -> StatusResponse:
    +70            """
    +71            Check service status. If an HTTP 200 status code is returned along with
    +72            '{"status": "OK"}' then the service is available and running properly.
    +73            """
    +74            return STATUS_OK
    +75
    +76    def start(self) -> FastAPI:
    +77        """
    +78        Return a FastAPI instance with DIBBs metadata set. If
    +79        `include_health_check_endpoint` is True, then the health check endpoint
    +80        will be added.
    +81
    +82        :return: The FastAPI instance.
    +83        """
    +84        if self.include_health_check_endpoint:
    +85            self.add_health_check_endpoint()
    +86        return self.app
    +
    + + + + +
    + +
    + + BaseService( service_name: str, description_path: str, include_health_check_endpoint: bool = True, license_info: Literal['CreativeCommonsZero', 'MIT'] = 'CreativeCommonsZero') + + + +
    + +
    38    def __init__(
    +39        self,
    +40        service_name: str,
    +41        description_path: str,
    +42        include_health_check_endpoint: bool = True,
    +43        license_info: Literal["CreativeCommonsZero", "MIT"] = "CreativeCommonsZero",
    +44    ):
    +45        """
    +46        Initialize a BaseService instance.
    +47
    +48        :param service_name: The name of the service.
    +49        :param description_path: The path to a markdown file containing a description of
    +50            the service.
    +51        :param include_health_check_endpoint: If True, the standard DIBBs health check
    +52            endpoint will be added.
    +53        :param license_info: If empty, the standard DIBBs Creative Commons Zero v1.0
    +54            Universal license will be used. The other available option is to use the
    +55            MIT license.
    +56        """
    +57        description = Path(description_path).read_text(encoding="utf-8")
    +58        self.include_health_check_endpoint = include_health_check_endpoint
    +59        self.app = FastAPI(
    +60            title=service_name,
    +61            version=metadata.version("phdi"),
    +62            contact=DIBBS_CONTACT,
    +63            license_info=LICENSES[license_info],
    +64            description=description,
    +65        )
    +
    + + +

    Initialize a BaseService instance.

    + +
    Parameters
    + +
      +
    • service_name: The name of the service.
    • +
    • description_path: The path to a markdown file containing a description of +the service.
    • +
    • include_health_check_endpoint: If True, the standard DIBBs health check +endpoint will be added.
    • +
    • license_info: If empty, the standard DIBBs Creative Commons Zero v1.0 +Universal license will be used. The other available option is to use the +MIT license.
    • +
    +
    + + +
    +
    + +
    + + def + add_health_check_endpoint(self): + + + +
    + +
    67    def add_health_check_endpoint(self):
    +68        @self.app.get("/")
    +69        async def health_check() -> StatusResponse:
    +70            """
    +71            Check service status. If an HTTP 200 status code is returned along with
    +72            '{"status": "OK"}' then the service is available and running properly.
    +73            """
    +74            return STATUS_OK
    +
    + + + + +
    +
    + +
    + + def + start(self) -> fastapi.applications.FastAPI: + + + +
    + +
    76    def start(self) -> FastAPI:
    +77        """
    +78        Return a FastAPI instance with DIBBs metadata set. If
    +79        `include_health_check_endpoint` is True, then the health check endpoint
    +80        will be added.
    +81
    +82        :return: The FastAPI instance.
    +83        """
    +84        if self.include_health_check_endpoint:
    +85            self.add_health_check_endpoint()
    +86        return self.app
    +
    + + +

    Return a FastAPI instance with DIBBs metadata set. If +include_health_check_endpoint is True, then the health check endpoint +will be added.

    + +
    Returns
    + +
    +

    The FastAPI instance.

    +
    +
    + + +
    +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir.html b/docs/v1.0.13/sdk/phdi/fhir.html new file mode 100644 index 0000000000..6ead12b3d0 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir.html @@ -0,0 +1,244 @@ + + + + + + + phdi.fhir API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir

    + + + + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir/cloud.html b/docs/v1.0.13/sdk/phdi/fhir/cloud.html new file mode 100644 index 0000000000..39f1d1b926 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir/cloud.html @@ -0,0 +1,318 @@ + + + + + + + phdi.fhir.cloud API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir.cloud

    + + + + + + +
    1from phdi.fhir.cloud.azure import download_from_fhir_export_response
    +2
    +3__all__ = ["download_from_fhir_export_response"]
    +
    + + +
    +
    + +
    + + def + download_from_fhir_export_response( export_response: dict, cred_manager: phdi.cloud.azure.AzureCredentialManager) -> Iterator[Tuple[str, TextIO]]: + + + +
    + +
    10def download_from_fhir_export_response(
    +11    export_response: dict,
    +12    cred_manager: AzureCredentialManager,
    +13) -> Iterator[Tuple[str, TextIO]]:
    +14    """
    +15    Accepts the export response content as specified here:
    +16    https://hl7.org/fhir/uv/bulkdata/export/index.html#response---complete-status
    +17
    +18    Loops through the "output" array and yields the resource_type (e.g., Patient)
    +19    along with TextIO wrapping ndjson content.
    +20
    +21    :param export_response: A dictionary holding the final export response.
    +22    :param cred_manager: The credential manager used to authenticate to the
    +23      storage account.
    +24    :return: An iterator of tuples. Each tuple is comprised of:
    +25
    +26      * FHIR resource type (str)
    +27      * Export file content (io.TextIO)
    +28    """
    +29    # TODO: Handle error array that could be contained in the response content.
    +30
    +31    for export_entry in export_response.get("output", []):
    +32        resource_type = export_entry.get("type")
    +33        blob_url = export_entry.get("url")
    +34
    +35        yield (
    +36            resource_type,
    +37            _download_export_blob(blob_url=blob_url, cred_manager=cred_manager),
    +38        )
    +
    + + +

    Accepts the export response content as specified here: +https://hl7.org/fhir/uv/bulkdata/export/index.html#response---complete-status

    + +

    Loops through the "output" array and yields the resource_type (e.g., Patient) +along with TextIO wrapping ndjson content.

    + +
    Parameters
    + +
      +
    • export_response: A dictionary holding the final export response.
    • +
    • cred_manager: The credential manager used to authenticate to the +storage account.
    • +
    + +
    Returns
    + +
    +

    An iterator of tuples. Each tuple is comprised of:

    + +
      +
    • FHIR resource type (str)
    • +
    • Export file content (io.TextIO)
    • +
    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir/conversion.html b/docs/v1.0.13/sdk/phdi/fhir/conversion.html new file mode 100644 index 0000000000..abe0f3992a --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir/conversion.html @@ -0,0 +1,529 @@ + + + + + + + phdi.fhir.conversion API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir.conversion

    + + + + + + +
    1from phdi.fhir.conversion.convert import convert_to_fhir, add_rr_data_to_eicr
    +2
    +3__all__ = (
    +4    "add_rr_data_to_eicr",
    +5    "convert_to_fhir",
    +6)
    +
    + + +
    +
    + +
    + + def + add_rr_data_to_eicr(rr, ecr): + + + +
    + +
     27def add_rr_data_to_eicr(rr, ecr):
    + 28    """
    + 29    Extracts relevant fields from an RR document, and inserts them into a
    + 30    given eICR document. Ensures that the eICR contains properly formatted
    + 31    RR fields, including templateId, id, code, title, effectiveTime,
    + 32    confidentialityCode, and corresponding entries; and required format tags.
    + 33
    + 34    :param rr: A serialized xml format reportability response (RR) document.
    + 35    :param ecr: A serialized xml format electronic initial case report (eICR) document.
    + 36    :return: An xml format eICR document with additional fields extracted from the RR.
    + 37    """
    + 38    # add xmlns:xsi attribute if not there
    + 39    lines = ecr.splitlines()
    + 40    xsi_tag = "xmlns:xsi"
    + 41    if xsi_tag not in lines[0]:
    + 42        lines[0] = lines[0].replace(
    + 43            'xmlns="urn:hl7-org:v3"',
    + 44            'xmlns="urn:hl7-org:v3" '
    + 45            'xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"',
    + 46        )
    + 47        ecr = "\n".join(lines)
    + 48
    + 49    rr = etree.fromstring(rr)
    + 50    ecr = etree.fromstring(ecr)
    + 51
    + 52    # Create the tags for elements we'll be looking for
    + 53    rr_tags = [
    + 54        "templateId",
    + 55        "id",
    + 56        "code",
    + 57        "title",
    + 58        "effectiveTime",
    + 59        "confidentialityCode",
    + 60    ]
    + 61    rr_tags = ["{urn:hl7-org:v3}" + tag for tag in rr_tags]
    + 62    rr_elements = []
    + 63
    + 64    # Find root-level elements and add them to a list
    + 65    for tag in rr_tags:
    + 66        rr_elements.append(rr.find(f"./{tag}", namespaces=rr.nsmap))
    + 67
    + 68    # Find the nested entry element that we need
    + 69    entry_tag = "{urn:hl7-org:v3}" + "component/structuredBody/component/section/entry"
    + 70    rr_nested_entries = rr.findall(f"./{entry_tag}", namespaces=rr.nsmap)
    + 71
    + 72    organizer_tag = "{urn:hl7-org:v3}" + "organizer"
    + 73
    + 74    # For now we assume there is only one matching entry
    + 75    rr_entry = None
    + 76    for entry in rr_nested_entries:
    + 77        if entry.attrib and "DRIV" in entry.attrib["typeCode"]:
    + 78            organizer = entry.find(f"./{organizer_tag}", namespaces=entry.nsmap)
    + 79            if (
    + 80                organizer is not None
    + 81                and "CLUSTER" in organizer.attrib["classCode"]
    + 82                and "EVN" in organizer.attrib["moodCode"]
    + 83            ):
    + 84                rr_entry = entry
    + 85                exit
    + 86
    + 87    # find the status in the RR utilizing the templateid root
    + 88    # codes specified from the APHL/LAC Spec
    + 89    base_tag_for_status = (
    + 90        "{urn:hl7-org:v3}" + "component/structuredBody/component/section"
    + 91    )
    + 92    template_id_tag = "{urn:hl7-org:v3}" + "templateId"
    + 93    entry_status_tag = "{urn:hl7-org:v3}" + "entry"
    + 94    act_status_tag = "{urn:hl7-org:v3}" + "act"
    + 95    sections_for_status = rr.findall(f"./{base_tag_for_status}", namespaces=rr.nsmap)
    + 96    rr_entry_for_status_codes = None
    + 97    for status_section in sections_for_status:
    + 98        template_id = status_section.find(
    + 99            f"./{template_id_tag}", namespaces=status_section.nsmap
    +100        )
    +101        if (
    +102            template_id is not None
    +103            and "2.16.840.1.113883.10.20.15.2.2.3" in template_id.attrib["root"]
    +104        ):
    +105            for entry in status_section.findall(
    +106                f"./{entry_status_tag}", namespaces=status_section.nsmap
    +107            ):
    +108                for act in entry.findall(f"./{act_status_tag}", namespaces=entry.nsmap):
    +109                    entry_act_template_id = act.find(
    +110                        f"./{template_id_tag}", namespaces=act.nsmap
    +111                    )
    +112                    if (
    +113                        entry_act_template_id is not None
    +114                        and "2.16.840.1.113883.10.20.15.2.3.29"
    +115                        in entry_act_template_id.attrib["root"]
    +116                    ):
    +117                        # only anticipating one status code
    +118                        rr_entry_for_status_codes = entry
    +119                        exit
    +120
    +121    # Create the section element with root-level elements
    +122    # and entry to insert in the eICR
    +123    ecr_section = None
    +124    if rr_entry is not None:
    +125        ecr_section_tag = "{urn:hl7-org:v3}" + "section"
    +126        ecr_section = etree.Element(ecr_section_tag)
    +127        ecr_section.extend(rr_elements)
    +128        if rr_entry_for_status_codes is not None:
    +129            ecr_section.append(rr_entry_for_status_codes)
    +130        ecr_section.append(rr_entry)
    +131
    +132        # Append the ecr section into the eCR - puts it at the end
    +133        ecr.append(ecr_section)
    +134
    +135    ecr = etree.tostring(ecr, encoding="unicode", method="xml")
    +136
    +137    return ecr
    +
    + + +

    Extracts relevant fields from an RR document, and inserts them into a +given eICR document. Ensures that the eICR contains properly formatted +RR fields, including templateId, id, code, title, effectiveTime, +confidentialityCode, and corresponding entries; and required format tags.

    + +
    Parameters
    + +
      +
    • rr: A serialized xml format reportability response (RR) document.
    • +
    • ecr: A serialized xml format electronic initial case report (eICR) document.
    • +
    + +
    Returns
    + +
    +

    An xml format eICR document with additional fields extracted from the RR.

    +
    +
    + + +
    +
    + +
    + + def + convert_to_fhir( message: str, url: str, cred_manager: phdi.cloud.core.BaseCredentialManager = None, headers: dict = {}, use_default_ccda=False): + + + +
    + +
    140def convert_to_fhir(
    +141    message: str,
    +142    url: str,
    +143    cred_manager: BaseCredentialManager = None,
    +144    headers: dict = {},
    +145    use_default_ccda=False,
    +146):
    +147    """
    +148    Converts a given message from either HL7 v2 (pipe-delimited flat file) or CCDA (XML)
    +149    into FHIR format (JSON) for further processing using the FHIR server. Standardizes
    +150    datetimes in HL7v2 messages before conversion.
    +151
    +152    This function uses a containerized version of the
    +153    [Azure FHIR Converter](https://github.com/microsoft/FHIR-Converter).
    +154
    +155    If conversion succeeds, a `requests.Response` object will be returned with the
    +156    conversion response. Otherwise, a `ConversionError` is raised, with the
    +157    `requests.Response` available as a property for troubleshooting and reporting
    +158    purposes.
    +159
    +160    :param message: The raw message that needs to be converted to
    +161      FHIR. Currently, only HL7v2 or CCDA are supported.
    +162    :param url: A URL that points to the location of the converter API.
    +163    :param cred_manager: Service used to get an access token used to
    +164      make a request.
    +165    :param headers: JSON-type dictionary of headers to make the request with.
    +166    :param use_default_ccda: Whether to default to the
    +167      base "CCD" root template if a resource's LOINC code doesn't
    +168      map to a specific supported template (Optional, default is No)
    +169    :raises requests.HttpError: If the HTTP request was unsuccessful.
    +170    :raises ConversionError: If the message could not be converted.
    +171    :return: A requests.Response object
    +172
    +173    """
    +174    # TODO Update documentation with a link to the containerized FHIR converter, once
    +175    # it's been ported over to the phdi repository.
    +176
    +177    conversion_settings = _get_fhir_conversion_settings(message, use_default_ccda)
    +178    if conversion_settings.get("input_type") == "hl7v2":
    +179        message = standardize_hl7_datetimes(message)
    +180
    +181    url = f"{url}"
    +182    data = {
    +183        "input_data": message,
    +184        "input_type": conversion_settings.get("input_type"),
    +185        "root_template": conversion_settings.get("root_template"),
    +186    }
    +187
    +188    if cred_manager:
    +189        access_token = cred_manager.get_access_token()
    +190        headers["Authorization"] = f"Bearer {access_token}"
    +191        response = http_request_with_reauth(
    +192            cred_manager=cred_manager,
    +193            url=url,
    +194            retry_count=3,
    +195            request_type="POST",
    +196            allowed_methods=["POST"],
    +197            headers=headers,
    +198            data=data,
    +199        )
    +200    else:
    +201        response = http_request_with_retry(
    +202            url=url,
    +203            retry_count=3,
    +204            request_type="POST",
    +205            allowed_methods=["POST"],
    +206            headers=headers,
    +207            data=data,
    +208        )
    +209
    +210    if response.status_code != 200:
    +211        raise ConversionError(response)
    +212
    +213    return response
    +
    + + +

    Converts a given message from either HL7 v2 (pipe-delimited flat file) or CCDA (XML) +into FHIR format (JSON) for further processing using the FHIR server. Standardizes +datetimes in HL7v2 messages before conversion.

    + +

    This function uses a containerized version of the +Azure FHIR Converter.

    + +

    If conversion succeeds, a requests.Response object will be returned with the +conversion response. Otherwise, a ConversionError is raised, with the +requests.Response available as a property for troubleshooting and reporting +purposes.

    + +
    Parameters
    + +
      +
    • message: The raw message that needs to be converted to +FHIR. Currently, only HL7v2 or CCDA are supported.
    • +
    • url: A URL that points to the location of the converter API.
    • +
    • cred_manager: Service used to get an access token used to +make a request.
    • +
    • headers: JSON-type dictionary of headers to make the request with.
    • +
    • use_default_ccda: Whether to default to the +base "CCD" root template if a resource's LOINC code doesn't +map to a specific supported template (Optional, default is No)
    • +
    + +
    Raises
    + +
      +
    • requests.HttpError: If the HTTP request was unsuccessful.
    • +
    • ConversionError: If the message could not be converted.
    • +
    + +
    Returns
    + +
    +

    A requests.Response object

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir/geospatial.html b/docs/v1.0.13/sdk/phdi/fhir/geospatial.html new file mode 100644 index 0000000000..86abd6dddb --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir/geospatial.html @@ -0,0 +1,1010 @@ + + + + + + + phdi.fhir.geospatial API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir.geospatial

    + + + + + + +
    1from phdi.fhir.geospatial.core import BaseFhirGeocodeClient
    +2from phdi.fhir.geospatial.smarty import SmartyFhirGeocodeClient
    +3from phdi.fhir.geospatial.census import CensusFhirGeocodeClient
    +4
    +5__all__ = (
    +6    "BaseFhirGeocodeClient",
    +7    "SmartyFhirGeocodeClient",
    +8    "CensusFhirGeocodeClient",
    +9)
    +
    + + +
    +
    + +
    + + class + BaseFhirGeocodeClient(abc.ABC): + + + +
    + +
      5class BaseFhirGeocodeClient(ABC):
    +  6    """
    +  7    Represents a vendor-agnostic geocoder client designed to process
    +  8    FHIR-based data. Implementing classes should define methods to
    +  9    geocode from both bundles and resources. Callers should use the
    + 10    provided interface functions (e.g., geocode_resource) to interact with
    + 11    the underlying vendor-specific client property.
    + 12    """
    + 13
    + 14    @abstractmethod
    + 15    def geocode_resource(self, resource: dict, overwrite=True) -> dict:
    + 16        """
    + 17        Performs geocoding, using the implementing client, on the provided resource,
    + 18        which is passed in as a dictionary.
    + 19
    + 20        :param resource: A FHIR resource to be geocoded.
    + 21        :param overwrite: If true, `resource` is modified in-place;
    + 22          if false, a copy of `resource` modified and returned.  Default: `True`
    + 23        :return: The geocoded resource as a dict.
    + 24        """
    + 25        pass  # pragma: no cover
    + 26
    + 27    @abstractmethod
    + 28    def geocode_bundle(self, bundle: dict, overwrite=True) -> dict:
    + 29        """
    + 30        Performs geocoding, using the implementing client, on all supported resources in
    + 31        the provided FHIR bundle which is passed in as a dictionary.
    + 32
    + 33        :param bundle: A bundle of FHIR resources.
    + 34        :param overwrite: If true, `bundle` is modified in-place;
    + 35          if false, a copy of `bundle` modified and returned.  Default: `True`
    + 36        :return: The geocoded FHIR bundle as a dict.
    + 37        """
    + 38        pass  # pragma: no cover
    + 39
    + 40    @staticmethod
    + 41    def _store_lat_long_extension(address: dict, lat: float, long: float) -> None:
    + 42        """
    + 43        Adds extension data for latitude and longitude, if the fields aren't already
    + 44        present, to a given FHIR-formatted dictionary holding address fields.
    + 45        The latitude and longitude data is added directly to the input dictionary.
    + 46
    + 47        :param address: A FHIR formatted dictionary holding address fields.
    + 48        :param lat: The latitude to add to the FHIR data as an extension.
    + 49        :param long: The longitude to add to the FHIR data as an extension.
    + 50        """
    + 51        if "extension" not in address:
    + 52            address["extension"] = []
    + 53
    + 54        # Append with a properly resolving URL for FHIR's canonical geospatial
    + 55        # structure definition, as all extensions are required to have this
    + 56        # attribute; see https://www.hl7.org/fhir/extensibility.html
    + 57        address["extension"].append(
    + 58            {
    + 59                "url": "http://hl7.org/fhir/StructureDefinition/geolocation",
    + 60                "extension": [
    + 61                    {
    + 62                        "url": "latitude",
    + 63                        "valueDecimal": lat,
    + 64                    },
    + 65                    {
    + 66                        "url": "longitude",
    + 67                        "valueDecimal": long,
    + 68                    },
    + 69                ],
    + 70            }
    + 71        )
    + 72
    + 73    @staticmethod
    + 74    def _store_census_tract_extension(address: dict, census_tract: str) -> None:
    + 75        """
    + 76        Adds appropriate extension data for census tract for each element in an address
    + 77        line, if the field isn't already present, to a given FHIR-formatted dictionary
    + 78        holding address fields. Add the extension data directly to the input dictionary,
    + 79        leaving census tract as a FHIR-identified geolocation element.
    + 80
    + 81        :param address: A FHIR formatted dictionary holding address fields
    + 82        :param census_tract: The census tract to add to the FHIR data as an extension
    + 83        """
    + 84
    + 85        # Append with a properly resolving URL for FHIR's canonical censusTract
    + 86        # structure definition, as all extensions are required to have this
    + 87        # attribute; see https://www.hl7.org/fhir/extensibility.html
    + 88
    + 89        census_extension = {
    + 90            "url": "http://hl7.org/fhir/StructureDefinition/iso21090-ADXP-censusTract",
    + 91            "valueString": census_tract,
    + 92        }
    + 93
    + 94        if address.get("_line") is None:
    + 95            address["_line"] = []
    + 96        for element_counter in range(len(address["line"])):
    + 97            try:
    + 98                address["_line"][element_counter].get("extension").append(
    + 99                    census_extension
    +100                )
    +101            except AttributeError:
    +102                address["_line"][element_counter] = {"extension": []}
    +103                address["_line"][element_counter].get("extension").append(
    +104                    census_extension
    +105                )
    +106            except IndexError:
    +107                address["_line"].append({"extension": [census_extension]})
    +
    + + +

    Represents a vendor-agnostic geocoder client designed to process +FHIR-based data. Implementing classes should define methods to +geocode from both bundles and resources. Callers should use the +provided interface functions (e.g., geocode_resource) to interact with +the underlying vendor-specific client property.

    +
    + + +
    + +
    +
    @abstractmethod
    + + def + geocode_resource(self, resource: dict, overwrite=True) -> dict: + + + +
    + +
    14    @abstractmethod
    +15    def geocode_resource(self, resource: dict, overwrite=True) -> dict:
    +16        """
    +17        Performs geocoding, using the implementing client, on the provided resource,
    +18        which is passed in as a dictionary.
    +19
    +20        :param resource: A FHIR resource to be geocoded.
    +21        :param overwrite: If true, `resource` is modified in-place;
    +22          if false, a copy of `resource` modified and returned.  Default: `True`
    +23        :return: The geocoded resource as a dict.
    +24        """
    +25        pass  # pragma: no cover
    +
    + + +

    Performs geocoding, using the implementing client, on the provided resource, +which is passed in as a dictionary.

    + +
    Parameters
    + +
      +
    • resource: A FHIR resource to be geocoded.
    • +
    • overwrite: If true, resource is modified in-place; +if false, a copy of resource modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The geocoded resource as a dict.

    +
    +
    + + +
    +
    + +
    +
    @abstractmethod
    + + def + geocode_bundle(self, bundle: dict, overwrite=True) -> dict: + + + +
    + +
    27    @abstractmethod
    +28    def geocode_bundle(self, bundle: dict, overwrite=True) -> dict:
    +29        """
    +30        Performs geocoding, using the implementing client, on all supported resources in
    +31        the provided FHIR bundle which is passed in as a dictionary.
    +32
    +33        :param bundle: A bundle of FHIR resources.
    +34        :param overwrite: If true, `bundle` is modified in-place;
    +35          if false, a copy of `bundle` modified and returned.  Default: `True`
    +36        :return: The geocoded FHIR bundle as a dict.
    +37        """
    +38        pass  # pragma: no cover
    +
    + + +

    Performs geocoding, using the implementing client, on all supported resources in +the provided FHIR bundle which is passed in as a dictionary.

    + +
    Parameters
    + +
      +
    • bundle: A bundle of FHIR resources.
    • +
    • overwrite: If true, bundle is modified in-place; +if false, a copy of bundle modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The geocoded FHIR bundle as a dict.

    +
    +
    + + +
    +
    +
    + +
    + + class + SmartyFhirGeocodeClient(phdi.fhir.geospatial.BaseFhirGeocodeClient): + + + +
    + +
    10class SmartyFhirGeocodeClient(BaseFhirGeocodeClient):
    +11    """
    +12    Implementation of a geocoding client designed to handle FHIR-
    +13    formatted data using the SmartyStreets API.
    +14    Requires an authorization ID as well as an authentication token
    +15    in order to build a street lookup client.
    +16    """
    +17
    +18    def __init__(
    +19        self,
    +20        smarty_auth_id: str,
    +21        smarty_auth_token: str,
    +22        licenses: list[str] = ["us-standard-cloud"],
    +23    ):
    +24        self.__client = SmartyGeocodeClient(smarty_auth_id, smarty_auth_token, licenses)
    +25
    +26    @property
    +27    def geocode_client(self) -> us_street.Client:
    +28        """
    +29        An instance of the underlying Smarty client.
    +30        Allows the FHIR wrapper to access a SmartyStreets-
    +31        specific connection client without instantiating its own
    +32        copy. Provides access to the respective `geocode_from_str`
    +33        and `geocode_from_dict` methods if they're desired.
    +34        """
    +35        return self.__client
    +36
    +37    def geocode_resource(self, resource: dict, overwrite=True) -> dict:
    +38        """
    +39        Performs geocoding on one or more addresses in a given FHIR
    +40        resource and returns either the result or a copy thereof.
    +41        Currently supported resource types are:
    +42
    +43        * Patient
    +44
    +45        :param resource: The resource whose addresses should be geocoded.
    +46        :param overwrite: If true, `resource` is modified in-place;
    +47          if false, a copy of `resource` modified and returned.  Default: `True`
    +48        :return: The geocoded resource as a dict.
    +49        """
    +50        if not overwrite:
    +51            resource = copy.deepcopy(resource)
    +52
    +53        resource_type = resource.get("resourceType", "")
    +54        if resource_type == "Patient":
    +55            self._geocode_patient_resource(resource)
    +56
    +57        return resource
    +58
    +59    def _geocode_patient_resource(self, patient: dict) -> None:
    +60        """
    +61        Geocodes all addresses in a patient resource.
    +62
    +63        :param patient: A FHIR Patient resource.
    +64        """
    +65        for address in patient.get("address", []):
    +66            address_str = get_one_line_address(address)
    +67            standardized_address = self.__client.geocode_from_str(address_str)
    +68
    +69            # Update fields with new, standardized information
    +70            if standardized_address:
    +71                address["line"] = standardized_address.line
    +72                address["city"] = standardized_address.city
    +73                address["state"] = standardized_address.state
    +74                address["postalCode"] = standardized_address.postal_code
    +75                self._store_lat_long_extension(
    +76                    address, standardized_address.lat, standardized_address.lng
    +77                )
    +78
    +79    def geocode_bundle(self, bundle: dict, overwrite=True) -> dict:
    +80        """
    +81        Geocodes on all resources in a given FHIR bundle whose
    +82        resource type is among those supported by the PHDI SDK. Currently,
    +83        this includes:
    +84
    +85        * Patient
    +86
    +87        :param bundle: A bundle of FHIR resources.
    +88        :param overwrite: If true, `bundle` is modified in-place;
    +89          if false, a copy of `bundle` modified and returned.  Default: `True`
    +90        :return: The FHIR bundle with geocoded address(es).
    +91        """
    +92        if not overwrite:
    +93            bundle = copy.deepcopy(bundle)
    +94
    +95        for entry in bundle.get("entry", []):
    +96            _ = self.geocode_resource(entry.get("resource", {}), overwrite=True)
    +97
    +98        return bundle
    +
    + + +

    Implementation of a geocoding client designed to handle FHIR- +formatted data using the SmartyStreets API. +Requires an authorization ID as well as an authentication token +in order to build a street lookup client.

    +
    + + +
    + +
    + + SmartyFhirGeocodeClient( smarty_auth_id: str, smarty_auth_token: str, licenses: list[str] = ['us-standard-cloud']) + + + +
    + +
    18    def __init__(
    +19        self,
    +20        smarty_auth_id: str,
    +21        smarty_auth_token: str,
    +22        licenses: list[str] = ["us-standard-cloud"],
    +23    ):
    +24        self.__client = SmartyGeocodeClient(smarty_auth_id, smarty_auth_token, licenses)
    +
    + + + + +
    +
    +
    + geocode_client: smartystreets_python_sdk.us_street.client.Client + + +
    + + +

    An instance of the underlying Smarty client. +Allows the FHIR wrapper to access a SmartyStreets- +specific connection client without instantiating its own +copy. Provides access to the respective geocode_from_str +and geocode_from_dict methods if they're desired.

    +
    + + +
    +
    + +
    + + def + geocode_resource(self, resource: dict, overwrite=True) -> dict: + + + +
    + +
    37    def geocode_resource(self, resource: dict, overwrite=True) -> dict:
    +38        """
    +39        Performs geocoding on one or more addresses in a given FHIR
    +40        resource and returns either the result or a copy thereof.
    +41        Currently supported resource types are:
    +42
    +43        * Patient
    +44
    +45        :param resource: The resource whose addresses should be geocoded.
    +46        :param overwrite: If true, `resource` is modified in-place;
    +47          if false, a copy of `resource` modified and returned.  Default: `True`
    +48        :return: The geocoded resource as a dict.
    +49        """
    +50        if not overwrite:
    +51            resource = copy.deepcopy(resource)
    +52
    +53        resource_type = resource.get("resourceType", "")
    +54        if resource_type == "Patient":
    +55            self._geocode_patient_resource(resource)
    +56
    +57        return resource
    +
    + + +

    Performs geocoding on one or more addresses in a given FHIR +resource and returns either the result or a copy thereof. +Currently supported resource types are:

    + +
      +
    • Patient
    • +
    + +
    Parameters
    + +
      +
    • resource: The resource whose addresses should be geocoded.
    • +
    • overwrite: If true, resource is modified in-place; +if false, a copy of resource modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The geocoded resource as a dict.

    +
    +
    + + +
    +
    + +
    + + def + geocode_bundle(self, bundle: dict, overwrite=True) -> dict: + + + +
    + +
    79    def geocode_bundle(self, bundle: dict, overwrite=True) -> dict:
    +80        """
    +81        Geocodes on all resources in a given FHIR bundle whose
    +82        resource type is among those supported by the PHDI SDK. Currently,
    +83        this includes:
    +84
    +85        * Patient
    +86
    +87        :param bundle: A bundle of FHIR resources.
    +88        :param overwrite: If true, `bundle` is modified in-place;
    +89          if false, a copy of `bundle` modified and returned.  Default: `True`
    +90        :return: The FHIR bundle with geocoded address(es).
    +91        """
    +92        if not overwrite:
    +93            bundle = copy.deepcopy(bundle)
    +94
    +95        for entry in bundle.get("entry", []):
    +96            _ = self.geocode_resource(entry.get("resource", {}), overwrite=True)
    +97
    +98        return bundle
    +
    + + +

    Geocodes on all resources in a given FHIR bundle whose +resource type is among those supported by the PHDI SDK. Currently, +this includes:

    + +
      +
    • Patient
    • +
    + +
    Parameters
    + +
      +
    • bundle: A bundle of FHIR resources.
    • +
    • overwrite: If true, bundle is modified in-place; +if false, a copy of bundle modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The FHIR bundle with geocoded address(es).

    +
    +
    + + +
    +
    +
    + +
    + + class + CensusFhirGeocodeClient(phdi.fhir.geospatial.BaseFhirGeocodeClient): + + + +
    + +
     8class CensusFhirGeocodeClient(BaseFhirGeocodeClient):
    + 9    """
    +10    Implementation of a geocoding client designed to handle FHIR-
    +11    formatted data using the Census API.
    +12    """
    +13
    +14    def __init__(self):
    +15        self.__client = CensusGeocodeClient()
    +16
    +17    def geocode_resource(self, resource: dict, overwrite=True) -> dict:
    +18        """
    +19        Performs geocoding on one or more addresses in a given FHIR
    +20        resource and returns either the result or a copy thereof. The original street
    +21        name, number, and any secondary address line information are returned in the
    +22        original form.
    +23        Currently supported resource types are:
    +24
    +25            - Patient
    +26
    +27        :param resource: The resource whose addresses should be geocoded.
    +28        :param overwrite: Whether to save the geocoding information over
    +29          the raw data, or to create a copy of the given data and write
    +30          over that instead. Defaults to True (write over given data).
    +31        :return: Geocoded resource as a dict.
    +32        """
    +33        # TODO: research additional APIs that return Apt (and other 2nd line addresses)
    +34        # so that address.line can be overwritten
    +35        if not overwrite:
    +36            resource = copy.deepcopy(resource)
    +37
    +38        resource_type = resource.get("resourceType", "")
    +39        if resource_type == "Patient":
    +40            self._geocode_patient_resource(resource)
    +41
    +42        return resource
    +43
    +44    def _geocode_patient_resource(self, patient: dict) -> None:
    +45        """
    +46        Handles geocoding of all addresses in a given patient resource.
    +47        :param patient: The patient resource whose addresses should be geocoded.
    +48        """
    +49        for address in patient.get("address", []):
    +50            address["street"] = " ".join(item for item in address["line"])
    +51            standardized_address = self.__client.geocode_from_dict(address)
    +52
    +53            # Update fields with new, standardized information
    +54            if standardized_address:
    +55                address["city"] = standardized_address.city
    +56                address["state"] = standardized_address.state
    +57                address["postalCode"] = standardized_address.postal_code
    +58                self._store_lat_long_extension(
    +59                    address, standardized_address.lat, standardized_address.lng
    +60                )
    +61                self._store_census_tract_extension(
    +62                    address, standardized_address.census_tract
    +63                )
    +64
    +65                # Remove dict entry needed only for geocode_from_dict()
    +66                del address["street"]
    +67
    +68    def geocode_bundle(self, bundle: dict, overwrite=True) -> dict:
    +69        """
    +70        Performs geocoding on all resources in a given FHIR bundle whose
    +71        resource type is among those supported by the PHDI SDK. Currently,
    +72        this includes:
    +73
    +74            - Patient
    +75
    +76        :param bundle: A bundle of fhir resources.
    +77        :param overwrite: Whether to overwrite the address data in the given
    +78          bundle's resources (True), or whether to create a copy of the bundle
    +79          and overwrite that instead (False). Defaults to True.
    +80        :return: A FHIR bundle with geocoded address(es).
    +81        """
    +82        if not overwrite:
    +83            bundle = copy.deepcopy(bundle)
    +84
    +85        for entry in bundle.get("entry", []):
    +86            self.geocode_resource(entry.get("resource", {}), overwrite=True)
    +87
    +88        return bundle
    +
    + + +

    Implementation of a geocoding client designed to handle FHIR- +formatted data using the Census API.

    +
    + + +
    + +
    + + def + geocode_resource(self, resource: dict, overwrite=True) -> dict: + + + +
    + +
    17    def geocode_resource(self, resource: dict, overwrite=True) -> dict:
    +18        """
    +19        Performs geocoding on one or more addresses in a given FHIR
    +20        resource and returns either the result or a copy thereof. The original street
    +21        name, number, and any secondary address line information are returned in the
    +22        original form.
    +23        Currently supported resource types are:
    +24
    +25            - Patient
    +26
    +27        :param resource: The resource whose addresses should be geocoded.
    +28        :param overwrite: Whether to save the geocoding information over
    +29          the raw data, or to create a copy of the given data and write
    +30          over that instead. Defaults to True (write over given data).
    +31        :return: Geocoded resource as a dict.
    +32        """
    +33        # TODO: research additional APIs that return Apt (and other 2nd line addresses)
    +34        # so that address.line can be overwritten
    +35        if not overwrite:
    +36            resource = copy.deepcopy(resource)
    +37
    +38        resource_type = resource.get("resourceType", "")
    +39        if resource_type == "Patient":
    +40            self._geocode_patient_resource(resource)
    +41
    +42        return resource
    +
    + + +

    Performs geocoding on one or more addresses in a given FHIR +resource and returns either the result or a copy thereof. The original street +name, number, and any secondary address line information are returned in the +original form. +Currently supported resource types are:

    + +
    - Patient
    +
    + +
    Parameters
    + +
      +
    • resource: The resource whose addresses should be geocoded.
    • +
    • overwrite: Whether to save the geocoding information over +the raw data, or to create a copy of the given data and write +over that instead. Defaults to True (write over given data).
    • +
    + +
    Returns
    + +
    +

    Geocoded resource as a dict.

    +
    +
    + + +
    +
    + +
    + + def + geocode_bundle(self, bundle: dict, overwrite=True) -> dict: + + + +
    + +
    68    def geocode_bundle(self, bundle: dict, overwrite=True) -> dict:
    +69        """
    +70        Performs geocoding on all resources in a given FHIR bundle whose
    +71        resource type is among those supported by the PHDI SDK. Currently,
    +72        this includes:
    +73
    +74            - Patient
    +75
    +76        :param bundle: A bundle of fhir resources.
    +77        :param overwrite: Whether to overwrite the address data in the given
    +78          bundle's resources (True), or whether to create a copy of the bundle
    +79          and overwrite that instead (False). Defaults to True.
    +80        :return: A FHIR bundle with geocoded address(es).
    +81        """
    +82        if not overwrite:
    +83            bundle = copy.deepcopy(bundle)
    +84
    +85        for entry in bundle.get("entry", []):
    +86            self.geocode_resource(entry.get("resource", {}), overwrite=True)
    +87
    +88        return bundle
    +
    + + +

    Performs geocoding on all resources in a given FHIR bundle whose +resource type is among those supported by the PHDI SDK. Currently, +this includes:

    + +
    - Patient
    +
    + +
    Parameters
    + +
      +
    • bundle: A bundle of fhir resources.
    • +
    • overwrite: Whether to overwrite the address data in the given +bundle's resources (True), or whether to create a copy of the bundle +and overwrite that instead (False). Defaults to True.
    • +
    + +
    Returns
    + +
    +

    A FHIR bundle with geocoded address(es).

    +
    +
    + + +
    +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir/harmonization.html b/docs/v1.0.13/sdk/phdi/fhir/harmonization.html new file mode 100644 index 0000000000..8765c03cc8 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir/harmonization.html @@ -0,0 +1,640 @@ + + + + + + + phdi.fhir.harmonization API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir.harmonization

    + + + + + + +
     1from phdi.fhir.harmonization.standardization import (
    + 2    double_metaphone_bundle,
    + 3    double_metaphone_patient,
    + 4    standardize_names,
    + 5    standardize_phones,
    + 6    standardize_dob,
    + 7)
    + 8
    + 9__all__ = (
    +10    "double_metaphone_bundle",
    +11    "double_metaphone_patient",
    +12    "standardize_names",
    +13    "standardize_phones",
    +14    "standardize_dob",
    +15)
    +
    + + +
    +
    + +
    + + def + double_metaphone_bundle(bundle: dict, overwrite=True) -> dict: + + + +
    + +
    14def double_metaphone_bundle(bundle: dict, overwrite=True) -> dict:
    +15    """
    +16    Performs the double metaphone algorithm on each name of each patient in a
    +17    given FHIR bundle.
    +18
    +19    :param bundle: A FHIR bundle of data containing one or more patient
    +20      resources.
    +21    :param overwrite: If true, `data` is modified in-place; if false, a
    +22      copy of `data` modified and returned.  Default: `True`.
    +23    :return: A dictionary mapping the FHIR IDs of patients in the bundle
    +24      to lists holding the double metaphone representations of their
    +25      names for each FHIR use case their resource includes.
    +26    """
    +27    if not overwrite:
    +28        bundle = copy.deepcopy(bundle)
    +29
    +30    dmeta = DoubleMetaphone()
    +31    for entry in bundle.get("entry", []):
    +32        resource = entry.get("resource", {})
    +33        if resource.get("resourceType", "") == "Patient":
    +34            double_metaphone_patient(resource, dmeta, overwrite=True)
    +35    return bundle
    +
    + + +

    Performs the double metaphone algorithm on each name of each patient in a +given FHIR bundle.

    + +
    Parameters
    + +
      +
    • bundle: A FHIR bundle of data containing one or more patient +resources.
    • +
    • overwrite: If true, data is modified in-place; if false, a +copy of data modified and returned. Default: True.
    • +
    + +
    Returns
    + +
    +

    A dictionary mapping the FHIR IDs of patients in the bundle + to lists holding the double metaphone representations of their + names for each FHIR use case their resource includes.

    +
    +
    + + +
    +
    + +
    + + def + double_metaphone_patient(patient: dict, dmeta=None, overwrite=True) -> dict: + + + +
    + +
    38def double_metaphone_patient(patient: dict, dmeta=None, overwrite=True) -> dict:
    +39    """
    +40    Performs the double metaphone algorithm for each name in a given patient
    +41    resource. The algorithm is performed on each component of the name (first,
    +42    middle, last), and the resulting representations are ordered in a list
    +43    such that the first element is first name, the last element is last name,
    +44    and all other elements are one or more middle names in the order of
    +45    name presentation. These lists of phonetic representations are stored as
    +46    the values of dictionaries whose keys are the FHIR uses of the name in
    +47    the patient resource (e.g. "official"), and all such dictionaries are
    +48    returned to the caller in a list ordered the same as the names within
    +49    the given resource.
    +50
    +51    :param patient: A FHIR-formatted JSON dictionary representing a patient
    +52      resource.
    +53    :param dmeta: An optional existing instantiation of a double metaphone
    +54      object for use in bulk processing.
    +55    :param overwrite: If true, `data` is modified in-place; if false, a
    +56      copy of `data` modified and returned.  Default: `True`.
    +57    :return: A list of dictionaries mapping FHIR uses to the phonetic
    +58      representations of names associated with those uses, in presentation
    +59      order (first, middle, last).
    +60    """
    +61
    +62    if not overwrite:
    +63        patient = copy.deepcopy(patient)
    +64
    +65    for name in patient.get("name", []):
    +66        # Processing last name separately allows us to note in the result
    +67        # whether last name wasn't present ( = [None, None])
    +68        dm_last = double_metaphone_string(name.get("family", ""), dmeta)
    +69        dm_givens = []
    +70
    +71        # Each name is processed sequentially because FHIR expects given
    +72        # names to already follow proper presentation order
    +73        for given in name.get("given", []):
    +74            dm_givens.append(double_metaphone_string(given, dmeta))
    +75
    +76        # Cleanest way to store computed encodings is as an extension directly
    +77        # within the HumanName objects of the patient's `name` field
    +78        if name.get("extension", []) == []:
    +79            name["extension"] = []
    +80
    +81        name.get("extension").append(
    +82            {
    +83                "url": "https://xlinux.nist.gov/dads/HTML/doubleMetaphone.html",
    +84                "extension": [
    +85                    {"url": "familyName", "valueString": dm_last},
    +86                    {"url": "givenName", "valueString": dm_givens},
    +87                ],
    +88            }
    +89        )
    +90
    +91    return patient
    +
    + + +

    Performs the double metaphone algorithm for each name in a given patient +resource. The algorithm is performed on each component of the name (first, +middle, last), and the resulting representations are ordered in a list +such that the first element is first name, the last element is last name, +and all other elements are one or more middle names in the order of +name presentation. These lists of phonetic representations are stored as +the values of dictionaries whose keys are the FHIR uses of the name in +the patient resource (e.g. "official"), and all such dictionaries are +returned to the caller in a list ordered the same as the names within +the given resource.

    + +
    Parameters
    + +
      +
    • patient: A FHIR-formatted JSON dictionary representing a patient +resource.
    • +
    • dmeta: An optional existing instantiation of a double metaphone +object for use in bulk processing.
    • +
    • overwrite: If true, data is modified in-place; if false, a +copy of data modified and returned. Default: True.
    • +
    + +
    Returns
    + +
    +

    A list of dictionaries mapping FHIR uses to the phonetic + representations of names associated with those uses, in presentation + order (first, middle, last).

    +
    +
    + + +
    +
    + +
    + + def + standardize_names( data: dict, trim: bool = True, case: Literal['upper', 'lower', 'title'] = 'upper', remove_numbers: bool = True, overwrite: bool = True) -> dict: + + + +
    + +
     94def standardize_names(
    + 95    data: dict,
    + 96    trim: bool = True,
    + 97    case: Literal["upper", "lower", "title"] = "upper",
    + 98    remove_numbers: bool = True,
    + 99    overwrite: bool = True,
    +100) -> dict:
    +101    """
    +102    Standardizes all names contained in a given FHIR bundle or a FHIR resource. The
    +103    default standardization behavior is our defined non-numeric, space-trimming, full
    +104    capitalization standardization, but other modes may be specified.
    +105
    +106    :param data: A FHIR-formatted JSON dict.
    +107    :param trim: Whether leading/trailing whitespace should be removed. Default: `True`
    +108    :param case: The type of casing that should be used. Default: `upper`
    +109    :param remove_numbers: If true, delete numeric characters; if false leave numbers
    +110      in place. Default: `True`
    +111    :param overwrite: If true, `data` is modified in-place;
    +112      if false, a copy of `data` modified and returned.  Default: `True`
    +113    :return: The bundle or resource with names appropriately standardized.
    +114    """
    +115    # Copy the data if we don't want to overwrite the original
    +116    if not overwrite:
    +117        data = copy.deepcopy(data)
    +118
    +119    # Allow users to pass in either a resource or a bundle
    +120    bundle = data
    +121    if "entry" not in data:
    +122        bundle = {"entry": [{"resource": data}]}
    +123
    +124    # Handle all resources individually
    +125    for entry in bundle.get("entry"):
    +126        resource = entry.get("resource", {})
    +127        resource = _standardize_names_in_resource(
    +128            resource, trim, case, remove_numbers, overwrite
    +129        )
    +130
    +131    if "entry" not in data:
    +132        return bundle.get("entry", [{}])[0].get("resource", {})
    +133    return bundle
    +
    + + +

    Standardizes all names contained in a given FHIR bundle or a FHIR resource. The +default standardization behavior is our defined non-numeric, space-trimming, full +capitalization standardization, but other modes may be specified.

    + +
    Parameters
    + +
      +
    • data: A FHIR-formatted JSON dict.
    • +
    • trim: Whether leading/trailing whitespace should be removed. Default: True
    • +
    • case: The type of casing that should be used. Default: upper
    • +
    • remove_numbers: If true, delete numeric characters; if false leave numbers +in place. Default: True
    • +
    • overwrite: If true, data is modified in-place; +if false, a copy of data modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The bundle or resource with names appropriately standardized.

    +
    +
    + + +
    +
    + +
    + + def + standardize_phones(data: dict, overwrite=True) -> dict: + + + +
    + +
    136def standardize_phones(data: dict, overwrite=True) -> dict:
    +137    """
    +138    Standardizes all phone numbers in a given FHIR bundle or a FHIR resource.
    +139    Standardization is done according to the underlying `standardize_phone`
    +140    function in `phdi.harmonization`.
    +141
    +142    :param data: A FHIR bundle or FHIR-formatted JSON dict.
    +143    :param overwrite: If true, `data` is modified in-place;
    +144      if false, a copy of `data` modified and returned.  Default: `True`
    +145    :return: The bundle or resource with phones appropriately standardized.
    +146    """
    +147
    +148    if not overwrite:
    +149        data = copy.deepcopy(data)
    +150
    +151    # Allow users to pass in either a resource or a bundle
    +152    bundle = data
    +153    if "entry" not in data:
    +154        bundle = {"entry": [{"resource": data}]}
    +155
    +156    for entry in bundle.get("entry"):
    +157        resource = entry.get("resource", {})
    +158        resource = _standardize_phones_in_resource(resource, overwrite)
    +159
    +160    if "entry" not in data:
    +161        return bundle.get("entry", [{}])[0].get("resource", {})
    +162    return bundle
    +
    + + +

    Standardizes all phone numbers in a given FHIR bundle or a FHIR resource. +Standardization is done according to the underlying standardize_phone +function in phdi.harmonization.

    + +
    Parameters
    + +
      +
    • data: A FHIR bundle or FHIR-formatted JSON dict.
    • +
    • overwrite: If true, data is modified in-place; +if false, a copy of data modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The bundle or resource with phones appropriately standardized.

    +
    +
    + + +
    +
    + +
    + + def + standardize_dob(data: dict, format: str = '%Y-%m-%d', overwrite=True) -> dict: + + + +
    + +
    276def standardize_dob(data: dict, format: str = "%Y-%m-%d", overwrite=True) -> dict:
    +277    """
    +278    Standardizes all birth dates in a given FHIR bundle or a FHIR resource.
    +279    Standardization is done according to the underlying `standardize_dob` function in
    +280    `phdi.harmonization`.  The final birthDate will follow the FHIR STu3/R4 format
    +281    of YYYY-MM-DD which will be stored in the Patient resource.
    +282
    +283    :param data: A FHIR bundle or FHIR-formatted JSON dict.
    +284    :param format: A python DateTime format used to parse the birthDate within
    +285      the Patient resource.  Default: `%Y-%m-%d` (also known as YYYY-MM-DD)
    +286    :param overwrite: If true, `data` is modified in-place;
    +287      if false, a copy of `data` modified and returned.  Default: `True`
    +288    :return: The bundle or resource with bith dates appropriately standardized.
    +289    """
    +290
    +291    if not overwrite:
    +292        data = copy.deepcopy(data)
    +293
    +294    # Allow users to pass in either a resource or a bundle
    +295    bundle = data
    +296    if "entry" not in data:
    +297        bundle = {"entry": [{"resource": data}]}
    +298
    +299    for entry in bundle.get("entry"):
    +300        resource = entry.get("resource", {})
    +301        resource = _standardize_dob_in_resource(resource, format, overwrite)
    +302
    +303    if "entry" not in data:
    +304        return bundle.get("entry", [{}])[0].get("resource", {})
    +305    return bundle
    +
    + + +

    Standardizes all birth dates in a given FHIR bundle or a FHIR resource. +Standardization is done according to the underlying standardize_dob function in +phdi.harmonization. The final birthDate will follow the FHIR STu3/R4 format +of YYYY-MM-DD which will be stored in the Patient resource.

    + +
    Parameters
    + +
      +
    • data: A FHIR bundle or FHIR-formatted JSON dict.
    • +
    • format: A python DateTime format used to parse the birthDate within +the Patient resource. Default: %Y-%m-%d (also known as YYYY-MM-DD)
    • +
    • overwrite: If true, data is modified in-place; +if false, a copy of data modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The bundle or resource with bith dates appropriately standardized.

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir/linkage.html b/docs/v1.0.13/sdk/phdi/fhir/linkage.html new file mode 100644 index 0000000000..bd0a119ff6 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir/linkage.html @@ -0,0 +1,416 @@ + + + + + + + phdi.fhir.linkage API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir.linkage

    + + + + + + +
    1from phdi.fhir.linkage.link import (
    +2    add_patient_identifier_in_bundle,
    +3    add_patient_identifier,
    +4)
    +5
    +6__all__ = ["add_patient_identifier_in_bundle", "add_patient_identifier"]
    +
    + + +
    +
    + +
    + + def + add_patient_identifier_in_bundle(bundle: dict, salt_str: str, overwrite: bool = True) -> dict: + + + +
    + +
    11def add_patient_identifier_in_bundle(
    +12    bundle: dict, salt_str: str, overwrite: bool = True
    +13) -> dict:
    +14    """
    +15    Given a FHIR resource bundle:
    +16
    +17    * Identifies all patient resource(s) in the bundle
    +18    * Adds the hash string to the list of identifiers held in that patient resource
    +19
    +20    :param bundle: The FHIR bundle for whose patients to add a linking identifier.
    +21    :param salt_str: The salt to use with the hash. This is intended to prevent
    +22      reverse engineering of the PII used to create the hash.
    +23    :param overwrite: If true, `bundle` is modified in-place;
    +24      if false, a copy of `bundle` modified and returned.  Default: `True`
    +25    :return: The bundle, resources updated with additional patient identifier.
    +26    """
    +27    if not overwrite:
    +28        bundle = copy.deepcopy(bundle)
    +29
    +30    for entry in find_entries_by_resource_type(bundle, "Patient"):
    +31        patient = entry.get("resource")
    +32        add_patient_identifier(patient, salt_str)
    +33    return bundle
    +
    + + +

    Given a FHIR resource bundle:

    + +
      +
    • Identifies all patient resource(s) in the bundle
    • +
    • Adds the hash string to the list of identifiers held in that patient resource
    • +
    + +
    Parameters
    + +
      +
    • bundle: The FHIR bundle for whose patients to add a linking identifier.
    • +
    • salt_str: The salt to use with the hash. This is intended to prevent +reverse engineering of the PII used to create the hash.
    • +
    • overwrite: If true, bundle is modified in-place; +if false, a copy of bundle modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The bundle, resources updated with additional patient identifier.

    +
    +
    + + +
    +
    + +
    + + def + add_patient_identifier(patient_resource: dict, salt_str: str, overwrite: bool = True): + + + +
    + +
    36def add_patient_identifier(
    +37    patient_resource: dict, salt_str: str, overwrite: bool = True
    +38):
    +39    """
    +40    Given a FHIR Patient resource:
    +41
    +42    * Extracts name, DOB, and address information
    +43    * Computes a unique hash string based on these fields
    +44    * Adds the hash string to resource
    +45
    +46    :param patient_resource: The FHIR patient resource to add a linking identifier.
    +47    :param salt_str: The salt to use with the hash. This is intended to prevent
    +48      reverse engineering of the PII used to create the hash.
    +49    :param overwrite: If true, `patient_resource` is modified in-place;
    +50      if false, a copy of `patient_resource` modified and returned.  Default: `True`
    +51    :return: The resource updated with additional patient identifier.
    +52    """
    +53    if not overwrite:
    +54        patient_resource = copy.deepcopy(patient_resource)
    +55
    +56    # Combine given and family name
    +57    recent_name = (
    +58        get_field(patient_resource, field="name", use="official", require_use=False)
    +59        or {}
    +60    )
    +61    name_parts = recent_name.get("given", []) + [recent_name.get("family", "")]
    +62    name_str = "-".join([n for n in name_parts if n])
    +63
    +64    address_line = ""
    +65    if "address" in patient_resource:
    +66        address = (
    +67            get_field(patient_resource, field="address", use="home", require_use=False)
    +68            or {}
    +69        )
    +70        address_line = get_one_line_address(address)
    +71
    +72    # TODO Determine if minimum quality criteria should be included, such as min
    +73    # number of characters in last name, valid birth date, or address line
    +74    # Generate and store unique hash code
    +75    link_str = f'{name_str}-{patient_resource["birthDate"]}-{address_line}'
    +76    hashcode = generate_hash_str(link_str, salt_str)
    +77
    +78    if "identifier" not in patient_resource:
    +79        patient_resource["identifier"] = []
    +80
    +81    # TODO Follow up on the validity and source of the comment about the system
    +82    # value corresponding to the FHIR specification. Need to either add a citation
    +83    # or correct the wording to more properly reflect what it represents.
    +84    patient_resource["identifier"].append(
    +85        {
    +86            "value": hashcode,
    +87            # Note: this system value corresponds to the FHIR specification
    +88            # for a globally used / generated ID or UUID--the standard here
    +89            # is to make the use "temporary" even if it's not
    +90            "system": "urn:ietf:rfc:3986",
    +91            "use": "temp",
    +92        }
    +93    )
    +94    return patient_resource
    +
    + + +

    Given a FHIR Patient resource:

    + +
      +
    • Extracts name, DOB, and address information
    • +
    • Computes a unique hash string based on these fields
    • +
    • Adds the hash string to resource
    • +
    + +
    Parameters
    + +
      +
    • patient_resource: The FHIR patient resource to add a linking identifier.
    • +
    • salt_str: The salt to use with the hash. This is intended to prevent +reverse engineering of the PII used to create the hash.
    • +
    • overwrite: If true, patient_resource is modified in-place; +if false, a copy of patient_resource modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    The resource updated with additional patient identifier.

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir/tabulation.html b/docs/v1.0.13/sdk/phdi/fhir/tabulation.html new file mode 100644 index 0000000000..e373a72ad4 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir/tabulation.html @@ -0,0 +1,747 @@ + + + + + + + phdi.fhir.tabulation API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir.tabulation

    + + + + + + +
     1from phdi.fhir.tabulation.tables import (
    + 2    drop_invalid,
    + 3    extract_data_from_fhir_search,
    + 4    extract_data_from_fhir_search_incremental,
    + 5    extract_data_from_schema,
    + 6    tabulate_data,
    + 7)
    + 8
    + 9__all__ = [
    +10    "drop_invalid",
    +11    "extract_data_from_fhir_search",
    +12    "extract_data_from_fhir_search_incremental",
    +13    "extract_data_from_schema",
    +14    "tabulate_data",
    +15]
    +
    + + +
    +
    + +
    + + def + drop_invalid(data: List[list], schema: Dict, table_name: str) -> List[list]: + + + +
    + +
    16def drop_invalid(data: List[list], schema: Dict, table_name: str) -> List[list]:
    +17    """
    +18    Removes resources from tabulated data if the resource contains an invalid value, as
    +19    specified in the invalid_values field in a user-defined schema. Users may provide
    +20    invalid values as a list, including empty string values ("") and
    +21    None/null values (null).
    +22    :param data: A list of lists containing data for a table. The first list in
    +23        the data value is a list of headers serving as the columns, and all subsequent
    +24        lists are rows in the table.
    +25    :param schema: A declarative, user-defined specification, for one or more tables,
    +26        that defines the metadata, properties, and columns of those tables as they
    +27        relate to FHIR resources.
    +28    :param table_name: Name of the table to drop invalid values.
    +29    :param return: A list of lists, without rows of data derived from the FHIR
    +30        resources and elements that contained invalid values.
    +31        The first list in the data value is a list of headers serving as the
    +32        columns, and all subsequent lists are rows in the table.
    +33    """
    +34    invalid_values_by_column_index = {}
    +35
    +36    # Identify columns to drop invalid values for each table in schema
    +37    columns = schema["tables"][table_name]["columns"]
    +38    # Identify indices in List of Lists to check for invalid values
    +39    invalid_values_by_column_index[table_name] = {
    +40        i: columns[col].get("invalid_values")
    +41        for i, col in enumerate(columns)
    +42        if columns[col].get("invalid_values", [])
    +43    }
    +44
    +45    # Check if resource contains invalid values to be dropped
    +46    rows_to_remove = []
    +47    if len(invalid_values_by_column_index) > 0:
    +48        for i in range(len(data)):
    +49            for index, invalid_values in invalid_values_by_column_index[
    +50                table_name
    +51            ].items():
    +52                if data[i][index] in invalid_values:
    +53                    rows_to_remove.append(i)
    +54                    break
    +55
    +56    # Remove rows with invalid values
    +57    for idx, i in enumerate(rows_to_remove):
    +58        del data[i - idx]
    +59
    +60    return data
    +
    + + +

    Removes resources from tabulated data if the resource contains an invalid value, as +specified in the invalid_values field in a user-defined schema. Users may provide +invalid values as a list, including empty string values ("") and +None/null values (null).

    + +
    Parameters
    + +
      +
    • data: A list of lists containing data for a table. The first list in +the data value is a list of headers serving as the columns, and all subsequent +lists are rows in the table.
    • +
    • schema: A declarative, user-defined specification, for one or more tables, +that defines the metadata, properties, and columns of those tables as they +relate to FHIR resources.
    • +
    • table_name: Name of the table to drop invalid values.
    • +
    • return: A list of lists, without rows of data derived from the FHIR +resources and elements that contained invalid values. +The first list in the data value is a list of headers serving as the +columns, and all subsequent lists are rows in the table.
    • +
    +
    + + +
    + +
    + +
    + + def + extract_data_from_fhir_search_incremental( search_url: str, cred_manager: phdi.cloud.core.BaseCredentialManager = None) -> Tuple[List[dict], str]: + + + +
    + +
     95def extract_data_from_fhir_search_incremental(
    + 96    search_url: str, cred_manager: BaseCredentialManager = None
    + 97) -> Tuple[List[dict], str]:
    + 98    """
    + 99    Performs a FHIR search for a single page of data and returns a dictionary containing
    +100    the data and a next URL. If there is no next URL (this is the last page of data),
    +101    then return None as the next URL.
    +102    :param search_url: The URL to a FHIR server with search criteria.
    +103    :param cred_manager: The credential manager used to authenticate to the FHIR server.
    +104    :raises requests.HttpError: If the HTTP request was unsuccessful.
    +105    :return: Tuple containing single page of data as a list of dictionaries and the next
    +106        URL.
    +107    """
    +108
    +109    # TODO: Modify fhir_server_get (and http_request_with_reauth) to function without
    +110    # mandating a credential manager. Then replace the direct call to
    +111    # http_request_with_reauth with fhir_server_get.
    +112    # response = fhir_server_get(url=full_url, cred_manager=cred_manager)
    +113    headers = {}
    +114    if cred_manager is not None:
    +115        access_token = cred_manager.get_access_token()
    +116        headers = {
    +117            "Authorization": f"Bearer {access_token}",
    +118            "Accept": "application/fhir+json",
    +119            "Content-Type": "application/fhir+json",
    +120        }
    +121
    +122    response = http_request_with_reauth(
    +123        url=search_url,
    +124        cred_manager=cred_manager,
    +125        retry_count=2,
    +126        request_type="GET",
    +127        allowed_methods=["GET"],
    +128        headers=headers,
    +129    )
    +130
    +131    if response.status_code != 200:  # pragma: no cover
    +132        raise requests.HTTPError(response=response)
    +133
    +134    next_url = None
    +135    content = json.loads(response._content.decode("utf-8"))
    +136    if len(content) == 0:
    +137        warnings.warn(
    +138            message=f"The search_url returned no incremental results: {search_url}",
    +139        )
    +140        content = []
    +141    else:
    +142        for link in content.get("link", []):
    +143            if link.get("relation") == "next":
    +144                next_url = link.get("url")
    +145
    +146        content = content.get("entry")
    +147
    +148    return content, next_url
    +
    + + +

    Performs a FHIR search for a single page of data and returns a dictionary containing +the data and a next URL. If there is no next URL (this is the last page of data), +then return None as the next URL.

    + +
    Parameters
    + +
      +
    • search_url: The URL to a FHIR server with search criteria.
    • +
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • +
    + +
    Raises
    + +
      +
    • requests.HttpError: If the HTTP request was unsuccessful.
    • +
    + +
    Returns
    + +
    +

    Tuple containing single page of data as a list of dictionaries and the next + URL.

    +
    +
    + + +
    +
    + +
    + + def + extract_data_from_schema( schema: dict, fhir_url: str, cred_manager: phdi.cloud.core.BaseCredentialManager = None) -> Dict[str, List[dict]]: + + + +
    + +
    151def extract_data_from_schema(
    +152    schema: dict, fhir_url: str, cred_manager: BaseCredentialManager = None
    +153) -> Dict[str, List[dict]]:
    +154    """
    +155    Performs a full FHIR search for each table in the specified `schema`,
    +156    and returns a dictionary mapping the table name to corresponding search results.
    +157    :param schema: A declarative, user-defined specification, for one or more tables,
    +158        that defines the metadata, properties, and columns of those tables as they
    +159        relate to FHIR resources.
    +160    :param cred_manager: The credential manager used to authenticate to the FHIR server.
    +161    :return: A dict containing the mapping of a table and its columns, grouped by
    +162        table name, to a list of FHIR resource element results returned from
    +163        the search for each subsequent table name.
    +164    """
    +165
    +166    search_urls = _generate_search_urls(schema=schema)
    +167
    +168    results = {}
    +169    for table_name, search_url in search_urls.items():
    +170        results[table_name] = extract_data_from_fhir_search(
    +171            search_url=f"{fhir_url}/{search_url}", cred_manager=cred_manager
    +172        )
    +173
    +174    return results
    +
    + + +

    Performs a full FHIR search for each table in the specified schema, +and returns a dictionary mapping the table name to corresponding search results.

    + +
    Parameters
    + +
      +
    • schema: A declarative, user-defined specification, for one or more tables, +that defines the metadata, properties, and columns of those tables as they +relate to FHIR resources.
    • +
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • +
    + +
    Returns
    + +
    +

    A dict containing the mapping of a table and its columns, grouped by + table name, to a list of FHIR resource element results returned from + the search for each subsequent table name.

    +
    +
    + + +
    +
    + +
    + + def + tabulate_data(data: List[dict], schema: dict, table_name: str) -> List[list]: + + + +
    + +
    177def tabulate_data(data: List[dict], schema: dict, table_name: str) -> List[list]:
    +178    """
    +179    Transforms a list of FHIR bundle resource entries into a tabular
    +180    format (given by a list of lists) using a user-defined schema.
    +181    Tabulation works using a two-pass procedure. First, resources
    +182    that are associated with one another in the provided schema
    +183    (identified by the presence of a `reference_location` field in
    +184    one of the schema's columns) are grouped together. For each
    +185    table, one type of resource serves as the "anchor", which
    +186    defines the number of rows in the table, while referenced
    +187    resources are either "forwards" or "reverse" references,
    +188    depending on their relationship to the anchor type. Second,
    +189    the aggregated resources are parsed for value extraction using
    +190    the schema's columns, and the results are stored in a list of
    +191    lists for that table. The first entry in this list are the headers
    +192    of the data, taken from the schema. This functions performs the
    +193    above procedure on one table from the schema, specified by a
    +194    table name.
    +195    :param data: A list of FHIR bundle resource entries to tabulate.
    +196    :param schema: A declarative, user-defined specification, for one or more tables,
    +197        that defines the metadata, properties, and columns of those tables as they
    +198        relate to FHIR resources.
    +199    :param table_name: A string specifying the name of a table defined
    +200      in the given schema.
    +201    :raises KeyError: If the given `table_name` does not occur in the
    +202      provided schema.
    +203    :return: A list of lists denoting the tabulated form of the data.
    +204      The first list is a list of headers serving as the columns,
    +205      and all subsequent lists are rows in the table.
    +206    """
    +207
    +208    if table_name not in schema.get("tables", {}):
    +209        raise KeyError(f"Provided table name {table_name} not found in schema")
    +210
    +211    # First pass: build mapping of references for easy lookup
    +212    ref_directions = _get_reference_directions(schema)
    +213    ref_dicts = _build_reference_dicts(data, ref_directions)
    +214
    +215    # Get the columns from the schema so we always iterate through
    +216    # them in a consistent order
    +217    table_params = schema["tables"][table_name]
    +218    column_items = table_params["columns"].items()
    +219    headers = [column_name for column_name, _ in column_items]
    +220    tabulated_data = [headers]
    +221    anchor_type = schema["tables"][table_name]["resource_type"]
    +222
    +223    # Second pass over just the anchor data, since that
    +224    # defines the table's rows
    +225    for anchor_resource, is_result_because in (
    +226        ref_dicts.get(table_name, {}).get(anchor_type, {}).values()
    +227    ):
    +228        # Resources that aren't matches to the original criteria
    +229        # don't generate rows because they were included via a
    +230        # reference
    +231        if is_result_because != "match":
    +232            continue
    +233
    +234        row = []
    +235
    +236        for _, column_params in column_items:
    +237            path_to_use = column_params["fhir_path"]
    +238            resource_to_use = anchor_resource
    +239
    +240            # Determine if we need to make a lookup in our
    +241            # first-pass reference mapping
    +242            if "reference_location" in column_params:
    +243                resource_to_use = _dereference_included_resource(
    +244                    resource_to_use,
    +245                    path_to_use,
    +246                    anchor_resource,
    +247                    column_params,
    +248                    ref_dicts,
    +249                    table_name,
    +250                )
    +251                if resource_to_use is None:
    +252                    row.append(None)
    +253                    continue
    +254
    +255            # Forward pointers are many-to-one anchor:target (i.e. many patients
    +256            # could point to the same general practitioner), so we only need a
    +257            # single value for them
    +258            if isinstance(resource_to_use, dict):
    +259                row.append(
    +260                    extract_value_with_resource_path(
    +261                        resource_to_use,
    +262                        path_to_use,
    +263                        column_params["selection_criteria"],
    +264                    )
    +265                )
    +266
    +267            # Reverse pointers are one-to-many (one patient could have multiple
    +268            # observations pointing to them), so they need to be stored in a list
    +269            else:
    +270                values = [
    +271                    extract_value_with_resource_path(
    +272                        r, path_to_use, column_params["selection_criteria"]
    +273                    )
    +274                    for r in resource_to_use
    +275                ]
    +276                row.append(values)
    +277
    +278        tabulated_data.append(row)
    +279
    +280    # Drop invalid values specified in the schema
    +281    tabulated_data = drop_invalid(tabulated_data, schema, table_name)
    +282
    +283    return tabulated_data
    +
    + + +

    Transforms a list of FHIR bundle resource entries into a tabular +format (given by a list of lists) using a user-defined schema. +Tabulation works using a two-pass procedure. First, resources +that are associated with one another in the provided schema +(identified by the presence of a reference_location field in +one of the schema's columns) are grouped together. For each +table, one type of resource serves as the "anchor", which +defines the number of rows in the table, while referenced +resources are either "forwards" or "reverse" references, +depending on their relationship to the anchor type. Second, +the aggregated resources are parsed for value extraction using +the schema's columns, and the results are stored in a list of +lists for that table. The first entry in this list are the headers +of the data, taken from the schema. This functions performs the +above procedure on one table from the schema, specified by a +table name.

    + +
    Parameters
    + +
      +
    • data: A list of FHIR bundle resource entries to tabulate.
    • +
    • schema: A declarative, user-defined specification, for one or more tables, +that defines the metadata, properties, and columns of those tables as they +relate to FHIR resources.
    • +
    • table_name: A string specifying the name of a table defined +in the given schema.
    • +
    + +
    Raises
    + +
      +
    • KeyError: If the given table_name does not occur in the +provided schema.
    • +
    + +
    Returns
    + +
    +

    A list of lists denoting the tabulated form of the data. + The first list is a list of headers serving as the columns, + and all subsequent lists are rows in the table.

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir/transport.html b/docs/v1.0.13/sdk/phdi/fhir/transport.html new file mode 100644 index 0000000000..ba23cae887 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir/transport.html @@ -0,0 +1,657 @@ + + + + + + + phdi.fhir.transport API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir.transport

    + + + + + + +
     1from phdi.fhir.transport.http import (
    + 2    http_request_with_reauth,
    + 3    fhir_server_get,
    + 4    upload_bundle_to_fhir_server,
    + 5)
    + 6
    + 7from phdi.fhir.transport.export import export_from_fhir_server
    + 8
    + 9__all__ = [
    +10    "http_request_with_reauth",
    +11    "fhir_server_get",
    +12    "upload_bundle_to_fhir_server",
    +13    "export_from_fhir_server",
    +14]
    +
    + + +
    +
    + +
    + + def + http_request_with_reauth( cred_manager: phdi.cloud.core.BaseCredentialManager, url: str, retry_count: int, request_type: Literal['GET', 'POST'], allowed_methods: List[str], headers: dict, data: dict = None) -> requests.models.Response: + + + +
    + +
    10def http_request_with_reauth(
    +11    cred_manager: BaseCredentialManager,
    +12    url: str,
    +13    retry_count: int,
    +14    request_type: Literal["GET", "POST"],
    +15    allowed_methods: List[str],
    +16    headers: dict,
    +17    data: dict = None,
    +18) -> requests.Response:
    +19    """
    +20    First, calls :func:`phdi.transport.http.http_request_with_retry`. If the first call
    +21    fails with an authorization error (HTTP status 401), obtains a new token using the
    +22    `cred_manager`. If the original request had an Authorization header, replaces
    +23    it with the new token and re-initiates
    +24    :func:`phdi.transport.http.http_request_with_retry`.
    +25
    +26    :param cred_manager: The credential manager used to authenticate to the FHIR server.
    +27    :param url: The url at which to make the HTTP request.
    +28    :param retry_count: The number of times to retry the request, if the
    +29      first attempt fails.
    +30    :param request_type: The type of request to be made.
    +31    :param allowed_methods: The list of allowed HTTP request methods (i.e.,
    +32      POST, PUT, etc.) for the specific URL and query.
    +33    :param headers: JSON-type dictionary of headers to make the request with,
    +34      including Authorization and content-type.
    +35    :param data: JSON data in the case that the request requires data to be
    +36      posted. Default: `None`
    +37    :return: A `requests.Request` object containing the response from the FHIR server.
    +38    """
    +39
    +40    response = http_request_with_retry(
    +41        url=url,
    +42        retry_count=retry_count,
    +43        request_type=request_type,
    +44        allowed_methods=allowed_methods,
    +45        headers=headers,
    +46        data=data,
    +47    )
    +48
    +49    # Retry with new token in case it expired since creation (or from cache)
    +50    if response.status_code == 401:
    +51        if headers.get("Authorization", "").startswith("Bearer "):
    +52            new_access_token = cred_manager.get_access_token()
    +53            headers["Authorization"] = f"Bearer {new_access_token}"
    +54
    +55        response = http_request_with_retry(
    +56            url=url,
    +57            retry_count=retry_count,
    +58            request_type=request_type,
    +59            allowed_methods=allowed_methods,
    +60            headers=headers,
    +61            data=data,
    +62        )
    +63
    +64    return response
    +
    + + +

    First, calls phdi.transport.http.http_request_with_retry(). If the first call +fails with an authorization error (HTTP status 401), obtains a new token using the +cred_manager. If the original request had an Authorization header, replaces +it with the new token and re-initiates +phdi.transport.http.http_request_with_retry().

    + +
    Parameters
    + +
      +
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • +
    • url: The url at which to make the HTTP request.
    • +
    • retry_count: The number of times to retry the request, if the +first attempt fails.
    • +
    • request_type: The type of request to be made.
    • +
    • allowed_methods: The list of allowed HTTP request methods (i.e., +POST, PUT, etc.) for the specific URL and query.
    • +
    • headers: JSON-type dictionary of headers to make the request with, +including Authorization and content-type.
    • +
    • data: JSON data in the case that the request requires data to be +posted. Default: None
    • +
    + +
    Returns
    + +
    +

    A requests.Request object containing the response from the FHIR server.

    +
    +
    + + +
    +
    + +
    + + def + fhir_server_get( url: str, cred_manager: phdi.cloud.core.BaseCredentialManager) -> requests.models.Response: + + + +
    + +
    136def fhir_server_get(url: str, cred_manager: BaseCredentialManager) -> requests.Response:
    +137    """
    +138    Submits a GET request to a FHIR server given a url and access token for
    +139    authentication.
    +140
    +141    :param url: A URL specifying a GET request on a FHIR server.
    +142    :param cred_manager: The credential manager used to authenticate to the FHIR server.
    +143    :return: A `requests.Request` object containing the response from the FHIR server.
    +144    """
    +145    access_token = cred_manager.get_access_token()
    +146    # Open connection to the export operation and kickoff process
    +147    response = http_request_with_reauth(
    +148        cred_manager=cred_manager,
    +149        url=url,
    +150        retry_count=3,
    +151        request_type="GET",
    +152        allowed_methods=["GET"],
    +153        headers={"Authorization": f"Bearer {access_token}"},
    +154    )
    +155
    +156    _log_fhir_server_error(response.status_code)
    +157
    +158    return response
    +
    + + +

    Submits a GET request to a FHIR server given a url and access token for +authentication.

    + +
    Parameters
    + +
      +
    • url: A URL specifying a GET request on a FHIR server.
    • +
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • +
    + +
    Returns
    + +
    +

    A requests.Request object containing the response from the FHIR server.

    +
    +
    + + +
    +
    + +
    + + def + upload_bundle_to_fhir_server( bundle: dict, cred_manager: phdi.cloud.core.BaseCredentialManager, fhir_url: str, max_bundle_size: int = 500) -> list[requests.models.Response]: + + + +
    + +
     67def upload_bundle_to_fhir_server(
    + 68    bundle: dict,
    + 69    cred_manager: BaseCredentialManager,
    + 70    fhir_url: str,
    + 71    max_bundle_size: int = 500,
    + 72) -> list[requests.Response]:
    + 73    """
    + 74    Uploads a FHIR resource bundle to the FHIR server.
    + 75
    + 76    :param bundle: A FHIR bundle (type "batch" or "transaction") to post.  Each entry in
    + 77      the bundle must contain a `request` element in addition to a `resource`.
    + 78      The FHIR API provides additional details on creating
    + 79      [FHIR-conformant batch/transaction](https://hl7.org/fhir/http.html#transaction)
    + 80      bundles.
    + 81    :param cred_manager: The credential manager used to authenticate to the FHIR server.
    + 82    :param fhir_url: The url of the FHIR server to upload to.
    + 83    :param max_bundle_size: The maximum number of resources per bundle to upload to
    + 84      the FHIR server.
    + 85    :return: A `requests.Response` object containing the response from the FHIR server.
    + 86    """
    + 87
    + 88    access_token = cred_manager.get_access_token()
    + 89    responses = []
    + 90
    + 91    # ensure that bundles are below the set maximum size of resources
    + 92    split_bundles = _split_bundle_resources(bundle, max_bundle_size)
    + 93
    + 94    for single_bundle in split_bundles:
    + 95        response = http_request_with_reauth(
    + 96            cred_manager=cred_manager,
    + 97            url=fhir_url,
    + 98            retry_count=3,
    + 99            request_type="POST",
    +100            allowed_methods=["POST"],
    +101            headers={
    +102                "Authorization": f"Bearer {access_token}",
    +103                "Accept": "application/fhir+json",
    +104                "Content-Type": "application/fhir+json",
    +105            },
    +106            data=single_bundle,
    +107        )
    +108        # FHIR uploads are sent as a batch.  Although the batch succeeds,
    +109        # individual entries within the batch may fail, so we log them here
    +110        if response.status_code == 200:
    +111            response_json = response.json()
    +112
    +113            entries = response_json.get("entry", [])
    +114            for entry_index, entry in enumerate(entries):
    +115                entry_response = entry.get("response", {})
    +116
    +117                # FHIR bundle.entry.response.status is string type - integer status code
    +118                # plus may inlude a message
    +119                if entry_response and entry_response.get("status", "") not in [
    +120                    "200 OK",
    +121                    "201 Created",
    +122                    "200",
    +123                    "201",
    +124                ]:
    +125                    _log_fhir_server_error(
    +126                        status_code=int(entry_response["status"][0:3]),
    +127                        batch_entry_index=entry_index,
    +128                    )
    +129        else:
    +130            _log_fhir_server_error(response.status_code)
    +131        responses.append(response)
    +132
    +133    return responses
    +
    + + +

    Uploads a FHIR resource bundle to the FHIR server.

    + +
    Parameters
    + +
      +
    • bundle: A FHIR bundle (type "batch" or "transaction") to post. Each entry in +the bundle must contain a request element in addition to a resource. +The FHIR API provides additional details on creating +FHIR-conformant batch/transaction +bundles.
    • +
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • +
    • fhir_url: The url of the FHIR server to upload to.
    • +
    • max_bundle_size: The maximum number of resources per bundle to upload to +the FHIR server.
    • +
    + +
    Returns
    + +
    +

    A requests.Response object containing the response from the FHIR server.

    +
    +
    + + +
    +
    + +
    + + def + export_from_fhir_server( cred_manager: phdi.cloud.core.BaseCredentialManager, fhir_url: str, export_scope: str = '', since: str = '', resource_type: str = '', container: str = '', poll_step: float = 30, poll_timeout: float = 300) -> dict: + + + +
    + +
    10def export_from_fhir_server(
    +11    cred_manager: BaseCredentialManager,
    +12    fhir_url: str,
    +13    export_scope: str = "",
    +14    since: str = "",
    +15    resource_type: str = "",
    +16    container: str = "",
    +17    poll_step: float = 30,
    +18    poll_timeout: float = 300,
    +19) -> dict:
    +20    """
    +21    Initiates a FHIR $export operation, polls until it completes, and returns the
    +22    successful result.
    +23
    +24    :param cred_manager: The credential manager used to authenticate to the FHIR server.
    +25    :param fhir_url: The FHIR server base URL.
    +26    :param export_scope: Either `Patient` or `Group/[id]` as specified in the FHIR spec
    +27      (https://hl7.org/fhir/uv/bulkdata/export/index.html#bulk-data-kick-off-request).
    +28    :param since: A FHIR instant (https://build.fhir.org/datatypes.html#instant)
    +29      instructing the export to include only resources created or modified after the
    +30      specified instant.
    +31    :param resource_type: A comma-delimited list of FHIR resource types to include
    +32      in exported files.
    +33    :param container: The name of the storage container used to store exported files.
    +34    :param poll_step: The number of seconds to wait between poll requests, waiting
    +35      for export files to be generated.
    +36    :param poll_timeout: The maximum number of seconds to wait for export files to
    +37      be generated.
    +38    :raises polling.TimeoutException: If the FHIR server continually returns a 202
    +39      status indicating in progress until the timeout is reached.
    +40    :return: The JSON-formatted HTTP response of a completed export operation
    +41      as a dictionary.
    +42    """
    +43    # TODO consider putting implementation-specific parameters (e.g. container) in a
    +44    # flexible dictionary rather than listing as explicit parameters.
    +45
    +46    # Combine template variables into export endpoint
    +47    access_token = cred_manager.get_access_token()
    +48    export_url = _compose_export_url(
    +49        fhir_url=fhir_url,
    +50        export_scope=export_scope,
    +51        since=since,
    +52        resource_type=resource_type,
    +53        container=container,
    +54    )
    +55
    +56    # Open connection to the export operation and kickoff process
    +57    response = http_request_with_reauth(
    +58        cred_manager=cred_manager,
    +59        url=export_url,
    +60        retry_count=3,
    +61        request_type="GET",
    +62        allowed_methods=["GET"],
    +63        headers={
    +64            "Authorization": f"Bearer {access_token}",
    +65            "Accept": "application/fhir+json",
    +66            "Prefer": "respond-async",
    +67        },
    +68    )
    +69
    +70    # TODO handle export failure conditions and timeouts.
    +71    if response.status_code == 202:
    +72        # Repeatedly poll the endpoint the FHIR server creates for us
    +73        # until either the connection times out (as we configured) or
    +74        # we have the response in hand
    +75        poll_response = export_from_fhir_server_poll(
    +76            poll_url=response.headers.get("Content-Location"),
    +77            cred_manager=cred_manager,
    +78            poll_step=poll_step,
    +79            poll_timeout=poll_timeout,
    +80        )
    +81
    +82        # We successfully completed the full export
    +83        if poll_response.status_code == 200:
    +84            return poll_response.json()
    +
    + + +

    Initiates a FHIR $export operation, polls until it completes, and returns the +successful result.

    + +
    Parameters
    + +
      +
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • +
    • fhir_url: The FHIR server base URL.
    • +
    • export_scope: Either Patient or Group/[id] as specified in the FHIR spec +(https://hl7.org/fhir/uv/bulkdata/export/index.html#bulk-data-kick-off-request).
    • +
    • since: A FHIR instant (https: //build.fhir.org/datatypes.html#instant) +instructing the export to include only resources created or modified after the +specified instant.
    • +
    • resource_type: A comma-delimited list of FHIR resource types to include +in exported files.
    • +
    • container: The name of the storage container used to store exported files.
    • +
    • poll_step: The number of seconds to wait between poll requests, waiting +for export files to be generated.
    • +
    • poll_timeout: The maximum number of seconds to wait for export files to +be generated.
    • +
    + +
    Raises
    + +
      +
    • polling.TimeoutException: If the FHIR server continually returns a 202 +status indicating in progress until the timeout is reached.
    • +
    + +
    Returns
    + +
    +

    The JSON-formatted HTTP response of a completed export operation + as a dictionary.

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/fhir/utils.html b/docs/v1.0.13/sdk/phdi/fhir/utils.html new file mode 100644 index 0000000000..58b897cba4 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/fhir/utils.html @@ -0,0 +1,803 @@ + + + + + + + phdi.fhir.utils API documentation + + + + + + + + + +
    +
    +

    +phdi.fhir.utils

    + + + + + + +
      1import fhirpathpy
    +  2import json
    +  3import random
    +  4from functools import cache
    +  5from typing import Any, Callable, List, Literal, Union
    +  6
    +  7selection_criteria_types = Literal["first", "last", "random", "all"]
    +  8
    +  9
    + 10def apply_selection_criteria(
    + 11    value: List[Any],
    + 12    selection_criteria: selection_criteria_types,
    + 13) -> str | List:
    + 14    """
    + 15    Returns value(s), according to the selection criteria, from a given list of values
    + 16    parsed from a FHIR resource. A single string value is returned - if the selected
    + 17    value is a complex structure (list or dict), it is converted to a string.
    + 18    :param value: A list containing the values parsed from a FHIR resource.
    + 19    :param selection_criteria: A string indicating which element(s) of a list to select.
    + 20    :return: Value(s) parsed from a FHIR resource that conform to the selection
    + 21      criteria.
    + 22    """
    + 23
    + 24    if selection_criteria == "first":
    + 25        value = value[0]
    + 26    elif selection_criteria == "last":
    + 27        value = value[-1]
    + 28    elif selection_criteria == "random":
    + 29        value = random.choice(value)
    + 30    elif selection_criteria == "all":
    + 31        return value
    + 32    else:
    + 33        raise ValueError(
    + 34            f'Selection criteria {selection_criteria} is not a valid option. Must be one of "first", "last", "random", or "all".'  # noqa
    + 35        )
    + 36
    + 37    # Temporary hack to ensure no structured data is written using pyarrow.
    + 38    # Currently Pyarrow does not support mixing non-structured and structured data.
    + 39    # https://github.com/awslabs/aws-data-wrangler/issues/463
    + 40    # Will need to consider other methods of writing to parquet if this is an essential
    + 41    # feature.
    + 42    if type(value) is dict:  # pragma: no cover
    + 43        value = json.dumps(value)
    + 44    elif type(value) is list:
    + 45        value = ",".join(value)
    + 46    return value
    + 47
    + 48
    + 49def extract_value_with_resource_path(
    + 50    resource: dict,
    + 51    path: str,
    + 52    selection_criteria: Literal["first", "last", "random", "all"] = "first",
    + 53) -> Union[Any, None]:
    + 54    """
    + 55    Yields a single value from a resource based on a provided `fhir_path`.
    + 56    If the path doesn't map to an extant value in the first, returns
    + 57    `None` instead.
    + 58    :param resource: The FHIR resource to extract a value from.
    + 59    :param path: The `fhir_path` at which the value can be found in the
    + 60      resource.
    + 61    :param selection_criteria: A string dictating which value to extract,
    + 62      if multiple values exist at the path location.
    + 63    :return: The extracted value, or `None` if the value doesn't exist.
    + 64    """
    + 65    parse_function = get_fhirpathpy_parser(path)
    + 66    value = parse_function(resource)
    + 67    if len(value) == 0:
    + 68        return None
    + 69    else:
    + 70        value = apply_selection_criteria(value, selection_criteria)
    + 71        return value
    + 72
    + 73
    + 74def find_entries_by_resource_type(bundle: dict, resource_type: str) -> List[dict]:
    + 75    """
    + 76    Collect all entries of a specific type in a bundle of FHIR data and
    + 77    return references to them in a list.
    + 78
    + 79    :param bundle: The FHIR bundle to search for resource entries.
    + 80    :param resource_type: The type of FHIR resource to find.
    + 81    :return: A list holding all entries of the requested resource type that were
    + 82      found in the input bundle.
    + 83    """
    + 84    return [
    + 85        entry
    + 86        for entry in bundle.get("entry", [])
    + 87        if entry.get("resource", {}).get("resourceType", "") == resource_type
    + 88    ]
    + 89
    + 90
    + 91def get_field(
    + 92    resource: dict,
    + 93    field: str,
    + 94    index: int = 1,
    + 95    use: str = None,
    + 96    require_use: bool = True,
    + 97) -> Any:
    + 98    """
    + 99    Finds an instance of the specified field in a given FHIR- formatted JSON dictionary.
    +100    Optionally, a particular "use" of a field can be provided such that only instances
    +101    with that purpose are considered. For example, find the name for a patient that has
    +102    a "use" of "official". "Use" here refers to the FHIR-based usage of classifying a
    +103    value's purpose. If no instance of a field with the requested use case can be found,
    +104    instead return a specified default value for the field.
    +105
    +106    :param resource: A FHIR-formatted resource.
    +107    :param field: The field to extract.
    +108    :param index: The nth element of the field to return. If the index is greater than
    +109      the number of elements in the field, the last element will be returned. If the
    +110      index is less than 1, the first element will be returned. Default: 1.
    +111    :param use: The 'use' the field must have to qualify for selection. Default: None.
    +112    :param require_use: If True and no elements of the specified field have that
    +113      use, none will be returned. If False and no elements of the specified field have
    +114      that use, the nth element as indicated by the index parameter will be returned.
    +115      This parameter is ignored if no use is specified. Default: True.
    +116    :return: The first instance of the field value matching the desired
    +117      use, or a default field value if a match couldn't be found.
    +118    """
    +119    # TODO revisit the `default_field` logic, and confirm this is the best way to handle
    +120    # choosing a default
    +121    if field == "":
    +122        raise ValueError("The field parameter must be a defined, non-empty string.")
    +123    if use == "":
    +124        raise ValueError(
    +125            "The use parameter should be a defined, non-empty string. If you don't want to include a use, set the parameter to None."  # noqa
    +126        )
    +127    if field not in resource:
    +128        raise KeyError(f"This resource does not contain a field called {field}.")
    +129
    +130    elements = resource.get(field, [])
    +131    if use is not None:
    +132        elements_with_use = [item for item in elements if item.get("use") == use]
    +133        if len(elements_with_use) == 0 and require_use:
    +134            return None
    +135        if len(elements_with_use) > 0:
    +136            elements = elements_with_use
    +137
    +138    # min(...) ensures index <= len(elements) and the -1 shifts back to 0-index
    +139    # max(...) ensures the index is not negative
    +140    index = max(min(index, len(elements)) - 1, 0)
    +141
    +142    return elements[index] if len(elements) > 0 else None
    +143
    +144
    +145@cache
    +146def get_fhirpathpy_parser(fhirpath_expression: str) -> Callable:
    +147    """
    +148    Accepts a FHIRPath expression, and returns a callable function
    +149    which returns the evaluated value at fhirpath_expression for
    +150    a specified FHIR resource.
    +151    :param fhirpath_expression: The FHIRPath expression to evaluate.
    +152    :return: A function that, when called passing in a FHIR resource,
    +153      will return value at `fhirpath_expression`.
    +154    """
    +155    return fhirpathpy.compile(fhirpath_expression)
    +156
    +157
    +158def get_one_line_address(address: dict) -> str:
    +159    """
    +160    Extracts a one-line string representation of an address from a
    +161    JSON dictionary holding address information.
    +162
    +163    :param address: The FHIR-formatted address.
    +164    :return: A one-line string representation of an address.
    +165    """
    +166    if len(address) == 0:
    +167        return ""
    +168    raw_one_line = " ".join(address.get("line", []))
    +169    raw_one_line += f" {address.get('city', '')}, {address.get('state', '')}"
    +170    if address.get("postalCode", ""):
    +171        raw_one_line += f" {address['postalCode']}"
    +172    return raw_one_line
    +
    + + +
    +
    + +
    + + def + apply_selection_criteria( value: List[Any], selection_criteria: Literal['first', 'last', 'random', 'all']) -> Union[str, List]: + + + +
    + +
    11def apply_selection_criteria(
    +12    value: List[Any],
    +13    selection_criteria: selection_criteria_types,
    +14) -> str | List:
    +15    """
    +16    Returns value(s), according to the selection criteria, from a given list of values
    +17    parsed from a FHIR resource. A single string value is returned - if the selected
    +18    value is a complex structure (list or dict), it is converted to a string.
    +19    :param value: A list containing the values parsed from a FHIR resource.
    +20    :param selection_criteria: A string indicating which element(s) of a list to select.
    +21    :return: Value(s) parsed from a FHIR resource that conform to the selection
    +22      criteria.
    +23    """
    +24
    +25    if selection_criteria == "first":
    +26        value = value[0]
    +27    elif selection_criteria == "last":
    +28        value = value[-1]
    +29    elif selection_criteria == "random":
    +30        value = random.choice(value)
    +31    elif selection_criteria == "all":
    +32        return value
    +33    else:
    +34        raise ValueError(
    +35            f'Selection criteria {selection_criteria} is not a valid option. Must be one of "first", "last", "random", or "all".'  # noqa
    +36        )
    +37
    +38    # Temporary hack to ensure no structured data is written using pyarrow.
    +39    # Currently Pyarrow does not support mixing non-structured and structured data.
    +40    # https://github.com/awslabs/aws-data-wrangler/issues/463
    +41    # Will need to consider other methods of writing to parquet if this is an essential
    +42    # feature.
    +43    if type(value) is dict:  # pragma: no cover
    +44        value = json.dumps(value)
    +45    elif type(value) is list:
    +46        value = ",".join(value)
    +47    return value
    +
    + + +

    Returns value(s), according to the selection criteria, from a given list of values +parsed from a FHIR resource. A single string value is returned - if the selected +value is a complex structure (list or dict), it is converted to a string.

    + +
    Parameters
    + +
      +
    • value: A list containing the values parsed from a FHIR resource.
    • +
    • selection_criteria: A string indicating which element(s) of a list to select.
    • +
    + +
    Returns
    + +
    +

    Value(s) parsed from a FHIR resource that conform to the selection + criteria.

    +
    +
    + + +
    +
    + +
    + + def + extract_value_with_resource_path( resource: dict, path: str, selection_criteria: Literal['first', 'last', 'random', 'all'] = 'first') -> Optional[Any]: + + + +
    + +
    50def extract_value_with_resource_path(
    +51    resource: dict,
    +52    path: str,
    +53    selection_criteria: Literal["first", "last", "random", "all"] = "first",
    +54) -> Union[Any, None]:
    +55    """
    +56    Yields a single value from a resource based on a provided `fhir_path`.
    +57    If the path doesn't map to an extant value in the first, returns
    +58    `None` instead.
    +59    :param resource: The FHIR resource to extract a value from.
    +60    :param path: The `fhir_path` at which the value can be found in the
    +61      resource.
    +62    :param selection_criteria: A string dictating which value to extract,
    +63      if multiple values exist at the path location.
    +64    :return: The extracted value, or `None` if the value doesn't exist.
    +65    """
    +66    parse_function = get_fhirpathpy_parser(path)
    +67    value = parse_function(resource)
    +68    if len(value) == 0:
    +69        return None
    +70    else:
    +71        value = apply_selection_criteria(value, selection_criteria)
    +72        return value
    +
    + + +

    Yields a single value from a resource based on a provided fhir_path. +If the path doesn't map to an extant value in the first, returns +None instead.

    + +
    Parameters
    + +
      +
    • resource: The FHIR resource to extract a value from.
    • +
    • path: The fhir_path at which the value can be found in the +resource.
    • +
    • selection_criteria: A string dictating which value to extract, +if multiple values exist at the path location.
    • +
    + +
    Returns
    + +
    +

    The extracted value, or None if the value doesn't exist.

    +
    +
    + + +
    +
    + +
    + + def + find_entries_by_resource_type(bundle: dict, resource_type: str) -> List[dict]: + + + +
    + +
    75def find_entries_by_resource_type(bundle: dict, resource_type: str) -> List[dict]:
    +76    """
    +77    Collect all entries of a specific type in a bundle of FHIR data and
    +78    return references to them in a list.
    +79
    +80    :param bundle: The FHIR bundle to search for resource entries.
    +81    :param resource_type: The type of FHIR resource to find.
    +82    :return: A list holding all entries of the requested resource type that were
    +83      found in the input bundle.
    +84    """
    +85    return [
    +86        entry
    +87        for entry in bundle.get("entry", [])
    +88        if entry.get("resource", {}).get("resourceType", "") == resource_type
    +89    ]
    +
    + + +

    Collect all entries of a specific type in a bundle of FHIR data and +return references to them in a list.

    + +
    Parameters
    + +
      +
    • bundle: The FHIR bundle to search for resource entries.
    • +
    • resource_type: The type of FHIR resource to find.
    • +
    + +
    Returns
    + +
    +

    A list holding all entries of the requested resource type that were + found in the input bundle.

    +
    +
    + + +
    +
    + +
    + + def + get_field( resource: dict, field: str, index: int = 1, use: str = None, require_use: bool = True) -> Any: + + + +
    + +
     92def get_field(
    + 93    resource: dict,
    + 94    field: str,
    + 95    index: int = 1,
    + 96    use: str = None,
    + 97    require_use: bool = True,
    + 98) -> Any:
    + 99    """
    +100    Finds an instance of the specified field in a given FHIR- formatted JSON dictionary.
    +101    Optionally, a particular "use" of a field can be provided such that only instances
    +102    with that purpose are considered. For example, find the name for a patient that has
    +103    a "use" of "official". "Use" here refers to the FHIR-based usage of classifying a
    +104    value's purpose. If no instance of a field with the requested use case can be found,
    +105    instead return a specified default value for the field.
    +106
    +107    :param resource: A FHIR-formatted resource.
    +108    :param field: The field to extract.
    +109    :param index: The nth element of the field to return. If the index is greater than
    +110      the number of elements in the field, the last element will be returned. If the
    +111      index is less than 1, the first element will be returned. Default: 1.
    +112    :param use: The 'use' the field must have to qualify for selection. Default: None.
    +113    :param require_use: If True and no elements of the specified field have that
    +114      use, none will be returned. If False and no elements of the specified field have
    +115      that use, the nth element as indicated by the index parameter will be returned.
    +116      This parameter is ignored if no use is specified. Default: True.
    +117    :return: The first instance of the field value matching the desired
    +118      use, or a default field value if a match couldn't be found.
    +119    """
    +120    # TODO revisit the `default_field` logic, and confirm this is the best way to handle
    +121    # choosing a default
    +122    if field == "":
    +123        raise ValueError("The field parameter must be a defined, non-empty string.")
    +124    if use == "":
    +125        raise ValueError(
    +126            "The use parameter should be a defined, non-empty string. If you don't want to include a use, set the parameter to None."  # noqa
    +127        )
    +128    if field not in resource:
    +129        raise KeyError(f"This resource does not contain a field called {field}.")
    +130
    +131    elements = resource.get(field, [])
    +132    if use is not None:
    +133        elements_with_use = [item for item in elements if item.get("use") == use]
    +134        if len(elements_with_use) == 0 and require_use:
    +135            return None
    +136        if len(elements_with_use) > 0:
    +137            elements = elements_with_use
    +138
    +139    # min(...) ensures index <= len(elements) and the -1 shifts back to 0-index
    +140    # max(...) ensures the index is not negative
    +141    index = max(min(index, len(elements)) - 1, 0)
    +142
    +143    return elements[index] if len(elements) > 0 else None
    +
    + + +

    Finds an instance of the specified field in a given FHIR- formatted JSON dictionary. +Optionally, a particular "use" of a field can be provided such that only instances +with that purpose are considered. For example, find the name for a patient that has +a "use" of "official". "Use" here refers to the FHIR-based usage of classifying a +value's purpose. If no instance of a field with the requested use case can be found, +instead return a specified default value for the field.

    + +
    Parameters
    + +
      +
    • resource: A FHIR-formatted resource.
    • +
    • field: The field to extract.
    • +
    • index: The nth element of the field to return. If the index is greater than +the number of elements in the field, the last element will be returned. If the +index is less than 1, the first element will be returned. Default: 1.
    • +
    • use: The 'use' the field must have to qualify for selection. Default: None.
    • +
    • require_use: If True and no elements of the specified field have that +use, none will be returned. If False and no elements of the specified field have +that use, the nth element as indicated by the index parameter will be returned. +This parameter is ignored if no use is specified. Default: True.
    • +
    + +
    Returns
    + +
    +

    The first instance of the field value matching the desired + use, or a default field value if a match couldn't be found.

    +
    +
    + + +
    +
    + +
    +
    @cache
    + + def + get_fhirpathpy_parser(fhirpath_expression: str) -> Callable: + + + +
    + +
    146@cache
    +147def get_fhirpathpy_parser(fhirpath_expression: str) -> Callable:
    +148    """
    +149    Accepts a FHIRPath expression, and returns a callable function
    +150    which returns the evaluated value at fhirpath_expression for
    +151    a specified FHIR resource.
    +152    :param fhirpath_expression: The FHIRPath expression to evaluate.
    +153    :return: A function that, when called passing in a FHIR resource,
    +154      will return value at `fhirpath_expression`.
    +155    """
    +156    return fhirpathpy.compile(fhirpath_expression)
    +
    + + +

    Accepts a FHIRPath expression, and returns a callable function +which returns the evaluated value at fhirpath_expression for +a specified FHIR resource.

    + +
    Parameters
    + +
      +
    • fhirpath_expression: The FHIRPath expression to evaluate.
    • +
    + +
    Returns
    + +
    +

    A function that, when called passing in a FHIR resource, + will return value at fhirpath_expression.

    +
    +
    + + +
    +
    + +
    + + def + get_one_line_address(address: dict) -> str: + + + +
    + +
    159def get_one_line_address(address: dict) -> str:
    +160    """
    +161    Extracts a one-line string representation of an address from a
    +162    JSON dictionary holding address information.
    +163
    +164    :param address: The FHIR-formatted address.
    +165    :return: A one-line string representation of an address.
    +166    """
    +167    if len(address) == 0:
    +168        return ""
    +169    raw_one_line = " ".join(address.get("line", []))
    +170    raw_one_line += f" {address.get('city', '')}, {address.get('state', '')}"
    +171    if address.get("postalCode", ""):
    +172        raw_one_line += f" {address['postalCode']}"
    +173    return raw_one_line
    +
    + + +

    Extracts a one-line string representation of an address from a +JSON dictionary holding address information.

    + +
    Parameters
    + +
      +
    • address: The FHIR-formatted address.
    • +
    + +
    Returns
    + +
    +

    A one-line string representation of an address.

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/geospatial.html b/docs/v1.0.13/sdk/phdi/geospatial.html new file mode 100644 index 0000000000..87cff18a2d --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/geospatial.html @@ -0,0 +1,1293 @@ + + + + + + + phdi.geospatial API documentation + + + + + + + + + +
    +
    +

    +phdi.geospatial

    + + + + + + +
     1from phdi.geospatial.core import GeocodeResult, BaseGeocodeClient
    + 2from phdi.geospatial.smarty import SmartyGeocodeClient
    + 3from phdi.geospatial.census import CensusGeocodeClient
    + 4
    + 5__all__ = (
    + 6    "GeocodeResult",
    + 7    "BaseGeocodeClient",
    + 8    "SmartyGeocodeClient",
    + 9    "CensusGeocodeClient",
    +10)
    +
    + + +
    +
    + +
    +
    @dataclass
    + + class + GeocodeResult: + + + +
    + +
     7@dataclass
    + 8class GeocodeResult:
    + 9    """
    +10    Represents a successful geocoding response.
    +11    Based on the field nomenclature of a FHIR address, specified at
    +12    https://www.hl7.org/fhir/datatypes.html#Address.
    +13    """
    +14
    +15    line: List[str]
    +16    city: str
    +17    state: str
    +18    postal_code: str
    +19    county_fips: str
    +20    lat: float
    +21    lng: float
    +22    district: Optional[str] = None
    +23    country: Optional[str] = None
    +24    county_name: Optional[str] = None
    +25    precision: Optional[str] = None
    +26    geoid: Optional[str] = None
    +27    census_tract: Optional[str] = None
    +28    census_block: Optional[str] = None
    +
    + + +

    Represents a successful geocoding response. +Based on the field nomenclature of a FHIR address, specified at +https://www.hl7.org/fhir/datatypes.html#Address.

    +
    + + +
    +
    + + GeocodeResult( line: List[str], city: str, state: str, postal_code: str, county_fips: str, lat: float, lng: float, district: Optional[str] = None, country: Optional[str] = None, county_name: Optional[str] = None, precision: Optional[str] = None, geoid: Optional[str] = None, census_tract: Optional[str] = None, census_block: Optional[str] = None) + + +
    + + + + +
    +
    +
    + +
    + + class + BaseGeocodeClient(abc.ABC): + + + +
    + +
    31class BaseGeocodeClient(ABC):
    +32    """
    +33    Represents a vendor-agnostic geocoder client. Requires implementing
    +34    classes to define methods to geocode from both strings and dictionaries.
    +35    Callers should use the provided interface functions (e.g., geocode_from_str)
    +36    to interact with the underlying vendor-specific client property.
    +37    """
    +38
    +39    @abstractmethod
    +40    def geocode_from_str(self, address: str) -> Union[GeocodeResult, None]:
    +41        """
    +42        Geocodes the provided address, which is formatted as a string.
    +43
    +44        :param address: The address to geocode, given as a string.
    +45        :param overwrite: If true, `resource` is modified in-place;
    +46          if false, a copy of `resource` modified and returned.  Default: `True`
    +47        :return: A geocoded address (if valid result) or None (if no valid result).
    +48        """
    +49        pass  # pragma: no cover
    +50
    +51    @abstractmethod
    +52    def geocode_from_dict(self, address: dict) -> Union[GeocodeResult, None]:
    +53        """
    +54        Geocodes the provided address, which is formatted as a dictionary.
    +55
    +56        The given dictionary should conform to standard nomenclature around address
    +57        fields, including:
    +58
    +59        * `street`: the number and street address
    +60        * `street2`: additional street level information (if needed)
    +61        * `apartment`: apartment or suite number (if needed)
    +62        * `city`: city to geocode
    +63        * `state`: state to geocode
    +64        * `postal_code`: the postal code to use
    +65        * `urbanization`: urbanization code for area, sector, or regional
    +66        * `development`: (only used for Puerto Rican addresses)
    +67
    +68        There is no minimum number of fields that must be specified to use this
    +69        function; however, a minimum of street, city, and state are suggested
    +70        for the best matches.
    +71
    +72        :param address: A dictionary with fields outlined above.
    +73        :return: A geocoded address (if valid result) or None (if no valid result).
    +74        """
    +75        pass  # pragma: no cover
    +
    + + +

    Represents a vendor-agnostic geocoder client. Requires implementing +classes to define methods to geocode from both strings and dictionaries. +Callers should use the provided interface functions (e.g., geocode_from_str) +to interact with the underlying vendor-specific client property.

    +
    + + +
    + +
    +
    @abstractmethod
    + + def + geocode_from_str(self, address: str) -> Optional[phdi.geospatial.GeocodeResult]: + + + +
    + +
    39    @abstractmethod
    +40    def geocode_from_str(self, address: str) -> Union[GeocodeResult, None]:
    +41        """
    +42        Geocodes the provided address, which is formatted as a string.
    +43
    +44        :param address: The address to geocode, given as a string.
    +45        :param overwrite: If true, `resource` is modified in-place;
    +46          if false, a copy of `resource` modified and returned.  Default: `True`
    +47        :return: A geocoded address (if valid result) or None (if no valid result).
    +48        """
    +49        pass  # pragma: no cover
    +
    + + +

    Geocodes the provided address, which is formatted as a string.

    + +
    Parameters
    + +
      +
    • address: The address to geocode, given as a string.
    • +
    • overwrite: If true, resource is modified in-place; +if false, a copy of resource modified and returned. Default: True
    • +
    + +
    Returns
    + +
    +

    A geocoded address (if valid result) or None (if no valid result).

    +
    +
    + + +
    +
    + +
    +
    @abstractmethod
    + + def + geocode_from_dict(self, address: dict) -> Optional[phdi.geospatial.GeocodeResult]: + + + +
    + +
    51    @abstractmethod
    +52    def geocode_from_dict(self, address: dict) -> Union[GeocodeResult, None]:
    +53        """
    +54        Geocodes the provided address, which is formatted as a dictionary.
    +55
    +56        The given dictionary should conform to standard nomenclature around address
    +57        fields, including:
    +58
    +59        * `street`: the number and street address
    +60        * `street2`: additional street level information (if needed)
    +61        * `apartment`: apartment or suite number (if needed)
    +62        * `city`: city to geocode
    +63        * `state`: state to geocode
    +64        * `postal_code`: the postal code to use
    +65        * `urbanization`: urbanization code for area, sector, or regional
    +66        * `development`: (only used for Puerto Rican addresses)
    +67
    +68        There is no minimum number of fields that must be specified to use this
    +69        function; however, a minimum of street, city, and state are suggested
    +70        for the best matches.
    +71
    +72        :param address: A dictionary with fields outlined above.
    +73        :return: A geocoded address (if valid result) or None (if no valid result).
    +74        """
    +75        pass  # pragma: no cover
    +
    + + +

    Geocodes the provided address, which is formatted as a dictionary.

    + +

    The given dictionary should conform to standard nomenclature around address +fields, including:

    + +
      +
    • street: the number and street address
    • +
    • street2: additional street level information (if needed)
    • +
    • apartment: apartment or suite number (if needed)
    • +
    • city: city to geocode
    • +
    • state: state to geocode
    • +
    • postal_code: the postal code to use
    • +
    • urbanization: urbanization code for area, sector, or regional
    • +
    • development: (only used for Puerto Rican addresses)
    • +
    + +

    There is no minimum number of fields that must be specified to use this +function; however, a minimum of street, city, and state are suggested +for the best matches.

    + +
    Parameters
    + +
      +
    • address: A dictionary with fields outlined above.
    • +
    + +
    Returns
    + +
    +

    A geocoded address (if valid result) or None (if no valid result).

    +
    +
    + + +
    +
    +
    + +
    + + class + SmartyGeocodeClient(phdi.geospatial.BaseGeocodeClient): + + + +
    + +
     10class SmartyGeocodeClient(BaseGeocodeClient):
    + 11    """
    + 12    Represents a PHDI-supplied geocoding client using the Smarty API.
    + 13    Requires an authorization ID as well as an authentication token
    + 14    in order to build a street lookup client.
    + 15    """
    + 16
    + 17    def __init__(
    + 18        self,
    + 19        smarty_auth_id: str,
    + 20        smarty_auth_token: str,
    + 21        licenses: list[str] = ["us-standard-cloud"],
    + 22    ):
    + 23        self.smarty_auth_id = smarty_auth_id
    + 24        self.smarty_auth_token = smarty_auth_token
    + 25        creds = StaticCredentials(smarty_auth_id, smarty_auth_token)
    + 26        self.__client = (
    + 27            ClientBuilder(creds).with_licenses(licenses).build_us_street_api_client()
    + 28        )
    + 29
    + 30    @property
    + 31    def client(self) -> us_street.Client:
    + 32        """
    + 33        This property:
    + 34          1. defines a private instance variable __client
    + 35          2. makes it accessible through the use of .client()
    + 36
    + 37        This property holds a Smarty-specific connection client that
    + 38        allows a user to geocode without directly referencing the
    + 39        underlying vendor service client.
    + 40        """
    + 41        return self.__client
    + 42
    + 43    def geocode_from_str(self, address: str) -> Union[GeocodeResult, None]:
    + 44        """
    + 45        Geocodes the provided address, which is formatted as a string. If the
    + 46        result cannot be latitude- or longitude-located, then Smarty failed
    + 47        to precisely geocode the address, so no result is returned. Raises
    + 48        an error if the provided address is empty.
    + 49
    + 50        :param address: The address to geocode, given as a string.
    + 51        :raises ValueError: When the address does not include street number and name.
    + 52        :return: A geocoded address (if valid result) or None (if no valid result).
    + 53        """
    + 54
    + 55        # The smarty Lookup class will parse a BadRequestError but retry
    + 56        # 5 times if the lookup address is blank, so catch that here
    + 57        if address == "":
    + 58            raise ValueError("Address must include street number and name at a minimum")
    + 59
    + 60        lookup = Lookup(street=address)
    + 61        self.__client.send_lookup(lookup)
    + 62        return self._parse_smarty_result(lookup)
    + 63
    + 64    def geocode_from_dict(self, address: dict) -> Union[GeocodeResult, None]:
    + 65        """
    + 66        Geocodes the provided address, which is formatted as a dictionary.
    + 67
    + 68        The given dictionary should conform to standard nomenclature around address
    + 69        fields, including:
    + 70
    + 71        * `street`: the number and street address
    + 72        * `street2`: additional street level information (if needed)
    + 73        * `apartment`: apartment or suite number (if needed)
    + 74        * `city`: city to geocode
    + 75        * `state`: state to geocode
    + 76        * `postal_code`: the postal code to use
    + 77        * `urbanization`: urbanization code for area, sector, or regional
    + 78        * `development`: (only used for Puerto Rican addresses)
    + 79
    + 80        There is no minimum number of fields that must be specified to use this
    + 81        function; however, a minimum of street, city, and state are suggested
    + 82        for the best matches.
    + 83
    + 84        :param address: A dictionary with fields outlined above.
    + 85        :raises Exception: When the address street is an empty string.
    + 86        :return: A geocoded address (if valid result) or None (if no valid result).
    + 87        """
    + 88
    + 89        # Smarty geocode requests must include a street level
    + 90        # field in the payload, otherwise generates BadRequestError
    + 91        if address.get("street", "") == "":
    + 92            raise ValueError("Address must include street number and name at a minimum")
    + 93
    + 94        # Configure the lookup with whatever provided address values
    + 95        # were in the user-given dictionary
    + 96        lookup = Lookup()
    + 97        lookup.street = address.get("street", "")
    + 98        lookup.street2 = address.get("street2", "")
    + 99        lookup.secondary = address.get("apartment", "")
    +100        lookup.city = address.get("city", "")
    +101        lookup.state = address.get("state", "")
    +102        lookup.zipcode = address.get("postal_code", "")
    +103        lookup.urbanization = address.get("urbanization", "")
    +104        lookup.match = "strict"
    +105
    +106        self.__client.send_lookup(lookup)
    +107        return self._parse_smarty_result(lookup)
    +108
    +109    @staticmethod
    +110    def _parse_smarty_result(lookup) -> Union[GeocodeResult, None]:
    +111        """
    +112        Parses a returned Smarty geocoding result into a GeocodeResult object.
    +113        If the Smarty lookup is null or doesn't include latitude and longitude
    +114        information, returns None instead.
    +115
    +116        :param lookup: The us_street.lookup client instantiated for geocoding.
    +117        :return: The geocoded address (if valid result) or None (if no valid result).
    +118        """
    +119        # Valid responses have results with lat/long
    +120        if lookup.result and lookup.result[0].metadata.latitude:
    +121            smartystreets_result = lookup.result[0]
    +122            street_address = [smartystreets_result.delivery_line_1]
    +123            if smartystreets_result.delivery_line_2:
    +124                street_address.append(smartystreets_result.delivery_line_2)
    +125
    +126            # Format the Smarty result into our standard dataclass object
    +127            return GeocodeResult(
    +128                line=street_address,
    +129                city=smartystreets_result.components.city_name,
    +130                state=smartystreets_result.components.state_abbreviation,
    +131                postal_code=smartystreets_result.components.zipcode,
    +132                county_fips=smartystreets_result.metadata.county_fips,
    +133                county_name=smartystreets_result.metadata.county_name,
    +134                lat=smartystreets_result.metadata.latitude,
    +135                lng=smartystreets_result.metadata.longitude,
    +136                precision=smartystreets_result.metadata.precision,
    +137            )
    +138
    +139        return
    +
    + + +

    Represents a PHDI-supplied geocoding client using the Smarty API. +Requires an authorization ID as well as an authentication token +in order to build a street lookup client.

    +
    + + +
    + +
    + + SmartyGeocodeClient( smarty_auth_id: str, smarty_auth_token: str, licenses: list[str] = ['us-standard-cloud']) + + + +
    + +
    17    def __init__(
    +18        self,
    +19        smarty_auth_id: str,
    +20        smarty_auth_token: str,
    +21        licenses: list[str] = ["us-standard-cloud"],
    +22    ):
    +23        self.smarty_auth_id = smarty_auth_id
    +24        self.smarty_auth_token = smarty_auth_token
    +25        creds = StaticCredentials(smarty_auth_id, smarty_auth_token)
    +26        self.__client = (
    +27            ClientBuilder(creds).with_licenses(licenses).build_us_street_api_client()
    +28        )
    +
    + + + + +
    +
    +
    + client: smartystreets_python_sdk.us_street.client.Client + + +
    + + +

    This property:

    + +
      +
    1. defines a private instance variable __client
    2. +
    3. makes it accessible through the use of .client()
    4. +
    + +

    This property holds a Smarty-specific connection client that +allows a user to geocode without directly referencing the +underlying vendor service client.

    +
    + + +
    +
    + +
    + + def + geocode_from_str(self, address: str) -> Optional[phdi.geospatial.GeocodeResult]: + + + +
    + +
    43    def geocode_from_str(self, address: str) -> Union[GeocodeResult, None]:
    +44        """
    +45        Geocodes the provided address, which is formatted as a string. If the
    +46        result cannot be latitude- or longitude-located, then Smarty failed
    +47        to precisely geocode the address, so no result is returned. Raises
    +48        an error if the provided address is empty.
    +49
    +50        :param address: The address to geocode, given as a string.
    +51        :raises ValueError: When the address does not include street number and name.
    +52        :return: A geocoded address (if valid result) or None (if no valid result).
    +53        """
    +54
    +55        # The smarty Lookup class will parse a BadRequestError but retry
    +56        # 5 times if the lookup address is blank, so catch that here
    +57        if address == "":
    +58            raise ValueError("Address must include street number and name at a minimum")
    +59
    +60        lookup = Lookup(street=address)
    +61        self.__client.send_lookup(lookup)
    +62        return self._parse_smarty_result(lookup)
    +
    + + +

    Geocodes the provided address, which is formatted as a string. If the +result cannot be latitude- or longitude-located, then Smarty failed +to precisely geocode the address, so no result is returned. Raises +an error if the provided address is empty.

    + +
    Parameters
    + +
      +
    • address: The address to geocode, given as a string.
    • +
    + +
    Raises
    + +
      +
    • ValueError: When the address does not include street number and name.
    • +
    + +
    Returns
    + +
    +

    A geocoded address (if valid result) or None (if no valid result).

    +
    +
    + + +
    +
    + +
    + + def + geocode_from_dict(self, address: dict) -> Optional[phdi.geospatial.GeocodeResult]: + + + +
    + +
     64    def geocode_from_dict(self, address: dict) -> Union[GeocodeResult, None]:
    + 65        """
    + 66        Geocodes the provided address, which is formatted as a dictionary.
    + 67
    + 68        The given dictionary should conform to standard nomenclature around address
    + 69        fields, including:
    + 70
    + 71        * `street`: the number and street address
    + 72        * `street2`: additional street level information (if needed)
    + 73        * `apartment`: apartment or suite number (if needed)
    + 74        * `city`: city to geocode
    + 75        * `state`: state to geocode
    + 76        * `postal_code`: the postal code to use
    + 77        * `urbanization`: urbanization code for area, sector, or regional
    + 78        * `development`: (only used for Puerto Rican addresses)
    + 79
    + 80        There is no minimum number of fields that must be specified to use this
    + 81        function; however, a minimum of street, city, and state are suggested
    + 82        for the best matches.
    + 83
    + 84        :param address: A dictionary with fields outlined above.
    + 85        :raises Exception: When the address street is an empty string.
    + 86        :return: A geocoded address (if valid result) or None (if no valid result).
    + 87        """
    + 88
    + 89        # Smarty geocode requests must include a street level
    + 90        # field in the payload, otherwise generates BadRequestError
    + 91        if address.get("street", "") == "":
    + 92            raise ValueError("Address must include street number and name at a minimum")
    + 93
    + 94        # Configure the lookup with whatever provided address values
    + 95        # were in the user-given dictionary
    + 96        lookup = Lookup()
    + 97        lookup.street = address.get("street", "")
    + 98        lookup.street2 = address.get("street2", "")
    + 99        lookup.secondary = address.get("apartment", "")
    +100        lookup.city = address.get("city", "")
    +101        lookup.state = address.get("state", "")
    +102        lookup.zipcode = address.get("postal_code", "")
    +103        lookup.urbanization = address.get("urbanization", "")
    +104        lookup.match = "strict"
    +105
    +106        self.__client.send_lookup(lookup)
    +107        return self._parse_smarty_result(lookup)
    +
    + + +

    Geocodes the provided address, which is formatted as a dictionary.

    + +

    The given dictionary should conform to standard nomenclature around address +fields, including:

    + +
      +
    • street: the number and street address
    • +
    • street2: additional street level information (if needed)
    • +
    • apartment: apartment or suite number (if needed)
    • +
    • city: city to geocode
    • +
    • state: state to geocode
    • +
    • postal_code: the postal code to use
    • +
    • urbanization: urbanization code for area, sector, or regional
    • +
    • development: (only used for Puerto Rican addresses)
    • +
    + +

    There is no minimum number of fields that must be specified to use this +function; however, a minimum of street, city, and state are suggested +for the best matches.

    + +
    Parameters
    + +
      +
    • address: A dictionary with fields outlined above.
    • +
    + +
    Raises
    + +
      +
    • Exception: When the address street is an empty string.
    • +
    + +
    Returns
    + +
    +

    A geocoded address (if valid result) or None (if no valid result).

    +
    +
    + + +
    +
    +
    + +
    + + class + CensusGeocodeClient(phdi.geospatial.BaseGeocodeClient): + + + +
    + +
      9class CensusGeocodeClient(BaseGeocodeClient):
    + 10    """
    + 11    Implementation of a geocoding client using the Census API.
    + 12    """
    + 13
    + 14    def __init__(self):
    + 15        self.__client = ()
    + 16
    + 17    def geocode_from_str(self, address: str) -> Union[GeocodeResult, None]:
    + 18        """
    + 19        Geocodes a string-formatted address using Census API with searchtype =
    + 20        "onelineaddress". If a result is found, encodes as a GeocodeResult object and
    + 21        return, otherwise the return None.
    + 22
    + 23        :param address: The address to geocode, given as a string.
    + 24        :param searchtype: onelineaddress OR address # doesn't yet support coordinates.
    + 25        :raises ValueError: If address does not include street number and name.
    + 26        :return: A standardized address enriched with lat, lon, census tract, and more.
    + 27            Returns None if no valid result.
    + 28        """
    + 29        # Check for street num and name at minimum
    + 30        if address == "":
    + 31            raise ValueError("Address must include street number and name at a minimum")
    + 32
    + 33        formatted_address = self._format_address(address, searchtype="onelineaddress")
    + 34        url = self._get_url(formatted_address)
    + 35        response = self._call_census_api(url)
    + 36
    + 37        return self._parse_census_result(response)
    + 38
    + 39    def geocode_from_dict(self, address: dict) -> Union[GeocodeResult, None]:
    + 40        """
    + 41        Geocodes the provided address, which is formatted as a dictionary.
    + 42        using the Census API with searchtype = "address". If a result is found, encodes
    + 43        as a GeocodeResult object and return, otherwise returns None.
    + 44
    + 45        The given dictionary should conform to standard nomenclature around address
    + 46        fields, including:
    + 47
    + 48        * `street`: the number and street address
    + 49        * `street2`: additional street level information (if needed)
    + 50        * `apartment`: apartment or suite number (if needed)
    + 51        * `city`: city to geocode
    + 52        * `state`: state to geocode
    + 53        * `postal_code`: the postal code to use
    + 54        * `urbanization`: urbanization code for area, sector, or regional
    + 55        * `development`: (only used for Puerto Rican addresses)
    + 56
    + 57        Street must be included to use this function; however, a minimum of street,
    + 58        city, and state are suggested for the best matches.
    + 59
    + 60        :param address: A dictionary with fields outlined above.
    + 61        :raises ValueError: If address does not include street number and name.
    + 62        :return: A standardized address enriched with lat, lon, census tract, and more.
    + 63            Returns None if no valid result.
    + 64        """
    + 65
    + 66        # Check for street num and name at minimum
    + 67        if address.get("street", "") == "":
    + 68            raise ValueError("Address must include street number and name at a minimum")
    + 69
    + 70        # Configure the lookup with whatever provided address values
    + 71        # were in the user-given dictionary
    + 72        formatted_address = self._format_address(address, searchtype="address")
    + 73        url = self._get_url(formatted_address)
    + 74        response = self._call_census_api(url)
    + 75
    + 76        return self._parse_census_result(response)
    + 77
    + 78    @staticmethod
    + 79    def _format_address(
    + 80        address: Union[str, dict], searchtype: Literal["onelineaddress", "address"]
    + 81    ):
    + 82        """
    + 83        Formats an address for Census API call according to the given address type. A
    + 84        single line address, e.g, "100 5th Ave New York, NY" uses the "onelineaddress"
    + 85        searchtype while a dictionary formatted address uses the "address" searchtype.
    + 86
    + 87        :param address: The address to geocode, given as a string or dictionary.
    + 88        :param searchtype: onelineaddress OR address.
    + 89        :raises ValueError: If address cannot be geocoded with specificity because it
    + 90            does not include city, state, and/or zipcode.
    + 91        :return: A properly formatted address for the Census API call, given as a
    + 92            string.
    + 93        """
    + 94        # Check that the address contains structure number and street name
    + 95        if searchtype == "onelineaddress":
    + 96            address = address.replace(" ", "+").replace(",", "%2C")
    + 97            return f"onelineaddress?address={address}"
    + 98        elif searchtype == "address" and type(address) is dict:
    + 99            street = address.get("street", "").replace(" ", "+").replace(",", "%2C")
    +100            city = address.get("city", "").replace(" ", "+").replace(",", "%2C")
    +101            state = address.get("state", "").replace(" ", "+").replace(",", "%2C")
    +102            zip = address.get("zip", "").replace(" ", "+").replace(",", "%2C")
    +103
    +104            # If only "street" is present, format address with
    +105            # searchtype = "onelineaddress"
    +106            if any(element != "" for element in [city, state, zip]):
    +107                # Add non-empty elements
    +108                formatted_address = f"address?street={street}"
    +109                for element in [city, state, zip]:
    +110                    if element == "":
    +111                        continue
    +112                    else:
    +113                        if element == city:
    +114                            formatted_address += f"&city={city}"
    +115                        elif element == state:
    +116                            formatted_address += f"&state={state}"
    +117                        elif element == zip:
    +118                            formatted_address += f"&zip={zip}"
    +119                return formatted_address
    +120
    +121            else:
    +122                return f"onelineaddress?address={street}"
    +123
    +124    @staticmethod
    +125    def _get_url(address: str):
    +126        """
    +127        Gets URL for Census API given inputs.
    +128
    +129        :param address: The formatted address to geocode, given as a string.
    +130        :return: A URL for the Census API request, as a string.
    +131        """
    +132        url = (
    +133            f"https://geocoding.geo.census.gov/geocoder/geographies/{address}"
    +134            + "&benchmark=Public_AR_Census2020"
    +135            + "&vintage=Census2020_Census2020"
    +136            + "&layers=[10]"
    +137            + "&format=json"
    +138        )
    +139        return url
    +140
    +141    @staticmethod
    +142    def _call_census_api(url):
    +143        """
    +144        Calls the Census endpoint with a given URL using the http_request_with_retry
    +145        method.
    +146
    +147        :param url: A URL for the Census API request, as a string.
    +148        :raises requests.HTTPError: If an unexpected status code is returned.
    +149        :return: A response from queried endpoint.
    +150        """
    +151        http_url = url
    +152        http_action = "GET"
    +153        http_header = {"some-header": "some-header-value"}
    +154        http_retry_count = 5
    +155
    +156        response = http_request_with_retry(
    +157            http_url,
    +158            http_retry_count,
    +159            http_action,
    +160            [http_action],
    +161            http_header,
    +162        )
    +163
    +164        if response.status_code != 200:
    +165            raise requests.HTTPError(response=response)
    +166        else:
    +167            return response.json()["result"]
    +168
    +169    @staticmethod
    +170    def _parse_census_result(lookup) -> Union[GeocodeResult, None]:
    +171        """
    +172        Parses a returned Census geocoding result into our standardized GeocodeResult
    +173        class. If the Census lookup is null or doesn't include matched address
    +174        information, returns None instead.
    +175
    +176        :param response: The Census API client instantiated for geocoding.
    +177        :return: A parsed and standardized address enriched with lat, lon, census tract,
    +178             and more. Returns None if no valid result.
    +179        """
    +180
    +181        if lookup is not None and lookup.get("addressMatches"):
    +182            addressComponents = lookup.get("addressMatches", [{}])[0].get(
    +183                "addressComponents", {}
    +184            )
    +185            blockComponents = (
    +186                lookup.get("addressMatches", [{}])[0]
    +187                .get("geographies", {})
    +188                .get("Census Blocks", [None])[0]
    +189            )
    +190            tractComponents = (
    +191                lookup.get("addressMatches", [{}])[0]
    +192                .get("geographies", {})
    +193                .get("Census Tracts", [None])[0]
    +194            )
    +195            countyComponents = (
    +196                lookup.get("addressMatches", [{}])[0]
    +197                .get("geographies", {})
    +198                .get("Counties", [None])[0]
    +199            )
    +200            coordinateComponents = lookup.get("addressMatches", [{}])[0].get(
    +201                "coordinates", {}
    +202            )
    +203
    +204            # Format the Census result into our standard dataclass object
    +205            return GeocodeResult(
    +206                line=[
    +207                    lookup["addressMatches"][0]["matchedAddress"].split(",")[0].strip()
    +208                ],
    +209                city=addressComponents.get("city", ""),
    +210                state=addressComponents.get("state", ""),
    +211                postal_code=addressComponents.get("zip", ""),
    +212                county_fips=blockComponents.get("STATE", "")
    +213                + blockComponents.get("COUNTY", ""),
    +214                county_name=countyComponents.get("BASENAME", ""),
    +215                lat=coordinateComponents.get("y", None),
    +216                lng=coordinateComponents.get("x", None),
    +217                geoid=blockComponents.get("GEOID", ""),
    +218                census_tract=tractComponents.get("BASENAME", ""),
    +219                census_block=blockComponents.get("BASENAME", ""),
    +220            )
    +
    + + +

    Implementation of a geocoding client using the Census API.

    +
    + + +
    + +
    + + def + geocode_from_str(self, address: str) -> Optional[phdi.geospatial.GeocodeResult]: + + + +
    + +
    17    def geocode_from_str(self, address: str) -> Union[GeocodeResult, None]:
    +18        """
    +19        Geocodes a string-formatted address using Census API with searchtype =
    +20        "onelineaddress". If a result is found, encodes as a GeocodeResult object and
    +21        return, otherwise the return None.
    +22
    +23        :param address: The address to geocode, given as a string.
    +24        :param searchtype: onelineaddress OR address # doesn't yet support coordinates.
    +25        :raises ValueError: If address does not include street number and name.
    +26        :return: A standardized address enriched with lat, lon, census tract, and more.
    +27            Returns None if no valid result.
    +28        """
    +29        # Check for street num and name at minimum
    +30        if address == "":
    +31            raise ValueError("Address must include street number and name at a minimum")
    +32
    +33        formatted_address = self._format_address(address, searchtype="onelineaddress")
    +34        url = self._get_url(formatted_address)
    +35        response = self._call_census_api(url)
    +36
    +37        return self._parse_census_result(response)
    +
    + + +

    Geocodes a string-formatted address using Census API with searchtype = +"onelineaddress". If a result is found, encodes as a GeocodeResult object and +return, otherwise the return None.

    + +
    Parameters
    + +
      +
    • address: The address to geocode, given as a string.
    • +
    • searchtype: onelineaddress OR address # doesn't yet support coordinates.
    • +
    + +
    Raises
    + +
      +
    • ValueError: If address does not include street number and name.
    • +
    + +
    Returns
    + +
    +

    A standardized address enriched with lat, lon, census tract, and more. + Returns None if no valid result.

    +
    +
    + + +
    +
    + +
    + + def + geocode_from_dict(self, address: dict) -> Optional[phdi.geospatial.GeocodeResult]: + + + +
    + +
    39    def geocode_from_dict(self, address: dict) -> Union[GeocodeResult, None]:
    +40        """
    +41        Geocodes the provided address, which is formatted as a dictionary.
    +42        using the Census API with searchtype = "address". If a result is found, encodes
    +43        as a GeocodeResult object and return, otherwise returns None.
    +44
    +45        The given dictionary should conform to standard nomenclature around address
    +46        fields, including:
    +47
    +48        * `street`: the number and street address
    +49        * `street2`: additional street level information (if needed)
    +50        * `apartment`: apartment or suite number (if needed)
    +51        * `city`: city to geocode
    +52        * `state`: state to geocode
    +53        * `postal_code`: the postal code to use
    +54        * `urbanization`: urbanization code for area, sector, or regional
    +55        * `development`: (only used for Puerto Rican addresses)
    +56
    +57        Street must be included to use this function; however, a minimum of street,
    +58        city, and state are suggested for the best matches.
    +59
    +60        :param address: A dictionary with fields outlined above.
    +61        :raises ValueError: If address does not include street number and name.
    +62        :return: A standardized address enriched with lat, lon, census tract, and more.
    +63            Returns None if no valid result.
    +64        """
    +65
    +66        # Check for street num and name at minimum
    +67        if address.get("street", "") == "":
    +68            raise ValueError("Address must include street number and name at a minimum")
    +69
    +70        # Configure the lookup with whatever provided address values
    +71        # were in the user-given dictionary
    +72        formatted_address = self._format_address(address, searchtype="address")
    +73        url = self._get_url(formatted_address)
    +74        response = self._call_census_api(url)
    +75
    +76        return self._parse_census_result(response)
    +
    + + +

    Geocodes the provided address, which is formatted as a dictionary. +using the Census API with searchtype = "address". If a result is found, encodes +as a GeocodeResult object and return, otherwise returns None.

    + +

    The given dictionary should conform to standard nomenclature around address +fields, including:

    + +
      +
    • street: the number and street address
    • +
    • street2: additional street level information (if needed)
    • +
    • apartment: apartment or suite number (if needed)
    • +
    • city: city to geocode
    • +
    • state: state to geocode
    • +
    • postal_code: the postal code to use
    • +
    • urbanization: urbanization code for area, sector, or regional
    • +
    • development: (only used for Puerto Rican addresses)
    • +
    + +

    Street must be included to use this function; however, a minimum of street, +city, and state are suggested for the best matches.

    + +
    Parameters
    + +
      +
    • address: A dictionary with fields outlined above.
    • +
    + +
    Raises
    + +
      +
    • ValueError: If address does not include street number and name.
    • +
    + +
    Returns
    + +
    +

    A standardized address enriched with lat, lon, census tract, and more. + Returns None if no valid result.

    +
    +
    + + +
    +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/harmonization.html b/docs/v1.0.13/sdk/phdi/harmonization.html new file mode 100644 index 0000000000..9c3fe7457b --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/harmonization.html @@ -0,0 +1,3179 @@ + + + + + + + phdi.harmonization API documentation + + + + + + + + + +
    +
    +

    +phdi.harmonization

    + + + + + + +
     1from phdi.harmonization.hl7 import (
    + 2    convert_hl7_batch_messages_to_list,
    + 3    default_hl7_value,
    + 4    normalize_hl7_datetime,
    + 5    normalize_hl7_datetime_segment,
    + 6    standardize_hl7_datetimes,
    + 7)
    + 8from phdi.harmonization.standardization import (
    + 9    double_metaphone_string,
    +10    standardize_country_code,
    +11    standardize_name,
    +12    standardize_phone,
    +13    standardize_birth_date,
    +14)
    +15from phdi.harmonization.double_metaphone import DoubleMetaphone
    +16
    +17from phdi.harmonization.utils import compare_strings
    +18
    +19__all__ = (
    +20    "standardize_hl7_datetimes",
    +21    "normalize_hl7_datetime_segment",
    +22    "normalize_hl7_datetime",
    +23    "default_hl7_value",
    +24    "convert_hl7_batch_messages_to_list",
    +25    "standardize_country_code",
    +26    "standardize_phone",
    +27    "standardize_name",
    +28    "double_metaphone_string",
    +29    "compare_strings",
    +30    "DoubleMetaphone",
    +31    "standardize_birth_date",
    +32)
    +
    + + +
    +
    + +
    + + def + standardize_hl7_datetimes(message: str) -> str: + + + +
    + +
     9def standardize_hl7_datetimes(message: str) -> str:
    +10    """
    +11    Prepares an HL7 message for conversion by normalizing / sanitizing
    +12    fields that are known to contain datetime data in problematic formats. This
    +13    function helps messages conform to expectations.
    +14
    +15    This function accepts either segments terminated by `\\r` or `\\n`, but always
    +16    returns data with `\\n` as the segment terminator.
    +17
    +18    :param message: The raw HL7 message to sanitize.
    +19    :return: The HL7 message with potential problem formats resolved. If the function
    +20      is unable to parse a date, the original value is retained.
    +21    """
    +22    parsed_message: hl7.Message = None
    +23    try:
    +24        # The hl7 module requires \n characters be replaced with \r
    +25        parsed_message = hl7.parse(message.replace("\n", "\r"))
    +26
    +27        # MSH-7 - Message date/time
    +28        normalize_hl7_datetime_segment(parsed_message, "MSH", [7])
    +29
    +30        # PID-7 - Date of Birth
    +31        # PID-29 - Date of Death
    +32        # PID-33 - Last update date/time
    +33        normalize_hl7_datetime_segment(parsed_message, "PID", [7, 29, 33])
    +34
    +35        # PV1-44 - Admission Date
    +36        # PV1-45 - Discharge Date
    +37        normalize_hl7_datetime_segment(parsed_message, "PV1", [44, 45])
    +38
    +39        # ORC-9 Date/time of transaction
    +40        # ORC-15 Order effective date/time
    +41        # ORC-27 Filler's expected availability date/time
    +42        normalize_hl7_datetime_segment(parsed_message, "ORC", [9, 15, 27])
    +43
    +44        # OBR-7 Observation date/time
    +45        # OBR-8 Observation end date/time
    +46        # OBR-22 Status change date/time
    +47        # OBR-36 Scheduled date/time
    +48        normalize_hl7_datetime_segment(parsed_message, "OBR", [7, 8, 22, 36])
    +49
    +50        # OBX-12 Effective date/time of reference range
    +51        # OBX-14 Date/time of observation
    +52        # OBX-19 Date/time of analysis
    +53        normalize_hl7_datetime_segment(parsed_message, "OBX", [12, 14, 19])
    +54
    +55        # TQ1-7 Start date/time
    +56        # TQ1-8 End date/time
    +57        normalize_hl7_datetime_segment(parsed_message, "TQ1", [7, 8])
    +58
    +59        # SPM-18 Specimen received date/time
    +60        # SPM-19 Specimen expiration date/time
    +61        normalize_hl7_datetime_segment(parsed_message, "SPM", [18, 19])
    +62
    +63        # RXA-3 Date/time start of administration
    +64        # RXA-4 Date/time end of administration
    +65        # RXA-16 Substance expiration date
    +66        # RXA-22 System entry date/time
    +67        normalize_hl7_datetime_segment(parsed_message, "RXA", [3, 4, 16, 22])
    +68
    +69    # @TODO: Eliminate logging, raise an exception, document the exception
    +70    # in the docstring, and make this fit into our new structure of allowing
    +71    # the caller to implement more robust error handling
    +72    except Exception:
    +73        logging.exception(
    +74            "Exception occurred while cleaning message.  "
    +75            + "Passing through original message."
    +76        )
    +77
    +78        return message
    +79
    +80    return str(parsed_message).replace("\r", "\n")
    +
    + + +

    Prepares an HL7 message for conversion by normalizing / sanitizing +fields that are known to contain datetime data in problematic formats. This +function helps messages conform to expectations.

    + +

    This function accepts either segments terminated by \r or \n, but always +returns data with \n as the segment terminator.

    + +
    Parameters
    + +
      +
    • message: The raw HL7 message to sanitize.
    • +
    + +
    Returns
    + +
    +

    The HL7 message with potential problem formats resolved. If the function + is unable to parse a date, the original value is retained.

    +
    +
    + + +
    +
    + +
    + + def + normalize_hl7_datetime_segment( message: hl7.containers.Message, segment_id: str, field_list: list) -> None: + + + +
    + +
    200def normalize_hl7_datetime_segment(
    +201    message: hl7.Message, segment_id: str, field_list: list
    +202) -> None:
    +203    """
    +204    Applies datetime normalization to multiple fields in a segment,
    +205    overwriting values in the input segment as necessary.
    +206
    +207    :param message: The HL7 message, represented as a list
    +208      of indexable component strings (which is how the HL7 library
    +209      processes and returns messages).
    +210    :param segment_id: The segment type (MSH, PID, etc) of the field to replace.
    +211    :param field_num: The field number to replace in the segment named by `segment_id`.
    +212    :param field_list: The list of field numbers to replace in the segment named
    +213      by `segement_id`.
    +214    """
    +215    try:
    +216        for segment in message.segments(segment_id):
    +217            for field_num in field_list:
    +218                # Datetime value is always in first component
    +219                component_num = 0
    +220                if len(segment) > field_num and segment[field_num][component_num] != "":
    +221                    cleaned_datetime = normalize_hl7_datetime(segment[field_num][0])
    +222                    segment[field_num][0] = cleaned_datetime
    +223
    +224    # @TODO: Eliminate logging, raise an exception, document the exception
    +225    # in the docstring, and make this fit into our new structure of allowing
    +226    # the caller to implement more robust error handling
    +227    except KeyError:
    +228        logging.debug(f"Segment {segment_id} not found in message.")
    +
    + + +

    Applies datetime normalization to multiple fields in a segment, +overwriting values in the input segment as necessary.

    + +
    Parameters
    + +
      +
    • message: The HL7 message, represented as a list +of indexable component strings (which is how the HL7 library +processes and returns messages).
    • +
    • segment_id: The segment type (MSH, PID, etc) of the field to replace.
    • +
    • field_num: The field number to replace in the segment named by segment_id.
    • +
    • field_list: The list of field numbers to replace in the segment named +by segement_id.
    • +
    +
    + + +
    +
    + +
    + + def + normalize_hl7_datetime(hl7_datetime: str) -> str: + + + +
    + +
    231def normalize_hl7_datetime(hl7_datetime: str) -> str:
    +232    """
    +233    Splits HL7 datetime-formatted fields into the following parts:
    +234    <integer 8+ digits>[.<integer 1+ digits>][+/-<integer 4+ digits>]
    +235
    +236    Each group of integers is truncated to conform to the HL7
    +237    specification:
    +238
    +239    - first integer group: max 14 digits
    +240    - following decimal point: max 4 digits
    +241    - following +/- (timezone): 4 digits
    +242
    +243    This normalization facilitates downstream processing using
    +244    cloud providers that have particular requirements for dates.
    +245
    +246    :param hl7_datetime: The raw datetime string to clean.
    +247    :return: The datetime string with normalizing substitutions
    +248      performed, or the original HL7 datetime if no matching
    +249      format could be found.
    +250    """
    +251
    +252    hl7_datetime_match = re.match(r"(\d{8}\d*)(\.\d+)?([+-]\d+)?", hl7_datetime)
    +253
    +254    if not hl7_datetime_match:
    +255        return hl7_datetime
    +256
    +257    hl7_datetime_parts = hl7_datetime_match.groups()
    +258
    +259    # Start with date base
    +260    normalized_datetime = hl7_datetime_parts[0][:14]  # First 14 digits
    +261
    +262    # Add date decimal if present
    +263    if hl7_datetime_parts[1]:
    +264        normalized_datetime += hl7_datetime_parts[1][:5]  # . plus first 4 digits
    +265
    +266    # Add timezone information if present
    +267    if hl7_datetime_parts[2] and len(hl7_datetime_parts[2]) >= 5:
    +268        normalized_datetime += hl7_datetime_parts[2][:5]  # +/- plus 4 digits
    +269
    +270    return normalized_datetime
    +
    + + +

    Splits HL7 datetime-formatted fields into the following parts: +[.][+/-]

    + +

    Each group of integers is truncated to conform to the HL7 +specification:

    + +
      +
    • first integer group: max 14 digits
    • +
    • following decimal point: max 4 digits
    • +
    • following +/- (timezone): 4 digits
    • +
    + +

    This normalization facilitates downstream processing using +cloud providers that have particular requirements for dates.

    + +
    Parameters
    + +
      +
    • hl7_datetime: The raw datetime string to clean.
    • +
    + +
    Returns
    + +
    +

    The datetime string with normalizing substitutions + performed, or the original HL7 datetime if no matching + format could be found.

    +
    +
    + + +
    +
    + +
    + + def + default_hl7_value(message: str, segment_id: str, field_num: int, default_value: str): + + + +
    + +
    148def default_hl7_value(
    +149    message: str, segment_id: str, field_num: int, default_value: str
    +150):
    +151    """
    +152    Defaults a field value in an HL7 message.
    +153
    +154    This function accepts either segments terminated by `\\r` or `\\n`, but always
    +155    returns data with `\\n` as the segment terminator.
    +156
    +157    :param message: A string representing the HL7 message used to modify
    +158      a value.
    +159    :param segment_id: The segment type (MSH, PID, etc) of the field to replace.
    +160    :param field_num: The field number to replace in the segment named by `segment_id`.
    +161    :param default_value: If the selected field is blank, set the
    +162      field's value to this value.
    +163    :return: The HL7 message with default value inserted at the
    +164      specified segment location, if possible. If not, then the
    +165      original message.
    +166    """
    +167
    +168    parsed_message: hl7.Message = None
    +169    try:
    +170        # The hl7 module requires \n characters be replaced with \r
    +171        parsed_message = hl7.parse(message.replace("\n", "\r"))
    +172
    +173        segment: hl7.Segment = None
    +174        try:
    +175            segment = parsed_message.segment(segment_id=segment_id)
    +176        except KeyError:
    +177            # If the segment is not found, there is nothing to do
    +178            return message
    +179
    +180        if (
    +181            segment.extract_field(field_num=field_num) is None
    +182            or segment.extract_field(field_num=field_num) == ""
    +183        ):
    +184            segment.assign_field(value=default_value, field_num=field_num)
    +185
    +186    # @TODO: Eliminate logging, raise an exception, document the exception
    +187    # in the docstring, and make this fit into our new structure of allowing
    +188    # the caller to implement more robust error handling
    +189    except Exception:
    +190        logging.exception(
    +191            "Exception occurred while cleaning message.  "
    +192            + "Passing through original message."
    +193        )
    +194
    +195        return message
    +196
    +197    return str(parsed_message).replace("\r", "\n")
    +
    + + +

    Defaults a field value in an HL7 message.

    + +

    This function accepts either segments terminated by \r or \n, but always +returns data with \n as the segment terminator.

    + +
    Parameters
    + +
      +
    • message: A string representing the HL7 message used to modify +a value.
    • +
    • segment_id: The segment type (MSH, PID, etc) of the field to replace.
    • +
    • field_num: The field number to replace in the segment named by segment_id.
    • +
    • default_value: If the selected field is blank, set the +field's value to this value.
    • +
    + +
    Returns
    + +
    +

    The HL7 message with default value inserted at the + specified segment location, if possible. If not, then the + original message.

    +
    +
    + + +
    +
    + +
    + + def + convert_hl7_batch_messages_to_list(content: str, delimiter: str = '\n') -> List[str]: + + + +
    + +
     83def convert_hl7_batch_messages_to_list(
    + 84    content: str, delimiter: str = "\n"
    + 85) -> List[str]:
    + 86    """
    + 87    Converts a batch file of messages into a list of strings
    + 88    representing parts of the message. This function is based
    + 89    on the following header/tail segments:
    + 90
    + 91    * FHS is a "File Header Segment," which is used to head a file
    + 92        (group of batches)
    + 93    * FTS is a "File Trailer Segment," which defines the end of a file
    + 94    * BHS is "Batch Header Segment," which defines the start of a batch
    + 95    * BTS is "Batch Trailer Segment," which defines the end of a batch
    + 96
    + 97    The structure of an HL7 Batch looks like this:
    + 98    [FHS] (file header segment) { [BHS] (batch header segment)
    + 99    { [MSH (zero or more HL7 messages)
    +100    ....
    +101    ....
    +102    ....
    +103    ] }
    +104    [BTS] (batch trailer segment)
    +105    }
    +106    [FTS] (file trailer segment)
    +107
    +108    Ignores lines that start with these header/tail segments since we don't want to
    +109    include them in a message.
    +110
    +111    :param content: The batch content to turn into a list.
    +112    :param delimiter: The character delimiting messages in the batch.
    +113    :return: A list of separated, cleaned HL7 messages.
    +114    """
    +115
    +116    cleaned_batch = _clean_hl7_batch(content)
    +117    message_lines = cleaned_batch.split(delimiter)
    +118    next_message = ""
    +119    output = []
    +120
    +121    for line in message_lines:
    +122        if line.startswith(("FHS", "BHS", "BTS", "FTS")):
    +123            continue
    +124
    +125        # If we reach a line that starts with MSH and we have
    +126        # content in nextMessage, then by definition we have
    +127        # a full message in next_message and need to append it
    +128        # to output. This will not trigger the first time we
    +129        # see a line with MSH since next_message will be empty
    +130        # at that time.
    +131        if next_message != "" and line.startswith("MSH"):
    +132            output.append(next_message)
    +133            next_message = ""
    +134
    +135        # Otherwise, continue to add the line of text to next_message
    +136        if line != "":
    +137            next_message += f"{line}\r"
    +138
    +139    # Since our loop only adds messages to output when it finds
    +140    # a line that starts with MSH, the last message would never
    +141    # be added. So we explicitly add it here.
    +142    if next_message != "":
    +143        output.append(next_message)
    +144
    +145    return output
    +
    + + +

    Converts a batch file of messages into a list of strings +representing parts of the message. This function is based +on the following header/tail segments:

    + +
      +
    • FHS is a "File Header Segment," which is used to head a file +(group of batches)
    • +
    • FTS is a "File Trailer Segment," which defines the end of a file
    • +
    • BHS is "Batch Header Segment," which defines the start of a batch
    • +
    • BTS is "Batch Trailer Segment," which defines the end of a batch
    • +
    + +

    The structure of an HL7 Batch looks like this: +[FHS] (file header segment) { [BHS] (batch header segment) +{ [MSH (zero or more HL7 messages) +.... +.... +.... +] } +[BTS] (batch trailer segment) +} +[FTS] (file trailer segment)

    + +

    Ignores lines that start with these header/tail segments since we don't want to +include them in a message.

    + +
    Parameters
    + +
      +
    • content: The batch content to turn into a list.
    • +
    • delimiter: The character delimiting messages in the batch.
    • +
    + +
    Returns
    + +
    +

    A list of separated, cleaned HL7 messages.

    +
    +
    + + +
    +
    + +
    + + def + standardize_country_code( raw_country: str, code_type: Literal['alpha_2', 'alpha_3', 'numeric'] = 'alpha_2') -> str: + + + +
    + +
    35def standardize_country_code(
    +36    raw_country: str, code_type: Literal["alpha_2", "alpha_3", "numeric"] = "alpha_2"
    +37) -> str:
    +38    """
    +39    Identifies the country represented and generates the desired type of the ISO
    +40    3611 standardized country identifier for a given string representation of a country
    +41    (whether a full name such as "United States," or an abbreviation such as "US"
    +42    or "USA"). If the country identifier cannot be determined, returns None.
    +43
    +44    Example: If raw_country = "United States of America," then
    +45
    +46    * alpha_2 would be "US"
    +47    * alpha_3 would be "USA"
    +48    * numeric would be "840"
    +49
    +50    :param raw_country: The string representation of the country to be
    +51      put in ISO 3611 standardized form.
    +52    :param code_type: One of 'alpha_2', 'alpha_3', or 'numeric'; the
    +53      desired identifier type to generate.
    +54    :return: The standardized country identifier found in the resource's addresses.
    +55    """
    +56
    +57    # @TODO: Potentially do some minor restructuring around this logic
    +58    # to make it shorter/clearer. A private helper was discussed, but
    +59    # prevailing consensus was that this logic is a guiding nice-to-have
    +60    # here, where it is, so we'll likely keep it. But this todo marks
    +61    # a revisit later around whether the logic can be restructuerd.
    +62
    +63    # First, identify what country the input is referencing
    +64    standard = None
    +65    raw_country = raw_country.strip().upper()
    +66    if len(raw_country) == 2:
    +67        standard = pycountry.countries.get(alpha_2=raw_country)
    +68    elif len(raw_country) == 3:
    +69        standard = pycountry.countries.get(alpha_3=raw_country)
    +70        if standard is None:
    +71            standard = pycountry.countries.get(numeric=raw_country)
    +72    elif len(raw_country) >= 4:
    +73        standard = pycountry.countries.get(name=raw_country)
    +74        if standard is None:
    +75            standard = pycountry.countries.get(official_name=raw_country)
    +76
    +77    # Then, if we figured that out, convert it to desired form
    +78    if standard is not None:
    +79        if code_type == "alpha_2":
    +80            standard = standard.alpha_2
    +81        elif code_type == "alpha_3":
    +82            standard = standard.alpha_3
    +83        elif code_type == "numeric":
    +84            standard = standard.numeric
    +85
    +86    return standard
    +
    + + +

    Identifies the country represented and generates the desired type of the ISO +3611 standardized country identifier for a given string representation of a country +(whether a full name such as "United States," or an abbreviation such as "US" +or "USA"). If the country identifier cannot be determined, returns None.

    + +

    Example: If raw_country = "United States of America," then

    + +
      +
    • alpha_2 would be "US"
    • +
    • alpha_3 would be "USA"
    • +
    • numeric would be "840"
    • +
    + +
    Parameters
    + +
      +
    • raw_country: The string representation of the country to be +put in ISO 3611 standardized form.
    • +
    • code_type: One of 'alpha_2', 'alpha_3', or 'numeric'; the +desired identifier type to generate.
    • +
    + +
    Returns
    + +
    +

    The standardized country identifier found in the resource's addresses.

    +
    +
    + + +
    +
    + +
    + + def + standardize_phone( raw_phone: Union[str, List[str]], countries: List = [None, 'US']) -> Union[str, List[str]]: + + + +
    + +
     89def standardize_phone(
    + 90    raw_phone: Union[str, List[str]], countries: List = [None, "US"]
    + 91) -> Union[str, List[str]]:
    + 92    """
    + 93    Parses phone number and generates its standardized ISO E.164 international format
    + 94    for each given phone number and optional list of associated countries. If an input
    + 95    phone number can't be parsed, that number returns the empty string. Attempts
    + 96    to parse the inputs using the first successful strategy out of the following:
    + 97
    + 98    1. parses the phone number on its own
    + 99    2. parses the phone number using the provided list of possible
    +100       associated countries
    +101    3. parses the phone number using the US as country
    +102
    +103    :param raw_phone: One or more raw phone number(s) to standardize.
    +104    :param countries: An optional list containing 2 letter ISO codes
    +105      associated with the phone numbers, signifying to which countries
    +106      the phone numbers might belong.
    +107    :return: Either a string or a list of strings, depending on the
    +108      input of raw_phone, holding the standardized phone number(s).
    +109    """
    +110
    +111    # Base cases: we always want to try the phone # on its own first;
    +112    # we also want to try the phone # with the US if all else fails
    +113    if None not in countries:
    +114        countries.insert(0, None)
    +115    if "US" not in countries:
    +116        countries.append("US")
    +117
    +118    phones_to_clean = raw_phone
    +119    if isinstance(raw_phone, str):
    +120        phones_to_clean = [raw_phone]
    +121    outputs = []
    +122
    +123    for phone in phones_to_clean:
    +124        standardized = ""
    +125        for country in countries:
    +126            # We were able to pull the phone # and corresponding country
    +127            try:
    +128                standardized = phonenumbers.parse(phone, country)
    +129                break
    +130
    +131            # This combo of given phone # and country isn't valid
    +132            except phonenumbers.phonenumberutil.NumberParseException:
    +133                continue
    +134
    +135        # If we got a match, format it according to ISO standards
    +136        if standardized != "" and phonenumbers.is_possible_number(standardized):
    +137            standardized = str(
    +138                phonenumbers.format_number(
    +139                    standardized, phonenumbers.PhoneNumberFormat.E164
    +140                )
    +141            )
    +142            outputs.append(standardized)
    +143        else:
    +144            outputs.append("")
    +145
    +146    if isinstance(raw_phone, str):
    +147        return outputs[0]
    +148    return outputs
    +
    + + +

    Parses phone number and generates its standardized ISO E.164 international format +for each given phone number and optional list of associated countries. If an input +phone number can't be parsed, that number returns the empty string. Attempts +to parse the inputs using the first successful strategy out of the following:

    + +
      +
    1. parses the phone number on its own
    2. +
    3. parses the phone number using the provided list of possible +associated countries
    4. +
    5. parses the phone number using the US as country
    6. +
    + +
    Parameters
    + +
      +
    • raw_phone: One or more raw phone number(s) to standardize.
    • +
    • countries: An optional list containing 2 letter ISO codes +associated with the phone numbers, signifying to which countries +the phone numbers might belong.
    • +
    + +
    Returns
    + +
    +

    Either a string or a list of strings, depending on the + input of raw_phone, holding the standardized phone number(s).

    +
    +
    + + +
    +
    + +
    + + def + standardize_name( raw_name: Union[str, List[str]], trim: bool = True, case: Literal['upper', 'lower', 'title'] = 'upper', remove_numbers: bool = True) -> Union[str, List[str]]: + + + +
    + +
    151def standardize_name(
    +152    raw_name: Union[str, List[str]],
    +153    trim: bool = True,
    +154    case: Literal["upper", "lower", "title"] = "upper",
    +155    remove_numbers: bool = True,
    +156) -> Union[str, List[str]]:
    +157    """
    +158    Performs basic standardization (described below) on each given name. Removes
    +159    punctuation characters and performs a variety of additional cleaning operations.
    +160    Other options can be toggled on or off using the relevant parameter.
    +161
    +162    All options specified will be applied uniformly to each input name,
    +163    i.e., specifying case = "lower" will make all given names lower case.
    +164
    +165    :param raw_name: Either a single string name or a list of strings,
    +166      each representing a name.
    +167    :param trim: If true, strips leading/trailing whitespace;
    +168      if false, retains whitespace. Default: `True`
    +169    :param case: What case to enforce on each name.
    +170
    +171      * `upper`: All upper case
    +172      * `lower`: All lower case
    +173      * `title`: Title case
    +174
    +175      Default: `upper`
    +176    :remove_numbers: If true, removes numeric characters from inputs;
    +177      if false, retains numeric characters. Default `True`
    +178    :return: Either a string or a list of strings, depending on the
    +179      input of raw_name, holding the cleaned name(s).
    +180    """
    +181    names_to_clean = raw_name
    +182    if isinstance(raw_name, str):
    +183        names_to_clean = [raw_name]
    +184    outputs = []
    +185
    +186    for name in names_to_clean:
    +187        # Remove all punctuation
    +188        cleaned_name = "".join([ltr for ltr in name if ltr.isalnum() or ltr == " "])
    +189        if remove_numbers:
    +190            cleaned_name = "".join([ltr for ltr in cleaned_name if not ltr.isnumeric()])
    +191        if trim:
    +192            cleaned_name = cleaned_name.strip()
    +193        if case == "upper":
    +194            cleaned_name = cleaned_name.upper()
    +195        if case == "lower":
    +196            cleaned_name = cleaned_name.lower()
    +197        if case == "title":
    +198            cleaned_name = cleaned_name.title()
    +199        outputs.append(cleaned_name)
    +200
    +201    if isinstance(raw_name, str):
    +202        return outputs[0]
    +203    return outputs
    +
    + + +

    Performs basic standardization (described below) on each given name. Removes +punctuation characters and performs a variety of additional cleaning operations. +Other options can be toggled on or off using the relevant parameter.

    + +

    All options specified will be applied uniformly to each input name, +i.e., specifying case = "lower" will make all given names lower case.

    + +
    Parameters
    + +
      +
    • raw_name: Either a single string name or a list of strings, +each representing a name.
    • +
    • trim: If true, strips leading/trailing whitespace; +if false, retains whitespace. Default: True
    • +
    • case: What case to enforce on each name.

      + +
        +
      • upper: All upper case
      • +
      • lower: All lower case
      • +
      • title: Title case
      • +
      + +

      Default: upper +:remove_numbers: If true, removes numeric characters from inputs; +if false, retains numeric characters. Default True

    • +
    + +
    Returns
    + +
    +

    Either a string or a list of strings, depending on the + input of raw_name, holding the cleaned name(s).

    +
    +
    + + +
    +
    + +
    + + def + double_metaphone_string(string: str, dmeta=None) -> List[Optional[str]]: + + + +
    + +
    15def double_metaphone_string(string: str, dmeta=None) -> List[Union[str, None]]:
    +16    """
    +17    Performs the double metaphone phonetic encoding algorithm on the given
    +18    string. Returns a list holding the primary and secondary phonetic
    +19    representations of the string (including None if there is no valid
    +20    secondary encoding). This function expects basic text cleaning (e.g.
    +21    removal of numeric characters, trimming of spaces, etc.) to already
    +22    have been performed.
    +23
    +24    :param string: The string to phonetically encode.
    +25    :param dmeta: An optional existing double metaphone object, in the case
    +26      one has already been instantiated for bulk processing.
    +27    :return: A list of the primary and secondary encodings of the given
    +28      string.
    +29    """
    +30    if dmeta is None:
    +31        dmeta = DoubleMetaphone()
    +32    return dmeta(string)
    +
    + + +

    Performs the double metaphone phonetic encoding algorithm on the given +string. Returns a list holding the primary and secondary phonetic +representations of the string (including None if there is no valid +secondary encoding). This function expects basic text cleaning (e.g. +removal of numeric characters, trimming of spaces, etc.) to already +have been performed.

    + +
    Parameters
    + +
      +
    • string: The string to phonetically encode.
    • +
    • dmeta: An optional existing double metaphone object, in the case +one has already been instantiated for bulk processing.
    • +
    + +
    Returns
    + +
    +

    A list of the primary and secondary encodings of the given + string.

    +
    +
    + + +
    +
    + +
    + + def + compare_strings( string1: str, string2: str, similarity_measure: Literal['JaroWinkler', 'Levenshtein', 'DamerauLevenshtein'] = 'JaroWinkler') -> float: + + + +
    + +
     6def compare_strings(
    + 7    string1: str,
    + 8    string2: str,
    + 9    similarity_measure: Literal[
    +10        "JaroWinkler", "Levenshtein", "DamerauLevenshtein"
    +11    ] = "JaroWinkler",
    +12) -> float:
    +13    """
    +14    Returns the normalized similarity measure between string1 and string2, as
    +15    determined by the similarlity measure. The higher the normalized similarity measure
    +16    (up to 1.0), the more similar string1 and string2 are. A normalized similarity
    +17    measure of 0.0 means string1 and string 2 are not at all similar. This function
    +18    expects basic text cleaning (e.g. removal of numeric characters, trimming of spaces,
    +19    etc.) to already have been performed on the input strings.
    +20
    +21    :param string1: First string for comparison.
    +22    :param string2: Second string for comparison.
    +23    :param similarity_measure: The method used to measure the similarity between two
    +24        strings, defaults to "JaroWinkler".
    +25     - JaroWinkler: a ratio of matching characters and transpositions needed to
    +26        transform string1 into string2.
    +27     - Levenshtein: the number of edits (excluding transpositions) needed to transform
    +28        string1 into string2.
    +29     - DamerauLevenshtein: the number of edits (including transpositions) needed to
    +30        transform string1 into string2.
    +31    :return: The normalized similarity between string1 and string2, with 0 representing
    +32        no similarity between string1 and string2, and 1 meaning string1 and string2 are
    +33        dentical words.
    +34    """
    +35    if similarity_measure == "JaroWinkler":
    +36        return rapidfuzz.distance.JaroWinkler.normalized_similarity(string1, string2)
    +37    elif similarity_measure == "Levenshtein":
    +38        return rapidfuzz.distance.Levenshtein.normalized_similarity(string1, string2)
    +39    elif similarity_measure == "DamerauLevenshtein":
    +40        return rapidfuzz.distance.DamerauLevenshtein.normalized_similarity(
    +41            string1, string2
    +42        )
    +
    + + +

    Returns the normalized similarity measure between string1 and string2, as +determined by the similarlity measure. The higher the normalized similarity measure +(up to 1.0), the more similar string1 and string2 are. A normalized similarity +measure of 0.0 means string1 and string 2 are not at all similar. This function +expects basic text cleaning (e.g. removal of numeric characters, trimming of spaces, +etc.) to already have been performed on the input strings.

    + +
    Parameters
    + +
      +
    • string1: First string for comparison.
    • +
    • string2: Second string for comparison.
    • +
    • similarity_measure: The method used to measure the similarity between two +strings, defaults to "JaroWinkler".
    • +
    • JaroWinkler: a ratio of matching characters and transpositions needed to +transform string1 into string2.
    • +
    • Levenshtein: the number of edits (excluding transpositions) needed to transform +string1 into string2.
    • +
    • DamerauLevenshtein: the number of edits (including transpositions) needed to +transform string1 into string2.
    • +
    + +
    Returns
    + +
    +

    The normalized similarity between string1 and string2, with 0 representing + no similarity between string1 and string2, and 1 meaning string1 and string2 are + dentical words.

    +
    +
    + + +
    +
    + +
    + + class + DoubleMetaphone: + + + +
    + +
     23class DoubleMetaphone(object):
    + 24    """
    + 25    A Double Metaphone parsing object capable of performing the double
    + 26    coding algorithm on a given input string.
    + 27    """
    + 28
    + 29    def __init__(self):
    + 30        self.position = 0
    + 31        self.primary_phone = ""
    + 32        self.secondary_phone = ""
    + 33        # next is set to a tuple of the next characters in the primary and
    + 34        # secondary codes and to indicate how many characters to move forward
    + 35        # in the string.  The secondary code letter is given only when it is
    + 36        # different than the primary.
    + 37        self.next = (None, 1)
    + 38
    + 39    def __call__(self, string: str):
    + 40        return self.parse(string)
    + 41
    + 42    def check_word_start(self):
    + 43        # Skip silent letters when they start a word (because they're not
    + 44        # phonetic if they're silent)
    + 45        if self.word.get_letters(0, 2) in SILENT_STARTERS:
    + 46            self.position += 1
    + 47        # Starting with 'X' frequently pronounced 'Z' e.g. 'Xavier'
    + 48        if self.word.get_letters(0) == "X":
    + 49            # 'Z' maps to 'S'
    + 50            self.primary_phone = self.secondary_phone = "S"
    + 51            self.position += 1
    + 52
    + 53    def process_vowel(self):
    + 54        self.next = (None, 1)
    + 55
    + 56        # All starting vowels map to 'A'
    + 57        if self.position == self.word.start_index:
    + 58            self.next = ("A", 1)
    + 59
    + 60    def process_b(self):
    + 61        # "-mb", e.g., "dumb", already accounted for, see 'M'
    + 62        if self.word.buffer[self.position + 1] == "B":
    + 63            self.next = ("P", 2)
    + 64        else:
    + 65            self.next = ("P", 1)
    + 66
    + 67    def process_c(self):
    + 68        buffer = self.word.buffer
    + 69        position = self.position
    + 70        start_index = self.word.start_index
    + 71
    + 72        # Handle some germanic linguistics
    + 73        if (
    + 74            position > start_index + 1
    + 75            and buffer[position - 2] not in VOWELS
    + 76            and buffer[position - 1 : self.position + 2] == "ACH"
    + 77            and buffer[position + 2] not in ["I"]
    + 78            and (
    + 79                buffer[position + 2] not in ["E"]
    + 80                or buffer[position - 2 : position + 4] in ["BACHER", "MACHER"]
    + 81            )
    + 82        ):
    + 83            self.next = ("K", 2)
    + 84
    + 85        # Special case 'CAESAR'
    + 86        elif (
    + 87            position == start_index
    + 88            and buffer[start_index : start_index + 6] == "CAESAR"
    + 89        ):
    + 90            self.next = ("S", 2)
    + 91
    + 92        # Italian 'chianti'
    + 93        elif buffer[position : position + 4] == "CHIA":
    + 94            self.next = ("K", 2)
    + 95        elif buffer[position : position + 2] == "CH":
    + 96            # e.g. 'michael'
    + 97            if position > start_index and buffer[position : position + 4] == "CHAE":
    + 98                self.next = ("K", "X", 2)
    + 99            elif (
    +100                position == start_index
    +101                and (
    +102                    buffer[position + 1 : position + 6] in ["HARAC", "HARIS"]
    +103                    or buffer[position + 1 : position + 4]
    +104                    in ["HOR", "HYM", "HIA", "HEM"]
    +105                )
    +106                and buffer[start_index : start_index + 5] != "CHORE"
    +107            ):
    +108                self.next = ("K", 2)
    +109
    +110            # Germanic, greek, or other phonetic 'ch' for 'kh' sound
    +111            elif (
    +112                buffer[start_index : start_index + 4] in ["VAN ", "VON "]
    +113                or buffer[start_index : start_index + 3] == "SCH"
    +114                or buffer[position - 2 : position + 4] in ["ORCHES", "ARCHIT", "ORCHID"]
    +115                or buffer[position + 2] in ["T", "S"]
    +116                or (
    +117                    (
    +118                        buffer[position - 1] in ["A", "O", "U", "E"]
    +119                        or position == start_index
    +120                    )
    +121                    and (
    +122                        buffer[position + 2]
    +123                        in ["L", "R", "N", "M", "B", "H", "F", "V", "W", " "]
    +124                    )
    +125                )
    +126            ):
    +127                self.next = ("K", 2)
    +128            else:
    +129                if position > start_index:
    +130                    if buffer[start_index : start_index + 2] == "MC":
    +131                        self.next = ("K", 2)
    +132                    else:
    +133                        self.next = ("X", "K", 2)
    +134                else:
    +135                    self.next = ("X", 2)
    +136
    +137        # e.g, 'czerny'
    +138        elif (
    +139            buffer[position : position + 2] == "CZ"
    +140            and buffer[position - 2 : position + 2] != "WICZ"
    +141        ):
    +142            self.next = ("S", "X", 2)
    +143
    +144        # e.g., 'focaccia'
    +145        elif buffer[position + 1 : position + 4] == "CIA":
    +146            self.next = ("X", 3)
    +147
    +148        # Double 'C', but not if e.g. 'McClellan'
    +149        elif buffer[position : position + 2] == "CC" and not (
    +150            position == (start_index + 1) and buffer[start_index] == "M"
    +151        ):
    +152            # 'bellocchio' but not 'bacchus'
    +153            if (
    +154                buffer[position + 2] in ["I", "E", "H"]
    +155                and buffer[position + 2 : position + 4] != "HU"
    +156            ):
    +157                # 'accident', 'accede' 'succeed'
    +158                if (
    +159                    position == (start_index + 1) and buffer[start_index] == "A"
    +160                ) or buffer[position - 1 : position + 4] in ["UCCEE", "UCCES"]:
    +161                    self.next = ("KS", 3)
    +162
    +163                # 'bacci', 'bertucci', other italian
    +164                else:
    +165                    self.next = ("X", 3)
    +166            else:
    +167                self.next = ("K", 2)
    +168
    +169        elif buffer[position : position + 2] in ["CK", "CG", "CQ"]:
    +170            self.next = ("K", 2)
    +171        elif buffer[position : position + 2] in ["CI", "CE", "CY"]:
    +172            # Italian vs. English
    +173            if buffer[position : position + 3] in ["CIO", "CIE", "CIA"]:
    +174                self.next = ("S", "X", 2)
    +175            else:
    +176                self.next = ("S", 2)
    +177        else:
    +178            # Name set in 'mac caffrey', 'mac gregor'
    +179            if buffer[position + 1 : position + 3] in [" C", " Q", " G"]:
    +180                self.next = ("K", 3)
    +181            else:
    +182                if buffer[position + 1] in ["C", "K", "Q"] and buffer[
    +183                    position + 1 : position + 3
    +184                ] not in ["CE", "CI"]:
    +185                    self.next = ("K", 2)
    +186
    +187                # Default sound for 'C'
    +188                else:
    +189                    self.next = ("K", 1)
    +190
    +191    def process_d(self):
    +192        if self.word.buffer[self.position : self.position + 2] == "DG":
    +193            # e.g. 'edge'
    +194            if self.word.buffer[self.position + 2] in ["I", "E", "Y"]:
    +195                self.next = ("J", 3)
    +196            else:
    +197                self.next = ("TK", 2)
    +198        elif self.word.buffer[self.position : self.position + 2] in ["DT", "DD"]:
    +199            self.next = ("T", 2)
    +200        else:
    +201            self.next = ("T", 1)
    +202
    +203    def process_f(self):
    +204        if self.word.buffer[self.position + 1] == "F":
    +205            self.next = ("F", 2)
    +206        else:
    +207            self.next = ("F", 1)
    +208
    +209    def process_g(self):
    +210        buffer = self.word.buffer
    +211        position = self.position
    +212        start_index = self.word.start_index
    +213        if buffer[position + 1] == "H":
    +214            if position > start_index and buffer[position - 1] not in VOWELS:
    +215                self.next = ("K", 2)
    +216            elif position < (start_index + 3):
    +217                # 'Ghislane', 'Ghiradelli'
    +218                if position == start_index:
    +219                    if buffer[position + 2] == "I":
    +220                        self.next = ("J", 2)
    +221                    else:
    +222                        self.next = ("K", 2)
    +223
    +224            # Parker's rule for e.g., 'Hugh'
    +225            elif (
    +226                (
    +227                    position > (start_index + 1)
    +228                    and buffer[position - 2] in ["B", "H", "D"]
    +229                )
    +230                or (
    +231                    position > (start_index + 2)
    +232                    and buffer[position - 3] in ["B", "H", "D"]
    +233                )
    +234                or (position > (start_index + 3) and buffer[position - 4] in ["B", "H"])
    +235            ):
    +236                self.next = (None, 2)
    +237
    +238            else:
    +239                # e.g., 'laugh', 'McLaughlin', 'cough', 'gough', 'rough', 'tough'
    +240                if (
    +241                    position > (start_index + 2)
    +242                    and buffer[position - 1] == "U"
    +243                    and buffer[position - 3] in ["C", "G", "L", "R", "T"]
    +244                ):
    +245                    self.next = ("F", 2)
    +246                else:
    +247                    if position > start_index and buffer[position - 1] != "I":
    +248                        self.next = ("K", 2)
    +249
    +250        elif buffer[position + 1] == "N":
    +251            if (
    +252                position == (start_index + 1)
    +253                and buffer[start_index] in VOWELS
    +254                and not self.word.is_slavo_germanic
    +255            ):
    +256                self.next = ("KN", "N", 2)
    +257
    +258            else:
    +259                # Not e.g. 'cagney'
    +260                if (
    +261                    buffer[position + 2 : position + 4] != "EY"
    +262                    and buffer[position + 1] != "Y"
    +263                    and not self.word.is_slavo_germanic
    +264                ):
    +265                    self.next = ("N", "KN", 2)
    +266                else:
    +267                    self.next = ("KN", 2)
    +268
    +269        # e.g. 'Tagliaro'
    +270        elif (
    +271            buffer[position + 1 : position + 3] == "LI"
    +272            and not self.word.is_slavo_germanic
    +273        ):
    +274            self.next = ("KL", "L", 2)
    +275
    +276        # -ges-,-gep-,-gel-, -gie- at beginning
    +277        elif position == start_index and (
    +278            buffer[position + 1] == "Y"
    +279            or buffer[position + 1 : position + 3]
    +280            in ["ES", "EP", "EB", "EL", "EY", "IB", "IL", "IN", "IE", "EI", "ER"]
    +281        ):
    +282            self.next = ("K", "J", 2)
    +283
    +284        # -ger-,  -gy-
    +285        elif (
    +286            (buffer[position + 1 : position + 3] == "ER" or buffer[position + 1] == "Y")
    +287            and buffer[start_index : start_index + 6]
    +288            not in ["DANGER", "RANGER", "MANGER"]
    +289            and buffer[position - 1] not in ["E", "I"]
    +290            and buffer[position - 1 : position + 2] not in ["RGY", "OGY"]
    +291        ):
    +292            self.next = ("K", "J", 2)
    +293
    +294        # Italian e.g, 'Biaggi'
    +295        elif buffer[position + 1] in ["E", "I", "Y"] or buffer[
    +296            position - 1 : position + 3
    +297        ] in ["AGGI", "OGGI"]:
    +298            # Germanic
    +299            if (
    +300                buffer[start_index : start_index + 4] in ["VON ", "VAN "]
    +301                or buffer[start_index : start_index + 3] == "SCH"
    +302                or buffer[position + 1 : position + 3] == "ET"
    +303            ):
    +304                self.next = ("K", 2)
    +305
    +306            else:
    +307                # Always soft if following the French ending
    +308                if buffer[position + 1 : position + 5] == "IER ":
    +309                    self.next = ("J", 2)
    +310                else:
    +311                    self.next = ("J", "K", 2)
    +312
    +313        elif buffer[position + 1] == "G":
    +314            self.next = ("K", 2)
    +315        else:
    +316            self.next = ("K", 1)
    +317
    +318    def process_h(self):
    +319        # Keep if self.word.start_index & before vowel, or between 2 vowels
    +320        if (
    +321            self.position == self.word.start_index
    +322            or self.word.buffer[self.position - 1] in VOWELS
    +323        ) and self.word.buffer[self.position + 1] in VOWELS:
    +324            self.next = ("H", 2)
    +325        else:
    +326            self.next = (None, 1)
    +327
    +328    def process_j(self):
    +329        buffer = self.word.buffer
    +330        position = self.position
    +331        start_index = self.word.start_index
    +332
    +333        # Spanish, 'Jose', 'Jacinto', etc.
    +334        if (
    +335            buffer[self.position : self.position + 4] == "JOSE"
    +336            or buffer[start_index : start_index + 4] == "SAN "
    +337        ):
    +338            if (position == start_index and buffer[position + 4] == " ") or buffer[
    +339                start_index : start_index + 4
    +340            ] == "SAN ":
    +341                self.next = ("H",)
    +342            else:
    +343                self.next = ("J", "H")
    +344
    +345        # Yankelovich/Jankelowicz
    +346        elif (
    +347            position == start_index
    +348            and buffer[self.position : self.position + 4] != "JOSE"
    +349        ):
    +350            self.next = ("J", "A")
    +351
    +352        else:
    +353            # Spanish pronunciation of e.g. 'Bajador'
    +354            if (
    +355                buffer[position - 1] in VOWELS
    +356                and not self.word.is_slavo_germanic
    +357                and buffer[position + 1] in ["A", "O"]
    +358            ):
    +359                self.next = ("J", "H")
    +360            else:
    +361                if position == self.word.end_index:
    +362                    self.next = ("J", " ")
    +363                else:
    +364                    if buffer[position + 1] not in [
    +365                        "L",
    +366                        "T",
    +367                        "K",
    +368                        "S",
    +369                        "N",
    +370                        "M",
    +371                        "B",
    +372                        "Z",
    +373                    ] and buffer[position - 1] not in ["S", "K", "L"]:
    +374                        self.next = ("J",)
    +375                    else:
    +376                        self.next = (None,)
    +377
    +378        if buffer[position + 1] == "J":
    +379            self.next = self.next + (2,)
    +380        else:
    +381            self.next = self.next + (1,)
    +382
    +383    def process_k(self):
    +384        if self.word.buffer[self.position + 1] == "K":
    +385            self.next = ("K", 2)
    +386        else:
    +387            self.next = ("K", 1)
    +388
    +389    def process_l(self):
    +390        buffer = self.word.buffer
    +391        position = self.position
    +392        end_index = self.word.end_index
    +393
    +394        if buffer[position + 1] == "L":
    +395            # Spanish e.g. 'cabrillo', 'gallegos'
    +396            if (
    +397                position == (end_index - 2)
    +398                and buffer[position - 1 : position + 3] in ["ILLO", "ILLA", "ALLE"]
    +399            ) or (
    +400                (
    +401                    buffer[end_index - 1 : end_index + 1] in ["AS", "OS"]
    +402                    or buffer[end_index] in ["A", "O"]
    +403                )
    +404                and buffer[position - 1 : position + 3] == "ALLE"
    +405            ):
    +406                self.next = ("L", "", 2)
    +407            else:
    +408                self.next = ("L", 2)
    +409        else:
    +410            self.next = ("L", 1)
    +411
    +412    def process_m(self):
    +413        buffer = self.word.buffer
    +414        position = self.position
    +415        if (
    +416            buffer[position + 1 : position + 4] == "UMB"
    +417            and (
    +418                position + 1 == self.word.end_index
    +419                or buffer[position + 2 : position + 4] == "ER"
    +420            )
    +421        ) or buffer[position + 1] == "M":
    +422            self.next = ("M", 2)
    +423        else:
    +424            self.next = ("M", 1)
    +425
    +426    def process_n(self):
    +427        if self.word.buffer[self.position + 1] == "N":
    +428            self.next = ("N", 2)
    +429        else:
    +430            self.next = ("N", 1)
    +431
    +432    def process_p(self):
    +433        if self.word.buffer[self.position + 1] == "H":
    +434            self.next = ("F", 2)
    +435
    +436        # Account for "Campbell", "raspberry"
    +437        elif self.word.buffer[self.position + 1] in ["P", "B"]:
    +438            self.next = ("P", 2)
    +439        else:
    +440            self.next = ("P", 1)
    +441
    +442    def process_q(self):
    +443        if self.word.buffer[self.position + 1] == "Q":
    +444            self.next = ("K", 2)
    +445        else:
    +446            self.next = ("K", 1)
    +447
    +448    def process_r(self):
    +449        buffer = self.word.buffer
    +450        position = self.position
    +451        end_index = self.word.end_index
    +452
    +453        # French e.g. 'Rogier', but exclude e.g. 'Hochmeier'
    +454        if (
    +455            position == end_index
    +456            and not self.word.is_slavo_germanic
    +457            and buffer[position - 2 : position] == "IE"
    +458            and buffer[position - 4 : position - 2] not in ["ME", "MA"]
    +459        ):
    +460            self.next = ("", "R")
    +461        else:
    +462            self.next = ("R",)
    +463        if buffer[position + 1] == "R":
    +464            self.next = self.next + (2,)
    +465        else:
    +466            self.next = self.next + (1,)
    +467
    +468    def process_s(self):
    +469        buffer = self.word.buffer
    +470        position = self.position
    +471        start_index = self.word.start_index
    +472        end_index = self.word.end_index
    +473
    +474        # Special cases like 'Carlisle', 'Carlysle'
    +475        if buffer[position - 1 : position + 2] in ["ISL", "YSL"]:
    +476            self.next = (None, 1)
    +477
    +478        # special case 'sugar-'
    +479        elif (
    +480            position == start_index and buffer[start_index : start_index + 5] == "SUGAR"
    +481        ):
    +482            self.next = ("X", "S", 1)
    +483
    +484        elif buffer[position : position + 2] == "SH":
    +485            # Germanic
    +486            if buffer[position + 1 : position + 5] in ["HEIM", "HOEK", "HOLM", "HOLZ"]:
    +487                self.next = ("S", 2)
    +488            else:
    +489                self.next = ("X", 2)
    +490
    +491        # Italian & Armenian
    +492        elif (
    +493            buffer[position : position + 3] in ["SIO", "SIA"]
    +494            or buffer[position : position + 4] == "SIAN"
    +495        ):
    +496            if not self.word.is_slavo_germanic:
    +497                self.next = ("S", "X", 3)
    +498            else:
    +499                self.next = ("S", 3)
    +500
    +501        # Lots of anglicisations to match here
    +502        # Germanic, e.g. 'Smith' == 'Schmidt', 'Snider' == 'Schneider'
    +503        # Slavic languages, catch -sz- and the tricky Hungarian
    +504        # pronunciation with an 's'
    +505        elif (
    +506            position == start_index and buffer[position + 1] in ["M", "N", "L", "W"]
    +507        ) or buffer[position + 1] == "Z":
    +508            self.next = ("S", "X")
    +509            if buffer[position + 1] == "Z":
    +510                self.next = self.next + (2,)
    +511            else:
    +512                self.next = self.next + (1,)
    +513
    +514        elif buffer[position : position + 2] == "SC":
    +515            # Schlesinger's rule
    +516            if buffer[position + 2] == "H":
    +517                # Dutch origin, e.g. 'school', 'schooner'
    +518                if buffer[position + 3 : position + 5] in [
    +519                    "OO",
    +520                    "ER",
    +521                    "EN",
    +522                    "UY",
    +523                    "ED",
    +524                    "EM",
    +525                ]:
    +526                    # 'Schermerhorn', 'Schenker'
    +527                    if buffer[position + 3 : position + 5] in ["ER", "EN"]:
    +528                        self.next = ("X", "SK", 3)
    +529                    else:
    +530                        self.next = ("SK", 3)
    +531
    +532                else:
    +533                    if (
    +534                        position == start_index
    +535                        and buffer[start_index + 3] not in VOWELS
    +536                        and buffer[start_index + 3] != "W"
    +537                    ):
    +538                        self.next = ("X", "S", 3)
    +539                    else:
    +540                        self.next = ("X", 3)
    +541
    +542            elif buffer[position + 2] in ["I", "E", "Y"]:
    +543                self.next = ("S", 3)
    +544            else:
    +545                self.next = ("SK", 3)
    +546
    +547        # French e.g. 'Resnais', 'Artois'
    +548        elif position == end_index and buffer[position - 2 : position] in ["AI", "OI"]:
    +549            self.next = ("", "S", 1)
    +550        else:
    +551            self.next = ("S",)
    +552            if buffer[position + 1] in ["S", "Z"]:
    +553                self.next = self.next + (2,)
    +554            else:
    +555                self.next = self.next + (1,)
    +556
    +557    def process_t(self):
    +558        buffer = self.word.buffer
    +559        position = self.position
    +560        start_index = self.word.start_index
    +561
    +562        if buffer[position : position + 4] == "TION":
    +563            self.next = ("X", 3)
    +564        elif buffer[position : position + 3] in ["TIA", "TCH"]:
    +565            self.next = ("X", 3)
    +566        elif (
    +567            buffer[position : position + 2] == "TH"
    +568            or buffer[position : position + 3] == "TTH"
    +569        ):
    +570            # 'Thomas', 'Thames' or hard-sound Germanic
    +571            if (
    +572                buffer[position + 2 : position + 4] in ["OM", "AM"]
    +573                or buffer[start_index : start_index + 4] in ["VON ", "VAN "]
    +574                or buffer[start_index : start_index + 3] == "SCH"
    +575            ):
    +576                self.next = ("T", 2)
    +577            else:
    +578                self.next = ("0", "T", 2)
    +579
    +580        elif buffer[position + 1] in ["T", "D"]:
    +581            self.next = ("T", 2)
    +582        else:
    +583            self.next = ("T", 1)
    +584
    +585    def process_v(self):
    +586        if self.word.buffer[self.position + 1] == "V":
    +587            self.next = ("F", 2)
    +588        else:
    +589            self.next = ("F", 1)
    +590
    +591    def process_w(self):
    +592        buffer = self.word.buffer
    +593        position = self.position
    +594        start_index = self.word.start_index
    +595
    +596        if buffer[position : position + 2] == "WR":
    +597            self.next = ("R", 2)
    +598        elif position == start_index and (
    +599            buffer[position + 1] in VOWELS or buffer[position : position + 2] == "WH"
    +600        ):
    +601            # Wasserman should match Vasserman
    +602            if buffer[position + 1] in VOWELS:
    +603                self.next = ("A", "F", 1)
    +604            else:
    +605                self.next = ("A", 1)
    +606
    +607        # Arnow should match Arnoff
    +608        elif (
    +609            (position == self.word.end_index and buffer[position - 1] in VOWELS)
    +610            or buffer[position - 1 : position + 4]
    +611            in ["EWSKI", "EWSKY", "OWSKI", "OWSKY"]
    +612            or buffer[start_index : start_index + 3] == "SCH"
    +613        ):
    +614            self.next = ("", "F", 1)
    +615
    +616        # Polish e.g. 'Filipowicz'
    +617        elif buffer[position : position + 4] in ["WICZ", "WITZ"]:
    +618            self.next = ("TS", "FX", 4)
    +619
    +620        # By default, 'W' is skipped phonetically
    +621        else:
    +622            self.next = (None, 1)
    +623
    +624    def process_x(self):
    +625        buffer = self.word.buffer
    +626        position = self.position
    +627
    +628        # French e.g. 'Breaux'
    +629        self.next = (None,)
    +630        if not (
    +631            position == self.word.end_index
    +632            and (
    +633                buffer[position - 3 : position] in ["IAU", "EAU"]
    +634                or buffer[position - 2 : position] in ["AU", "OU"]
    +635            )
    +636        ):
    +637            self.next = ("KS",)
    +638
    +639        if buffer[position + 1] in ["C", "X"]:
    +640            self.next = self.next + (2,)
    +641        else:
    +642            self.next = self.next + (1,)
    +643
    +644    def process_z(self):
    +645        # Chinese pinyin e.g. 'zhao'
    +646        if self.word.buffer[self.position + 1] == "H":
    +647            self.next = ("J",)
    +648        elif self.word.buffer[self.position + 1 : self.position + 3] in [
    +649            "ZO",
    +650            "ZI",
    +651            "ZA",
    +652        ] or (
    +653            self.word.is_slavo_germanic
    +654            and self.position > self.word.start_index
    +655            and self.word.buffer[self.position - 1] != "T"
    +656        ):
    +657            self.next = ("S", "TS")
    +658        else:
    +659            self.next = ("S",)
    +660        if (
    +661            self.word.buffer[self.position + 1] == "Z"
    +662            or self.word.buffer[self.position + 1] == "H"
    +663        ):
    +664            self.next = self.next + (2,)
    +665        else:
    +666            self.next = self.next + (1,)
    +667
    +668    def parse(self, input):
    +669        self.word = Word(input)
    +670        self.position = self.word.start_index
    +671        self.primary_phone = ""
    +672        self.secondary_phone = ""
    +673        self.next = (None, 1)
    +674        self.check_word_start()
    +675
    +676        # Loop through chars in word.buffer
    +677        while self.position <= self.word.end_index:
    +678            character = self.word.buffer[self.position]
    +679
    +680            # Vowels and spaces get special handling
    +681            if character in VOWELS:
    +682                self.process_vowel()
    +683            elif character == " ":
    +684                self.position += 1
    +685                continue
    +686
    +687            # Other letters each have their own function
    +688            elif character == "B":
    +689                self.process_b()
    +690            elif character == "C":
    +691                self.process_c()
    +692            elif character == "D":
    +693                self.process_d()
    +694            elif character == "F":
    +695                self.process_f()
    +696            elif character == "G":
    +697                self.process_g()
    +698            elif character == "H":
    +699                self.process_h()
    +700            elif character == "J":
    +701                self.process_j()
    +702            elif character == "K":
    +703                self.process_k()
    +704            elif character == "L":
    +705                self.process_l()
    +706            elif character == "M":
    +707                self.process_m()
    +708            elif character == "N":
    +709                self.process_n()
    +710            elif character == "P":
    +711                self.process_p()
    +712            elif character == "Q":
    +713                self.process_q()
    +714            elif character == "R":
    +715                self.process_r()
    +716            elif character == "S":
    +717                self.process_s()
    +718            elif character == "T":
    +719                self.process_t()
    +720            elif character == "V":
    +721                self.process_v()
    +722            elif character == "W":
    +723                self.process_w()
    +724            elif character == "X":
    +725                self.process_x()
    +726            elif character == "Z":
    +727                self.process_z()
    +728
    +729            # Handle any residual unprocessed sound clusters
    +730            if len(self.next) == 2:
    +731                if self.next[0]:
    +732                    self.primary_phone += self.next[0]
    +733                    self.secondary_phone += self.next[0]
    +734                self.position += self.next[1]
    +735            elif len(self.next) == 3:
    +736                if self.next[0]:
    +737                    self.primary_phone += self.next[0]
    +738                if self.next[1]:
    +739                    self.secondary_phone += self.next[1]
    +740                self.position += self.next[2]
    +741
    +742        # Standardize all representations to the dominant
    +743        # first sound clusters
    +744        if len(self.primary_phone) > 4:
    +745            self.primary_phone = self.primary_phone[:4]
    +746        if len(self.secondary_phone) > 4:
    +747            self.secondary_phone = self.secondary_phone[:4]
    +748
    +749        if self.primary_phone == self.secondary_phone:
    +750            self.secondary_phone = ""
    +751        return [self.primary_phone, self.secondary_phone]
    +
    + + +

    A Double Metaphone parsing object capable of performing the double +coding algorithm on a given input string.

    +
    + + +
    + +
    + + def + check_word_start(self): + + + +
    + +
    42    def check_word_start(self):
    +43        # Skip silent letters when they start a word (because they're not
    +44        # phonetic if they're silent)
    +45        if self.word.get_letters(0, 2) in SILENT_STARTERS:
    +46            self.position += 1
    +47        # Starting with 'X' frequently pronounced 'Z' e.g. 'Xavier'
    +48        if self.word.get_letters(0) == "X":
    +49            # 'Z' maps to 'S'
    +50            self.primary_phone = self.secondary_phone = "S"
    +51            self.position += 1
    +
    + + + + +
    +
    + +
    + + def + process_vowel(self): + + + +
    + +
    53    def process_vowel(self):
    +54        self.next = (None, 1)
    +55
    +56        # All starting vowels map to 'A'
    +57        if self.position == self.word.start_index:
    +58            self.next = ("A", 1)
    +
    + + + + +
    +
    + +
    + + def + process_b(self): + + + +
    + +
    60    def process_b(self):
    +61        # "-mb", e.g., "dumb", already accounted for, see 'M'
    +62        if self.word.buffer[self.position + 1] == "B":
    +63            self.next = ("P", 2)
    +64        else:
    +65            self.next = ("P", 1)
    +
    + + + + +
    +
    + +
    + + def + process_c(self): + + + +
    + +
     67    def process_c(self):
    + 68        buffer = self.word.buffer
    + 69        position = self.position
    + 70        start_index = self.word.start_index
    + 71
    + 72        # Handle some germanic linguistics
    + 73        if (
    + 74            position > start_index + 1
    + 75            and buffer[position - 2] not in VOWELS
    + 76            and buffer[position - 1 : self.position + 2] == "ACH"
    + 77            and buffer[position + 2] not in ["I"]
    + 78            and (
    + 79                buffer[position + 2] not in ["E"]
    + 80                or buffer[position - 2 : position + 4] in ["BACHER", "MACHER"]
    + 81            )
    + 82        ):
    + 83            self.next = ("K", 2)
    + 84
    + 85        # Special case 'CAESAR'
    + 86        elif (
    + 87            position == start_index
    + 88            and buffer[start_index : start_index + 6] == "CAESAR"
    + 89        ):
    + 90            self.next = ("S", 2)
    + 91
    + 92        # Italian 'chianti'
    + 93        elif buffer[position : position + 4] == "CHIA":
    + 94            self.next = ("K", 2)
    + 95        elif buffer[position : position + 2] == "CH":
    + 96            # e.g. 'michael'
    + 97            if position > start_index and buffer[position : position + 4] == "CHAE":
    + 98                self.next = ("K", "X", 2)
    + 99            elif (
    +100                position == start_index
    +101                and (
    +102                    buffer[position + 1 : position + 6] in ["HARAC", "HARIS"]
    +103                    or buffer[position + 1 : position + 4]
    +104                    in ["HOR", "HYM", "HIA", "HEM"]
    +105                )
    +106                and buffer[start_index : start_index + 5] != "CHORE"
    +107            ):
    +108                self.next = ("K", 2)
    +109
    +110            # Germanic, greek, or other phonetic 'ch' for 'kh' sound
    +111            elif (
    +112                buffer[start_index : start_index + 4] in ["VAN ", "VON "]
    +113                or buffer[start_index : start_index + 3] == "SCH"
    +114                or buffer[position - 2 : position + 4] in ["ORCHES", "ARCHIT", "ORCHID"]
    +115                or buffer[position + 2] in ["T", "S"]
    +116                or (
    +117                    (
    +118                        buffer[position - 1] in ["A", "O", "U", "E"]
    +119                        or position == start_index
    +120                    )
    +121                    and (
    +122                        buffer[position + 2]
    +123                        in ["L", "R", "N", "M", "B", "H", "F", "V", "W", " "]
    +124                    )
    +125                )
    +126            ):
    +127                self.next = ("K", 2)
    +128            else:
    +129                if position > start_index:
    +130                    if buffer[start_index : start_index + 2] == "MC":
    +131                        self.next = ("K", 2)
    +132                    else:
    +133                        self.next = ("X", "K", 2)
    +134                else:
    +135                    self.next = ("X", 2)
    +136
    +137        # e.g, 'czerny'
    +138        elif (
    +139            buffer[position : position + 2] == "CZ"
    +140            and buffer[position - 2 : position + 2] != "WICZ"
    +141        ):
    +142            self.next = ("S", "X", 2)
    +143
    +144        # e.g., 'focaccia'
    +145        elif buffer[position + 1 : position + 4] == "CIA":
    +146            self.next = ("X", 3)
    +147
    +148        # Double 'C', but not if e.g. 'McClellan'
    +149        elif buffer[position : position + 2] == "CC" and not (
    +150            position == (start_index + 1) and buffer[start_index] == "M"
    +151        ):
    +152            # 'bellocchio' but not 'bacchus'
    +153            if (
    +154                buffer[position + 2] in ["I", "E", "H"]
    +155                and buffer[position + 2 : position + 4] != "HU"
    +156            ):
    +157                # 'accident', 'accede' 'succeed'
    +158                if (
    +159                    position == (start_index + 1) and buffer[start_index] == "A"
    +160                ) or buffer[position - 1 : position + 4] in ["UCCEE", "UCCES"]:
    +161                    self.next = ("KS", 3)
    +162
    +163                # 'bacci', 'bertucci', other italian
    +164                else:
    +165                    self.next = ("X", 3)
    +166            else:
    +167                self.next = ("K", 2)
    +168
    +169        elif buffer[position : position + 2] in ["CK", "CG", "CQ"]:
    +170            self.next = ("K", 2)
    +171        elif buffer[position : position + 2] in ["CI", "CE", "CY"]:
    +172            # Italian vs. English
    +173            if buffer[position : position + 3] in ["CIO", "CIE", "CIA"]:
    +174                self.next = ("S", "X", 2)
    +175            else:
    +176                self.next = ("S", 2)
    +177        else:
    +178            # Name set in 'mac caffrey', 'mac gregor'
    +179            if buffer[position + 1 : position + 3] in [" C", " Q", " G"]:
    +180                self.next = ("K", 3)
    +181            else:
    +182                if buffer[position + 1] in ["C", "K", "Q"] and buffer[
    +183                    position + 1 : position + 3
    +184                ] not in ["CE", "CI"]:
    +185                    self.next = ("K", 2)
    +186
    +187                # Default sound for 'C'
    +188                else:
    +189                    self.next = ("K", 1)
    +
    + + + + +
    +
    + +
    + + def + process_d(self): + + + +
    + +
    191    def process_d(self):
    +192        if self.word.buffer[self.position : self.position + 2] == "DG":
    +193            # e.g. 'edge'
    +194            if self.word.buffer[self.position + 2] in ["I", "E", "Y"]:
    +195                self.next = ("J", 3)
    +196            else:
    +197                self.next = ("TK", 2)
    +198        elif self.word.buffer[self.position : self.position + 2] in ["DT", "DD"]:
    +199            self.next = ("T", 2)
    +200        else:
    +201            self.next = ("T", 1)
    +
    + + + + +
    +
    + +
    + + def + process_f(self): + + + +
    + +
    203    def process_f(self):
    +204        if self.word.buffer[self.position + 1] == "F":
    +205            self.next = ("F", 2)
    +206        else:
    +207            self.next = ("F", 1)
    +
    + + + + +
    +
    + +
    + + def + process_g(self): + + + +
    + +
    209    def process_g(self):
    +210        buffer = self.word.buffer
    +211        position = self.position
    +212        start_index = self.word.start_index
    +213        if buffer[position + 1] == "H":
    +214            if position > start_index and buffer[position - 1] not in VOWELS:
    +215                self.next = ("K", 2)
    +216            elif position < (start_index + 3):
    +217                # 'Ghislane', 'Ghiradelli'
    +218                if position == start_index:
    +219                    if buffer[position + 2] == "I":
    +220                        self.next = ("J", 2)
    +221                    else:
    +222                        self.next = ("K", 2)
    +223
    +224            # Parker's rule for e.g., 'Hugh'
    +225            elif (
    +226                (
    +227                    position > (start_index + 1)
    +228                    and buffer[position - 2] in ["B", "H", "D"]
    +229                )
    +230                or (
    +231                    position > (start_index + 2)
    +232                    and buffer[position - 3] in ["B", "H", "D"]
    +233                )
    +234                or (position > (start_index + 3) and buffer[position - 4] in ["B", "H"])
    +235            ):
    +236                self.next = (None, 2)
    +237
    +238            else:
    +239                # e.g., 'laugh', 'McLaughlin', 'cough', 'gough', 'rough', 'tough'
    +240                if (
    +241                    position > (start_index + 2)
    +242                    and buffer[position - 1] == "U"
    +243                    and buffer[position - 3] in ["C", "G", "L", "R", "T"]
    +244                ):
    +245                    self.next = ("F", 2)
    +246                else:
    +247                    if position > start_index and buffer[position - 1] != "I":
    +248                        self.next = ("K", 2)
    +249
    +250        elif buffer[position + 1] == "N":
    +251            if (
    +252                position == (start_index + 1)
    +253                and buffer[start_index] in VOWELS
    +254                and not self.word.is_slavo_germanic
    +255            ):
    +256                self.next = ("KN", "N", 2)
    +257
    +258            else:
    +259                # Not e.g. 'cagney'
    +260                if (
    +261                    buffer[position + 2 : position + 4] != "EY"
    +262                    and buffer[position + 1] != "Y"
    +263                    and not self.word.is_slavo_germanic
    +264                ):
    +265                    self.next = ("N", "KN", 2)
    +266                else:
    +267                    self.next = ("KN", 2)
    +268
    +269        # e.g. 'Tagliaro'
    +270        elif (
    +271            buffer[position + 1 : position + 3] == "LI"
    +272            and not self.word.is_slavo_germanic
    +273        ):
    +274            self.next = ("KL", "L", 2)
    +275
    +276        # -ges-,-gep-,-gel-, -gie- at beginning
    +277        elif position == start_index and (
    +278            buffer[position + 1] == "Y"
    +279            or buffer[position + 1 : position + 3]
    +280            in ["ES", "EP", "EB", "EL", "EY", "IB", "IL", "IN", "IE", "EI", "ER"]
    +281        ):
    +282            self.next = ("K", "J", 2)
    +283
    +284        # -ger-,  -gy-
    +285        elif (
    +286            (buffer[position + 1 : position + 3] == "ER" or buffer[position + 1] == "Y")
    +287            and buffer[start_index : start_index + 6]
    +288            not in ["DANGER", "RANGER", "MANGER"]
    +289            and buffer[position - 1] not in ["E", "I"]
    +290            and buffer[position - 1 : position + 2] not in ["RGY", "OGY"]
    +291        ):
    +292            self.next = ("K", "J", 2)
    +293
    +294        # Italian e.g, 'Biaggi'
    +295        elif buffer[position + 1] in ["E", "I", "Y"] or buffer[
    +296            position - 1 : position + 3
    +297        ] in ["AGGI", "OGGI"]:
    +298            # Germanic
    +299            if (
    +300                buffer[start_index : start_index + 4] in ["VON ", "VAN "]
    +301                or buffer[start_index : start_index + 3] == "SCH"
    +302                or buffer[position + 1 : position + 3] == "ET"
    +303            ):
    +304                self.next = ("K", 2)
    +305
    +306            else:
    +307                # Always soft if following the French ending
    +308                if buffer[position + 1 : position + 5] == "IER ":
    +309                    self.next = ("J", 2)
    +310                else:
    +311                    self.next = ("J", "K", 2)
    +312
    +313        elif buffer[position + 1] == "G":
    +314            self.next = ("K", 2)
    +315        else:
    +316            self.next = ("K", 1)
    +
    + + + + +
    +
    + +
    + + def + process_h(self): + + + +
    + +
    318    def process_h(self):
    +319        # Keep if self.word.start_index & before vowel, or between 2 vowels
    +320        if (
    +321            self.position == self.word.start_index
    +322            or self.word.buffer[self.position - 1] in VOWELS
    +323        ) and self.word.buffer[self.position + 1] in VOWELS:
    +324            self.next = ("H", 2)
    +325        else:
    +326            self.next = (None, 1)
    +
    + + + + +
    +
    + +
    + + def + process_j(self): + + + +
    + +
    328    def process_j(self):
    +329        buffer = self.word.buffer
    +330        position = self.position
    +331        start_index = self.word.start_index
    +332
    +333        # Spanish, 'Jose', 'Jacinto', etc.
    +334        if (
    +335            buffer[self.position : self.position + 4] == "JOSE"
    +336            or buffer[start_index : start_index + 4] == "SAN "
    +337        ):
    +338            if (position == start_index and buffer[position + 4] == " ") or buffer[
    +339                start_index : start_index + 4
    +340            ] == "SAN ":
    +341                self.next = ("H",)
    +342            else:
    +343                self.next = ("J", "H")
    +344
    +345        # Yankelovich/Jankelowicz
    +346        elif (
    +347            position == start_index
    +348            and buffer[self.position : self.position + 4] != "JOSE"
    +349        ):
    +350            self.next = ("J", "A")
    +351
    +352        else:
    +353            # Spanish pronunciation of e.g. 'Bajador'
    +354            if (
    +355                buffer[position - 1] in VOWELS
    +356                and not self.word.is_slavo_germanic
    +357                and buffer[position + 1] in ["A", "O"]
    +358            ):
    +359                self.next = ("J", "H")
    +360            else:
    +361                if position == self.word.end_index:
    +362                    self.next = ("J", " ")
    +363                else:
    +364                    if buffer[position + 1] not in [
    +365                        "L",
    +366                        "T",
    +367                        "K",
    +368                        "S",
    +369                        "N",
    +370                        "M",
    +371                        "B",
    +372                        "Z",
    +373                    ] and buffer[position - 1] not in ["S", "K", "L"]:
    +374                        self.next = ("J",)
    +375                    else:
    +376                        self.next = (None,)
    +377
    +378        if buffer[position + 1] == "J":
    +379            self.next = self.next + (2,)
    +380        else:
    +381            self.next = self.next + (1,)
    +
    + + + + +
    +
    + +
    + + def + process_k(self): + + + +
    + +
    383    def process_k(self):
    +384        if self.word.buffer[self.position + 1] == "K":
    +385            self.next = ("K", 2)
    +386        else:
    +387            self.next = ("K", 1)
    +
    + + + + +
    +
    + +
    + + def + process_l(self): + + + +
    + +
    389    def process_l(self):
    +390        buffer = self.word.buffer
    +391        position = self.position
    +392        end_index = self.word.end_index
    +393
    +394        if buffer[position + 1] == "L":
    +395            # Spanish e.g. 'cabrillo', 'gallegos'
    +396            if (
    +397                position == (end_index - 2)
    +398                and buffer[position - 1 : position + 3] in ["ILLO", "ILLA", "ALLE"]
    +399            ) or (
    +400                (
    +401                    buffer[end_index - 1 : end_index + 1] in ["AS", "OS"]
    +402                    or buffer[end_index] in ["A", "O"]
    +403                )
    +404                and buffer[position - 1 : position + 3] == "ALLE"
    +405            ):
    +406                self.next = ("L", "", 2)
    +407            else:
    +408                self.next = ("L", 2)
    +409        else:
    +410            self.next = ("L", 1)
    +
    + + + + +
    +
    + +
    + + def + process_m(self): + + + +
    + +
    412    def process_m(self):
    +413        buffer = self.word.buffer
    +414        position = self.position
    +415        if (
    +416            buffer[position + 1 : position + 4] == "UMB"
    +417            and (
    +418                position + 1 == self.word.end_index
    +419                or buffer[position + 2 : position + 4] == "ER"
    +420            )
    +421        ) or buffer[position + 1] == "M":
    +422            self.next = ("M", 2)
    +423        else:
    +424            self.next = ("M", 1)
    +
    + + + + +
    +
    + +
    + + def + process_n(self): + + + +
    + +
    426    def process_n(self):
    +427        if self.word.buffer[self.position + 1] == "N":
    +428            self.next = ("N", 2)
    +429        else:
    +430            self.next = ("N", 1)
    +
    + + + + +
    +
    + +
    + + def + process_p(self): + + + +
    + +
    432    def process_p(self):
    +433        if self.word.buffer[self.position + 1] == "H":
    +434            self.next = ("F", 2)
    +435
    +436        # Account for "Campbell", "raspberry"
    +437        elif self.word.buffer[self.position + 1] in ["P", "B"]:
    +438            self.next = ("P", 2)
    +439        else:
    +440            self.next = ("P", 1)
    +
    + + + + +
    +
    + +
    + + def + process_q(self): + + + +
    + +
    442    def process_q(self):
    +443        if self.word.buffer[self.position + 1] == "Q":
    +444            self.next = ("K", 2)
    +445        else:
    +446            self.next = ("K", 1)
    +
    + + + + +
    +
    + +
    + + def + process_r(self): + + + +
    + +
    448    def process_r(self):
    +449        buffer = self.word.buffer
    +450        position = self.position
    +451        end_index = self.word.end_index
    +452
    +453        # French e.g. 'Rogier', but exclude e.g. 'Hochmeier'
    +454        if (
    +455            position == end_index
    +456            and not self.word.is_slavo_germanic
    +457            and buffer[position - 2 : position] == "IE"
    +458            and buffer[position - 4 : position - 2] not in ["ME", "MA"]
    +459        ):
    +460            self.next = ("", "R")
    +461        else:
    +462            self.next = ("R",)
    +463        if buffer[position + 1] == "R":
    +464            self.next = self.next + (2,)
    +465        else:
    +466            self.next = self.next + (1,)
    +
    + + + + +
    +
    + +
    + + def + process_s(self): + + + +
    + +
    468    def process_s(self):
    +469        buffer = self.word.buffer
    +470        position = self.position
    +471        start_index = self.word.start_index
    +472        end_index = self.word.end_index
    +473
    +474        # Special cases like 'Carlisle', 'Carlysle'
    +475        if buffer[position - 1 : position + 2] in ["ISL", "YSL"]:
    +476            self.next = (None, 1)
    +477
    +478        # special case 'sugar-'
    +479        elif (
    +480            position == start_index and buffer[start_index : start_index + 5] == "SUGAR"
    +481        ):
    +482            self.next = ("X", "S", 1)
    +483
    +484        elif buffer[position : position + 2] == "SH":
    +485            # Germanic
    +486            if buffer[position + 1 : position + 5] in ["HEIM", "HOEK", "HOLM", "HOLZ"]:
    +487                self.next = ("S", 2)
    +488            else:
    +489                self.next = ("X", 2)
    +490
    +491        # Italian & Armenian
    +492        elif (
    +493            buffer[position : position + 3] in ["SIO", "SIA"]
    +494            or buffer[position : position + 4] == "SIAN"
    +495        ):
    +496            if not self.word.is_slavo_germanic:
    +497                self.next = ("S", "X", 3)
    +498            else:
    +499                self.next = ("S", 3)
    +500
    +501        # Lots of anglicisations to match here
    +502        # Germanic, e.g. 'Smith' == 'Schmidt', 'Snider' == 'Schneider'
    +503        # Slavic languages, catch -sz- and the tricky Hungarian
    +504        # pronunciation with an 's'
    +505        elif (
    +506            position == start_index and buffer[position + 1] in ["M", "N", "L", "W"]
    +507        ) or buffer[position + 1] == "Z":
    +508            self.next = ("S", "X")
    +509            if buffer[position + 1] == "Z":
    +510                self.next = self.next + (2,)
    +511            else:
    +512                self.next = self.next + (1,)
    +513
    +514        elif buffer[position : position + 2] == "SC":
    +515            # Schlesinger's rule
    +516            if buffer[position + 2] == "H":
    +517                # Dutch origin, e.g. 'school', 'schooner'
    +518                if buffer[position + 3 : position + 5] in [
    +519                    "OO",
    +520                    "ER",
    +521                    "EN",
    +522                    "UY",
    +523                    "ED",
    +524                    "EM",
    +525                ]:
    +526                    # 'Schermerhorn', 'Schenker'
    +527                    if buffer[position + 3 : position + 5] in ["ER", "EN"]:
    +528                        self.next = ("X", "SK", 3)
    +529                    else:
    +530                        self.next = ("SK", 3)
    +531
    +532                else:
    +533                    if (
    +534                        position == start_index
    +535                        and buffer[start_index + 3] not in VOWELS
    +536                        and buffer[start_index + 3] != "W"
    +537                    ):
    +538                        self.next = ("X", "S", 3)
    +539                    else:
    +540                        self.next = ("X", 3)
    +541
    +542            elif buffer[position + 2] in ["I", "E", "Y"]:
    +543                self.next = ("S", 3)
    +544            else:
    +545                self.next = ("SK", 3)
    +546
    +547        # French e.g. 'Resnais', 'Artois'
    +548        elif position == end_index and buffer[position - 2 : position] in ["AI", "OI"]:
    +549            self.next = ("", "S", 1)
    +550        else:
    +551            self.next = ("S",)
    +552            if buffer[position + 1] in ["S", "Z"]:
    +553                self.next = self.next + (2,)
    +554            else:
    +555                self.next = self.next + (1,)
    +
    + + + + +
    +
    + +
    + + def + process_t(self): + + + +
    + +
    557    def process_t(self):
    +558        buffer = self.word.buffer
    +559        position = self.position
    +560        start_index = self.word.start_index
    +561
    +562        if buffer[position : position + 4] == "TION":
    +563            self.next = ("X", 3)
    +564        elif buffer[position : position + 3] in ["TIA", "TCH"]:
    +565            self.next = ("X", 3)
    +566        elif (
    +567            buffer[position : position + 2] == "TH"
    +568            or buffer[position : position + 3] == "TTH"
    +569        ):
    +570            # 'Thomas', 'Thames' or hard-sound Germanic
    +571            if (
    +572                buffer[position + 2 : position + 4] in ["OM", "AM"]
    +573                or buffer[start_index : start_index + 4] in ["VON ", "VAN "]
    +574                or buffer[start_index : start_index + 3] == "SCH"
    +575            ):
    +576                self.next = ("T", 2)
    +577            else:
    +578                self.next = ("0", "T", 2)
    +579
    +580        elif buffer[position + 1] in ["T", "D"]:
    +581            self.next = ("T", 2)
    +582        else:
    +583            self.next = ("T", 1)
    +
    + + + + +
    +
    + +
    + + def + process_v(self): + + + +
    + +
    585    def process_v(self):
    +586        if self.word.buffer[self.position + 1] == "V":
    +587            self.next = ("F", 2)
    +588        else:
    +589            self.next = ("F", 1)
    +
    + + + + +
    +
    + +
    + + def + process_w(self): + + + +
    + +
    591    def process_w(self):
    +592        buffer = self.word.buffer
    +593        position = self.position
    +594        start_index = self.word.start_index
    +595
    +596        if buffer[position : position + 2] == "WR":
    +597            self.next = ("R", 2)
    +598        elif position == start_index and (
    +599            buffer[position + 1] in VOWELS or buffer[position : position + 2] == "WH"
    +600        ):
    +601            # Wasserman should match Vasserman
    +602            if buffer[position + 1] in VOWELS:
    +603                self.next = ("A", "F", 1)
    +604            else:
    +605                self.next = ("A", 1)
    +606
    +607        # Arnow should match Arnoff
    +608        elif (
    +609            (position == self.word.end_index and buffer[position - 1] in VOWELS)
    +610            or buffer[position - 1 : position + 4]
    +611            in ["EWSKI", "EWSKY", "OWSKI", "OWSKY"]
    +612            or buffer[start_index : start_index + 3] == "SCH"
    +613        ):
    +614            self.next = ("", "F", 1)
    +615
    +616        # Polish e.g. 'Filipowicz'
    +617        elif buffer[position : position + 4] in ["WICZ", "WITZ"]:
    +618            self.next = ("TS", "FX", 4)
    +619
    +620        # By default, 'W' is skipped phonetically
    +621        else:
    +622            self.next = (None, 1)
    +
    + + + + +
    +
    + +
    + + def + process_x(self): + + + +
    + +
    624    def process_x(self):
    +625        buffer = self.word.buffer
    +626        position = self.position
    +627
    +628        # French e.g. 'Breaux'
    +629        self.next = (None,)
    +630        if not (
    +631            position == self.word.end_index
    +632            and (
    +633                buffer[position - 3 : position] in ["IAU", "EAU"]
    +634                or buffer[position - 2 : position] in ["AU", "OU"]
    +635            )
    +636        ):
    +637            self.next = ("KS",)
    +638
    +639        if buffer[position + 1] in ["C", "X"]:
    +640            self.next = self.next + (2,)
    +641        else:
    +642            self.next = self.next + (1,)
    +
    + + + + +
    +
    + +
    + + def + process_z(self): + + + +
    + +
    644    def process_z(self):
    +645        # Chinese pinyin e.g. 'zhao'
    +646        if self.word.buffer[self.position + 1] == "H":
    +647            self.next = ("J",)
    +648        elif self.word.buffer[self.position + 1 : self.position + 3] in [
    +649            "ZO",
    +650            "ZI",
    +651            "ZA",
    +652        ] or (
    +653            self.word.is_slavo_germanic
    +654            and self.position > self.word.start_index
    +655            and self.word.buffer[self.position - 1] != "T"
    +656        ):
    +657            self.next = ("S", "TS")
    +658        else:
    +659            self.next = ("S",)
    +660        if (
    +661            self.word.buffer[self.position + 1] == "Z"
    +662            or self.word.buffer[self.position + 1] == "H"
    +663        ):
    +664            self.next = self.next + (2,)
    +665        else:
    +666            self.next = self.next + (1,)
    +
    + + + + +
    +
    + +
    + + def + parse(self, input): + + + +
    + +
    668    def parse(self, input):
    +669        self.word = Word(input)
    +670        self.position = self.word.start_index
    +671        self.primary_phone = ""
    +672        self.secondary_phone = ""
    +673        self.next = (None, 1)
    +674        self.check_word_start()
    +675
    +676        # Loop through chars in word.buffer
    +677        while self.position <= self.word.end_index:
    +678            character = self.word.buffer[self.position]
    +679
    +680            # Vowels and spaces get special handling
    +681            if character in VOWELS:
    +682                self.process_vowel()
    +683            elif character == " ":
    +684                self.position += 1
    +685                continue
    +686
    +687            # Other letters each have their own function
    +688            elif character == "B":
    +689                self.process_b()
    +690            elif character == "C":
    +691                self.process_c()
    +692            elif character == "D":
    +693                self.process_d()
    +694            elif character == "F":
    +695                self.process_f()
    +696            elif character == "G":
    +697                self.process_g()
    +698            elif character == "H":
    +699                self.process_h()
    +700            elif character == "J":
    +701                self.process_j()
    +702            elif character == "K":
    +703                self.process_k()
    +704            elif character == "L":
    +705                self.process_l()
    +706            elif character == "M":
    +707                self.process_m()
    +708            elif character == "N":
    +709                self.process_n()
    +710            elif character == "P":
    +711                self.process_p()
    +712            elif character == "Q":
    +713                self.process_q()
    +714            elif character == "R":
    +715                self.process_r()
    +716            elif character == "S":
    +717                self.process_s()
    +718            elif character == "T":
    +719                self.process_t()
    +720            elif character == "V":
    +721                self.process_v()
    +722            elif character == "W":
    +723                self.process_w()
    +724            elif character == "X":
    +725                self.process_x()
    +726            elif character == "Z":
    +727                self.process_z()
    +728
    +729            # Handle any residual unprocessed sound clusters
    +730            if len(self.next) == 2:
    +731                if self.next[0]:
    +732                    self.primary_phone += self.next[0]
    +733                    self.secondary_phone += self.next[0]
    +734                self.position += self.next[1]
    +735            elif len(self.next) == 3:
    +736                if self.next[0]:
    +737                    self.primary_phone += self.next[0]
    +738                if self.next[1]:
    +739                    self.secondary_phone += self.next[1]
    +740                self.position += self.next[2]
    +741
    +742        # Standardize all representations to the dominant
    +743        # first sound clusters
    +744        if len(self.primary_phone) > 4:
    +745            self.primary_phone = self.primary_phone[:4]
    +746        if len(self.secondary_phone) > 4:
    +747            self.secondary_phone = self.secondary_phone[:4]
    +748
    +749        if self.primary_phone == self.secondary_phone:
    +750            self.secondary_phone = ""
    +751        return [self.primary_phone, self.secondary_phone]
    +
    + + + + +
    +
    +
    + +
    + + def + standardize_birth_date(raw_dob: str, existing_format: str = '%Y-%m-%d') -> str: + + + +
    + +
    292def standardize_birth_date(
    +293    raw_dob: str, existing_format: str = FHIR_DATE_FORMAT
    +294) -> str:
    +295    """
    +296    Validates and standardizes a date of birth string into YYYY-MM-DD format.
    +297
    +298    :param raw_dob: One date of birth (dob) to standardize.
    +299    :param existing_format: A python DateTime format used to parse the date of
    +300        birth within the Patient resource.  Default: `%Y-%m-%d` (YYYY-MM-DD).
    +301    :return: Date of birth as a string in YYYY-MM-DD format
    +302        or None if date of birth is invalid.
    +303    """
    +304
    +305    #  Need to make sure dob is not None or null ("")
    +306    #  or detect() will end up in an infinite loop
    +307    if raw_dob is None or len(raw_dob) == 0:
    +308        raise ValueError("Date of Birth must be supplied!")
    +309
    +310    standardized_dob = _standardize_date(
    +311        raw_date=raw_dob, date_format=existing_format, future=True
    +312    )
    +313
    +314    return standardized_dob
    +
    + + +

    Validates and standardizes a date of birth string into YYYY-MM-DD format.

    + +
    Parameters
    + +
      +
    • raw_dob: One date of birth (dob) to standardize.
    • +
    • existing_format: A python DateTime format used to parse the date of +birth within the Patient resource. Default: %Y-%m-%d (YYYY-MM-DD).
    • +
    + +
    Returns
    + +
    +

    Date of birth as a string in YYYY-MM-DD format + or None if date of birth is invalid.

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/linkage.html b/docs/v1.0.13/sdk/phdi/linkage.html new file mode 100644 index 0000000000..45fcba78e1 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/linkage.html @@ -0,0 +1,3539 @@ + + + + + + + phdi.linkage API documentation + + + + + + + + + +
    +
    +

    +phdi.linkage

    + + + + + + +
     1from phdi.linkage.algorithms import DIBBS_BASIC, DIBBS_ENHANCED
    + 2
    + 3from phdi.linkage.link import (
    + 4    generate_hash_str,
    + 5    block_data,
    + 6    match_within_block,
    + 7    feature_match_exact,
    + 8    feature_match_fuzzy_string,
    + 9    eval_perfect_match,
    +10    compile_match_lists,
    +11    feature_match_four_char,
    +12    perform_linkage_pass,
    +13    score_linkage_vs_truth,
    +14    block_data_from_db,
    +15    _generate_block_query,
    +16    calculate_m_probs,
    +17    calculate_u_probs,
    +18    load_json_probs,
    +19    calculate_log_odds,
    +20    feature_match_log_odds_exact,
    +21    feature_match_log_odds_fuzzy_compare,
    +22    profile_log_odds,
    +23    eval_log_odds_cutoff,
    +24    extract_blocking_values_from_record,
    +25    write_linkage_config,
    +26    read_linkage_config,
    +27    link_record_against_mpi,
    +28    add_person_resource,
    +29)
    +30
    +31from phdi.linkage.core import BaseMPIConnectorClient
    +32from phdi.linkage.postgres import DIBBsConnectorClient
    +33from phdi.linkage.seed import convert_to_patient_fhir_resources
    +34
    +35
    +36__all__ = [
    +37    "DIBBS_BASIC",
    +38    "DIBBS_ENHANCED",
    +39    "generate_hash_str",
    +40    "block_data",
    +41    "match_within_block",
    +42    "feature_match_exact",
    +43    "feature_match_fuzzy_string",
    +44    "eval_perfect_match",
    +45    "compile_match_lists",
    +46    "feature_match_four_char",
    +47    "perform_linkage_pass",
    +48    "score_linkage_vs_truth",
    +49    "block_data_from_db",
    +50    "_generate_block_query",
    +51    "calculate_m_probs",
    +52    "calculate_u_probs",
    +53    "load_json_probs",
    +54    "calculate_log_odds",
    +55    "feature_match_log_odds_exact",
    +56    "feature_match_log_odds_fuzzy_compare",
    +57    "profile_log_odds",
    +58    "eval_log_odds_cutoff",
    +59    "BaseMPIConnectorClient",
    +60    "extract_blocking_values_from_record",
    +61    "write_linkage_config",
    +62    "read_linkage_config",
    +63    "DIBBsConnectorClient",
    +64    "link_record_against_mpi",
    +65    "add_person_resource",
    +66    "_compare_address_elements",
    +67    "_compare_name_elements",
    +68    "convert_to_patient_fhir_resources",
    +69]
    +
    + + +
    +
    +
    + DIBBS_BASIC = + + [{'funcs': {'first_name': 'feature_match_fuzzy_string', 'last_name': 'feature_match_fuzzy_string', 'birthdate': 'feature_match_fuzzy_string'}, 'blocks': [{'value': 'mrn', 'transformation': 'last4'}, {'value': 'address', 'transformation': 'first4'}], 'matching_rule': 'eval_perfect_match', 'cluster_ratio': 0.9}, {'funcs': {'address': 'feature_match_fuzzy_string', 'city': 'feature_match_fuzzy_string'}, 'blocks': [{'value': 'first_name', 'transformation': 'first4'}, {'value': 'last_name', 'transformation': 'first4'}], 'matching_rule': 'eval_perfect_match', 'cluster_ratio': 0.9}] + + +
    + + + + +
    +
    +
    + DIBBS_ENHANCED = + + [{'funcs': {'birthdate': 'feature_match_log_odds_fuzzy_compare', 'first_name': 'feature_match_log_odds_fuzzy_compare', 'last_name': 'feature_match_log_odds_fuzzy_compare'}, 'blocks': [{'value': 'mrn', 'transformation': 'last4'}, {'value': 'address', 'transformation': 'first4'}], 'matching_rule': 'eval_log_odds_cutoff', 'cluster_ratio': 0.9, 'kwargs': {'similarity_measure': 'JaroWinkler', 'threshold': 0.7, 'true_match_threshold': 16.5, 'log_odds': {'birthdate': 9.944142836217619, 'first_name': 8.009121400325398, 'last_name': 5.327681398982514, 'sex': 0.6964525713514773, 'address': 5.769942276960749, 'city': 1.8002552875091014, 'state': 0.0, 'zip': 4.909466232098861, 'mrn': 1.464232660081324}}}, {'funcs': {'address': 'feature_match_log_odds_fuzzy_compare', 'city': 'feature_match_log_odds_fuzzy_compare'}, 'blocks': [{'value': 'first_name', 'transformation': 'first4'}, {'value': 'last_name', 'transformation': 'first4'}], 'matching_rule': 'eval_log_odds_cutoff', 'cluster_ratio': 0.9, 'kwargs': {'similarity_measure': 'JaroWinkler', 'threshold': 0.7, 'true_match_threshold': 7.0, 'log_odds': {'birthdate': 9.944142836217619, 'first_name': 8.009121400325398, 'last_name': 5.327681398982514, 'sex': 0.6964525713514773, 'address': 5.769942276960749, 'city': 1.8002552875091014, 'state': 0.0, 'zip': 4.909466232098861, 'mrn': 1.464232660081324}}}] + + +
    + + + + +
    +
    + +
    + + def + generate_hash_str(linking_identifier: str, salt_str: str) -> str: + + + +
    + +
    559def generate_hash_str(linking_identifier: str, salt_str: str) -> str:
    +560    """
    +561    Generates a hash for a given string of concatenated patient information. The hash
    +562    serves as a "unique" identifier for the patient.
    +563
    +564    :param linking_identifier: The value to be hashed.  For example, the concatenation
    +565      of a patient's name, address, and date of birth, delimited by dashes.
    +566    :param salt_str: The salt to use with the hash. This is intended to prevent
    +567      reverse engineering of the PII used to create the hash.
    +568    :return: The hash of the linking_identifier string.
    +569    """
    +570    hash_obj = hashlib.sha256()
    +571    to_encode = (linking_identifier + salt_str).encode("utf-8")
    +572    hash_obj.update(to_encode)
    +573    return hash_obj.hexdigest()
    +
    + + +

    Generates a hash for a given string of concatenated patient information. The hash +serves as a "unique" identifier for the patient.

    + +
    Parameters
    + +
      +
    • linking_identifier: The value to be hashed. For example, the concatenation +of a patient's name, address, and date of birth, delimited by dashes.
    • +
    • salt_str: The salt to use with the hash. This is intended to prevent +reverse engineering of the PII used to create the hash.
    • +
    + +
    Returns
    + +
    +

    The hash of the linking_identifier string.

    +
    +
    + + +
    +
    + +
    + + def + block_data(data: pandas.core.frame.DataFrame, blocks: List) -> dict: + + + +
    + +
    32def block_data(data: pd.DataFrame, blocks: List) -> dict:
    +33    """
    +34    Generates dictionary of blocked data where each key is a block
    +35    and each value is a distinct list of lists containing the data
    +36    for a given block.
    +37
    +38    :param data: A pandas dataframe of records to be linked.
    +39    :param blocks: List of columns to be used in blocks.
    +40    :return: A dictionary of with the keys as the blocks and the
    +41      values as the data within each block, stored as a list of
    +42      lists.
    +43    """
    +44    blocked_data_tuples = tuple(data.groupby(blocks))
    +45
    +46    # Convert data to list of lists within dict
    +47    blocked_data = dict()
    +48    for block, df in blocked_data_tuples:
    +49        blocked_data[block] = df.values.tolist()
    +50
    +51    return blocked_data
    +
    + + +

    Generates dictionary of blocked data where each key is a block +and each value is a distinct list of lists containing the data +for a given block.

    + +
    Parameters
    + +
      +
    • data: A pandas dataframe of records to be linked.
    • +
    • blocks: List of columns to be used in blocks.
    • +
    + +
    Returns
    + +
    +

    A dictionary of with the keys as the blocks and the + values as the data within each block, stored as a list of + lists.

    +
    +
    + + +
    +
    + +
    + + def + match_within_block( block: List[List], feature_funcs: dict[str, typing.Callable], col_to_idx: dict[str, int], match_eval: Callable, **kwargs) -> List[tuple]: + + + +
    + +
    730def match_within_block(
    +731    block: List[List],
    +732    feature_funcs: dict[str, Callable],
    +733    col_to_idx: dict[str, int],
    +734    match_eval: Callable,
    +735    **kwargs,
    +736) -> List[tuple]:
    +737    """
    +738    Performs matching on all candidate pairs of records within a given block
    +739    of data. Actual partitioning of the data should be done outside this
    +740    function, as it compares all possible pairs within the provided partition.
    +741    Uses a given construction of feature comparison rules as well as a
    +742    match evaluation rule to determine the final verdict on whether two
    +743    records are indeed a match.
    +744
    +745    A feature function is of the form "feature_match_X" for some condition
    +746    X; it must accept two records (lists of data), an index i in which the
    +747    feature to compare is stored, and the parameter **kwargs. It must return
    +748    a boolean indicating whether the features "match" for whatever definition
    +749    of match the function uses (i.e. this allows modular logic to apply to
    +750    different features in the compared records). Note that not all features
    +751    in a record need a comparison function defined.
    +752
    +753    A match evaluation rule is a function of the form "eval_X" for some
    +754    condition X. It accepts as input a list of booleans, one for each feature
    +755    that was compared with feature funcs, and determines whether the
    +756    comparisons constitute a match according to X.
    +757
    +758    :param block: A list of records to check for matches. Each record in
    +759      the list is itself a list of features. The first feature of the
    +760      record must be an "id" for the record.
    +761    :param feature_funcs: A dictionary mapping feature indices to functions
    +762      used to evaluate those features for a match.
    +763    :param col_to_idx: A dictionary mapping column names to the numeric index
    +764      in which they occur in order in the data.
    +765    :param match_eval: A function for determining whether a given set of
    +766      feature comparisons constitutes a match for linkage.
    +767    :return: A list of 2-tuples of the form (i,j), where i,j give the indices
    +768      in the block of data of records deemed to match.
    +769    """
    +770    match_pairs = []
    +771
    +772    # Dynamic programming table: order doesn't matter, so only need to
    +773    # check each combo of i,j once
    +774    for i, record_i in enumerate(block):
    +775        for j in range(i + 1, len(block)):
    +776            record_j = block[j]
    +777            feature_comps = [
    +778                feature_funcs[feature_col](
    +779                    record_i, record_j, feature_col, col_to_idx, **kwargs
    +780                )
    +781                for feature_col in feature_funcs
    +782            ]
    +783
    +784            # If it's a match, store the result
    +785            is_match = match_eval(feature_comps, **kwargs)
    +786            if is_match:
    +787                match_pairs.append((i, j))
    +788
    +789    return match_pairs
    +
    + + +

    Performs matching on all candidate pairs of records within a given block +of data. Actual partitioning of the data should be done outside this +function, as it compares all possible pairs within the provided partition. +Uses a given construction of feature comparison rules as well as a +match evaluation rule to determine the final verdict on whether two +records are indeed a match.

    + +

    A feature function is of the form "feature_match_X" for some condition +X; it must accept two records (lists of data), an index i in which the +feature to compare is stored, and the parameter **kwargs. It must return +a boolean indicating whether the features "match" for whatever definition +of match the function uses (i.e. this allows modular logic to apply to +different features in the compared records). Note that not all features +in a record need a comparison function defined.

    + +

    A match evaluation rule is a function of the form "eval_X" for some +condition X. It accepts as input a list of booleans, one for each feature +that was compared with feature funcs, and determines whether the +comparisons constitute a match according to X.

    + +
    Parameters
    + +
      +
    • block: A list of records to check for matches. Each record in +the list is itself a list of features. The first feature of the +record must be an "id" for the record.
    • +
    • feature_funcs: A dictionary mapping feature indices to functions +used to evaluate those features for a match.
    • +
    • col_to_idx: A dictionary mapping column names to the numeric index +in which they occur in order in the data.
    • +
    • match_eval: A function for determining whether a given set of +feature comparisons constitutes a match for linkage.
    • +
    + +
    Returns
    + +
    +

    A list of 2-tuples of the form (i,j), where i,j give the indices + in the block of data of records deemed to match.

    +
    +
    + + +
    +
    + +
    + + def + feature_match_exact( record_i: List, record_j: List, feature_col: str, col_to_idx: dict[str, int], **kwargs: dict) -> bool: + + + +
    + +
    410def feature_match_exact(
    +411    record_i: List,
    +412    record_j: List,
    +413    feature_col: str,
    +414    col_to_idx: dict[str, int],
    +415    **kwargs: dict,
    +416) -> bool:
    +417    """
    +418    Determines whether a single feature in a given pair of records
    +419    constitutes an exact match (perfect equality).
    +420
    +421    :param record_i: One of the records in the candidate pair to evaluate.
    +422    :param record_j: The second record in the candidate pair.
    +423    :param feature_col: The name of the column being evaluated (e.g. "city").
    +424    :param col_to_idx: A dictionary mapping column names to the numeric index
    +425      in which they occur in order in the data.
    +426    :return: A boolean indicating whether the features are an exact match.
    +427    """
    +428    idx = col_to_idx[feature_col]
    +429    return record_i[idx] == record_j[idx]
    +
    + + +

    Determines whether a single feature in a given pair of records +constitutes an exact match (perfect equality).

    + +
    Parameters
    + +
      +
    • record_i: One of the records in the candidate pair to evaluate.
    • +
    • record_j: The second record in the candidate pair.
    • +
    • feature_col: The name of the column being evaluated (e.g. "city").
    • +
    • col_to_idx: A dictionary mapping column names to the numeric index +in which they occur in order in the data.
    • +
    + +
    Returns
    + +
    +

    A boolean indicating whether the features are an exact match.

    +
    +
    + + +
    +
    + +
    + + def + feature_match_fuzzy_string( record_i: List, record_j: List, feature_col: str, col_to_idx: dict[str, int], **kwargs: dict) -> bool: + + + +
    + +
    456def feature_match_fuzzy_string(
    +457    record_i: List,
    +458    record_j: List,
    +459    feature_col: str,
    +460    col_to_idx: dict[str, int],
    +461    **kwargs: dict,
    +462) -> bool:
    +463    """
    +464    Determines whether two strings in a given pair of records are close
    +465    enough to constitute a partial match. The exact nature of the match
    +466    is determined by the specified string comparison function (see
    +467    harmonization/utils/compare_strings for more details) as well as a
    +468    scoring threshold the comparison must meet or exceed.
    +469
    +470    :param record_i: One of the records in the candidate pair to evaluate.
    +471    :param record_j: The second record in the candidate pair.
    +472    :param feature_col: The name of the column being evaluated (e.g. "city").
    +473    :param col_to_idx: A dictionary mapping column names to the numeric index
    +474      in which they occur in order in the data.
    +475    :param **kwargs: Optionally, a dictionary including specifications for
    +476      the string comparison metric to use, as well as the cutoff score
    +477      beyond which to classify the strings as a partial match.
    +478    :return: A boolean indicating whether the features are a fuzzy match.
    +479    """
    +480    idx = col_to_idx[feature_col]
    +481
    +482    # Special case for two empty strings, since we don't want vacuous
    +483    # equality (or in-) to penalize the score
    +484    if record_i[idx] == "" and record_j[idx] == "":
    +485        return True
    +486    if record_i[idx] is None and record_j[idx] is None:
    +487        return True
    +488
    +489    similarity_measure = "JaroWinkler"
    +490    if "similarity_measure" in kwargs:
    +491        similarity_measure = kwargs["similarity_measure"]
    +492    threshold = 0.7
    +493    if "threshold" in kwargs:
    +494        threshold = kwargs["threshold"]
    +495    score = compare_strings(record_i[idx], record_j[idx], similarity_measure)
    +496    return score >= threshold
    +
    + + +

    Determines whether two strings in a given pair of records are close +enough to constitute a partial match. The exact nature of the match +is determined by the specified string comparison function (see +harmonization/utils/compare_strings for more details) as well as a +scoring threshold the comparison must meet or exceed.

    + +
    Parameters
    + +
      +
    • record_i: One of the records in the candidate pair to evaluate.
    • +
    • record_j: The second record in the candidate pair.
    • +
    • feature_col: The name of the column being evaluated (e.g. "city").
    • +
    • col_to_idx: A dictionary mapping column names to the numeric index +in which they occur in order in the data.
    • +
    • **kwargs: Optionally, a dictionary including specifications for +the string comparison metric to use, as well as the cutoff score +beyond which to classify the strings as a partial match.
    • +
    + +
    Returns
    + +
    +

    A boolean indicating whether the features are a fuzzy match.

    +
    +
    + + +
    +
    + +
    + + def + eval_perfect_match(feature_comparisons: List, **kwargs) -> bool: + + + +
    + +
    291def eval_perfect_match(feature_comparisons: List, **kwargs) -> bool:
    +292    """
    +293    Determines whether a given set of feature comparisons represent a
    +294    'perfect' match (i.e. whether all features that were compared match
    +295    in whatever criteria was specified for them).
    +296
    +297    :param feature_comparisons: A list of 1s and 0s, one for each feature
    +298      that was compared during the match algorithm.
    +299    :return: The evaluation of whether the given features all match.
    +300    """
    +301    return sum(feature_comparisons) == len(feature_comparisons)
    +
    + + +

    Determines whether a given set of feature comparisons represent a +'perfect' match (i.e. whether all features that were compared match +in whatever criteria was specified for them).

    + +
    Parameters
    + +
      +
    • feature_comparisons: A list of 1s and 0s, one for each feature +that was compared during the match algorithm.
    • +
    + +
    Returns
    + +
    +

    The evaluation of whether the given features all match.

    +
    +
    + + +
    +
    + +
    + + def + compile_match_lists(match_lists: List[dict], cluster_mode: bool = False): + + + +
    + +
    253def compile_match_lists(match_lists: List[dict], cluster_mode: bool = False):
    +254    """
    +255    Turns a list of matches of either clusters or candidate pairs found
    +256    during linkage into a single unified structure holding all found matches
    +257    across all rules passes. E.g. if a single pass of a linkage algorithm
    +258    uses three rules, hence generates three dictionaries of matches, this
    +259    function will aggregate the results of those three separate dicts into
    +260    a single unified and deduplicated dictionary. For consistency during
    +261    statistical evaluation, the returned dictionary is always indexed by
    +262    the lower ID of the records in a given pair.
    +263
    +264    :param match_lists: A list of the dictionaries obtained during a run
    +265      of the linkage algorithm, one dictionary per rule used in the run.
    +266    :param cluster_mode: An optional boolean indicating whether the linkage
    +267      algorithm was run in cluster mode. Default is False.
    +268    :return: The aggregated dictionary of unified matches.
    +269    """
    +270    matches = {}
    +271    for matches_from_rule in match_lists:
    +272        for matches_within_blocks in matches_from_rule.values():
    +273            for candidate_set in matches_within_blocks:
    +274                # Always index the aggregate by the lowest valued ID
    +275                # for statistical consistency and deduplication
    +276                root_record = min(candidate_set)
    +277                if root_record not in matches:
    +278                    matches[root_record] = set()
    +279
    +280                # For clustering, need to add all other records in the cluster
    +281                if cluster_mode:
    +282                    for clustered_record in candidate_set:
    +283                        if clustered_record != root_record:
    +284                            matches[root_record].add(clustered_record)
    +285                else:
    +286                    matched_record = max(candidate_set)
    +287                    matches[root_record].add(matched_record)
    +288    return matches
    +
    + + +

    Turns a list of matches of either clusters or candidate pairs found +during linkage into a single unified structure holding all found matches +across all rules passes. E.g. if a single pass of a linkage algorithm +uses three rules, hence generates three dictionaries of matches, this +function will aggregate the results of those three separate dicts into +a single unified and deduplicated dictionary. For consistency during +statistical evaluation, the returned dictionary is always indexed by +the lower ID of the records in a given pair.

    + +
    Parameters
    + +
      +
    • match_lists: A list of the dictionaries obtained during a run +of the linkage algorithm, one dictionary per rule used in the run.
    • +
    • cluster_mode: An optional boolean indicating whether the linkage +algorithm was run in cluster mode. Default is False.
    • +
    + +
    Returns
    + +
    +

    The aggregated dictionary of unified matches.

    +
    +
    + + +
    +
    + +
    + + def + feature_match_four_char( record_i: List, record_j: List, feature_col: str, col_to_idx: dict[str, int], **kwargs: dict) -> bool: + + + +
    + +
    432def feature_match_four_char(
    +433    record_i: List,
    +434    record_j: List,
    +435    feature_col: str,
    +436    col_to_idx: dict[str, int],
    +437    **kwargs: dict,
    +438) -> bool:
    +439    """
    +440    Determines whether a string feature in a pair of records exactly matches
    +441    on the first four characters.
    +442
    +443    :param record_i: One of the records in the candidate pair to evaluate.
    +444    :param record_j: The second record in the candidate pair.
    +445    :param feature_col: The name of the column being evaluated (e.g. "city").
    +446    :param col_to_idx: A dictionary mapping column names to the numeric index
    +447      in which they occur in order in the data.
    +448    :return: A boolean indicating whether the features are a match.
    +449    """
    +450    idx = col_to_idx[feature_col]
    +451    first_four_i = record_i[idx][: min(4, len(record_i[idx]))]
    +452    first_four_j = record_j[idx][: min(4, len(record_j[idx]))]
    +453    return first_four_i == first_four_j
    +
    + + +

    Determines whether a string feature in a pair of records exactly matches +on the first four characters.

    + +
    Parameters
    + +
      +
    • record_i: One of the records in the candidate pair to evaluate.
    • +
    • record_j: The second record in the candidate pair.
    • +
    • feature_col: The name of the column being evaluated (e.g. "city").
    • +
    • col_to_idx: A dictionary mapping column names to the numeric index +in which they occur in order in the data.
    • +
    + +
    Returns
    + +
    +

    A boolean indicating whether the features are a match.

    +
    +
    + + +
    +
    + +
    + + def + perform_linkage_pass( data: pandas.core.frame.DataFrame, blocks: List, feature_funcs: dict[str, typing.Callable], matching_rule: Callable, cluster_ratio: Optional[float] = None, **kwargs) -> dict: + + + +
    + +
    796def perform_linkage_pass(
    +797    data: pd.DataFrame,
    +798    blocks: List,
    +799    feature_funcs: dict[str, Callable],
    +800    matching_rule: Callable,
    +801    cluster_ratio: Union[float, None] = None,
    +802    **kwargs,
    +803) -> dict:
    +804    """
    +805    Performs a partial run of a linkage algorithm using a single rule.
    +806    Each rule in an algorithm is associated with its own pass through the
    +807    data.
    +808
    +809    :param data: Currently, a pandas dataframe of records to link. When we
    +810      move out of testing, this should become a LoL.
    +811    :param blocks: A list of column headers to use as blocking assignments
    +812      by which to partition the data.
    +813    :param feature_funcs: A dictionary mapping feature indices to functions
    +814      used to evaluate those features for a match.
    +815    :param matching_rule: A function for determining whether a given set of
    +816      feature comparisons constitutes a match for linkage.
    +817    :param cluster_ratio: An optional parameter indicating, if using the
    +818      algorithm in cluster mode, the required membership percentage a record
    +819      must score with an existing cluster in order to join.
    +820    :return: A dictionary mapping each block found in the pass to the matches
    +821      discovered within that block.
    +822    """
    +823    # Retrieve indices of columns
    +824    cols = list(data.columns.values)
    +825    col_to_idx = dict(zip(cols, range(len(cols))))
    +826
    +827    blocked_data = block_data(data, blocks)
    +828    matches = {}
    +829    for block in blocked_data:
    +830        if cluster_ratio:
    +831            matches_in_block = _match_within_block_cluster_ratio(
    +832                blocked_data[block],
    +833                cluster_ratio,
    +834                feature_funcs,
    +835                col_to_idx,
    +836                matching_rule,
    +837                **kwargs,
    +838            )
    +839        else:
    +840            matches_in_block = match_within_block(
    +841                blocked_data[block], feature_funcs, col_to_idx, matching_rule, **kwargs
    +842            )
    +843        matches_in_block = _map_matches_to_record_ids(
    +844            matches_in_block, blocked_data[block], cluster_ratio is not None
    +845        )
    +846        matches[block] = matches_in_block
    +847    return matches
    +
    + + +

    Performs a partial run of a linkage algorithm using a single rule. +Each rule in an algorithm is associated with its own pass through the +data.

    + +
    Parameters
    + +
      +
    • data: Currently, a pandas dataframe of records to link. When we +move out of testing, this should become a LoL.
    • +
    • blocks: A list of column headers to use as blocking assignments +by which to partition the data.
    • +
    • feature_funcs: A dictionary mapping feature indices to functions +used to evaluate those features for a match.
    • +
    • matching_rule: A function for determining whether a given set of +feature comparisons constitutes a match for linkage.
    • +
    • cluster_ratio: An optional parameter indicating, if using the +algorithm in cluster mode, the required membership percentage a record +must score with an existing cluster in order to join.
    • +
    + +
    Returns
    + +
    +

    A dictionary mapping each block found in the pass to the matches + discovered within that block.

    +
    +
    + + +
    +
    + +
    + + def + score_linkage_vs_truth( found_matches: dict[typing.Union[int, str], set], true_matches: dict[typing.Union[int, str], set], records_in_dataset: int, expand_clusters_pairwise: bool = False) -> tuple: + + + +
    + +
     987def score_linkage_vs_truth(
    + 988    found_matches: dict[Union[int, str], set],
    + 989    true_matches: dict[Union[int, str], set],
    + 990    records_in_dataset: int,
    + 991    expand_clusters_pairwise: bool = False,
    + 992) -> tuple:
    + 993    """
    + 994    Compute the statistical qualities of a run of record linkage against
    + 995    known true results. This function assumes that matches have already
    + 996    been determined by the algorithm, and further assumes that true
    + 997    matches have already been identified in the data.
    + 998
    + 999    :param found_matches: A dictionary mapping IDs of records to sets of
    +1000      other records which were determined to be a match.
    +1001    :param true_matches: A dictionary mapping IDs of records to sets of
    +1002      other records which are _known_ to be a true match.
    +1003    :param records_in_dataset: The number of records in the original data
    +1004      set to-link.
    +1005    :param expand_clusters_pairwise: Optionally, whether we need to take
    +1006      the cross-product of members within the sets of the match list. This
    +1007      parameter only needs to be used if the linkage algorithm was run in
    +1008      cluster mode. Default is False.
    +1009    :return: A tuple reporting the sensitivity/precision, specificity/recall,
    +1010      positive prediction value, and F1 score of the linkage algorithm.
    +1011    """
    +1012
    +1013    # If cluster mode was used, only the "master" patient's set will exist
    +1014    # Need to expand other permutations for accurate statistics
    +1015    if expand_clusters_pairwise:
    +1016        new_found_matches = {}
    +1017        for root_rec in found_matches:
    +1018            if root_rec not in new_found_matches:
    +1019                new_found_matches[root_rec] = found_matches[root_rec]
    +1020            for paired_record in found_matches[root_rec]:
    +1021                if paired_record not in new_found_matches:
    +1022                    new_found_matches[paired_record] = set()
    +1023                for other_record in found_matches[root_rec]:
    +1024                    if other_record > paired_record:
    +1025                        new_found_matches[paired_record].add(other_record)
    +1026        found_matches = new_found_matches
    +1027
    +1028    # Need division by 2 because ordering is irrelevant, matches are symmetric
    +1029    total_possible_matches = (records_in_dataset * (records_in_dataset - 1)) / 2.0
    +1030    true_positives = 0.0
    +1031    false_positives = 0.0
    +1032    false_negatives = 0.0
    +1033
    +1034    for root_record in true_matches:
    +1035        if root_record in found_matches:
    +1036            true_positives += len(
    +1037                true_matches[root_record].intersection(found_matches[root_record])
    +1038            )
    +1039            false_positives += len(
    +1040                found_matches[root_record].difference(true_matches[root_record])
    +1041            )
    +1042            false_negatives += len(
    +1043                true_matches[root_record].difference(found_matches[root_record])
    +1044            )
    +1045        else:
    +1046            false_negatives += len(true_matches[root_record])
    +1047    for record in set(set(found_matches.keys()).difference(true_matches.keys())):
    +1048        false_positives += len(found_matches[record])
    +1049
    +1050    true_negatives = (
    +1051        total_possible_matches - true_positives - false_positives - false_negatives
    +1052    )
    +1053
    +1054    print("True Positives:", true_positives)
    +1055    print("False Positives:", false_positives)
    +1056    print("False Negatives:", false_negatives)
    +1057
    +1058    sensitivity = round(true_positives / (true_positives + false_negatives), 3)
    +1059    specificity = round(true_negatives / (true_negatives + false_positives), 3)
    +1060    ppv = round(true_positives / (true_positives + false_positives), 3)
    +1061    f1 = round(
    +1062        (2 * true_positives) / (2 * true_positives + false_negatives + false_positives),
    +1063        3,
    +1064    )
    +1065    return (sensitivity, specificity, ppv, f1)
    +
    + + +

    Compute the statistical qualities of a run of record linkage against +known true results. This function assumes that matches have already +been determined by the algorithm, and further assumes that true +matches have already been identified in the data.

    + +
    Parameters
    + +
      +
    • found_matches: A dictionary mapping IDs of records to sets of +other records which were determined to be a match.
    • +
    • true_matches: A dictionary mapping IDs of records to sets of +other records which are _known_ to be a true match.
    • +
    • records_in_dataset: The number of records in the original data +set to-link.
    • +
    • expand_clusters_pairwise: Optionally, whether we need to take +the cross-product of members within the sets of the match list. This +parameter only needs to be used if the linkage algorithm was run in +cluster mode. Default is False.
    • +
    + +
    Returns
    + +
    +

    A tuple reporting the sensitivity/precision, specificity/recall, + positive prediction value, and F1 score of the linkage algorithm.

    +
    +
    + + +
    +
    + +
    + + def + block_data_from_db(db_name: str, table_name: str, block_data: Dict) -> List[list]: + + + +
    + +
    54def block_data_from_db(db_name: str, table_name: str, block_data: Dict) -> List[list]:
    +55    """
    +56    Returns a list of lists containing records from the database that match on the
    +57    incoming record's block values. If blocking on 'ZIP' and the incoming record's zip
    +58    code is '90210', the resulting block of data would contain records that all have the
    +59    same zip code of 90210.
    +60
    +61    :param db_name: Database name.
    +62    :param table_name: Table name.
    +63    :param block_data: Dictionary containing key value pairs for the column name for
    +64      blocking and the data for the incoming record, e.g., ["ZIP"]: "90210".
    +65    :return: A list of records that are within the block, e.g., records that all have
    +66      90210 as their ZIP.
    +67
    +68    """
    +69    if len(block_data) == 0:
    +70        raise ValueError("`block_data` cannot be empty.")
    +71
    +72    conn = sqlite3.connect(db_name)
    +73    cursor = conn.cursor()
    +74    cursor.row_factory = lambda c, row: [i for i in row]
    +75
    +76    query = _generate_block_query(table_name, block_data)  # Generate SQL query
    +77    cursor.execute(query)  # Execute query
    +78    block = cursor.fetchall()  # Fetch data from query
    +79    conn.commit()
    +80    conn.close()
    +81
    +82    return block
    +
    + + +

    Returns a list of lists containing records from the database that match on the +incoming record's block values. If blocking on 'ZIP' and the incoming record's zip +code is '90210', the resulting block of data would contain records that all have the +same zip code of 90210.

    + +
    Parameters
    + +
      +
    • db_name: Database name.
    • +
    • table_name: Table name.
    • +
    • block_data: Dictionary containing key value pairs for the column name for +blocking and the data for the incoming record, e.g., ["ZIP"]: "90210".
    • +
    + +
    Returns
    + +
    +

    A list of records that are within the block, e.g., records that all have + 90210 as their ZIP.

    +
    +
    + + +
    +
    + +
    + + def + _generate_block_query(table_name: str, block_data: Dict) -> str: + + + +
    + +
    1460def _generate_block_query(table_name: str, block_data: Dict) -> str:
    +1461    """
    +1462    Generates a query for selecting a block of data from `table_name` per the block_data
    +1463    parameters.
    +1464
    +1465    :param table_name: Table name.
    +1466    :param block_data: Dictionary containing key value pairs for the column name you for
    +1467      blocking and the data for the incoming record, e.g., ["ZIP"]: "90210".
    +1468    :return: Query to select block of data base on `block_data` parameters.
    +1469
    +1470    """
    +1471    query_stub = f"SELECT * FROM {table_name} WHERE "
    +1472    block_query = " AND ".join(
    +1473        [
    +1474            key + f" = '{value}'" if type(value) is str else (key + f" = {value}")
    +1475            for key, value in block_data.items()
    +1476        ]
    +1477    )
    +1478    query = query_stub + block_query
    +1479    return query
    +
    + + +

    Generates a query for selecting a block of data from table_name per the block_data +parameters.

    + +
    Parameters
    + +
      +
    • table_name: Table name.
    • +
    • block_data: Dictionary containing key value pairs for the column name you for +blocking and the data for the incoming record, e.g., ["ZIP"]: "90210".
    • +
    + +
    Returns
    + +
    +

    Query to select block of data base on block_data parameters.

    +
    +
    + + +
    +
    + +
    + + def + calculate_m_probs( data: pandas.core.frame.DataFrame, true_matches: dict, cols: Optional[List[str]] = None, file_to_write: Optional[pathlib.Path] = None): + + + +
    + +
    139def calculate_m_probs(
    +140    data: pd.DataFrame,
    +141    true_matches: dict,
    +142    cols: Union[List[str], None] = None,
    +143    file_to_write: Union[pathlib.Path, None] = None,
    +144):
    +145    """
    +146    For a given set of patient records, calculate the per-field
    +147    m-probability. The m-probability for field X is defined as the
    +148    probability that a pair of records A and B have the same value in
    +149    X, given that A and B are a true matching pair. This function
    +150    incorporates LaPlacian Smoothing to account for unseen data and
    +151    to resolve future logarithms against 0.
    +152
    +153    :param data: A pandas dataframe of patient records to compute
    +154      probabilities for.
    +155    :param true_matches: A dictionary holding the IDs of record pairs
    +156      that are true matches in the data set. The format of the dictionary
    +157      should be such that the IDs of the "lower numbered" records in each
    +158      match pair are the keys, and the values are sets of the "higher
    +159      numbered" records in each pair.
    +160    :param cols: Optionally, a list of columns to compute probabilities
    +161      for. If not supplied, computes probabilities across all fields.
    +162      Default is None.
    +163    :param file_to_write: Optionally, a destination filepath at which to
    +164      write the probabilities in JSON format. Default is None.
    +165    """
    +166    if cols is None:
    +167        cols = data.columns
    +168    m_probs = {c: 1.0 for c in cols}
    +169    total_pairs = 1.0
    +170    for root_record, paired_records in true_matches.items():
    +171        total_pairs += len(paired_records)
    +172        for pr in paired_records:
    +173            for c in cols:
    +174                if data[c].iloc[root_record] == data[c].iloc[pr]:
    +175                    m_probs[c] += 1
    +176    for c in cols:
    +177        m_probs[c] /= total_pairs
    +178
    +179    _write_prob_file(m_probs, file_to_write)
    +180    return m_probs
    +
    + + +

    For a given set of patient records, calculate the per-field +m-probability. The m-probability for field X is defined as the +probability that a pair of records A and B have the same value in +X, given that A and B are a true matching pair. This function +incorporates LaPlacian Smoothing to account for unseen data and +to resolve future logarithms against 0.

    + +
    Parameters
    + +
      +
    • data: A pandas dataframe of patient records to compute +probabilities for.
    • +
    • true_matches: A dictionary holding the IDs of record pairs +that are true matches in the data set. The format of the dictionary +should be such that the IDs of the "lower numbered" records in each +match pair are the keys, and the values are sets of the "higher +numbered" records in each pair.
    • +
    • cols: Optionally, a list of columns to compute probabilities +for. If not supplied, computes probabilities across all fields. +Default is None.
    • +
    • file_to_write: Optionally, a destination filepath at which to +write the probabilities in JSON format. Default is None.
    • +
    +
    + + +
    +
    + +
    + + def + calculate_u_probs( data: pandas.core.frame.DataFrame, true_matches: dict, n_samples: Optional[int] = None, cols: Optional[List] = None, file_to_write: Optional[pathlib.Path] = None): + + + +
    + +
    187def calculate_u_probs(
    +188    data: pd.DataFrame,
    +189    true_matches: dict,
    +190    n_samples: Union[int, None] = None,
    +191    cols: Union[List, None] = None,
    +192    file_to_write: Union[pathlib.Path, None] = None,
    +193):
    +194    """
    +195    For a given set of patient records, calculate the per-field
    +196    u-probability. The u-probability for field X is defined as the
    +197    probability that a pair of records A and B have the same value in
    +198    X, given that A and B are not a true matching pair. This function
    +199    incorporates LaPlacian Smoothing to account for unseen data and
    +200    to handle future logarithms against 0.
    +201
    +202    Note: This function can be slow to compute for large data sets.
    +203    It is recommended to pass only a representative subsample of the
    +204    data to the function (we recommend sampling ~25k candidate pairs
    +205    from a sub-sample of ~25k records), even if the sample operation
    +206    is used.
    +207
    +208    :param data: A pandas dataframe of patient records to compute
    +209      probabilities for.
    +210    :param true_matches: A dictionary holding the IDs of record pairs
    +211      that are true matches in the data set. The format of the dictionary
    +212      should be such that the IDs of the "lower numbered" records in each
    +213      match pair are the keys, and the values are sets of the "higher
    +214      numbered" records in each pair.
    +215    :param n_samples: Optionally, a number of samples to take from the
    +216      list of possible pairs to compute probabilities over.
    +217    :param cols: Optionally, a list of columns to compute probabilities
    +218      for. If not supplied, computes probabilities across all fields.
    +219      Default is None.
    +220    :param file_to_write: Optionally, a destination filepath at which to
    +221      write the probabilities in JSON format. Default is None.
    +222    """
    +223    if cols is None:
    +224        cols = data.columns
    +225
    +226    u_probs = {c: 1.0 for c in cols}
    +227
    +228    # Want only the pairs of candidates that aren't true matches
    +229    base_pairs = list(combinations(data.index, 2))
    +230    neg_pairs = [
    +231        x
    +232        for x in base_pairs
    +233        if x[0] not in true_matches or x[1] not in true_matches[x[0]]
    +234    ]
    +235
    +236    if n_samples is not None and n_samples < len(neg_pairs):
    +237        neg_pairs = sample(neg_pairs, n_samples)
    +238    for index in neg_pairs:
    +239        for c in cols:
    +240            if data[c].iloc[index[0]] == data[c].iloc[index[1]]:
    +241                u_probs[c] += 1.0
    +242
    +243    for c in cols:
    +244        if n_samples is not None and n_samples < len(neg_pairs):
    +245            u_probs[c] = u_probs[c] / (n_samples + 1.0)
    +246        else:
    +247            u_probs[c] = u_probs[c] / (len(neg_pairs) + 1.0)
    +248
    +249    _write_prob_file(u_probs, file_to_write)
    +250    return u_probs
    +
    + + +

    For a given set of patient records, calculate the per-field +u-probability. The u-probability for field X is defined as the +probability that a pair of records A and B have the same value in +X, given that A and B are not a true matching pair. This function +incorporates LaPlacian Smoothing to account for unseen data and +to handle future logarithms against 0.

    + +

    Note: This function can be slow to compute for large data sets. +It is recommended to pass only a representative subsample of the +data to the function (we recommend sampling ~25k candidate pairs +from a sub-sample of ~25k records), even if the sample operation +is used.

    + +
    Parameters
    + +
      +
    • data: A pandas dataframe of patient records to compute +probabilities for.
    • +
    • true_matches: A dictionary holding the IDs of record pairs +that are true matches in the data set. The format of the dictionary +should be such that the IDs of the "lower numbered" records in each +match pair are the keys, and the values are sets of the "higher +numbered" records in each pair.
    • +
    • n_samples: Optionally, a number of samples to take from the +list of possible pairs to compute probabilities over.
    • +
    • cols: Optionally, a list of columns to compute probabilities +for. If not supplied, computes probabilities across all fields. +Default is None.
    • +
    • file_to_write: Optionally, a destination filepath at which to +write the probabilities in JSON format. Default is None.
    • +
    +
    + + +
    +
    + +
    + + def + load_json_probs(path: pathlib.Path): + + + +
    + +
    704def load_json_probs(path: pathlib.Path):
    +705    """
    +706    Load a dictionary of probabilities from a JSON-formatted file.
    +707    The probabilities correspond to previously computed m-, u-, or
    +708    log-odds probabilities derived from patient records, with one
    +709    score for each field (column) appearing in the data.
    +710
    +711    :param path: The file path to load the data from.
    +712    :return: A dictionary of probability scores, one for each field
    +713      in the data set on which they were computed.
    +714    :raises FileNotFoundError: If a file does not exist at the given
    +715      path.
    +716    :raises JSONDecodeError: If the file cannot be read as valid JSON.
    +717    """
    +718    try:
    +719        with open(path, "r") as file:
    +720            prob_dict = json.load(file)
    +721        return prob_dict
    +722    except FileNotFoundError:
    +723        raise FileNotFoundError(f"The specified file does not exist at {path}.")
    +724    except json.decoder.JSONDecodeError as e:
    +725        raise json.decoder.JSONDecodeError(
    +726            "The specified file is not valid JSON.", e.doc, e.pos
    +727        )
    +
    + + +

    Load a dictionary of probabilities from a JSON-formatted file. +The probabilities correspond to previously computed m-, u-, or +log-odds probabilities derived from patient records, with one +score for each field (column) appearing in the data.

    + +
    Parameters
    + +
      +
    • path: The file path to load the data from.
    • +
    + +
    Returns
    + +
    +

    A dictionary of probability scores, one for each field + in the data set on which they were computed.

    +
    + +
    Raises
    + +
      +
    • FileNotFoundError: If a file does not exist at the given +path.
    • +
    • JSONDecodeError: If the file cannot be read as valid JSON.
    • +
    +
    + + +
    +
    + +
    + + def + calculate_log_odds( m_probs: dict, u_probs: dict, file_to_write: Optional[pathlib.Path] = None): + + + +
    + +
    106def calculate_log_odds(
    +107    m_probs: dict,
    +108    u_probs: dict,
    +109    file_to_write: Union[pathlib.Path, None] = None,
    +110):
    +111    """
    +112    Calculate the per-field log odds ratio score that two records will
    +113    match in a given field. Measures the likelihood that two records
    +114    match on a column due to being a true match as opposed to random
    +115    chance.
    +116
    +117    :param m_probs: A dictionary of m-probabilities computed per field.
    +118    :param u_probs: A dictionary of u_probabilities computed per field.
    +119    :param file_to_write: Optionally, a destination filepath at which
    +120      to write the probabilities in JSON format. Default is None.
    +121    :raises ValueError: If the supplied m- and u- probability dictionaries
    +122      do not share an equal key set.
    +123    """
    +124    if m_probs.keys() != u_probs.keys():
    +125        raise ValueError(
    +126            "m- and u- probability dictionaries must contain the same set of keys"
    +127        )
    +128    log_odds = {}
    +129    for k in m_probs:
    +130        log_odds[k] = log(m_probs[k]) - log(u_probs[k])
    +131    _write_prob_file(log_odds, file_to_write)
    +132    return log_odds
    +
    + + +

    Calculate the per-field log odds ratio score that two records will +match in a given field. Measures the likelihood that two records +match on a column due to being a true match as opposed to random +chance.

    + +
    Parameters
    + +
      +
    • m_probs: A dictionary of m-probabilities computed per field.
    • +
    • u_probs: A dictionary of u_probabilities computed per field.
    • +
    • file_to_write: Optionally, a destination filepath at which +to write the probabilities in JSON format. Default is None.
    • +
    + +
    Raises
    + +
      +
    • ValueError: If the supplied m- and u- probability dictionaries +do not share an equal key set.
    • +
    +
    + + +
    +
    + +
    + + def + feature_match_log_odds_exact( record_i: List, record_j: List, feature_col: str, col_to_idx: dict[str, int], **kwargs: dict) -> float: + + + +
    + +
    499def feature_match_log_odds_exact(
    +500    record_i: List,
    +501    record_j: List,
    +502    feature_col: str,
    +503    col_to_idx: dict[str, int],
    +504    **kwargs: dict,
    +505) -> float:
    +506    """
    +507    Determines whether two feature values in two records should earn the full
    +508    log-odds similarity score (i.e. they match exactly) or whether they
    +509    should earn no weight (they differ). Used for fields for which fuzzy
    +510    comparisons are inappropriate, such as sex.
    +511
    +512    :param record_i: One of the records in the candidate pair to evaluate.
    +513    :param record_j: The second record in the candidate pair.
    +514    :param feature_col: The name of the column being evaluated (e.g. "city").
    +515    :param col_to_idx: A dictionary mapping column names to the numeric index
    +516      in which they occur in order in the data.
    +517    :return: A float of the score the feature comparison earned.
    +518    """
    +519    if "log_odds" not in kwargs:
    +520        raise KeyError("Mapping of columns to m/u log-odds must be provided.")
    +521    col_odds = kwargs["log_odds"][feature_col]
    +522    idx = col_to_idx[feature_col]
    +523    if record_i[idx] == record_j[idx]:
    +524        return col_odds
    +525    else:
    +526        return 0.0
    +
    + + +

    Determines whether two feature values in two records should earn the full +log-odds similarity score (i.e. they match exactly) or whether they +should earn no weight (they differ). Used for fields for which fuzzy +comparisons are inappropriate, such as sex.

    + +
    Parameters
    + +
      +
    • record_i: One of the records in the candidate pair to evaluate.
    • +
    • record_j: The second record in the candidate pair.
    • +
    • feature_col: The name of the column being evaluated (e.g. "city").
    • +
    • col_to_idx: A dictionary mapping column names to the numeric index +in which they occur in order in the data.
    • +
    + +
    Returns
    + +
    +

    A float of the score the feature comparison earned.

    +
    +
    + + +
    +
    + +
    + + def + feature_match_log_odds_fuzzy_compare( record_i: List, record_j: List, feature_col: str, col_to_idx: dict[str, int], **kwargs: dict) -> float: + + + +
    + +
    529def feature_match_log_odds_fuzzy_compare(
    +530    record_i: List,
    +531    record_j: List,
    +532    feature_col: str,
    +533    col_to_idx: dict[str, int],
    +534    **kwargs: dict,
    +535) -> float:
    +536    """
    +537    Determines the weighted string-odds similarly score earned by two
    +538    feature values in two records, as a function of the pre-computed
    +539    log-odds weights and the string similarity between the two features.
    +540    This scales the full score that would be earned from a perfect
    +541    match to a degree of partial weight appropriate to how similar the
    +542    two strings are.
    +543
    +544    :param record_i: One of the records in the candidate pair to evaluate.
    +545    :param record_j: The second record in the candidate pair.
    +546    :param feature_col: The name of the column being evaluated (e.g. "city").
    +547    :param col_to_idx: A dictionary mapping column names to the numeric index
    +548      in which they occur in order in the data.
    +549    :return: A float of the score the feature comparison earned.
    +550    """
    +551    if "log_odds" not in kwargs:
    +552        raise KeyError("Mapping of columns to m/u log-odds must be provided.")
    +553    col_odds = kwargs["log_odds"][feature_col]
    +554    idx = col_to_idx[feature_col]
    +555    score = compare_strings(record_i[idx], record_j[idx], "JaroWinkler")
    +556    return score * col_odds
    +
    + + +

    Determines the weighted string-odds similarly score earned by two +feature values in two records, as a function of the pre-computed +log-odds weights and the string similarity between the two features. +This scales the full score that would be earned from a perfect +match to a degree of partial weight appropriate to how similar the +two strings are.

    + +
    Parameters
    + +
      +
    • record_i: One of the records in the candidate pair to evaluate.
    • +
    • record_j: The second record in the candidate pair.
    • +
    • feature_col: The name of the column being evaluated (e.g. "city").
    • +
    • col_to_idx: A dictionary mapping column names to the numeric index +in which they occur in order in the data.
    • +
    + +
    Returns
    + +
    +

    A float of the score the feature comparison earned.

    +
    +
    + + +
    +
    + +
    + + def + profile_log_odds( data: pandas.core.frame.DataFrame, true_matches: dict, log_odds: dict, exact_cols: List, fuzzy_cols: List, idx_to_col: dict, neg_samples: int = 50000) -> None: + + + +
    + +
    854def profile_log_odds(
    +855    data: pd.DataFrame,
    +856    true_matches: dict,
    +857    log_odds: dict,
    +858    exact_cols: List,
    +859    fuzzy_cols: List,
    +860    idx_to_col: dict,
    +861    neg_samples: int = 50000,
    +862) -> None:  # pragma: no cover
    +863    """
    +864    Basic graphical profiler for log-odds histogram analysis. Using the
    +865    raw data and previously known true matches, the function computes one
    +866    list of log-odds scores that that would be earned by true matches under
    +867    a given linkage rule, and another list of scores that would be earned
    +868    by a random sampling of non-matches under the same linkage rule. These
    +869    lists are used to plot bimodal histograms so that the cutoff threshold
    +870    between non-matchces and true matches can be visually determined.
    +871
    +872    :param data: A pandas data frame holding the raw patient record data.
    +873    :param true_matches: A dictionary of known true matches in the data.
    +874    :param log_odds: A dictionary whose keys are the column fields of data
    +875      and whose values are the log-odds scores that two values match relative
    +876      to random chance.
    +877    :param exact_cols: A list of columns to be evaluated using equality
    +878      comparisons.
    +879    :param fuzzy_cols: A list of columns to be evaluated using fuzzy weighted
    +880      comparisons.
    +881    :param idx_to_col: A dictionary mapping the number of a column in a list
    +882      representation of the data, to the name of the column in a pandas
    +883      representation.
    +884    :param neg_samples: Optionally, how many non-match samples to compute a
    +885      score for when generating the histogram.
    +886    """
    +887    base_pairs = list(combinations(data.index, 2))
    +888    neg_pairs = [
    +889        x
    +890        for x in base_pairs
    +891        if x[0] not in true_matches or x[1] not in true_matches[x[0]]
    +892    ]
    +893    if neg_samples < len(neg_pairs):
    +894        neg_pairs = sample(neg_pairs, neg_samples)
    +895
    +896    data = data.values.tolist()
    +897    cols_to_idx = {}
    +898    for idx in idx_to_col:
    +899        cols_to_idx[idx_to_col[idx]] = idx
    +900
    +901    true_match_scores = []
    +902    for root_record, paired_records in true_matches.items():
    +903        for pr in paired_records:
    +904            score = 0.0
    +905            for c in exact_cols:
    +906                score += feature_match_log_odds_exact(
    +907                    data[root_record],
    +908                    data[pr],
    +909                    cols_to_idx[c],
    +910                    idx_to_col=idx_to_col,
    +911                    log_odds=log_odds,
    +912                )
    +913            for c in fuzzy_cols:
    +914                score += feature_match_log_odds_fuzzy_compare(
    +915                    data[root_record],
    +916                    data[pr],
    +917                    cols_to_idx[c],
    +918                    idx_to_col=idx_to_col,
    +919                    log_odds=log_odds,
    +920                )
    +921            true_match_scores.append(score)
    +922
    +923    non_match_scores = []
    +924    for record_1, record_2 in neg_pairs:
    +925        score = 0.0
    +926        for c in exact_cols:
    +927            score += feature_match_log_odds_exact(
    +928                data[record_1],
    +929                data[record_2],
    +930                cols_to_idx[c],
    +931                idx_to_col=idx_to_col,
    +932                log_odds=log_odds,
    +933            )
    +934        for c in fuzzy_cols:
    +935            score += feature_match_log_odds_fuzzy_compare(
    +936                data[record_1],
    +937                data[record_2],
    +938                cols_to_idx[c],
    +939                idx_to_col=idx_to_col,
    +940                log_odds=log_odds,
    +941            )
    +942            non_match_scores.append(score)
    +943
    +944    min_length = min(len(true_match_scores), len(non_match_scores))
    +945    true_match_scores = true_match_scores[:min_length]
    +946    non_match_scores = non_match_scores[:min_length]
    +947
    +948    _, bins, _ = plt.hist(true_match_scores, bins=75, range=[0, 25])
    +949    _ = plt.hist(non_match_scores, bins=bins, alpha=0.5)
    +950    plt.show()
    +
    + + +

    Basic graphical profiler for log-odds histogram analysis. Using the +raw data and previously known true matches, the function computes one +list of log-odds scores that that would be earned by true matches under +a given linkage rule, and another list of scores that would be earned +by a random sampling of non-matches under the same linkage rule. These +lists are used to plot bimodal histograms so that the cutoff threshold +between non-matchces and true matches can be visually determined.

    + +
    Parameters
    + +
      +
    • data: A pandas data frame holding the raw patient record data.
    • +
    • true_matches: A dictionary of known true matches in the data.
    • +
    • log_odds: A dictionary whose keys are the column fields of data +and whose values are the log-odds scores that two values match relative +to random chance.
    • +
    • exact_cols: A list of columns to be evaluated using equality +comparisons.
    • +
    • fuzzy_cols: A list of columns to be evaluated using fuzzy weighted +comparisons.
    • +
    • idx_to_col: A dictionary mapping the number of a column in a list +representation of the data, to the name of the column in a pandas +representation.
    • +
    • neg_samples: Optionally, how many non-match samples to compute a +score for when generating the histogram.
    • +
    +
    + + +
    +
    + +
    + + def + eval_log_odds_cutoff(feature_comparisons: List, **kwargs) -> bool: + + + +
    + +
    304def eval_log_odds_cutoff(feature_comparisons: List, **kwargs) -> bool:
    +305    """
    +306    Determines whether a given set of feature comparisons matches enough
    +307    to be the result of a true patient link instead of just random chance.
    +308    This is represented using previously computed log-odds ratios.
    +309
    +310    :param feature_comparisons: A list of floats representing the log-odds
    +311      score of each field computed on.
    +312    :return: Whether the feature comparisons score well enough to be
    +313      considered a match.
    +314    """
    +315    if "true_match_threshold" not in kwargs:
    +316        raise KeyError("Cutoff threshold for true matches must be passed.")
    +317    return sum(feature_comparisons) >= kwargs["true_match_threshold"]
    +
    + + +

    Determines whether a given set of feature comparisons matches enough +to be the result of a true patient link instead of just random chance. +This is represented using previously computed log-odds ratios.

    + +
    Parameters
    + +
      +
    • feature_comparisons: A list of floats representing the log-odds +score of each field computed on.
    • +
    + +
    Returns
    + +
    +

    Whether the feature comparisons score well enough to be + considered a match.

    +
    +
    + + +
    +
    + +
    + + class + BaseMPIConnectorClient(abc.ABC): + + + +
    + +
     6class BaseMPIConnectorClient(ABC):
    + 7    """
    + 8    Represents a vendor-agnostic Master Patient Index (MPI) connector client. Requires
    + 9    implementing classes to define methods to retrive blocks of data from the MPI.
    +10    Callers should use the provided interface functions (e.g., block_data)
    +11    to interact with the underlying vendor-specific client property.
    +12    """
    +13
    +14    @abstractmethod
    +15    def block_data() -> List[list]:
    +16        """
    +17        Returns a list of lists containing records from the database that match on the
    +18        incoming record's block values. If blocking on 'ZIP' and the incoming record's
    +19        zip code is '90210', the resulting block of data would contain records that all
    +20        have the same zip code of 90210.
    +21
    +22        """
    +23        pass  # pragma: no cover
    +24
    +25    @abstractmethod
    +26    def get_connection() -> Union[any, None]:
    +27        """
    +28        Creates a connection to the database associated with the connector class.
    +29        The connection is returned for use in other class methods as a context
    +30        manager, and should generally not be called externally to the client.
    +31        Also used for testing the validity of a connection when the client
    +32        connector is instantiated. The return type is set to any here since the
    +33        exact "class" of the client's connection is unknown in the abstract.
    +34        """
    +35        pass  # pragma: no cover
    +36
    +37    @abstractmethod
    +38    def insert_match_patient() -> None:
    +39        """
    +40        If a matching person ID has been found in the MPI, inserts a new patient into
    +41        the patient table, including the matched person id, to link the new patient
    +42        and matched person ID; else inserts a new patient into the patient table and
    +43        inserts a new person into the person table with a new person ID, linking the
    +44        new person ID to the new patient.
    +45
    +46        """
    +47        pass  # pragma: no cover
    +48
    +49    @abstractmethod
    +50    def _generate_block_query(self, block_vals: dict) -> str:
    +51        """
    +52        Generates a query for selecting a block of data from the patient table per the
    +53        block_vals parameters. Accepted blocking fields include: first_name, last_name,
    +54        birthdate, addess, city, state, zip, mrn, and sex.
    +55        """
    +56        pass  # pragma: no cover
    +57
    +58    @abstractmethod
    +59    def _insert_person() -> tuple:
    +60        """
    +61        If person id is not supplied and external person id is not supplied
    +62        then insert a new person record with an auto-generated person id (UUID)
    +63        with a Null external person id and return that new person id. If the
    +64        person id is not supplied but an external person id is supplied try
    +65        to find an existing person record with the external person id and
    +66        return that person id; otherwise add a new person record with an
    +67        auto-generated person id (UUID) with the supplied external person id
    +68        and return the new person id.  If person id and external person id are
    +69        both supplied then update the person records external person id if it
    +70        is Null and return the person id.
    +71        """
    +72        pass  # pragma: no cover
    +
    + + +

    Represents a vendor-agnostic Master Patient Index (MPI) connector client. Requires +implementing classes to define methods to retrive blocks of data from the MPI. +Callers should use the provided interface functions (e.g., block_data) +to interact with the underlying vendor-specific client property.

    +
    + + +
    + +
    +
    @abstractmethod
    + + def + block_data() -> List[list]: + + + +
    + +
    14    @abstractmethod
    +15    def block_data() -> List[list]:
    +16        """
    +17        Returns a list of lists containing records from the database that match on the
    +18        incoming record's block values. If blocking on 'ZIP' and the incoming record's
    +19        zip code is '90210', the resulting block of data would contain records that all
    +20        have the same zip code of 90210.
    +21
    +22        """
    +23        pass  # pragma: no cover
    +
    + + +

    Returns a list of lists containing records from the database that match on the +incoming record's block values. If blocking on 'ZIP' and the incoming record's +zip code is '90210', the resulting block of data would contain records that all +have the same zip code of 90210.

    +
    + + +
    +
    + +
    +
    @abstractmethod
    + + def + get_connection() -> Optional[<built-in function any>]: + + + +
    + +
    25    @abstractmethod
    +26    def get_connection() -> Union[any, None]:
    +27        """
    +28        Creates a connection to the database associated with the connector class.
    +29        The connection is returned for use in other class methods as a context
    +30        manager, and should generally not be called externally to the client.
    +31        Also used for testing the validity of a connection when the client
    +32        connector is instantiated. The return type is set to any here since the
    +33        exact "class" of the client's connection is unknown in the abstract.
    +34        """
    +35        pass  # pragma: no cover
    +
    + + +

    Creates a connection to the database associated with the connector class. +The connection is returned for use in other class methods as a context +manager, and should generally not be called externally to the client. +Also used for testing the validity of a connection when the client +connector is instantiated. The return type is set to any here since the +exact "class" of the client's connection is unknown in the abstract.

    +
    + + +
    +
    + +
    +
    @abstractmethod
    + + def + insert_match_patient() -> None: + + + +
    + +
    37    @abstractmethod
    +38    def insert_match_patient() -> None:
    +39        """
    +40        If a matching person ID has been found in the MPI, inserts a new patient into
    +41        the patient table, including the matched person id, to link the new patient
    +42        and matched person ID; else inserts a new patient into the patient table and
    +43        inserts a new person into the person table with a new person ID, linking the
    +44        new person ID to the new patient.
    +45
    +46        """
    +47        pass  # pragma: no cover
    +
    + + +

    If a matching person ID has been found in the MPI, inserts a new patient into +the patient table, including the matched person id, to link the new patient +and matched person ID; else inserts a new patient into the patient table and +inserts a new person into the person table with a new person ID, linking the +new person ID to the new patient.

    +
    + + +
    +
    +
    + +
    + + def + extract_blocking_values_from_record(record: dict, blocking_fields: List[dict]) -> dict: + + + +
    + +
    320def extract_blocking_values_from_record(
    +321    record: dict, blocking_fields: List[dict]
    +322) -> dict:
    +323    """
    +324    Extracts values from a given patient record for eventual use in database
    +325    record linkage blocking. A list of fields to block on, as well as a mapping
    +326    of those fields to any desired transformations of their extracted values,
    +327    is used to fhir-path parse the value out of the incoming patient record.
    +328
    +329    Currently supported blocking fields:
    +330    - first_name
    +331    - last_name
    +332    - birthdate
    +333    - address
    +334    - city
    +335    - state
    +336    - zip
    +337    - sex
    +338    - mrn
    +339
    +340    Currently supported transformations on extracted fields:
    +341    - first4: the first four characters of the value
    +342    - last4: the last four characters of the value
    +343
    +344    :param record: A FHIR-formatted Patient record.
    +345    :param blocking_fields: A List of dictionaries giving the blocking
    +346      fields and any transformations that should be applied to them. Each
    +347      dictionary in the list should include a "value" key with one of the
    +348      supported blocking fields above, and may also optionally contain a
    +349      "transformation" key whose value is one of our supported transforms.
    +350    """
    +351
    +352    transform_funcs = {
    +353        "first4": lambda x: x[:4] if len(x) >= 4 else x,
    +354        "last4": lambda x: x[-4:] if len(x) >= 4 else x,
    +355    }
    +356
    +357    for block_dict in blocking_fields:
    +358        if "value" not in block_dict:
    +359            raise KeyError(
    +360                f"Input dictionary for block {block_dict} must contain a 'value' key."
    +361            )
    +362
    +363    block_vals = dict.fromkeys([b.get("value") for b in blocking_fields], "")
    +364    transform_blocks = [b for b in blocking_fields if "transformation" in b]
    +365    transformations = dict(
    +366        zip(
    +367            [b.get("value") for b in transform_blocks],
    +368            [b.get("transformation") for b in transform_blocks],
    +369        )
    +370    )
    +371    for block_dict in blocking_fields:
    +372        block = block_dict.get("value")
    +373        try:
    +374            # Apply utility extractor for safe parsing
    +375            value = extract_value_with_resource_path(
    +376                record,
    +377                LINKING_FIELDS_TO_FHIRPATHS[block],
    +378                selection_criteria="first",
    +379            )
    +380            if value:
    +381                if block in transformations:
    +382                    try:
    +383                        value = transform_funcs[transformations[block]](value)
    +384                    except KeyError:
    +385                        raise ValueError(
    +386                            f"Transformation {transformations[block]} is not valid."
    +387                        )
    +388                    block_vals[block] = {
    +389                        "value": value,
    +390                        "transformation": transformations[block],
    +391                    }
    +392                else:
    +393                    block_vals[block] = {"value": value}
    +394
    +395        except KeyError:
    +396            raise ValueError(f"Field {block} is not a supported extraction field.")
    +397
    +398    # Account for any incoming FHIR resources that return no data
    +399    # for a field--don't count this against records to-block
    +400    keys_to_pop = []
    +401    for field in block_vals:
    +402        if _is_empty_extraction_field(block_vals, field):
    +403            keys_to_pop.append(field)
    +404    for k in keys_to_pop:
    +405        block_vals.pop(k)
    +406
    +407    return block_vals
    +
    + + +

    Extracts values from a given patient record for eventual use in database +record linkage blocking. A list of fields to block on, as well as a mapping +of those fields to any desired transformations of their extracted values, +is used to fhir-path parse the value out of the incoming patient record.

    + +

    Currently supported blocking fields:

    + +
      +
    • first_name
    • +
    • last_name
    • +
    • birthdate
    • +
    • address
    • +
    • city
    • +
    • state
    • +
    • zip
    • +
    • sex
    • +
    • mrn
    • +
    + +

    Currently supported transformations on extracted fields:

    + +
      +
    • first4: the first four characters of the value
    • +
    • last4: the last four characters of the value
    • +
    + +
    Parameters
    + +
      +
    • record: A FHIR-formatted Patient record.
    • +
    • blocking_fields: A List of dictionaries giving the blocking +fields and any transformations that should be applied to them. Each +dictionary in the list should include a "value" key with one of the +supported blocking fields above, and may also optionally contain a +"transformation" key whose value is one of our supported transforms.
    • +
    +
    + + +
    +
    + +
    + + def + write_linkage_config(linkage_algo: List[dict], file_to_write: pathlib.Path) -> None: + + + +
    + +
    1068def write_linkage_config(linkage_algo: List[dict], file_to_write: pathlib.Path) -> None:
    +1069    """
    +1070    Save a provided algorithm description as a JSON dictionary at the provided
    +1071    filepath location. Algorithm descriptions are lists of dictionaries, one
    +1072    for each pass of the algorithm, whose keys are parameter values for a
    +1073    linkage pass (drawn from the list `"funcs"`, `"blocks"`, `"matching_rule"`,
    +1074    and optionally `"cluster_ratio"` and `"kwargs"`) and whose values are
    +1075    as follows:
    +1076
    +1077    - `"funcs"` should map to a dictionary mapping column index to the
    +1078    name of a function in the DIBBS linkage module (such as
    +1079    `feature_match_fuzzy_string`)--note that these are the actual
    +1080    functions, not string names of the functions
    +1081    - `"blocks"` should map to a list of columns to block on (e.g.
    +1082    ["MRN4", "ADDRESS4"])
    +1083    - `"matching_rule"` should map to one of the evaluation rule functions
    +1084    in the DIBBS linkage module (i.e. `eval_perfect_match`)
    +1085    - `"cluster_ratio"` should map to a float, if provided
    +1086    - `"kwargs"` should map to a dictionary of keyword arguments and their
    +1087    associated values, if provided
    +1088
    +1089    Here's an example of a simple single-pass linkage algorithm that blocks
    +1090    on zip code, then matches on exact first name, exact last name, and
    +1091    fuzzy date of birth (using, say, Levenshtein similarity with a score
    +1092    threshold of 0.8) in dictionary descriptor form (for the sake of the
    +1093    example, let's assume the data has the column order first, last, DOB):
    +1094
    +1095    [{
    +1096        "funcs": {
    +1097            0: feature_match_exact,
    +1098            1: feature_match_exact,
    +1099            2: feature_match_fuzzy_string,
    +1100            3: feature_match_fuzzy_string,
    +1101        },
    +1102        "blocks": ["ZIP"],
    +1103        "matching_rule": eval_perfect_match,
    +1104        "kwargs": {
    +1105            "similarity-measure": "Levenshtein",
    +1106            "threshold": 0.8
    +1107        }
    +1108    }]
    +1109
    +1110    :param linkage_algo: A list of dictionaries whose key-value pairs correspond
    +1111      to the rules above.
    +1112    :param file_to_write: The path to the destination JSON file to write.
    +1113    """
    +1114    algo_json = []
    +1115    for rl_pass in linkage_algo:
    +1116        pass_json = {}
    +1117        pass_json["funcs"] = {col: f.__name__ for (col, f) in rl_pass["funcs"].items()}
    +1118        pass_json["blocks"] = rl_pass["blocks"]
    +1119        pass_json["matching_rule"] = rl_pass["matching_rule"].__name__
    +1120        if rl_pass.get("cluster_ratio", None) is not None:
    +1121            pass_json["cluster_ratio"] = rl_pass["cluster_ratio"]
    +1122        if rl_pass.get("kwargs", None) is not None:
    +1123            pass_json["kwargs"] = {
    +1124                kwarg: val for (kwarg, val) in rl_pass.get("kwargs", {}).items()
    +1125            }
    +1126        algo_json.append(pass_json)
    +1127    linkage_json = {"algorithm": algo_json}
    +1128    with open(file_to_write, "w") as out:
    +1129        out.write(json.dumps(linkage_json))
    +
    + + +

    Save a provided algorithm description as a JSON dictionary at the provided +filepath location. Algorithm descriptions are lists of dictionaries, one +for each pass of the algorithm, whose keys are parameter values for a +linkage pass (drawn from the list "funcs", "blocks", "matching_rule", +and optionally "cluster_ratio" and "kwargs") and whose values are +as follows:

    + +
      +
    • "funcs" should map to a dictionary mapping column index to the +name of a function in the DIBBS linkage module (such as +feature_match_fuzzy_string)--note that these are the actual +functions, not string names of the functions
    • +
    • "blocks" should map to a list of columns to block on (e.g. +["MRN4", "ADDRESS4"])
    • +
    • "matching_rule" should map to one of the evaluation rule functions +in the DIBBS linkage module (i.e. eval_perfect_match)
    • +
    • "cluster_ratio" should map to a float, if provided
    • +
    • "kwargs" should map to a dictionary of keyword arguments and their +associated values, if provided
    • +
    + +

    Here's an example of a simple single-pass linkage algorithm that blocks +on zip code, then matches on exact first name, exact last name, and +fuzzy date of birth (using, say, Levenshtein similarity with a score +threshold of 0.8) in dictionary descriptor form (for the sake of the +example, let's assume the data has the column order first, last, DOB):

    + +

    [{ + "funcs": { + 0: feature_match_exact, + 1: feature_match_exact, + 2: feature_match_fuzzy_string, + 3: feature_match_fuzzy_string, + }, + "blocks": ["ZIP"], + "matching_rule": eval_perfect_match, + "kwargs": { + "similarity-measure": "Levenshtein", + "threshold": 0.8 + } +}]

    + +
    Parameters
    + +
      +
    • linkage_algo: A list of dictionaries whose key-value pairs correspond +to the rules above.
    • +
    • file_to_write: The path to the destination JSON file to write.
    • +
    +
    + + +
    +
    + +
    + + def + read_linkage_config(config_file: pathlib.Path) -> List[dict]: + + + +
    + +
    953def read_linkage_config(config_file: pathlib.Path) -> List[dict]:
    +954    """
    +955    Reads and generates a record linkage algorithm configuration list from
    +956    the provided filepath, which should point to a JSON file. A record
    +957    linkage configuration list is a list of dictionaries--one for each
    +958    pass in the algorithm it describes--containing information on the
    +959    blocking fields, functions, cluster thresholds, and keyword arguments
    +960    for that pass of the linkage algorithm. For a full example of all the
    +961    components involved in a linkage description structure, see the doc
    +962    string for `write_linkage_config`.
    +963
    +964    :param config_file: A `pathlib.Path` string pointing to a JSON file
    +965      that describes the algorithm to decode.
    +966    :return: A list of dictionaries whose values can be passed to the
    +967      various parts of linkage pass function.
    +968    """
    +969    try:
    +970        with open(config_file) as f:
    +971            algo_config = json.load(f)
    +972            # Need to convert function keys back to column indices, since
    +973            # JSON serializes dict keys as strings
    +974            for rl_pass in algo_config.get("algorithm"):
    +975                rl_pass["funcs"] = {
    +976                    int(col): f for (col, f) in rl_pass["funcs"].items()
    +977                }
    +978            return algo_config.get("algorithm", [])
    +979    except FileNotFoundError:
    +980        raise FileNotFoundError(f"No file exists at path {config_file}.")
    +981    except json.decoder.JSONDecodeError as e:
    +982        raise json.decoder.JSONDecodeError(
    +983            "The specified file is not valid JSON.", e.doc, e.pos
    +984        )
    +
    + + +

    Reads and generates a record linkage algorithm configuration list from +the provided filepath, which should point to a JSON file. A record +linkage configuration list is a list of dictionaries--one for each +pass in the algorithm it describes--containing information on the +blocking fields, functions, cluster thresholds, and keyword arguments +for that pass of the linkage algorithm. For a full example of all the +components involved in a linkage description structure, see the doc +string for write_linkage_config.

    + +
    Parameters
    + +
      +
    • config_file: A pathlib.Path string pointing to a JSON file +that describes the algorithm to decode.
    • +
    + +
    Returns
    + +
    +

    A list of dictionaries whose values can be passed to the + various parts of linkage pass function.

    +
    +
    + + +
    +
    + +
    + + class + DIBBsConnectorClient(phdi.linkage.BaseMPIConnectorClient): + + + +
    + +
     11class DIBBsConnectorClient(BaseMPIConnectorClient):
    + 12    """
    + 13    Represents a Postgres-specific Master Patient Index (MPI) connector
    + 14    client for the DIBBs implementation of the record linkage building
    + 15    block. Callers should use the provided interface functions (e.g.,
    + 16    block_vals) to interact with the underlying vendor-specific client
    + 17    property.
    + 18
    + 19    When instantiating a DIBBSConnectorClient, the connection to the
    + 20    database is automatically tested using the provided parameters.
    + 21    A refused, timed-out, or otherwise error-ed connection will raise
    + 22    an immediate exception.
    + 23    """
    + 24
    + 25    def __init__(
    + 26        self,
    + 27        database: str,
    + 28        user: str,
    + 29        password: str,
    + 30        host: str,
    + 31        port: str,
    + 32        patient_table: str,
    + 33        person_table: str,
    + 34    ) -> None:
    + 35        self.database = database
    + 36        self.user = user
    + 37        self.password = password
    + 38        self.host = host
    + 39        self.port = port
    + 40        self.patient_table = patient_table
    + 41        self.person_table = person_table
    + 42        self.fields_to_jsonpaths = {
    + 43            "address": """$.address[*].line""",
    + 44            "birthdate": "$.birthDate",
    + 45            "city": """$.address[*].city""",
    + 46            "first_name": """$.name[*].given""",
    + 47            "last_name": """$.name[*].family""",
    + 48            "mrn": """$.identifier ?(@.type.coding[0].code=="MR").value""",
    + 49            "sex": "$.gender",
    + 50            "state": """$.address[*].state""",
    + 51            "zip": """$.address[*].postalCode""",
    + 52        }
    + 53        db_conn = self.get_connection()
    + 54        self._close_connections(db_conn=db_conn)
    + 55
    + 56    def get_connection(self) -> Union[connection, None]:
    + 57        """
    + 58        Simple method for initiating a connection to the database specified
    + 59        by the parameters given to the class' instantiation.
    + 60        """
    + 61        db_conn = None
    + 62        try:
    + 63            db_conn = psycopg2.connect(
    + 64                database=self.database,
    + 65                user=self.user,
    + 66                password=self.password,
    + 67                host=self.host,
    + 68                port=self.port,
    + 69            )
    + 70        except Exception as error:  # pragma: no cover
    + 71            raise ValueError(f"{error}")
    + 72        finally:
    + 73            return db_conn
    + 74
    + 75    def block_data(self, block_vals: Dict) -> List[list]:
    + 76        """
    + 77        Returns a list of lists containing records from the database that match on the
    + 78        incoming record's block values. If blocking on 'ZIP' and the incoming record's
    + 79        zip code is '90210', the resulting block of data would contain records that all
    + 80        have the same zip code of 90210.
    + 81
    + 82        :param block_vals: Dictionary containing key value pairs for the column name for
    + 83          blocking and the data for the incoming record as well as any transformations,
    + 84          e.g., {"ZIP": {"value": "90210"}} or
    + 85          {"ZIP": {"value": "90210",}, "transformation":"first4"}.
    + 86        :return: A list of records that are within the block, e.g., records that all
    + 87          have 90210 as their ZIP.
    + 88        """
    + 89        if len(block_vals) == 0:
    + 90            raise ValueError("`block_vals` cannot be empty.")
    + 91
    + 92        db_cursor = None
    + 93        db_conn = None
    + 94        try:
    + 95            # Use context manager to handle commits and transactions
    + 96            with self.get_connection() as db_conn:
    + 97                with db_conn.cursor() as db_cursor:
    + 98                    # Generate raw SQL query
    + 99
    +100                    query, data = self._generate_block_query(block_vals)
    +101                    # Execute query
    +102                    db_cursor.execute(query, data)
    +103                    blocked_data = [list(row) for row in db_cursor.fetchall()]
    +104
    +105        except Exception as error:  # pragma: no cover
    +106            raise ValueError(f"{error}")
    +107
    +108        finally:
    +109            self._close_connections(db_conn=db_conn, db_cursor=db_cursor)
    +110
    +111        # Set up blocked data by adding column headers as 1st row of LoL
    +112        # TODO: Replace indices with column names for reability
    +113        blocked_data_cols = ["patient_id", "person_id"]
    +114        for key in sorted(list(self.fields_to_jsonpaths.keys())):
    +115            blocked_data_cols.append(key)
    +116        blocked_data.insert(0, blocked_data_cols)
    +117
    +118        return blocked_data
    +119
    +120    def insert_match_patient(
    +121        self,
    +122        patient_resource: Dict,
    +123        person_id=None,
    +124        external_person_id=None,
    +125    ) -> Union[None, tuple]:
    +126        """
    +127        If a matching person ID has been found in the MPI, inserts a new patient into
    +128        the patient table, including the matched person id, to link the new patient
    +129        and matched person ID; else inserts a new patient into the patient table and
    +130        inserts a new person into the person table with a new person ID, linking the
    +131        new person ID to the new patient.
    +132
    +133        :param patient_resource: A FHIR patient resource.
    +134        :param person_id: The person ID matching the patient record if a match has been
    +135          found in the MPI, defaults to None.
    +136        :param external_person_id: The external person id for the person that matches
    +137          the patient record if a match has been found in the MPI, defaults to None.
    +138        :return: the person id
    +139        """
    +140        matched = False
    +141        db_cursor = None
    +142        db_conn = None
    +143        try:
    +144            # Use context manager to handle commits and transactions
    +145            with self.get_connection() as db_conn:
    +146                with db_conn.cursor() as db_cursor:
    +147                    # handle all logic whether to insert, update
    +148                    # or query to get an existing person record
    +149                    # then use the returned person_id to link
    +150                    #  to the newly create patient
    +151                    matched, person_id = self._insert_person(
    +152                        db_cursor=db_cursor,
    +153                        person_id=person_id,
    +154                        external_person_id=external_person_id,
    +155                    )
    +156
    +157                    # Insert into patient table
    +158                    insert_new_patient = SQL(
    +159                        "INSERT INTO {patient_table} "
    +160                        "(patient_id, person_id, patient_resource) VALUES (%s, %s, %s);"
    +161                    ).format(patient_table=Identifier(self.patient_table))
    +162                    data = [
    +163                        patient_resource.get("id"),
    +164                        person_id,
    +165                        json.dumps(patient_resource),
    +166                    ]
    +167                    try:
    +168                        db_cursor.execute(insert_new_patient, data)
    +169                    except psycopg2.errors.UniqueViolation:
    +170                        logging.warning(
    +171                            f"Patient with ID {patient_resource.get('id')} already "
    +172                            "exists in the MPI. The patient table was not updated."
    +173                        )
    +174
    +175        except Exception as error:  # pragma: no cover
    +176            raise ValueError(f"{error}")
    +177
    +178        finally:
    +179            self._close_connections(db_conn=db_conn, db_cursor=db_cursor)
    +180
    +181        return (matched, person_id)
    +182
    +183    def _generate_block_query(self, block_vals: dict) -> Tuple[SQL, list[str]]:
    +184        """
    +185        Generates a query for selecting a block of data from the patient table per the
    +186        block_vals parameters. Accepted blocking fields include: first_name, last_name,
    +187        birthdate, addess, city, state, zip, mrn, and sex.
    +188
    +189        :param table_name: Table name.
    +190        :param block_vals: Dictionary containing key value pairs for the column name for
    +191          blocking and the data for the incoming record as well as any transformations,
    +192          e.g., {["ZIP"]: {"value": "90210"}} or
    +193          {["ZIP"]: {"value": "90210",}, "transformation":"first4"}.
    +194        :raises ValueError: If column key in `block_vals` is not supported.
    +195        :return: A tuple containing a psycopg2.sql.SQL object representing the query as
    +196            well as list of all data to be inserted into it.
    +197
    +198        """
    +199        # Check whether `block_vals` contains supported keys
    +200        for key in block_vals:
    +201            if key not in self.fields_to_jsonpaths:
    +202                raise ValueError(
    +203                    f"""`{key}` not supported for blocking at this time. Supported
    +204                    columns include first_name, last_name, birthdate, address, city,
    +205                    state, zip, mrn, and sex."""
    +206                )
    +207
    +208        # Generate select query to extract fields_to_jsonpaths keys
    +209        select_query_stubs = []
    +210        select_query_stubs_data = []
    +211        for key in self.fields_to_jsonpaths:
    +212            query = f"jsonb_path_query_array(patient_resource,%s) as {key}"
    +213            select_query_stubs.append(query)
    +214            select_query_stubs_data.append(self.fields_to_jsonpaths[key])
    +215        select_query = "SELECT patient_id, person_id, " + ", ".join(
    +216            stub for stub in select_query_stubs
    +217        )
    +218
    +219        # Generate blocking query based on blocking criteria
    +220        block_query_stubs = []
    +221        block_query_stubs_data = []
    +222        for col_name, param in block_vals.items():
    +223            query = (
    +224                "CAST(jsonb_path_query_array(patient_resource, %s) as VARCHAR)= "
    +225                "'[true]'"
    +226            )
    +227            block_query_stubs.append(query)
    +228            # Add appropriate transformations
    +229            if "transformation" in param:
    +230                # first4 transformations
    +231                if block_vals[col_name]["transformation"] == "first4":
    +232                    block_query_stubs_data.append(
    +233                        f"{self.fields_to_jsonpaths[col_name]} starts with "
    +234                        f'"{block_vals[col_name]["value"]}"'
    +235                    )
    +236                # last4 transformations
    +237                else:
    +238                    block_query_stubs_data.append(
    +239                        f"{self.fields_to_jsonpaths[col_name]} like_regex "
    +240                        f'"{block_vals[col_name]["value"]}$$"'
    +241                    )
    +242            # Build query for columns without transformations
    +243            else:
    +244                block_query_stubs_data.append(
    +245                    f"{self.fields_to_jsonpaths[col_name]} like_regex "
    +246                    f'"{block_vals[col_name]["value"]}"'
    +247                )
    +248
    +249        block_query = " WHERE " + " AND ".join(stub for stub in block_query_stubs)
    +250
    +251        query = select_query + " FROM {patient_table}" + block_query + ";"
    +252        query = SQL(query).format(patient_table=Identifier(self.patient_table))
    +253        data = select_query_stubs_data + block_query_stubs_data
    +254
    +255        return query, data
    +256
    +257    def _close_connections(
    +258        self,
    +259        db_conn: Union[connection, None] = None,
    +260        db_cursor: Union[cursor, None] = None,
    +261    ) -> None:
    +262        """
    +263        Simple helper method to close passed connections. If a context manager's
    +264        `with` block successfully executes, the connection will already be
    +265        committed and closed, so the resource will already be released. However,
    +266        if the `with` block terminates before safe execution, this function
    +267        allows a `finally` clause to succinctly clean up all open connections.
    +268        """
    +269        if db_cursor is not None:
    +270            db_cursor.close()
    +271        if db_conn is not None:
    +272            db_conn.close()
    +273
    +274    def _insert_person(
    +275        self,
    +276        db_cursor: Union[cursor, None] = None,
    +277        person_id: str = None,
    +278        external_person_id: str = None,
    +279    ) -> tuple:
    +280        """
    +281        If person id is not supplied and external person id is not supplied
    +282        then insert a new person record with an auto-generated person id (UUID)
    +283        with a Null external person id and return that new person id. If the
    +284        person id is not supplied but an external person id is supplied try
    +285        to find an existing person record with the external person id and
    +286        return that person id; otherwise add a new person record with an
    +287        auto-generated person id (UUID) with the supplied external person id
    +288        and return the new person id.  If person id and external person id are
    +289        both supplied then update the person records external person id if it
    +290        is Null and return the person id.
    +291
    +292        :param person_id: The person id for the person record to be inserted
    +293          or updated, defaults to None.
    +294        :param external_person_id: The external person id for the person record
    +295          to be inserted or updated, defaults to None.
    +296        :return: A tuple of two values; the person id either supplied or
    +297          auto-generated and a boolean that indicates if there was a match
    +298          found within the person table or not based upon the external person id
    +299        """
    +300        matched = False
    +301        try:
    +302            if external_person_id is None:
    +303                external_person_id = "'NULL'"
    +304            else:
    +305                # if external person id is supplied then find if there is already
    +306                #  a person with that external person id already within the MPI
    +307                #  - if so, return that person id
    +308                person_query = SQL(
    +309                    "SELECT person_id FROM {person_table} WHERE external_person_id = %s"
    +310                ).format(person_table=Identifier(self.person_table))
    +311                query_data = [external_person_id]
    +312                db_cursor.execute(person_query, query_data)
    +313                # Retrieve person_id that has the supplied external_person_id
    +314                returned_data = db_cursor.fetchall()
    +315
    +316                if returned_data is not None and len(returned_data) > 0:
    +317                    found_person_id = returned_data[0][0]
    +318                    matched = True
    +319                    return matched, found_person_id
    +320
    +321            if person_id is None:
    +322                # Insert a new record into person table to generate new
    +323                # person_id with either the supplied external person id
    +324                #  or a null external person id
    +325                insert_new_person = SQL(
    +326                    "INSERT INTO {person_table} (external_person_id) VALUES "
    +327                    "(%s) RETURNING person_id;"
    +328                ).format(person_table=Identifier(self.person_table))
    +329                person_data = [external_person_id]
    +330
    +331                db_cursor.execute(insert_new_person, person_data)
    +332
    +333                # Retrieve newly generated person_id
    +334                person_id = db_cursor.fetchall()[0][0]
    +335            # otherwise if person id is supplied and the external person id is supplied
    +336            # and not none and a record with the external person id was not found
    +337            #  then update the person record with the supplied external person id
    +338            elif person_id is not None and external_person_id != "'NULL'":
    +339                matched = True
    +340                update_person_query = SQL(
    +341                    "UPDATE {person_table} SET external_person_id = %s "
    +342                    "WHERE person_id = %s AND external_person_id = 'NULL' "
    +343                ).format(person_table=Identifier(self.person_table))
    +344                update_data = [external_person_id, person_id]
    +345                db_cursor.execute(update_person_query, update_data)
    +346
    +347        except Exception as error:  # pragma: no cover
    +348            raise ValueError(f"{error}")
    +349        return matched, person_id
    +
    + + +

    Represents a Postgres-specific Master Patient Index (MPI) connector +client for the DIBBs implementation of the record linkage building +block. Callers should use the provided interface functions (e.g., +block_vals) to interact with the underlying vendor-specific client +property.

    + +

    When instantiating a DIBBSConnectorClient, the connection to the +database is automatically tested using the provided parameters. +A refused, timed-out, or otherwise error-ed connection will raise +an immediate exception.

    +
    + + +
    + +
    + + DIBBsConnectorClient( database: str, user: str, password: str, host: str, port: str, patient_table: str, person_table: str) + + + +
    + +
    25    def __init__(
    +26        self,
    +27        database: str,
    +28        user: str,
    +29        password: str,
    +30        host: str,
    +31        port: str,
    +32        patient_table: str,
    +33        person_table: str,
    +34    ) -> None:
    +35        self.database = database
    +36        self.user = user
    +37        self.password = password
    +38        self.host = host
    +39        self.port = port
    +40        self.patient_table = patient_table
    +41        self.person_table = person_table
    +42        self.fields_to_jsonpaths = {
    +43            "address": """$.address[*].line""",
    +44            "birthdate": "$.birthDate",
    +45            "city": """$.address[*].city""",
    +46            "first_name": """$.name[*].given""",
    +47            "last_name": """$.name[*].family""",
    +48            "mrn": """$.identifier ?(@.type.coding[0].code=="MR").value""",
    +49            "sex": "$.gender",
    +50            "state": """$.address[*].state""",
    +51            "zip": """$.address[*].postalCode""",
    +52        }
    +53        db_conn = self.get_connection()
    +54        self._close_connections(db_conn=db_conn)
    +
    + + + + +
    +
    + +
    + + def + get_connection(self) -> Optional[psycopg2.extensions.connection]: + + + +
    + +
    56    def get_connection(self) -> Union[connection, None]:
    +57        """
    +58        Simple method for initiating a connection to the database specified
    +59        by the parameters given to the class' instantiation.
    +60        """
    +61        db_conn = None
    +62        try:
    +63            db_conn = psycopg2.connect(
    +64                database=self.database,
    +65                user=self.user,
    +66                password=self.password,
    +67                host=self.host,
    +68                port=self.port,
    +69            )
    +70        except Exception as error:  # pragma: no cover
    +71            raise ValueError(f"{error}")
    +72        finally:
    +73            return db_conn
    +
    + + +

    Simple method for initiating a connection to the database specified +by the parameters given to the class' instantiation.

    +
    + + +
    +
    + +
    + + def + block_data(self, block_vals: Dict) -> List[list]: + + + +
    + +
     75    def block_data(self, block_vals: Dict) -> List[list]:
    + 76        """
    + 77        Returns a list of lists containing records from the database that match on the
    + 78        incoming record's block values. If blocking on 'ZIP' and the incoming record's
    + 79        zip code is '90210', the resulting block of data would contain records that all
    + 80        have the same zip code of 90210.
    + 81
    + 82        :param block_vals: Dictionary containing key value pairs for the column name for
    + 83          blocking and the data for the incoming record as well as any transformations,
    + 84          e.g., {"ZIP": {"value": "90210"}} or
    + 85          {"ZIP": {"value": "90210",}, "transformation":"first4"}.
    + 86        :return: A list of records that are within the block, e.g., records that all
    + 87          have 90210 as their ZIP.
    + 88        """
    + 89        if len(block_vals) == 0:
    + 90            raise ValueError("`block_vals` cannot be empty.")
    + 91
    + 92        db_cursor = None
    + 93        db_conn = None
    + 94        try:
    + 95            # Use context manager to handle commits and transactions
    + 96            with self.get_connection() as db_conn:
    + 97                with db_conn.cursor() as db_cursor:
    + 98                    # Generate raw SQL query
    + 99
    +100                    query, data = self._generate_block_query(block_vals)
    +101                    # Execute query
    +102                    db_cursor.execute(query, data)
    +103                    blocked_data = [list(row) for row in db_cursor.fetchall()]
    +104
    +105        except Exception as error:  # pragma: no cover
    +106            raise ValueError(f"{error}")
    +107
    +108        finally:
    +109            self._close_connections(db_conn=db_conn, db_cursor=db_cursor)
    +110
    +111        # Set up blocked data by adding column headers as 1st row of LoL
    +112        # TODO: Replace indices with column names for reability
    +113        blocked_data_cols = ["patient_id", "person_id"]
    +114        for key in sorted(list(self.fields_to_jsonpaths.keys())):
    +115            blocked_data_cols.append(key)
    +116        blocked_data.insert(0, blocked_data_cols)
    +117
    +118        return blocked_data
    +
    + + +

    Returns a list of lists containing records from the database that match on the +incoming record's block values. If blocking on 'ZIP' and the incoming record's +zip code is '90210', the resulting block of data would contain records that all +have the same zip code of 90210.

    + +
    Parameters
    + +
      +
    • block_vals: Dictionary containing key value pairs for the column name for +blocking and the data for the incoming record as well as any transformations, +e.g., {"ZIP": {"value": "90210"}} or +{"ZIP": {"value": "90210",}, "transformation":"first4"}.
    • +
    + +
    Returns
    + +
    +

    A list of records that are within the block, e.g., records that all + have 90210 as their ZIP.

    +
    +
    + + +
    +
    + +
    + + def + insert_match_patient( self, patient_resource: Dict, person_id=None, external_person_id=None) -> Optional[tuple]: + + + +
    + +
    120    def insert_match_patient(
    +121        self,
    +122        patient_resource: Dict,
    +123        person_id=None,
    +124        external_person_id=None,
    +125    ) -> Union[None, tuple]:
    +126        """
    +127        If a matching person ID has been found in the MPI, inserts a new patient into
    +128        the patient table, including the matched person id, to link the new patient
    +129        and matched person ID; else inserts a new patient into the patient table and
    +130        inserts a new person into the person table with a new person ID, linking the
    +131        new person ID to the new patient.
    +132
    +133        :param patient_resource: A FHIR patient resource.
    +134        :param person_id: The person ID matching the patient record if a match has been
    +135          found in the MPI, defaults to None.
    +136        :param external_person_id: The external person id for the person that matches
    +137          the patient record if a match has been found in the MPI, defaults to None.
    +138        :return: the person id
    +139        """
    +140        matched = False
    +141        db_cursor = None
    +142        db_conn = None
    +143        try:
    +144            # Use context manager to handle commits and transactions
    +145            with self.get_connection() as db_conn:
    +146                with db_conn.cursor() as db_cursor:
    +147                    # handle all logic whether to insert, update
    +148                    # or query to get an existing person record
    +149                    # then use the returned person_id to link
    +150                    #  to the newly create patient
    +151                    matched, person_id = self._insert_person(
    +152                        db_cursor=db_cursor,
    +153                        person_id=person_id,
    +154                        external_person_id=external_person_id,
    +155                    )
    +156
    +157                    # Insert into patient table
    +158                    insert_new_patient = SQL(
    +159                        "INSERT INTO {patient_table} "
    +160                        "(patient_id, person_id, patient_resource) VALUES (%s, %s, %s);"
    +161                    ).format(patient_table=Identifier(self.patient_table))
    +162                    data = [
    +163                        patient_resource.get("id"),
    +164                        person_id,
    +165                        json.dumps(patient_resource),
    +166                    ]
    +167                    try:
    +168                        db_cursor.execute(insert_new_patient, data)
    +169                    except psycopg2.errors.UniqueViolation:
    +170                        logging.warning(
    +171                            f"Patient with ID {patient_resource.get('id')} already "
    +172                            "exists in the MPI. The patient table was not updated."
    +173                        )
    +174
    +175        except Exception as error:  # pragma: no cover
    +176            raise ValueError(f"{error}")
    +177
    +178        finally:
    +179            self._close_connections(db_conn=db_conn, db_cursor=db_cursor)
    +180
    +181        return (matched, person_id)
    +
    + + +

    If a matching person ID has been found in the MPI, inserts a new patient into +the patient table, including the matched person id, to link the new patient +and matched person ID; else inserts a new patient into the patient table and +inserts a new person into the person table with a new person ID, linking the +new person ID to the new patient.

    + +
    Parameters
    + +
      +
    • patient_resource: A FHIR patient resource.
    • +
    • person_id: The person ID matching the patient record if a match has been +found in the MPI, defaults to None.
    • +
    • external_person_id: The external person id for the person that matches +the patient record if a match has been found in the MPI, defaults to None.
    • +
    + +
    Returns
    + +
    +

    the person id

    +
    +
    + + +
    +
    + +
    + +
    + + def + add_person_resource( person_id: str, patient_id: str, bundle: dict = FieldInfo(default=PydanticUndefined, description='A FHIR bundle', extra={})) -> dict: + + + +
    + +
    1521def add_person_resource(
    +1522    person_id: str, patient_id: str, bundle: dict = Field(description="A FHIR bundle")
    +1523) -> dict:
    +1524    """
    +1525    Adds a simplified person resource to a bundle if the patient resource in the bundle
    +1526    matches an existing record in the Master Patient Index. Returns the bundle with
    +1527    the newly added person resource.
    +1528
    +1529    :param person_id: _description_
    +1530    :param patient_id: _description_
    +1531    :param bundle: _description_, defaults to Field(description="A FHIR bundle")
    +1532    :return: _description_
    +1533    """
    +1534    person_resource = {
    +1535        "fullUrl": f"urn:uuid:{person_id}",
    +1536        "resource": {
    +1537            "resourceType": "Person",
    +1538            "id": f"{person_id}",
    +1539            "link": [{"target": {"reference": f"Patient/{patient_id}"}}],
    +1540        },
    +1541        "request": {
    +1542            "method": "PUT",
    +1543            "url": f"Person/{person_id}",
    +1544        },
    +1545    }
    +1546
    +1547    bundle.get("entry", []).append(person_resource)
    +1548
    +1549    return bundle
    +
    + + +

    Adds a simplified person resource to a bundle if the patient resource in the bundle +matches an existing record in the Master Patient Index. Returns the bundle with +the newly added person resource.

    + +
    Parameters
    + +
      +
    • person_id: _description_
    • +
    • patient_id: _description_
    • +
    • bundle: _description_, defaults to Field(description="A FHIR bundle")
    • +
    + +
    Returns
    + +
    +

    _description_

    +
    +
    + + +
    +
    +
    + _compare_address_elements + + +
    + + + + +
    +
    +
    + _compare_name_elements + + +
    + + + + +
    +
    + +
    + + def + convert_to_patient_fhir_resources(data: Dict) -> Tuple: + + + +
    + +
     37def convert_to_patient_fhir_resources(data: Dict) -> Tuple:
    + 38    """
    + 39    Converts and returns a row of patient data into patient resource in a FHIR-formatted
    + 40    patient resouce with a newly generated patient id as well as the `iris_id`.
    + 41
    + 42    :param data: Dictionary of patient data that optionionally includes the following
    + 43      fields: mrn, ssn, first_name, middle_name, last_name, home_phone, cell-phone, sex,
    + 44      birthdate, address, city, state, zip.
    + 45    :return: Tuple of the `iris_id` and FHIR-formatted patient resource.
    + 46    """
    + 47
    + 48    patient_id = str(uuid.uuid4())
    + 49
    + 50    # Iterate through each patient and convert patient data to FHIR resource
    + 51    patient_resource = {
    + 52        "resourceType": "Patient",
    + 53        "id": f"{patient_id}",
    + 54        "identifier": [
    + 55            {
    + 56                "type": {
    + 57                    "coding": [
    + 58                        {
    + 59                            "system": "http://terminology.hl7.org/CodeSystem/v2-0203",
    + 60                            "code": "MR",
    + 61                        }
    + 62                    ]
    + 63                },
    + 64                "value": f"{data.get('mrn',None)}",
    + 65            },
    + 66            {
    + 67                "type": {
    + 68                    "coding": [
    + 69                        {
    + 70                            "system": "http://terminology.hl7.org/CodeSystem/v2-0203",
    + 71                            "code": "SS",
    + 72                        }
    + 73                    ]
    + 74                },
    + 75                "value": f"{data.get('ssn',None)}",
    + 76            },
    + 77        ],
    + 78        "name": [
    + 79            {
    + 80                "family": f"{data.get('last_name',None)}",
    + 81                "given": extract_given_name(data),
    + 82            }
    + 83        ],
    + 84        "telecom": [
    + 85            {
    + 86                "system": "phone",
    + 87                "value": f"{data.get('home_phone',None)}",
    + 88                "use": "home",
    + 89            },
    + 90            {
    + 91                "system": "phone",
    + 92                "value": f"{data.get('cell_phone',None)}",
    + 93                "use": "mobile",
    + 94            },
    + 95            {"value": f"{data.get('email',None)}", "system": "email"},
    + 96        ],
    + 97        "gender": f"{data.get('sex',None)}",
    + 98        "birthDate": adjust_birthdate(data),
    + 99        "address": [
    +100            {
    +101                "use": "home",
    +102                "line": [f"{data.get('address',None)}"],
    +103                "city": f"{data.get('city',None)}",
    +104                "state": f"{data.get('state',None)}",
    +105                "postalCode": f"{data.get('zip',None)}",
    +106            }
    +107        ],
    +108    }
    +109
    +110    fhir_bundle = {
    +111        "resourceType": "Bundle",
    +112        "type": "batch",
    +113        "id": str(uuid.uuid4()),
    +114        "entry": [
    +115            {
    +116                "fullUrl": f"urn:uuid:{patient_id}",
    +117                "resource": patient_resource,
    +118                "request": {"method": "PUT", "url": f"Patient/{patient_id}"},
    +119            },
    +120        ],
    +121    }
    +122
    +123    iris_id = data.get("person_id", None)
    +124    return (iris_id, fhir_bundle)
    +
    + + +

    Converts and returns a row of patient data into patient resource in a FHIR-formatted +patient resouce with a newly generated patient id as well as the iris_id.

    + +
    Parameters
    + +
      +
    • data: Dictionary of patient data that optionionally includes the following +fields: mrn, ssn, first_name, middle_name, last_name, home_phone, cell-phone, sex, +birthdate, address, city, state, zip.
    • +
    + +
    Returns
    + +
    +

    Tuple of the iris_id and FHIR-formatted patient resource.

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/tabulation.html b/docs/v1.0.13/sdk/phdi/tabulation.html new file mode 100644 index 0000000000..5f165aa1a5 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/tabulation.html @@ -0,0 +1,543 @@ + + + + + + + phdi.tabulation API documentation + + + + + + + + + +
    +
    +

    +phdi.tabulation

    + + + + + + +
    1from phdi.tabulation.tables import load_schema, validate_schema, write_data
    +2
    +3__all__ = ("load_schema", "validate_schema", write_data)
    +
    + + +
    +
    + +
    + + def + load_schema(path: pathlib.Path) -> dict: + + + +
    + +
    15def load_schema(path: pathlib.Path) -> dict:
    +16    """
    +17    Given the path to a local YAML or JSON file containing a schema,
    +18    loads the file and return the resulting schema as a dictionary.
    +19    If the file can't be found, raises an error.
    +20
    +21    :param path: The file path to a YAML file holding a schema.
    +22    :raises ValueError: If the provided path points to an unsupported file type.
    +23    :raises FileNotFoundError: If the file to be loaded could not be found.
    +24    :raises JSONDecodeError: If a JSON file is provided with invalid JSON.
    +25    :return: A dict representing a schema read from the given path.
    +26    """
    +27    try:
    +28        with open(path, "r") as file:
    +29            if path.suffix == ".yaml":
    +30                schema = yaml.safe_load(file)
    +31            elif path.suffix == ".json":
    +32                schema = json.load(file)
    +33            else:
    +34                ftype = path.suffix.replace(".", "").upper()
    +35                raise ValueError(f"Unsupported file type provided: {ftype}")
    +36        validate_schema(schema)
    +37        return schema
    +38    except FileNotFoundError:
    +39        raise FileNotFoundError(
    +40            "The specified file does not exist at the path provided."
    +41        )
    +42    except json.decoder.JSONDecodeError as e:
    +43        raise json.decoder.JSONDecodeError(
    +44            "The specified file is not valid JSON.", e.doc, e.pos
    +45        )
    +
    + + +

    Given the path to a local YAML or JSON file containing a schema, +loads the file and return the resulting schema as a dictionary. +If the file can't be found, raises an error.

    + +
    Parameters
    + +
      +
    • path: The file path to a YAML file holding a schema.
    • +
    + +
    Raises
    + +
      +
    • ValueError: If the provided path points to an unsupported file type.
    • +
    • FileNotFoundError: If the file to be loaded could not be found.
    • +
    • JSONDecodeError: If a JSON file is provided with invalid JSON.
    • +
    + +
    Returns
    + +
    +

    A dict representing a schema read from the given path.

    +
    +
    + + +
    +
    + +
    + + def + validate_schema(schema: dict): + + + +
    + +
    48def validate_schema(schema: dict):
    +49    """
    +50    Validates the schema structure, ensuring all required schema elements are present
    +51    and all schema elements are of the expected data type.
    +52
    +53    :param schema: A declarative, user-defined specification, for one or more tables,
    +54        that defines the metadata, properties, and columns of those tables as they
    +55        relate to FHIR resources.
    +56    :raises jsonschema.exception.ValidationError: If the schema is invalid.
    +57    """
    +58    # Load validation schema
    +59    with importlib.resources.open_text(
    +60        "phdi.tabulation", "validation_schema.json"
    +61    ) as file:
    +62        validation_schema = json.load(file)
    +63
    +64    validate(schema=validation_schema, instance=schema)
    +
    + + +

    Validates the schema structure, ensuring all required schema elements are present +and all schema elements are of the expected data type.

    + +
    Parameters
    + +
      +
    • schema: A declarative, user-defined specification, for one or more tables, +that defines the metadata, properties, and columns of those tables as they +relate to FHIR resources.
    • +
    + +
    Raises
    + +
      +
    • jsonschema.exception.ValidationError: If the schema is invalid.
    • +
    +
    + + +
    +
    + +
    + + def + write_data( tabulated_data: List[List], directory: str, output_type: Literal['csv', 'parquet', 'sql'], filename: str = None, db_file: str = None, db_tablename: str = None, pq_writer: pyarrow.parquet.core.ParquetWriter = None, schema: dict = None, table_name: str = None) -> Optional[pyarrow.parquet.core.ParquetWriter]: + + + +
    + +
     67def write_data(
    + 68    tabulated_data: List[List],
    + 69    directory: str,
    + 70    output_type: Literal["csv", "parquet", "sql"],
    + 71    filename: str = None,
    + 72    db_file: str = None,
    + 73    db_tablename: str = None,
    + 74    pq_writer: pq.ParquetWriter = None,
    + 75    schema: dict = None,
    + 76    table_name: str = None,
    + 77) -> Union[None, pq.ParquetWriter]:
    + 78    """
    + 79    Writes a set of tabulated data to a particular output format on disk
    + 80    (one of CSV, Parquet, or SQL). For CSV and Parquet writing, a filename
    + 81    must be provided to write output to. In the case of the SQL format,
    + 82    a database file (if one exists and is being modified) must be specified
    + 83    along with a table name in place of a filename. Creates new data files
    + 84    if the given options specify a file that doesn't exist, and appends
    + 85    data to already-present files if they do.
    + 86
    + 87    :param tabulated_data: A list of lists in which the first element
    + 88      is the headers for the table-to-write and subsequent elements
    + 89      are rows in the table.
    + 90    :param directory: The directory in which to write the output data
    + 91      (if `output_type` is CSV or Parquet), or the directory in which
    + 92      the `db_file` is stored (if a database already exists) or should
    + 93      be created in (if a database does not already exist).
    + 94    :param output_type: The format the data should be written to.
    + 95    :param filename: The name of the CSV or Parquet file data should be
    + 96      written to. Omit if `output_type` is SQL. Default: `None`.
    + 97    :param db_file: The name of the database file to either create or
    + 98      access when writing to a SQL format. Omit if `output_type` is not
    + 99      SQL. Default: `None`.
    +100    :param db_tablename: The name of the table in the database to create
    +101      or write data to. Omit if `output_type` is not SQL. Default: `None`.
    +102    :param pq_writer: A pre-existing `ParquetWriter` object that can be
    +103      used to append data to a parquet format. Used in cases where
    +104      incremental writing to a parquet destination is desired. Omit if
    +105      `output_type` is not Parquet. Default: `None`.
    +106    """
    +107    # some elements may themselves contain lists, if selection_criteria = all is used
    +108    for i in range(1, len(tabulated_data)):
    +109        table_list = tabulated_data[i]
    +110        for row, elt in enumerate(table_list):
    +111            if isinstance(elt, list):
    +112                tabulated_data[i][row] = _convert_list_to_string(elt)
    +113            if isinstance(elt, dict):
    +114                tabulated_data[i][row] = str(elt)
    +115
    +116    if output_type == "csv":
    +117        write_headers = (
    +118            False if os.path.isfile(os.path.join(directory, filename)) else True
    +119        )
    +120        with open(os.path.join(directory, filename), "a", newline="") as fp:
    +121            writer = csv.writer(fp, dialect="excel")
    +122            if write_headers:
    +123                writer.writerow(tabulated_data[0])
    +124            writer.writerows(tabulated_data[1:])
    +125
    +126    if output_type == "parquet":
    +127        if schema and table_name:
    +128            # Create the parquet schema based on the config file
    +129            pq_schema = _create_pa_schema_from_table_schema(
    +130                schema, tabulated_data[0], table_name
    +131            )
    +132        else:
    +133            pq_schema = None
    +134        # Rearrange data so that it is column, not row based as parquet needs
    +135        parquet_data = _create_parquet_data(tabulated_data, pq_schema)
    +136        if pq_schema:
    +137            table = pa.Table.from_arrays(
    +138                _create_from_arrays_data(parquet_data[1:]), schema=pq_schema
    +139            )
    +140        else:
    +141            # If no schema file is provided, use the names field
    +142            table = pa.Table.from_arrays(
    +143                _create_from_arrays_data(parquet_data[1:]), names=tabulated_data[0]
    +144            )
    +145        if pq_writer is None:
    +146            pq_writer = pq.ParquetWriter(
    +147                os.path.join(directory, filename), table.schema
    +148            )
    +149        pq_writer.write_table(table=table)
    +150        return pq_writer
    +151
    +152    # @TODO:
    +153    # 1. support username and passwords for database access
    +154    # 2. figure out a more intelligent way to serialize data that's being
    +155    # written to the SQL DB; there's the possibility that we need to write
    +156    # list data to the table if an anchor has multiple reverse references,
    +157    # but SQL can't write native python lists, so we need to either
    +158    # stringify them, json.dumps serialize them, or binarize them
    +159    if output_type == "sql":
    +160        # We need a file-space cursor to operate on a connected table
    +161        conn = sql.connect(os.path.join(directory, db_file))
    +162        cursor = conn.cursor()
    +163
    +164        # Create requested table if it's not already in the database
    +165        headers = tuple(tabulated_data[0])
    +166        cursor.execute(f"CREATE TABLE IF NOT EXISTS {db_tablename} {headers};")
    +167
    +168        # Format the programmatic values correctly by number of cols
    +169        # Need this ugly construction so that the binding placeholder qmarks
    +170        # don't have quotes around them individually when parsed by the SQL
    +171        # engine
    +172        hdr_placeholder = "({})".format(", ".join("?" * len(tabulated_data[0])))
    +173        tuple_data = [tuple([str(x) for x in row]) for row in tabulated_data[1:]]
    +174        # Have to do a format string this way to avoid an empty f-string error
    +175        print(tuple_data)
    +176        cursor.executemany(
    +177            "INSERT INTO {} {} VALUES {};".format(
    +178                db_tablename, headers, hdr_placeholder
    +179            ),
    +180            tuple_data,
    +181        )
    +182
    +183        conn.commit()
    +184        conn.close()
    +
    + + +

    Writes a set of tabulated data to a particular output format on disk +(one of CSV, Parquet, or SQL). For CSV and Parquet writing, a filename +must be provided to write output to. In the case of the SQL format, +a database file (if one exists and is being modified) must be specified +along with a table name in place of a filename. Creates new data files +if the given options specify a file that doesn't exist, and appends +data to already-present files if they do.

    + +
    Parameters
    + +
      +
    • tabulated_data: A list of lists in which the first element +is the headers for the table-to-write and subsequent elements +are rows in the table.
    • +
    • directory: The directory in which to write the output data +(if output_type is CSV or Parquet), or the directory in which +the db_file is stored (if a database already exists) or should +be created in (if a database does not already exist).
    • +
    • output_type: The format the data should be written to.
    • +
    • filename: The name of the CSV or Parquet file data should be +written to. Omit if output_type is SQL. Default: None.
    • +
    • db_file: The name of the database file to either create or +access when writing to a SQL format. Omit if output_type is not +SQL. Default: None.
    • +
    • db_tablename: The name of the table in the database to create +or write data to. Omit if output_type is not SQL. Default: None.
    • +
    • pq_writer: A pre-existing ParquetWriter object that can be +used to append data to a parquet format. Used in cases where +incremental writing to a parquet destination is desired. Omit if +output_type is not Parquet. Default: None.
    • +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/transport.html b/docs/v1.0.13/sdk/phdi/transport.html new file mode 100644 index 0000000000..9ce6d12161 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/transport.html @@ -0,0 +1,358 @@ + + + + + + + phdi.transport API documentation + + + + + + + + + +
    +
    +

    +phdi.transport

    + + + + + + +
    1from .http import http_request_with_retry
    +2
    +3__all__ = ["http_request_with_retry"]
    +
    + + +
    +
    + +
    + + def + http_request_with_retry( url: str, retry_count: int, request_type: Literal['GET', 'POST'], allowed_methods: List[str], headers: dict, data: dict = None) -> requests.models.Response: + + + +
    + +
     9def http_request_with_retry(
    +10    url: str,
    +11    retry_count: int,
    +12    request_type: Literal["GET", "POST"],
    +13    allowed_methods: List[str],
    +14    headers: dict,
    +15    data: dict = None,
    +16) -> requests.Response:
    +17    """
    +18    Executes an HTTP request, retrying the request if the returned HTTP status code
    +19    is one of a specified list of codes.
    +20
    +21    :param url: The url at which to make the HTTP request.
    +22    :param retry_count: The number of times to retry the request, if the
    +23      first attempt fails.
    +24    :param request_type: The type of request to be made. Currently supports
    +25      GET and POST.
    +26    :param allowed_methods: The list of allowed HTTP request methods (i.e.,
    +27      POST, PUT) for the specific URL and query.
    +28    :param headers: JSON-type dictionary of headers to make the request with,
    +29      including Authorization and content-type.
    +30    :param data: The data as a JSON-formatted dictionary, used when the request
    +31      requires data to be posted. Default: `None`
    +32    :raises ValueError: An unsupported HTTP method (e.g., PATCH, DELETE) was passed
    +33      to the request_type parameter.
    +34    :return: A HTTP request response.
    +35    """
    +36
    +37    request_type = request_type.upper()
    +38    if request_type not in ["GET", "POST"]:
    +39        raise ValueError(
    +40            f"The HTTP '{request_type}' method is not currently supported."
    +41        )
    +42
    +43    # Configure the settings of the 'requests' session we'll make
    +44    # the API call with
    +45    retry_strategy = Retry(
    +46        total=retry_count,
    +47        status_forcelist=[429, 500, 502, 503, 504],
    +48        allowed_methods=allowed_methods,
    +49    )
    +50    adapter = HTTPAdapter(max_retries=retry_strategy)
    +51    http = requests.Session()
    +52    http.mount("http://", adapter)
    +53    http.mount("https://", adapter)
    +54
    +55    # Now, actually try to complete the API request
    +56    # TODO: Condense this down to make a single call using
    +57    # http.request(method=request_type, url=url, headers=headers, json=data)
    +58    if request_type == "POST":
    +59        response = http.post(
    +60            url=url,
    +61            headers=headers,
    +62            json=data,
    +63        )
    +64    elif request_type == "GET":
    +65        response = http.get(
    +66            url=url,
    +67            headers=headers,
    +68        )
    +69
    +70    return response
    +
    + + +

    Executes an HTTP request, retrying the request if the returned HTTP status code +is one of a specified list of codes.

    + +
    Parameters
    + +
      +
    • url: The url at which to make the HTTP request.
    • +
    • retry_count: The number of times to retry the request, if the +first attempt fails.
    • +
    • request_type: The type of request to be made. Currently supports +GET and POST.
    • +
    • allowed_methods: The list of allowed HTTP request methods (i.e., +POST, PUT) for the specific URL and query.
    • +
    • headers: JSON-type dictionary of headers to make the request with, +including Authorization and content-type.
    • +
    • data: The data as a JSON-formatted dictionary, used when the request +requires data to be posted. Default: None
    • +
    + +
    Raises
    + +
      +
    • ValueError: An unsupported HTTP method (e.g., PATCH, DELETE) was passed +to the request_type parameter.
    • +
    + +
    Returns
    + +
    +

    A HTTP request response.

    +
    +
    + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/phdi/validation.html b/docs/v1.0.13/sdk/phdi/validation.html new file mode 100644 index 0000000000..1ba05c0927 --- /dev/null +++ b/docs/v1.0.13/sdk/phdi/validation.html @@ -0,0 +1,1457 @@ + + + + + + + phdi.validation API documentation + + + + + + + + + +
    +
    +

    +phdi.validation

    + + + + + + +
     1from phdi.validation.validation import (
    + 2    validate_ecr,
    + 3    _organize_error_messages,
    + 4    _response_builder,
    + 5    _append_error_message,
    + 6    _add_message_ids,
    + 7    _clear_all_errors_and_ids,
    + 8)
    + 9from phdi.validation.xml_utils import (
    +10    get_ecr_message_ids,
    +11    _check_xml_names_and_attribs_exist,
    +12    _get_ecr_custom_message,
    +13    _get_xml_message_id,
    +14    get_xml_element_details,
    +15    _get_xml_attributes,
    +16    _get_xml_relative_iterator,
    +17    validate_xml_elements,
    +18    validate_xml_attributes,
    +19    _validate_xml_related_element,
    +20    _validate_xml_relatives,
    +21    validate_xml_value,
    +22    _get_xml_relatives_details,
    +23    ECR_NAMESPACES,
    +24)
    +25
    +26__all__ = [
    +27    "validate_ecr",
    +28    "_organize_error_messages",
    +29    "_response_builder",
    +30    "_append_error_message",
    +31    "_add_message_ids",
    +32    "_clear_all_errors_and_ids",
    +33    "get_ecr_message_ids",
    +34    "_check_xml_names_and_attribs_exist",
    +35    "_get_ecr_custom_message",
    +36    "_get_xml_message_id",
    +37    "get_xml_element_details",
    +38    "_get_xml_attributes",
    +39    "_get_xml_relative_iterator",
    +40    "validate_xml_elements",
    +41    "validate_xml_attributes",
    +42    "_validate_xml_related_element",
    +43    "_validate_xml_relatives",
    +44    "validate_xml_value",
    +45    "_get_xml_relatives_details",
    +46    "ECR_NAMESPACES",
    +47]
    +
    + + +
    +
    + +
    + + def + validate_ecr(ecr_message: str, config: dict, include_error_types: list) -> dict: + + + +
    + +
     22def validate_ecr(ecr_message: str, config: dict, include_error_types: list) -> dict:
    + 23    """
    + 24    Receives an ecr message (a combined RR and eICR), a configuration of
    + 25    what fields are to be validated and how they are to be validated, as
    + 26    well as a list of error message types to include (default is all fatal
    + 27    errors, basic errors, warnings, and information).  The result of
    + 28    validation is returned in a dictionary that also contains a boolean
    + 29    if the ecr message is valid or not.
    + 30
    + 31    :param ecr_message: A eCR message that contains both eICR and RR fields.
    + 32    :param config: A dictionary of the requirements for validation of the
    + 33      eCR message.
    + 34    :param include_error_types: A list of error message types to include
    + 35        in the final validation response.  Default (fatal, errors,
    + 36        warnings, information)
    + 37    :return: A dictionary containing bool message_valid as well as a
    + 38        dictionary containing the validation results/errors.
    + 39    """
    + 40    _clear_all_errors_and_ids()
    + 41    # encoding ecr_message to allow it to be
    + 42    #  parsed and organized as an lxml Element Tree Object
    + 43    xml = ecr_message.encode("utf-8")
    + 44    parser = etree.XMLParser(ns_clean=True, recover=True, encoding="utf-8")
    + 45
    + 46    # we need a try-catch around this to ensure that the ecr message
    + 47    # passed in is proper XML - also ensure it's a clinical document
    + 48    try:
    + 49        parsed_ecr = etree.fromstring(xml, parser=parser)
    + 50        parsed_ecr.xpath("//hl7:ClinicalDocument", namespaces=ECR_NAMESPACES)
    + 51
    + 52    except AttributeError:
    + 53        _append_error_message(
    + 54            error_message_type="fatal", message="eCR Message is not valid XML!"
    + 55        )
    + 56        return _response_builder(include_error_types=include_error_types)
    + 57
    + 58    _add_message_ids(get_ecr_message_ids(parsed_ecr=parsed_ecr))
    + 59
    + 60    for field in config.get("fields"):
    + 61        # extract the specific information from the configuration
    + 62        # for the different fields
    + 63        cda_path = field.get("cdaPath")
    + 64
    + 65        # get a list of XML elements that match the field configuration
    + 66        matched_xml_elements = validate_xml_elements(
    + 67            xml_elements=parsed_ecr.xpath(cda_path, namespaces=ECR_NAMESPACES),
    + 68            config_field=field,
    + 69        )
    + 70        error_message_type = (
    + 71            field.get("errorType")
    + 72            if field.get("errorType") in ERROR_MESSAGES.keys()
    + 73            else "errors"
    + 74        )
    + 75        # if there are no xml elements that were valid for
    + 76        # the configuration then store an error for that based
    + 77        # upon the configured error message type
    + 78        if not matched_xml_elements:
    + 79            error_message = "Could not find field. " + get_xml_element_details(
    + 80                None, field
    + 81            )
    + 82            _append_error_message(
    + 83                error_message_type=error_message_type, message=error_message
    + 84            )
    + 85            continue
    + 86        # continue the validation steps for xml attributes and values
    + 87        attribute_errors = []
    + 88        value_errors = []
    + 89        for xml_element in matched_xml_elements:
    + 90            attribute_errors += validate_xml_attributes(xml_element, field)
    + 91            value_errors += validate_xml_value(xml_element, field)
    + 92        # this handles a specific case where just ONE xml element
    + 93        # must meet the attribute or xml value criteria - otherwise
    + 94        # you wil want to include an error.
    + 95        if not (
    + 96            field.get("validateOne")
    + 97            and len(attribute_errors) < len(matched_xml_elements)
    + 98            and len(value_errors) < len(matched_xml_elements)
    + 99        ):
    +100            for attribute_error in attribute_errors:
    +101                _append_error_message(
    +102                    error_message_type=error_message_type, message=attribute_error
    +103                )
    +104            for value_error in value_errors:
    +105                _append_error_message(
    +106                    error_message_type=error_message_type, message=value_error
    +107                )
    +108    response = _response_builder(include_error_types=include_error_types)
    +109    return response
    +
    + + +

    Receives an ecr message (a combined RR and eICR), a configuration of +what fields are to be validated and how they are to be validated, as +well as a list of error message types to include (default is all fatal +errors, basic errors, warnings, and information). The result of +validation is returned in a dictionary that also contains a boolean +if the ecr message is valid or not.

    + +
    Parameters
    + +
      +
    • ecr_message: A eCR message that contains both eICR and RR fields.
    • +
    • config: A dictionary of the requirements for validation of the +eCR message.
    • +
    • include_error_types: A list of error message types to include +in the final validation response. Default (fatal, errors, +warnings, information)
    • +
    + +
    Returns
    + +
    +

    A dictionary containing bool message_valid as well as a + dictionary containing the validation results/errors.

    +
    +
    + + +
    +
    + +
    + + def + _organize_error_messages(include_error_types: list) -> None: + + + +
    + +
    112def _organize_error_messages(include_error_types: list) -> None:
    +113    # utilize the error_types to filter out the different error message
    +114    # types as well as specify the difference between the different error types
    +115    # during the validation process
    +116
    +117    # fatal warnings cannot be filtered and will be automatically included!
    +118    # also, let's not wipe out the message_ids dictionary
    +119    for error_type in ERROR_MESSAGES.keys():
    +120        if (
    +121            error_type not in ("fatal", "message_ids")
    +122            and error_type not in include_error_types
    +123        ):
    +124            ERROR_MESSAGES[error_type] = []
    +
    + + + + +
    +
    + +
    + + def + _response_builder(include_error_types: list) -> dict: + + + +
    + +
    127def _response_builder(include_error_types: list) -> dict:
    +128    if ERROR_MESSAGES.get("fatal") != []:
    +129        valid = False
    +130    else:
    +131        valid = True
    +132        _append_error_message(
    +133            error_message_type="information",
    +134            message="Validation completed with no fatal errors!",
    +135        )
    +136    _organize_error_messages(include_error_types=include_error_types)
    +137
    +138    return {"message_valid": valid, "validation_results": ERROR_MESSAGES}
    +
    + + + + +
    +
    + +
    + + def + _append_error_message(error_message_type: str, message: str) -> None: + + + +
    + +
    141def _append_error_message(error_message_type: str, message: str) -> None:
    +142    if error_message_type in ERROR_MESSAGES.keys():
    +143        if isinstance(message, list):
    +144            for msg in message:
    +145                if msg is not None and msg.strip() != "":
    +146                    ERROR_MESSAGES[error_message_type].append(msg.strip())
    +147        elif message is not None and message.strip() != "":
    +148            ERROR_MESSAGES[error_message_type].append(message.strip())
    +
    + + + + +
    +
    + +
    + + def + _add_message_ids(ids: dict) -> None: + + + +
    + +
    151def _add_message_ids(ids: dict) -> None:
    +152    if ids:
    +153        ERROR_MESSAGES["message_ids"] = ids
    +154    else:
    +155        ERROR_MESSAGES["message_ids"] = {}
    +
    + + + + +
    +
    + +
    + + def + _clear_all_errors_and_ids() -> None: + + + +
    + +
    158def _clear_all_errors_and_ids() -> None:
    +159    ERROR_MESSAGES["fatal"] = []
    +160    ERROR_MESSAGES["errors"] = []
    +161    ERROR_MESSAGES["information"] = []
    +162    ERROR_MESSAGES["warnings"] = []
    +163    ERROR_MESSAGES["message_ids"] = {}
    +
    + + + + +
    +
    + +
    + + def + get_ecr_message_ids(parsed_ecr) -> dict: + + + +
    + +
    33def get_ecr_message_ids(parsed_ecr) -> dict:
    +34    # get the message ids for the eicr and the rr
    +35    xml_eicr_id = _get_xml_message_id(
    +36        parsed_ecr.xpath(EICR_MSG_ID_XPATH, namespaces=ECR_NAMESPACES)
    +37    )
    +38    xml_rr_id = _get_xml_message_id(
    +39        parsed_ecr.xpath(RR_MSG_ID_XPATH, namespaces=ECR_NAMESPACES)
    +40    )
    +41
    +42    return {"eicr": xml_eicr_id, "rr": xml_rr_id}
    +
    + + + + +
    +
    + +
    + + def + _check_xml_names_and_attribs_exist(xml_element, config_field) -> bool: + + + +
    + +
     98def _check_xml_names_and_attribs_exist(xml_element, config_field) -> bool:
    + 99    """
    +100    Confirms that the xml element name and attributes specified in
    +101    the configuration actually exist.
    +102
    +103    :param xml_element: The key xml element that is being evaluated.
    +104    :param config_field: A dictionary of the requirements for validating
    +105        the key xml elements name and attributes
    +106    :return: Bool - True if the name and attributes exist in the passed in
    +107        xml element, otherwise false.
    +108    """
    +109    # If the configuration specified field name doesn't match the xml elements
    +110    # tag name, then return false to go to the next xml element
    +111    field_name = re.search(r"(?!\:)[a-zA-z]+\w$", config_field.get("cdaPath")).group(0)
    +112
    +113    if field_name.lower() not in xml_element.tag.lower():
    +114        return False
    +115
    +116    # Don't try to evaluate matches for the xml element's attributes
    +117    # if we are validating all fields as indicated in the configuration
    +118    # for the field/xml element
    +119    match_attributes = False if config_field.get("validateAll") == "True" else True
    +120    if not match_attributes:
    +121        return True
    +122
    +123    # Check if the xml element passed in has the right attributes
    +124    #  and if the values of the attribute correspond to the
    +125    #  requirements in the configuration
    +126    field_attributes = config_field.get("attributes")
    +127    if field_attributes:
    +128        for attribute in field_attributes:
    +129            # If field is supposed to have an attribute and doesn't,
    +130            # return that the field has failed validation for that
    +131            # attribute.
    +132            if not xml_element.get(attribute.get("attributeName")):
    +133                return False
    +134    else:
    +135        # If there are not specified attributes to validate within the
    +136        # configuration, but there are attributes in the xml element
    +137        # then return a False/Fail
    +138        # TODO: is this how this should be working??
    +139        if xml_element.attrib:
    +140            return False
    +141    return True
    +
    + + +

    Confirms that the xml element name and attributes specified in +the configuration actually exist.

    + +
    Parameters
    + +
      +
    • xml_element: The key xml element that is being evaluated.
    • +
    • config_field: A dictionary of the requirements for validating +the key xml elements name and attributes
    • +
    + +
    Returns
    + +
    +

    Bool - True if the name and attributes exist in the passed in + xml element, otherwise false.

    +
    +
    + + +
    +
    + +
    + + def + _get_ecr_custom_message(config_field, default_message): + + + +
    + +
    307def _get_ecr_custom_message(config_field, default_message):
    +308    message = default_message
    +309    if config_field.get("customMessage"):
    +310        message = config_field.get("customMessage")
    +311    return message
    +
    + + + + +
    +
    + +
    + + def + _get_xml_message_id(id_xml_tag: <cyfunction Element>) -> dict: + + + +
    + +
    20def _get_xml_message_id(id_xml_tag: etree.Element) -> dict:
    +21    # extracts the message id from the root and extension
    +22    # attributes from the specified xml tag and returns
    +23    # the results in a dictionary
    +24
    +25    if id_xml_tag == []:
    +26        return {}
    +27    id_root = id_xml_tag[0].get("root")
    +28    id_extension = id_xml_tag[0].get("extension")
    +29    message_id = {"root": id_root, "extension": id_extension}
    +30    return message_id
    +
    + + + + +
    +
    + +
    + + def + get_xml_element_details(xml_element, config_field) -> str: + + + +
    + +
    314def get_xml_element_details(xml_element, config_field) -> str:
    +315    """
    +316    Gets the name, value, of the xml element referenced as well
    +317    as the details of any configured relative xml elements for
    +318    the referenced xml element and formats this information into
    +319    a single string for use in the validation messages.
    +320
    +321    :param xml_element: The key xml element.
    +322    :param config_field: A dictionary of the configured requirements
    +323        for the xml element.
    +324    :return: A single string containing the information about the
    +325        key xml element and its attribute(s).
    +326    """
    +327    if config_field is None or config_field == {}:
    +328        return ""
    +329    name = [f"Field name: '{config_field.get('fieldName')}'"]
    +330    config_attributes = config_field.get("attributes")
    +331    attributes = (
    +332        ["Attributes:"] + _get_xml_attributes(xml_element, config_attributes)
    +333        if config_attributes
    +334        else []
    +335    )
    +336    relative_string = _get_xml_relatives_details(config_field.get("relatives"))
    +337    value = (
    +338        [f"value: '{''.join(xml_element.itertext())}'"]
    +339        if (
    +340            config_field.get("textRequired")
    +341            and xml_element is not None
    +342            and "".join(xml_element.itertext()) != ""
    +343        )
    +344        else []
    +345    )
    +346    return " ".join(name + value + attributes + relative_string)
    +
    + + +

    Gets the name, value, of the xml element referenced as well +as the details of any configured relative xml elements for +the referenced xml element and formats this information into +a single string for use in the validation messages.

    + +
    Parameters
    + +
      +
    • xml_element: The key xml element.
    • +
    • config_field: A dictionary of the configured requirements +for the xml element.
    • +
    + +
    Returns
    + +
    +

    A single string containing the information about the + key xml element and its attribute(s).

    +
    +
    + + +
    +
    + +
    + + def + _get_xml_attributes(xml_element, config_attributes) -> list: + + + +
    + +
    382def _get_xml_attributes(xml_element, config_attributes) -> list:
    +383    """
    +384    Takes the xml element, along with its configuration to create
    +385    a list of strings that include attribute name, required
    +386    patterns, and the actual value of said attribute.
    +387
    +388    :param xml_element: The key xml element.
    +389    :param config_attributes: A dictionary of the configured requirements
    +390        for the attributes for the key xml element.
    +391    :return: A single string containing the information about the
    +392        key xml elements attribute(s).
    +393    """
    +394    attrs = []
    +395    if config_attributes is None or config_attributes == "":
    +396        return attrs
    +397    for attribute in config_attributes:
    +398        attr_index = len(attrs) + 1
    +399        attribute_name = attribute.get("attributeName")
    +400        reg_ex = attribute.get("regEx")
    +401        reg_ex_string = (
    +402            f" with the required value pattern: '{reg_ex}'" if reg_ex else ""
    +403        )
    +404
    +405        if xml_element is not None and xml_element.get(attribute_name):
    +406            attribute_value = f" actual value: '{xml_element.get(attribute_name)}'"
    +407        else:
    +408            attribute_value = ""
    +409
    +410        attrs.append(
    +411            f"attribute #{attr_index}: "
    +412            + f"'{attribute_name}'{reg_ex_string}{attribute_value}"
    +413        )
    +414    return [", ".join(attrs)]
    +
    + + +

    Takes the xml element, along with its configuration to create +a list of strings that include attribute name, required +patterns, and the actual value of said attribute.

    + +
    Parameters
    + +
      +
    • xml_element: The key xml element.
    • +
    • config_attributes: A dictionary of the configured requirements +for the attributes for the key xml element.
    • +
    + +
    Returns
    + +
    +

    A single string containing the information about the + key xml elements attribute(s).

    +
    +
    + + +
    +
    + +
    + + def + _get_xml_relative_iterator(cda_path, relative_cda_path, xml_element) -> list: + + + +
    + +
    213def _get_xml_relative_iterator(cda_path, relative_cda_path, xml_element) -> list:
    +214    """
    +215    Gets an iterator, basically a list of xml elements, based on the key
    +216    xml element's path and the relative xml element's path being
    +217    searched for.
    +218
    +219    :param cda_path: A string representing the location of the key xml element.
    +220    :param relative_cda_path: A string representing the path of the relative
    +221        xml element to be searched for.
    +222    :param xml_element: The key xml element.
    +223    :return: An lxml defined iterator of the relative xml elements
    +224        based on the key xml element.
    +225    """
    +226    if xml_element is None:
    +227        return None
    +228    # get the difference of the number of '/' between the key cda_path and the
    +229    # relative_cda_path
    +230    diff = len(cda_path.split(XML_PATH_DELIMITER)) - len(
    +231        relative_cda_path.split(XML_PATH_DELIMITER)
    +232    )
    +233    # element is on the same level of the main element
    +234    if diff == 0:
    +235        iter = []
    +236        iter_forward = xml_element.itersiblings()
    +237        iter_reverse = xml_element.itersiblings(preceding=True)
    +238        for e in iter_forward:
    +239            iter.append(e)
    +240        for e in iter_reverse:
    +241            iter.append(e)
    +242        return iter
    +243    # element is an acestor to the main element
    +244    elif diff > 0:
    +245        # get all the ancestors and put them into a list
    +246        # and then get the one that is at the level
    +247        # equal to the diff -1 (to account for array numbering)
    +248
    +249        if len(list(xml_element.iterancestors())) < diff - 1:
    +250            return None
    +251        xml_relative_element = list(xml_element.iterancestors())[diff - 1]
    +252        return xml_relative_element
    +253    # element is a child of the main element
    +254    elif diff == -1:
    +255        return list(xml_element.iterchildren())
    +256    # if diff is < -1 then it's a descendant and it's
    +257    # going to have to return all tags under the base
    +258    # xml element
    +259    else:
    +260        return list(xml_element.iterdescendants())
    +
    + + +

    Gets an iterator, basically a list of xml elements, based on the key +xml element's path and the relative xml element's path being +searched for.

    + +
    Parameters
    + +
      +
    • cda_path: A string representing the location of the key xml element.
    • +
    • relative_cda_path: A string representing the path of the relative +xml element to be searched for.
    • +
    • xml_element: The key xml element.
    • +
    + +
    Returns
    + +
    +

    An lxml defined iterator of the relative xml elements + based on the key xml element.

    +
    +
    + + +
    +
    + +
    + + def + validate_xml_elements(xml_elements, config_field) -> list: + + + +
    + +
    45def validate_xml_elements(xml_elements, config_field) -> list:
    +46    """
    +47    Matches the xml_elements to the config field requirements for
    +48    values, attributes, and relative xml element requirements for
    +49    values, and attributes. Returns list of matching fields.
    +50
    +51    :param xml_elements: A list of xml elements
    +52    :param config_field: A dictionary of the requirements of the field.
    +53    :return: A list of matched xml elemnts
    +54    """
    +55    if not xml_elements:
    +56        return []
    +57    validated_elements = []
    +58    for xml_element in xml_elements:
    +59        if not _validate_xml_relatives(xml_element, config_field):
    +60            continue
    +61        found = _check_xml_names_and_attribs_exist(xml_element, config_field)
    +62        if found:
    +63            validated_elements.append(xml_element)
    +64    return validated_elements
    +
    + + +

    Matches the xml_elements to the config field requirements for +values, attributes, and relative xml element requirements for +values, and attributes. Returns list of matching fields.

    + +
    Parameters
    + +
      +
    • xml_elements: A list of xml elements
    • +
    • config_field: A dictionary of the requirements of the field.
    • +
    + +
    Returns
    + +
    +

    A list of matched xml elemnts

    +
    +
    + + +
    +
    + +
    + + def + validate_xml_attributes(xml_element, config_field) -> list: + + + +
    + +
    263def validate_xml_attributes(xml_element, config_field) -> list:
    +264    """
    +265    Validates an xml element by checking if the configured attribute(s) exist
    +266    and match the configured regex pattern for the value of the attribute.
    +267    If the xml element, and it's subsequent attribute(s), do not pass the checks,
    +268    based upon what is in the configuration, then an error message is added to
    +269    the validation results.
    +270
    +271    :param xml_element: The xml element that will have its attributes validated.
    +272    :param config_field: A dictionary that contains the configuration that
    +273        specifies what the attribute(s) for the xml element should be named
    +274        and how the values should be patterned.
    +275    :return: A list of errors or an empty list.  If the list is empty then
    +276        the validation was successful.
    +277    """
    +278    config_attribs = config_field.get("attributes")
    +279    if not config_attribs:
    +280        return []
    +281
    +282    error_messages = []
    +283    for attribute in config_attribs:
    +284        if "attributeName" in attribute:
    +285            attribute_name = attribute.get("attributeName")
    +286            attribute_value = xml_element.get(attribute_name)
    +287            if not attribute_value:
    +288                message = _get_ecr_custom_message(
    +289                    config_field,
    +290                    f"Could not find attribute '{attribute_name}'. "
    +291                    + f"{get_xml_element_details(xml_element, config_field)}",
    +292                )
    +293                error_messages.append(message)
    +294        if "regEx" in attribute:
    +295            pattern = re.compile(attribute.get("regEx"))
    +296            if (not attribute_value) or (not pattern.match(attribute_value)):
    +297                message = _get_ecr_custom_message(
    +298                    config_field,
    +299                    f"Attribute: '{attribute_name}'"
    +300                    + " not in expected format. "
    +301                    + f"{get_xml_element_details(xml_element, config_field)}",
    +302                )
    +303                error_messages.append(message)
    +304    return error_messages
    +
    + + +

    Validates an xml element by checking if the configured attribute(s) exist +and match the configured regex pattern for the value of the attribute. +If the xml element, and it's subsequent attribute(s), do not pass the checks, +based upon what is in the configuration, then an error message is added to +the validation results.

    + +
    Parameters
    + +
      +
    • xml_element: The xml element that will have its attributes validated.
    • +
    • config_field: A dictionary that contains the configuration that +specifies what the attribute(s) for the xml element should be named +and how the values should be patterned.
    • +
    + +
    Returns
    + +
    +

    A list of errors or an empty list. If the list is empty then + the validation was successful.

    +
    +
    + + +
    + +
    + +
    + + def + _validate_xml_relatives(xml_element, config_field) -> bool: + + + +
    + +
    67def _validate_xml_relatives(xml_element, config_field) -> bool:
    +68    """
    +69    Gets the 'relatives' portion of the configuration for a particular
    +70    field and validates that the required attributes and values in the
    +71    relative xml paths are present.
    +72
    +73    :param xml_element: The key xml element that is being evaluated as
    +74        well as its relative xml elements.
    +75    :param config_field: A dictionary of the requirements for validating
    +76        the key xml elements relative xml elements.
    +77    :return: Bool - True if all relative xml elements match the criteria
    +78        specified in the configuration, otherwise false.
    +79    """
    +80    relatives_valid = True
    +81    relatives = config_field.get("relatives")
    +82    if relatives is None:
    +83        return relatives_valid
    +84    for relative_config in relatives:
    +85        base_cda_path = config_field.get("cdaPath")
    +86        if (
    +87            _validate_xml_related_element(
    +88                xml_element=xml_element,
    +89                cda_path=base_cda_path,
    +90                relative_config=relative_config,
    +91            )
    +92            is None
    +93        ):
    +94            relatives_valid = False
    +95    return relatives_valid
    +
    + + +

    Gets the 'relatives' portion of the configuration for a particular +field and validates that the required attributes and values in the +relative xml paths are present.

    + +
    Parameters
    + +
      +
    • xml_element: The key xml element that is being evaluated as +well as its relative xml elements.
    • +
    • config_field: A dictionary of the requirements for validating +the key xml elements relative xml elements.
    • +
    + +
    Returns
    + +
    +

    Bool - True if all relative xml elements match the criteria + specified in the configuration, otherwise false.

    +
    +
    + + +
    +
    + +
    + + def + validate_xml_value(xml_element, config_field) -> list: + + + +
    + +
    417def validate_xml_value(xml_element, config_field) -> list:
    +418    """
    +419    Validates the value of an xml element (ie... between the tags) based upon
    +420    validating the xml element exists within the relative xml element location
    +421    based upon the configuration of the parent of the xml element.
    +422    Then it validates that the value of xml element matches the value pattern
    +423    listed in the config.
    +424
    +425    :param xml_element: The key xml element being evaluated.
    +426    :param config_field: A dictionary that contains the configuration information
    +427        necessary to validate the location and value of the key xml element
    +428    :return: A list of error messages if validation fails, otherwise an
    +429        empty list.
    +430    """
    +431    # If value for xml element is not required return empty list
    +432    if not config_field.get("textRequired"):
    +433        return []
    +434
    +435    value = "".join(xml_element.itertext())
    +436    config_regex = config_field.get("regEx")
    +437    # first check if the value matches the regex from the config
    +438    if config_regex is not None:
    +439        pattern = re.compile(config_regex)
    +440        if pattern.match(value) is None:
    +441            message = _get_ecr_custom_message(
    +442                config_field,
    +443                "The field value does not exist or "
    +444                + "doesn't match the following pattern: '"
    +445                + config_regex
    +446                + f"'. For the {get_xml_element_details(xml_element, config_field)}",
    +447            )
    +448            return [message]
    +449        else:
    +450            return []
    +451    # otherwise just verify that a value is present
    +452    else:
    +453        if value is not None and value != "":
    +454            return []
    +455        else:
    +456            message = _get_ecr_custom_message(
    +457                config_field,
    +458                "Field does not have a value. "
    +459                + f"{get_xml_element_details(xml_element, config_field)}",
    +460            )
    +461            return [message]
    +
    + + +

    Validates the value of an xml element (ie... between the tags) based upon +validating the xml element exists within the relative xml element location +based upon the configuration of the parent of the xml element. +Then it validates that the value of xml element matches the value pattern +listed in the config.

    + +
    Parameters
    + +
      +
    • xml_element: The key xml element being evaluated.
    • +
    • config_field: A dictionary that contains the configuration information +necessary to validate the location and value of the key xml element
    • +
    + +
    Returns
    + +
    +

    A list of error messages if validation fails, otherwise an + empty list.

    +
    +
    + + +
    +
    + +
    + + def + _get_xml_relatives_details(relatives_config: dict) -> list: + + + +
    + +
    349def _get_xml_relatives_details(relatives_config: dict) -> list:
    +350    """
    +351    Gets the name and configured attribute information for
    +352    any relative xml elements based upon the relative config
    +353    section passed in and formats this information into
    +354    a single string for use in the validation messages.
    +355
    +356    :param relatives_config: A dictionary of the configured requirements
    +357        for the relative xml element.
    +358    :return: A single string, in a list, containing the information about the
    +359        relative xml element and its attribute(s).
    +360    """
    +361    relative_string = []
    +362    if relatives_config:
    +363        relative_string.append("Related elements:")
    +364        for rel_config in relatives_config:
    +365            relative_field_name = rel_config.get("name")
    +366            relative_name = (
    +367                ["Field name: '" + relative_field_name + "'"]
    +368                if relative_field_name
    +369                else []
    +370            )
    +371            config_related_attributes = rel_config.get("attributes")
    +372            relative_attributes = (
    +373                ["Attributes:"] + _get_xml_attributes(None, config_related_attributes)
    +374                if config_related_attributes
    +375                else []
    +376            )
    +377            relative_string += relative_name
    +378            relative_string += relative_attributes
    +379    return relative_string
    +
    + + +

    Gets the name and configured attribute information for +any relative xml elements based upon the relative config +section passed in and formats this information into +a single string for use in the validation messages.

    + +
    Parameters
    + +
      +
    • relatives_config: A dictionary of the configured requirements +for the relative xml element.
    • +
    + +
    Returns
    + +
    +

    A single string, in a list, containing the information about the + relative xml element and its attribute(s).

    +
    +
    + + +
    +
    +
    + ECR_NAMESPACES = + + {'hl7': 'urn:hl7-org:v3', 'xsi': 'http://www.w3.org/2005/Atom', 'cda': 'urn:hl7-org:v3', 'sdtc': 'urn:hl7-org:sdtc', 'voc': 'http://www.lantanagroup.com/voc'} + + +
    + + + + +
    +
    + + \ No newline at end of file diff --git a/docs/v1.0.13/sdk/search.js b/docs/v1.0.13/sdk/search.js new file mode 100644 index 0000000000..858e0e4fb9 --- /dev/null +++ b/docs/v1.0.13/sdk/search.js @@ -0,0 +1,46 @@ +window.pdocSearch = (function(){ +/** elasticlunr - http://weixsong.github.io * Copyright (C) 2017 Oliver Nightingale * Copyright (C) 2017 Wei Song * MIT Licensed */!function(){function e(e){if(null===e||"object"!=typeof e)return e;var t=e.constructor();for(var n in e)e.hasOwnProperty(n)&&(t[n]=e[n]);return t}var t=function(e){var n=new t.Index;return n.pipeline.add(t.trimmer,t.stopWordFilter,t.stemmer),e&&e.call(n,n),n};t.version="0.9.5",lunr=t,t.utils={},t.utils.warn=function(e){return function(t){e.console&&console.warn&&console.warn(t)}}(this),t.utils.toString=function(e){return void 0===e||null===e?"":e.toString()},t.EventEmitter=function(){this.events={}},t.EventEmitter.prototype.addListener=function(){var e=Array.prototype.slice.call(arguments),t=e.pop(),n=e;if("function"!=typeof t)throw new TypeError("last argument must be a function");n.forEach(function(e){this.hasHandler(e)||(this.events[e]=[]),this.events[e].push(t)},this)},t.EventEmitter.prototype.removeListener=function(e,t){if(this.hasHandler(e)){var n=this.events[e].indexOf(t);-1!==n&&(this.events[e].splice(n,1),0==this.events[e].length&&delete this.events[e])}},t.EventEmitter.prototype.emit=function(e){if(this.hasHandler(e)){var t=Array.prototype.slice.call(arguments,1);this.events[e].forEach(function(e){e.apply(void 0,t)},this)}},t.EventEmitter.prototype.hasHandler=function(e){return e in this.events},t.tokenizer=function(e){if(!arguments.length||null===e||void 0===e)return[];if(Array.isArray(e)){var n=e.filter(function(e){return null===e||void 0===e?!1:!0});n=n.map(function(e){return t.utils.toString(e).toLowerCase()});var i=[];return n.forEach(function(e){var n=e.split(t.tokenizer.seperator);i=i.concat(n)},this),i}return e.toString().trim().toLowerCase().split(t.tokenizer.seperator)},t.tokenizer.defaultSeperator=/[\s\-]+/,t.tokenizer.seperator=t.tokenizer.defaultSeperator,t.tokenizer.setSeperator=function(e){null!==e&&void 0!==e&&"object"==typeof e&&(t.tokenizer.seperator=e)},t.tokenizer.resetSeperator=function(){t.tokenizer.seperator=t.tokenizer.defaultSeperator},t.tokenizer.getSeperator=function(){return t.tokenizer.seperator},t.Pipeline=function(){this._queue=[]},t.Pipeline.registeredFunctions={},t.Pipeline.registerFunction=function(e,n){n in t.Pipeline.registeredFunctions&&t.utils.warn("Overwriting existing registered function: "+n),e.label=n,t.Pipeline.registeredFunctions[n]=e},t.Pipeline.getRegisteredFunction=function(e){return e in t.Pipeline.registeredFunctions!=!0?null:t.Pipeline.registeredFunctions[e]},t.Pipeline.warnIfFunctionNotRegistered=function(e){var n=e.label&&e.label in this.registeredFunctions;n||t.utils.warn("Function is not registered with pipeline. This may cause problems when serialising the index.\n",e)},t.Pipeline.load=function(e){var n=new t.Pipeline;return e.forEach(function(e){var i=t.Pipeline.getRegisteredFunction(e);if(!i)throw new Error("Cannot load un-registered function: "+e);n.add(i)}),n},t.Pipeline.prototype.add=function(){var e=Array.prototype.slice.call(arguments);e.forEach(function(e){t.Pipeline.warnIfFunctionNotRegistered(e),this._queue.push(e)},this)},t.Pipeline.prototype.after=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i+1,0,n)},t.Pipeline.prototype.before=function(e,n){t.Pipeline.warnIfFunctionNotRegistered(n);var i=this._queue.indexOf(e);if(-1===i)throw new Error("Cannot find existingFn");this._queue.splice(i,0,n)},t.Pipeline.prototype.remove=function(e){var t=this._queue.indexOf(e);-1!==t&&this._queue.splice(t,1)},t.Pipeline.prototype.run=function(e){for(var t=[],n=e.length,i=this._queue.length,o=0;n>o;o++){for(var r=e[o],s=0;i>s&&(r=this._queue[s](r,o,e),void 0!==r&&null!==r);s++);void 0!==r&&null!==r&&t.push(r)}return t},t.Pipeline.prototype.reset=function(){this._queue=[]},t.Pipeline.prototype.get=function(){return this._queue},t.Pipeline.prototype.toJSON=function(){return this._queue.map(function(e){return t.Pipeline.warnIfFunctionNotRegistered(e),e.label})},t.Index=function(){this._fields=[],this._ref="id",this.pipeline=new t.Pipeline,this.documentStore=new t.DocumentStore,this.index={},this.eventEmitter=new t.EventEmitter,this._idfCache={},this.on("add","remove","update",function(){this._idfCache={}}.bind(this))},t.Index.prototype.on=function(){var e=Array.prototype.slice.call(arguments);return this.eventEmitter.addListener.apply(this.eventEmitter,e)},t.Index.prototype.off=function(e,t){return this.eventEmitter.removeListener(e,t)},t.Index.load=function(e){e.version!==t.version&&t.utils.warn("version mismatch: current "+t.version+" importing "+e.version);var n=new this;n._fields=e.fields,n._ref=e.ref,n.documentStore=t.DocumentStore.load(e.documentStore),n.pipeline=t.Pipeline.load(e.pipeline),n.index={};for(var i in e.index)n.index[i]=t.InvertedIndex.load(e.index[i]);return n},t.Index.prototype.addField=function(e){return this._fields.push(e),this.index[e]=new t.InvertedIndex,this},t.Index.prototype.setRef=function(e){return this._ref=e,this},t.Index.prototype.saveDocument=function(e){return this.documentStore=new t.DocumentStore(e),this},t.Index.prototype.addDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.addDoc(i,e),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));this.documentStore.addFieldLength(i,n,o.length);var r={};o.forEach(function(e){e in r?r[e]+=1:r[e]=1},this);for(var s in r){var u=r[s];u=Math.sqrt(u),this.index[n].addToken(s,{ref:i,tf:u})}},this),n&&this.eventEmitter.emit("add",e,this)}},t.Index.prototype.removeDocByRef=function(e){if(e&&this.documentStore.isDocStored()!==!1&&this.documentStore.hasDoc(e)){var t=this.documentStore.getDoc(e);this.removeDoc(t,!1)}},t.Index.prototype.removeDoc=function(e,n){if(e){var n=void 0===n?!0:n,i=e[this._ref];this.documentStore.hasDoc(i)&&(this.documentStore.removeDoc(i),this._fields.forEach(function(n){var o=this.pipeline.run(t.tokenizer(e[n]));o.forEach(function(e){this.index[n].removeToken(e,i)},this)},this),n&&this.eventEmitter.emit("remove",e,this))}},t.Index.prototype.updateDoc=function(e,t){var t=void 0===t?!0:t;this.removeDocByRef(e[this._ref],!1),this.addDoc(e,!1),t&&this.eventEmitter.emit("update",e,this)},t.Index.prototype.idf=function(e,t){var n="@"+t+"/"+e;if(Object.prototype.hasOwnProperty.call(this._idfCache,n))return this._idfCache[n];var i=this.index[t].getDocFreq(e),o=1+Math.log(this.documentStore.length/(i+1));return this._idfCache[n]=o,o},t.Index.prototype.getFields=function(){return this._fields.slice()},t.Index.prototype.search=function(e,n){if(!e)return[];e="string"==typeof e?{any:e}:JSON.parse(JSON.stringify(e));var i=null;null!=n&&(i=JSON.stringify(n));for(var o=new t.Configuration(i,this.getFields()).get(),r={},s=Object.keys(e),u=0;u0&&t.push(e);for(var i in n)"docs"!==i&&"df"!==i&&this.expandToken(e+i,t,n[i]);return t},t.InvertedIndex.prototype.toJSON=function(){return{root:this.root}},t.Configuration=function(e,n){var e=e||"";if(void 0==n||null==n)throw new Error("fields should not be null");this.config={};var i;try{i=JSON.parse(e),this.buildUserConfig(i,n)}catch(o){t.utils.warn("user configuration parse failed, will use default configuration"),this.buildDefaultConfig(n)}},t.Configuration.prototype.buildDefaultConfig=function(e){this.reset(),e.forEach(function(e){this.config[e]={boost:1,bool:"OR",expand:!1}},this)},t.Configuration.prototype.buildUserConfig=function(e,n){var i="OR",o=!1;if(this.reset(),"bool"in e&&(i=e.bool||i),"expand"in e&&(o=e.expand||o),"fields"in e)for(var r in e.fields)if(n.indexOf(r)>-1){var s=e.fields[r],u=o;void 0!=s.expand&&(u=s.expand),this.config[r]={boost:s.boost||0===s.boost?s.boost:1,bool:s.bool||i,expand:u}}else t.utils.warn("field name in user configuration not found in index instance fields");else this.addAllFields2UserConfig(i,o,n)},t.Configuration.prototype.addAllFields2UserConfig=function(e,t,n){n.forEach(function(n){this.config[n]={boost:1,bool:e,expand:t}},this)},t.Configuration.prototype.get=function(){return this.config},t.Configuration.prototype.reset=function(){this.config={}},lunr.SortedSet=function(){this.length=0,this.elements=[]},lunr.SortedSet.load=function(e){var t=new this;return t.elements=e,t.length=e.length,t},lunr.SortedSet.prototype.add=function(){var e,t;for(e=0;e1;){if(r===e)return o;e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o]}return r===e?o:-1},lunr.SortedSet.prototype.locationFor=function(e){for(var t=0,n=this.elements.length,i=n-t,o=t+Math.floor(i/2),r=this.elements[o];i>1;)e>r&&(t=o),r>e&&(n=o),i=n-t,o=t+Math.floor(i/2),r=this.elements[o];return r>e?o:e>r?o+1:void 0},lunr.SortedSet.prototype.intersect=function(e){for(var t=new lunr.SortedSet,n=0,i=0,o=this.length,r=e.length,s=this.elements,u=e.elements;;){if(n>o-1||i>r-1)break;s[n]!==u[i]?s[n]u[i]&&i++:(t.add(s[n]),n++,i++)}return t},lunr.SortedSet.prototype.clone=function(){var e=new lunr.SortedSet;return e.elements=this.toArray(),e.length=e.elements.length,e},lunr.SortedSet.prototype.union=function(e){var t,n,i;this.length>=e.length?(t=this,n=e):(t=e,n=this),i=t.clone();for(var o=0,r=n.toArray();o

    \n"}, "phdi.cloud": {"fullname": "phdi.cloud", "modulename": "phdi.cloud", "kind": "module", "doc": "

    \n"}, "phdi.cloud.azure": {"fullname": "phdi.cloud.azure", "modulename": "phdi.cloud.azure", "kind": "module", "doc": "

    \n"}, "phdi.cloud.azure.AzureCredentialManager": {"fullname": "phdi.cloud.azure.AzureCredentialManager", "modulename": "phdi.cloud.azure", "qualname": "AzureCredentialManager", "kind": "class", "doc": "

    Defines a credential manager used for connecting to Azure.

    \n", "bases": "phdi.cloud.core.BaseCredentialManager"}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"fullname": "phdi.cloud.azure.AzureCredentialManager.__init__", "modulename": "phdi.cloud.azure", "qualname": "AzureCredentialManager.__init__", "kind": "function", "doc": "

    Creates a new AzureCredentialManager object.

    \n\n
    Parameters
    \n\n
      \n
    • resource_location: The URL or other location of the requested resource.
    • \n
    • scope: A space-delimited list of scopes to limit access to resource.\nDefault: None
    • \n
    \n", "signature": "(resource_location: str = None, scope: str = None)"}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"fullname": "phdi.cloud.azure.AzureCredentialManager.get_credential_object", "modulename": "phdi.cloud.azure", "qualname": "AzureCredentialManager.get_credential_object", "kind": "function", "doc": "

    Gets an Azure-specific credential object.

    \n\n
    Returns
    \n\n
    \n

    An instance of one of the *Credential objects from the\n azure.identity package.

    \n
    \n", "signature": "(self) -> object:", "funcdef": "def"}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"fullname": "phdi.cloud.azure.AzureCredentialManager.get_access_token", "modulename": "phdi.cloud.azure", "qualname": "AzureCredentialManager.get_access_token", "kind": "function", "doc": "

    Obtains an access token from the Azure identity provider. Returns the\naccess token string, refreshed if expired or force_refresh is specified.

    \n\n
    Parameters
    \n\n
      \n
    • force_refresh: True if a new token should be requested, regardless\nof expiration timestamp. False otherwise. Default: False
    • \n
    \n\n
    Returns
    \n\n
    \n

    An Azure access token.

    \n
    \n", "signature": "(self, force_refresh: bool = False) -> str:", "funcdef": "def"}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"fullname": "phdi.cloud.azure.AzureCredentialManager.get_secret", "modulename": "phdi.cloud.azure", "qualname": "AzureCredentialManager.get_secret", "kind": "function", "doc": "

    Get the value of a secret from an Azure key vault given the names of the vault\nand the secret.

    \n\n
    Parameters
    \n\n
      \n
    • secret_name: The name of the secret whose value should be retrieved from\nthe key vault.
    • \n
    • key_vault_name: The name of the key vault where the secret is stored.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The value of the secret specified by secret_name.

    \n
    \n", "signature": "(self, secret_name: str, key_vault_name: str) -> str:", "funcdef": "def"}, "phdi.cloud.azure.AzureCloudContainerConnection": {"fullname": "phdi.cloud.azure.AzureCloudContainerConnection", "modulename": "phdi.cloud.azure", "qualname": "AzureCloudContainerConnection", "kind": "class", "doc": "

    Defines a connection used for interacting with cloud storage in Azure.

    \n", "bases": "phdi.cloud.core.BaseCloudStorageConnection"}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"fullname": "phdi.cloud.azure.AzureCloudContainerConnection.__init__", "modulename": "phdi.cloud.azure", "qualname": "AzureCloudContainerConnection.__init__", "kind": "function", "doc": "

    Creates a new AzureCloudContainerConnection object.

    \n\n
    Parameters
    \n\n
      \n
    • storage_account_url: The storage account location of the requested\nresource.
    • \n
    • cred_manager: The credential manager used to authenticate to the\nFHIR server.
    • \n
    \n", "signature": "(\tstorage_account_url: str,\tcred_manager: phdi.cloud.azure.AzureCredentialManager)"}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"fullname": "phdi.cloud.azure.AzureCloudContainerConnection.download_object", "modulename": "phdi.cloud.azure", "qualname": "AzureCloudContainerConnection.download_object", "kind": "function", "doc": "

    Downloads a character blob from storage and returns it as a string.

    \n\n
    Parameters
    \n\n
      \n
    • container_name: The name of the container containing object to download.
    • \n
    • filename: The location of the file within Azure blob storage.
    • \n
    • encoding: The encoding applied to the downloaded content. Default: UTF-8
    • \n
    \n\n
    Returns
    \n\n
    \n

    A character blob as a string from the given container and filename.

    \n
    \n", "signature": "(self, container_name: str, filename: str, encoding: str = 'UTF-8') -> str:", "funcdef": "def"}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"fullname": "phdi.cloud.azure.AzureCloudContainerConnection.upload_object", "modulename": "phdi.cloud.azure", "qualname": "AzureCloudContainerConnection.upload_object", "kind": "function", "doc": "

    Uploads the content of a given message to Azure blob storage.\nThe message can be passed either as a raw string or as JSON.

    \n\n
    Parameters
    \n\n
      \n
    • message: The contents of a message, encoded either as a\nstring or a JSON-formatted dictionary.
    • \n
    • container_name: The name of the target container for upload.
    • \n
    • filename: The location of file to upload within Azure blob storage.
    • \n
    \n", "signature": "(\tself,\tmessage: Union[str, dict],\tcontainer_name: str,\tfilename: str) -> None:", "funcdef": "def"}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"fullname": "phdi.cloud.azure.AzureCloudContainerConnection.list_containers", "modulename": "phdi.cloud.azure", "qualname": "AzureCloudContainerConnection.list_containers", "kind": "function", "doc": "

    Lists names for this CloudContainerConnection's containers.

    \n\n
    Returns
    \n\n
    \n

    A list of container names.

    \n
    \n", "signature": "(self) -> List[str]:", "funcdef": "def"}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"fullname": "phdi.cloud.azure.AzureCloudContainerConnection.list_objects", "modulename": "phdi.cloud.azure", "qualname": "AzureCloudContainerConnection.list_objects", "kind": "function", "doc": "

    Lists names for objects within a container.

    \n\n
    Parameters
    \n\n
      \n
    • container_name: The name of the container to look for objects.
    • \n
    • prefix: Filter the objects returned to filenames beginning\nwith this value.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of names for objects in given container.

    \n
    \n", "signature": "(self, container_name: str, prefix: str = '') -> List[str]:", "funcdef": "def"}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"fullname": "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists", "modulename": "phdi.cloud.azure", "qualname": "AzureCloudContainerConnection.blob_exists", "kind": "function", "doc": "

    Check if a blob exists within a container given its name and the name of the\ncontainer.

    \n\n
    Parameters
    \n\n
      \n
    • container_name: The name of the container to look for the blob in.
    • \n
    • filename: The name of the blob to check the existence of.
    • \n
    • prefix: Filter the objects returned to filenames beginning\nwith this value.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A boolean of true if the file exists and false if it does not.

    \n
    \n", "signature": "(self, container_name: str, filename: str) -> bool:", "funcdef": "def"}, "phdi.cloud.core": {"fullname": "phdi.cloud.core", "modulename": "phdi.cloud.core", "kind": "module", "doc": "

    \n"}, "phdi.cloud.core.BaseCredentialManager": {"fullname": "phdi.cloud.core.BaseCredentialManager", "modulename": "phdi.cloud.core", "qualname": "BaseCredentialManager", "kind": "class", "doc": "

    Provides a common interface for managing service credentials.

    \n", "bases": "abc.ABC"}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"fullname": "phdi.cloud.core.BaseCredentialManager.get_credential_object", "modulename": "phdi.cloud.core", "qualname": "BaseCredentialManager.get_credential_object", "kind": "function", "doc": "

    Gets a cloud-specific credential object.

    \n\n
    Returns
    \n\n
    \n

    A credential object.

    \n
    \n", "signature": "(self) -> object:", "funcdef": "def"}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"fullname": "phdi.cloud.core.BaseCredentialManager.get_access_token", "modulename": "phdi.cloud.core", "qualname": "BaseCredentialManager.get_access_token", "kind": "function", "doc": "

    Gets an access token using the managed credentials.

    \n\n
    Returns
    \n\n
    \n

    An access token.

    \n
    \n", "signature": "(self) -> str:", "funcdef": "def"}, "phdi.cloud.core.BaseCloudStorageConnection": {"fullname": "phdi.cloud.core.BaseCloudStorageConnection", "modulename": "phdi.cloud.core", "qualname": "BaseCloudStorageConnection", "kind": "class", "doc": "

    Helper class that provides a standard way to create an ABC using\ninheritance.

    \n", "bases": "abc.ABC"}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"fullname": "phdi.cloud.core.BaseCloudStorageConnection.download_object", "modulename": "phdi.cloud.core", "qualname": "BaseCloudStorageConnection.download_object", "kind": "function", "doc": "

    Downloads a blob from storage.

    \n\n
    Parameters
    \n\n
      \n
    • container_name: The name of the container containing object to download.
    • \n
    • filename: The location of file within storage.
    • \n
    • encoding: The character encoding applied to the downloaded content.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The stream parameter, if supplied. Otherwise a new stream object\n containing blob content.

    \n
    \n", "signature": "(self, container_name: str, filename: str, encoding: str = 'utf-8') -> str:", "funcdef": "def"}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"fullname": "phdi.cloud.core.BaseCloudStorageConnection.upload_object", "modulename": "phdi.cloud.core", "qualname": "BaseCloudStorageConnection.upload_object", "kind": "function", "doc": "

    Uploads the content of a given message to blob storage.\nThe message can be passed either as a raw string or as JSON.

    \n\n
    Parameters
    \n\n
      \n
    • message: The contents of a message, encoded either as a\nstring or in a JSON format.
    • \n
    • container_name: The name of the target container for upload.
    • \n
    • filename: The location of file within storage container.
    • \n
    \n", "signature": "(\tself,\tmessage: Union[str, dict],\tcontainer_name: str,\tfilename: str) -> None:", "funcdef": "def"}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"fullname": "phdi.cloud.core.BaseCloudStorageConnection.list_containers", "modulename": "phdi.cloud.core", "qualname": "BaseCloudStorageConnection.list_containers", "kind": "function", "doc": "

    Lists names for this CloudContainerConnection's containers.

    \n\n
    Returns
    \n\n
    \n

    A list of container names.

    \n
    \n", "signature": "(self) -> List[str]:", "funcdef": "def"}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"fullname": "phdi.cloud.core.BaseCloudStorageConnection.list_objects", "modulename": "phdi.cloud.core", "qualname": "BaseCloudStorageConnection.list_objects", "kind": "function", "doc": "

    Lists names for objects within a container.

    \n\n
    Parameters
    \n\n
      \n
    • container_name: The name of the container to look for objects.
    • \n
    • prefix: Filter the objects returned to filenames beginning\nwith this value.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of objects within a container.

    \n
    \n", "signature": "(self, container_name: str, prefix: str) -> List[str]:", "funcdef": "def"}, "phdi.cloud.gcp": {"fullname": "phdi.cloud.gcp", "modulename": "phdi.cloud.gcp", "kind": "module", "doc": "

    \n"}, "phdi.cloud.gcp.GcpCredentialManager": {"fullname": "phdi.cloud.gcp.GcpCredentialManager", "modulename": "phdi.cloud.gcp", "qualname": "GcpCredentialManager", "kind": "class", "doc": "

    Provides a GCP-specific credential manager.

    \n", "bases": "phdi.cloud.core.BaseCredentialManager"}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"fullname": "phdi.cloud.gcp.GcpCredentialManager.__init__", "modulename": "phdi.cloud.gcp", "qualname": "GcpCredentialManager.__init__", "kind": "function", "doc": "

    Creates a new GcpCredentialManager object.

    \n\n
    Parameters
    \n\n
      \n
    • scope: A list of scopes to limit access to resource.
    • \n
    \n", "signature": "(scope: list = None)"}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"fullname": "phdi.cloud.gcp.GcpCredentialManager.get_credential_object", "modulename": "phdi.cloud.gcp", "qualname": "GcpCredentialManager.get_credential_object", "kind": "function", "doc": "

    Gets a GCP-specific credential object.

    \n\n
    Returns
    \n\n
    \n

    A scoped instance of the Credentials class from google.auth\n package, refreshed if necessary.

    \n
    \n", "signature": "(self) -> google.auth.credentials.Credentials:", "funcdef": "def"}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"fullname": "phdi.cloud.gcp.GcpCredentialManager.get_project_id", "modulename": "phdi.cloud.gcp", "qualname": "GcpCredentialManager.get_project_id", "kind": "function", "doc": "

    Gets the ID of the current GCP project.

    \n\n
    Returns
    \n\n
    \n

    The current GCP project ID.

    \n
    \n", "signature": "(self) -> str:", "funcdef": "def"}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"fullname": "phdi.cloud.gcp.GcpCredentialManager.get_access_token", "modulename": "phdi.cloud.gcp", "qualname": "GcpCredentialManager.get_access_token", "kind": "function", "doc": "

    Obtains an access token from GCP.

    \n\n
    Returns
    \n\n
    \n

    The access token, refreshed if necessary.

    \n
    \n", "signature": "(self) -> str:", "funcdef": "def"}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"fullname": "phdi.cloud.gcp.GcpCloudStorageConnection", "modulename": "phdi.cloud.gcp", "qualname": "GcpCloudStorageConnection", "kind": "class", "doc": "

    Defines a connection used for interacting with cloud storage in GCP.

    \n", "bases": "phdi.cloud.core.BaseCloudStorageConnection"}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"fullname": "phdi.cloud.gcp.GcpCloudStorageConnection.__init__", "modulename": "phdi.cloud.gcp", "qualname": "GcpCloudStorageConnection.__init__", "kind": "function", "doc": "

    Creates a new GcpCloudContainerConnection object.

    \n", "signature": "()"}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"fullname": "phdi.cloud.gcp.GcpCloudStorageConnection.download_object", "modulename": "phdi.cloud.gcp", "qualname": "GcpCloudStorageConnection.download_object", "kind": "function", "doc": "

    Downloads a character blob from storage and returns it as a string.

    \n\n
    Parameters
    \n\n
      \n
    • container_name: The name of the bucket containing object to download.
    • \n
    • filename: The location of file within GCP blob storage.
    • \n
    • encoding: The encoding applied to the downloaded content.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A character blob (as a string) from given bucket and filename.

    \n
    \n", "signature": "(self, container_name: str, filename: str, encoding: str = 'utf-8') -> str:", "funcdef": "def"}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"fullname": "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object", "modulename": "phdi.cloud.gcp", "qualname": "GcpCloudStorageConnection.upload_object", "kind": "function", "doc": "

    Uploads the content of a given message to GCP blob storage.\nThe message can be passed either as a raw string or as JSON.

    \n\n
    Parameters
    \n\n
      \n
    • message: The contents of a message, encoded either as a\nstring or in a JSON-formatted dictionary.
    • \n
    • container_name: The name of the target bucket for upload.
    • \n
    • filename: The location of file within GCP blob storage.
    • \n
    \n", "signature": "(\tself,\tmessage: Union[str, dict],\tcontainer_name: str,\tfilename: str,\tcontent_type='application/json') -> None:", "funcdef": "def"}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"fullname": "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers", "modulename": "phdi.cloud.gcp", "qualname": "GcpCloudStorageConnection.list_containers", "kind": "function", "doc": "

    Lists bucket names in storage.

    \n\n
    Returns
    \n\n
    \n

    A list of bucket names in storage.

    \n
    \n", "signature": "(self) -> List[str]:", "funcdef": "def"}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"fullname": "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects", "modulename": "phdi.cloud.gcp", "qualname": "GcpCloudStorageConnection.list_objects", "kind": "function", "doc": "

    Lists names for objects within a bucket.

    \n\n
    Parameters
    \n\n
      \n
    • container_name: The name of the bucket to look for objects.
    • \n
    • prefix: Filter the objects returned to filenames beginning\nwith this value.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of names for objects in given bucket.

    \n
    \n", "signature": "(self, container_name: str, prefix: str = '') -> List[str]:", "funcdef": "def"}, "phdi.containers": {"fullname": "phdi.containers", "modulename": "phdi.containers", "kind": "module", "doc": "

    \n"}, "phdi.containers.base_service": {"fullname": "phdi.containers.base_service", "modulename": "phdi.containers.base_service", "kind": "module", "doc": "

    \n"}, "phdi.containers.base_service.StatusResponse": {"fullname": "phdi.containers.base_service.StatusResponse", "modulename": "phdi.containers.base_service", "qualname": "StatusResponse", "kind": "class", "doc": "

    The schema for the response from the health check endpoint.

    \n", "bases": "pydantic.main.BaseModel"}, "phdi.containers.base_service.BaseService": {"fullname": "phdi.containers.base_service.BaseService", "modulename": "phdi.containers.base_service", "qualname": "BaseService", "kind": "class", "doc": "

    \n"}, "phdi.containers.base_service.BaseService.__init__": {"fullname": "phdi.containers.base_service.BaseService.__init__", "modulename": "phdi.containers.base_service", "qualname": "BaseService.__init__", "kind": "function", "doc": "

    Initialize a BaseService instance.

    \n\n
    Parameters
    \n\n
      \n
    • service_name: The name of the service.
    • \n
    • description_path: The path to a markdown file containing a description of\nthe service.
    • \n
    • include_health_check_endpoint: If True, the standard DIBBs health check\nendpoint will be added.
    • \n
    • license_info: If empty, the standard DIBBs Creative Commons Zero v1.0\nUniversal license will be used. The other available option is to use the\nMIT license.
    • \n
    \n", "signature": "(\tservice_name: str,\tdescription_path: str,\tinclude_health_check_endpoint: bool = True,\tlicense_info: Literal['CreativeCommonsZero', 'MIT'] = 'CreativeCommonsZero')"}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"fullname": "phdi.containers.base_service.BaseService.add_health_check_endpoint", "modulename": "phdi.containers.base_service", "qualname": "BaseService.add_health_check_endpoint", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.containers.base_service.BaseService.start": {"fullname": "phdi.containers.base_service.BaseService.start", "modulename": "phdi.containers.base_service", "qualname": "BaseService.start", "kind": "function", "doc": "

    Return a FastAPI instance with DIBBs metadata set. If\ninclude_health_check_endpoint is True, then the health check endpoint\nwill be added.

    \n\n
    Returns
    \n\n
    \n

    The FastAPI instance.

    \n
    \n", "signature": "(self) -> fastapi.applications.FastAPI:", "funcdef": "def"}, "phdi.fhir": {"fullname": "phdi.fhir", "modulename": "phdi.fhir", "kind": "module", "doc": "

    \n"}, "phdi.fhir.cloud": {"fullname": "phdi.fhir.cloud", "modulename": "phdi.fhir.cloud", "kind": "module", "doc": "

    \n"}, "phdi.fhir.cloud.download_from_fhir_export_response": {"fullname": "phdi.fhir.cloud.download_from_fhir_export_response", "modulename": "phdi.fhir.cloud", "qualname": "download_from_fhir_export_response", "kind": "function", "doc": "

    Accepts the export response content as specified here:\nhttps://hl7.org/fhir/uv/bulkdata/export/index.html#response---complete-status

    \n\n

    Loops through the \"output\" array and yields the resource_type (e.g., Patient)\nalong with TextIO wrapping ndjson content.

    \n\n
    Parameters
    \n\n
      \n
    • export_response: A dictionary holding the final export response.
    • \n
    • cred_manager: The credential manager used to authenticate to the\nstorage account.
    • \n
    \n\n
    Returns
    \n\n
    \n

    An iterator of tuples. Each tuple is comprised of:

    \n \n
      \n
    • FHIR resource type (str)
    • \n
    • Export file content (io.TextIO)
    • \n
    \n
    \n", "signature": "(\texport_response: dict,\tcred_manager: phdi.cloud.azure.AzureCredentialManager) -> Iterator[Tuple[str, TextIO]]:", "funcdef": "def"}, "phdi.fhir.conversion": {"fullname": "phdi.fhir.conversion", "modulename": "phdi.fhir.conversion", "kind": "module", "doc": "

    \n"}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"fullname": "phdi.fhir.conversion.add_rr_data_to_eicr", "modulename": "phdi.fhir.conversion", "qualname": "add_rr_data_to_eicr", "kind": "function", "doc": "

    Extracts relevant fields from an RR document, and inserts them into a\ngiven eICR document. Ensures that the eICR contains properly formatted\nRR fields, including templateId, id, code, title, effectiveTime,\nconfidentialityCode, and corresponding entries; and required format tags.

    \n\n
    Parameters
    \n\n
      \n
    • rr: A serialized xml format reportability response (RR) document.
    • \n
    • ecr: A serialized xml format electronic initial case report (eICR) document.
    • \n
    \n\n
    Returns
    \n\n
    \n

    An xml format eICR document with additional fields extracted from the RR.

    \n
    \n", "signature": "(rr, ecr):", "funcdef": "def"}, "phdi.fhir.conversion.convert_to_fhir": {"fullname": "phdi.fhir.conversion.convert_to_fhir", "modulename": "phdi.fhir.conversion", "qualname": "convert_to_fhir", "kind": "function", "doc": "

    Converts a given message from either HL7 v2 (pipe-delimited flat file) or CCDA (XML)\ninto FHIR format (JSON) for further processing using the FHIR server. Standardizes\ndatetimes in HL7v2 messages before conversion.

    \n\n

    This function uses a containerized version of the\nAzure FHIR Converter.

    \n\n

    If conversion succeeds, a requests.Response object will be returned with the\nconversion response. Otherwise, a ConversionError is raised, with the\nrequests.Response available as a property for troubleshooting and reporting\npurposes.

    \n\n
    Parameters
    \n\n
      \n
    • message: The raw message that needs to be converted to\nFHIR. Currently, only HL7v2 or CCDA are supported.
    • \n
    • url: A URL that points to the location of the converter API.
    • \n
    • cred_manager: Service used to get an access token used to\nmake a request.
    • \n
    • headers: JSON-type dictionary of headers to make the request with.
    • \n
    • use_default_ccda: Whether to default to the\nbase \"CCD\" root template if a resource's LOINC code doesn't\nmap to a specific supported template (Optional, default is No)
    • \n
    \n\n
    Raises
    \n\n
      \n
    • requests.HttpError: If the HTTP request was unsuccessful.
    • \n
    • ConversionError: If the message could not be converted.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A requests.Response object

    \n
    \n", "signature": "(\tmessage: str,\turl: str,\tcred_manager: phdi.cloud.core.BaseCredentialManager = None,\theaders: dict = {},\tuse_default_ccda=False):", "funcdef": "def"}, "phdi.fhir.geospatial": {"fullname": "phdi.fhir.geospatial", "modulename": "phdi.fhir.geospatial", "kind": "module", "doc": "

    \n"}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"fullname": "phdi.fhir.geospatial.BaseFhirGeocodeClient", "modulename": "phdi.fhir.geospatial", "qualname": "BaseFhirGeocodeClient", "kind": "class", "doc": "

    Represents a vendor-agnostic geocoder client designed to process\nFHIR-based data. Implementing classes should define methods to\ngeocode from both bundles and resources. Callers should use the\nprovided interface functions (e.g., geocode_resource) to interact with\nthe underlying vendor-specific client property.

    \n", "bases": "abc.ABC"}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"fullname": "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource", "modulename": "phdi.fhir.geospatial", "qualname": "BaseFhirGeocodeClient.geocode_resource", "kind": "function", "doc": "

    Performs geocoding, using the implementing client, on the provided resource,\nwhich is passed in as a dictionary.

    \n\n
    Parameters
    \n\n
      \n
    • resource: A FHIR resource to be geocoded.
    • \n
    • overwrite: If true, resource is modified in-place;\nif false, a copy of resource modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The geocoded resource as a dict.

    \n
    \n", "signature": "(self, resource: dict, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"fullname": "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle", "modulename": "phdi.fhir.geospatial", "qualname": "BaseFhirGeocodeClient.geocode_bundle", "kind": "function", "doc": "

    Performs geocoding, using the implementing client, on all supported resources in\nthe provided FHIR bundle which is passed in as a dictionary.

    \n\n
    Parameters
    \n\n
      \n
    • bundle: A bundle of FHIR resources.
    • \n
    • overwrite: If true, bundle is modified in-place;\nif false, a copy of bundle modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The geocoded FHIR bundle as a dict.

    \n
    \n", "signature": "(self, bundle: dict, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"fullname": "phdi.fhir.geospatial.SmartyFhirGeocodeClient", "modulename": "phdi.fhir.geospatial", "qualname": "SmartyFhirGeocodeClient", "kind": "class", "doc": "

    Implementation of a geocoding client designed to handle FHIR-\nformatted data using the SmartyStreets API.\nRequires an authorization ID as well as an authentication token\nin order to build a street lookup client.

    \n", "bases": "phdi.fhir.geospatial.core.BaseFhirGeocodeClient"}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"fullname": "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__", "modulename": "phdi.fhir.geospatial", "qualname": "SmartyFhirGeocodeClient.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tsmarty_auth_id: str,\tsmarty_auth_token: str,\tlicenses: list[str] = ['us-standard-cloud'])"}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"fullname": "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client", "modulename": "phdi.fhir.geospatial", "qualname": "SmartyFhirGeocodeClient.geocode_client", "kind": "variable", "doc": "

    An instance of the underlying Smarty client.\nAllows the FHIR wrapper to access a SmartyStreets-\nspecific connection client without instantiating its own\ncopy. Provides access to the respective geocode_from_str\nand geocode_from_dict methods if they're desired.

    \n", "annotation": ": smartystreets_python_sdk.us_street.client.Client"}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"fullname": "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource", "modulename": "phdi.fhir.geospatial", "qualname": "SmartyFhirGeocodeClient.geocode_resource", "kind": "function", "doc": "

    Performs geocoding on one or more addresses in a given FHIR\nresource and returns either the result or a copy thereof.\nCurrently supported resource types are:

    \n\n
      \n
    • Patient
    • \n
    \n\n
    Parameters
    \n\n
      \n
    • resource: The resource whose addresses should be geocoded.
    • \n
    • overwrite: If true, resource is modified in-place;\nif false, a copy of resource modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The geocoded resource as a dict.

    \n
    \n", "signature": "(self, resource: dict, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"fullname": "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle", "modulename": "phdi.fhir.geospatial", "qualname": "SmartyFhirGeocodeClient.geocode_bundle", "kind": "function", "doc": "

    Geocodes on all resources in a given FHIR bundle whose\nresource type is among those supported by the PHDI SDK. Currently,\nthis includes:

    \n\n
      \n
    • Patient
    • \n
    \n\n
    Parameters
    \n\n
      \n
    • bundle: A bundle of FHIR resources.
    • \n
    • overwrite: If true, bundle is modified in-place;\nif false, a copy of bundle modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The FHIR bundle with geocoded address(es).

    \n
    \n", "signature": "(self, bundle: dict, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"fullname": "phdi.fhir.geospatial.CensusFhirGeocodeClient", "modulename": "phdi.fhir.geospatial", "qualname": "CensusFhirGeocodeClient", "kind": "class", "doc": "

    Implementation of a geocoding client designed to handle FHIR-\nformatted data using the Census API.

    \n", "bases": "phdi.fhir.geospatial.core.BaseFhirGeocodeClient"}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"fullname": "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource", "modulename": "phdi.fhir.geospatial", "qualname": "CensusFhirGeocodeClient.geocode_resource", "kind": "function", "doc": "

    Performs geocoding on one or more addresses in a given FHIR\nresource and returns either the result or a copy thereof. The original street\nname, number, and any secondary address line information are returned in the\noriginal form.\nCurrently supported resource types are:

    \n\n
    - Patient\n
    \n\n
    Parameters
    \n\n
      \n
    • resource: The resource whose addresses should be geocoded.
    • \n
    • overwrite: Whether to save the geocoding information over\nthe raw data, or to create a copy of the given data and write\nover that instead. Defaults to True (write over given data).
    • \n
    \n\n
    Returns
    \n\n
    \n

    Geocoded resource as a dict.

    \n
    \n", "signature": "(self, resource: dict, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"fullname": "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle", "modulename": "phdi.fhir.geospatial", "qualname": "CensusFhirGeocodeClient.geocode_bundle", "kind": "function", "doc": "

    Performs geocoding on all resources in a given FHIR bundle whose\nresource type is among those supported by the PHDI SDK. Currently,\nthis includes:

    \n\n
    - Patient\n
    \n\n
    Parameters
    \n\n
      \n
    • bundle: A bundle of fhir resources.
    • \n
    • overwrite: Whether to overwrite the address data in the given\nbundle's resources (True), or whether to create a copy of the bundle\nand overwrite that instead (False). Defaults to True.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A FHIR bundle with geocoded address(es).

    \n
    \n", "signature": "(self, bundle: dict, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.harmonization": {"fullname": "phdi.fhir.harmonization", "modulename": "phdi.fhir.harmonization", "kind": "module", "doc": "

    \n"}, "phdi.fhir.harmonization.double_metaphone_bundle": {"fullname": "phdi.fhir.harmonization.double_metaphone_bundle", "modulename": "phdi.fhir.harmonization", "qualname": "double_metaphone_bundle", "kind": "function", "doc": "

    Performs the double metaphone algorithm on each name of each patient in a\ngiven FHIR bundle.

    \n\n
    Parameters
    \n\n
      \n
    • bundle: A FHIR bundle of data containing one or more patient\nresources.
    • \n
    • overwrite: If true, data is modified in-place; if false, a\ncopy of data modified and returned. Default: True.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A dictionary mapping the FHIR IDs of patients in the bundle\n to lists holding the double metaphone representations of their\n names for each FHIR use case their resource includes.

    \n
    \n", "signature": "(bundle: dict, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.harmonization.double_metaphone_patient": {"fullname": "phdi.fhir.harmonization.double_metaphone_patient", "modulename": "phdi.fhir.harmonization", "qualname": "double_metaphone_patient", "kind": "function", "doc": "

    Performs the double metaphone algorithm for each name in a given patient\nresource. The algorithm is performed on each component of the name (first,\nmiddle, last), and the resulting representations are ordered in a list\nsuch that the first element is first name, the last element is last name,\nand all other elements are one or more middle names in the order of\nname presentation. These lists of phonetic representations are stored as\nthe values of dictionaries whose keys are the FHIR uses of the name in\nthe patient resource (e.g. \"official\"), and all such dictionaries are\nreturned to the caller in a list ordered the same as the names within\nthe given resource.

    \n\n
    Parameters
    \n\n
      \n
    • patient: A FHIR-formatted JSON dictionary representing a patient\nresource.
    • \n
    • dmeta: An optional existing instantiation of a double metaphone\nobject for use in bulk processing.
    • \n
    • overwrite: If true, data is modified in-place; if false, a\ncopy of data modified and returned. Default: True.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of dictionaries mapping FHIR uses to the phonetic\n representations of names associated with those uses, in presentation\n order (first, middle, last).

    \n
    \n", "signature": "(patient: dict, dmeta=None, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.harmonization.standardize_names": {"fullname": "phdi.fhir.harmonization.standardize_names", "modulename": "phdi.fhir.harmonization", "qualname": "standardize_names", "kind": "function", "doc": "

    Standardizes all names contained in a given FHIR bundle or a FHIR resource. The\ndefault standardization behavior is our defined non-numeric, space-trimming, full\ncapitalization standardization, but other modes may be specified.

    \n\n
    Parameters
    \n\n
      \n
    • data: A FHIR-formatted JSON dict.
    • \n
    • trim: Whether leading/trailing whitespace should be removed. Default: True
    • \n
    • case: The type of casing that should be used. Default: upper
    • \n
    • remove_numbers: If true, delete numeric characters; if false leave numbers\nin place. Default: True
    • \n
    • overwrite: If true, data is modified in-place;\nif false, a copy of data modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The bundle or resource with names appropriately standardized.

    \n
    \n", "signature": "(\tdata: dict,\ttrim: bool = True,\tcase: Literal['upper', 'lower', 'title'] = 'upper',\tremove_numbers: bool = True,\toverwrite: bool = True) -> dict:", "funcdef": "def"}, "phdi.fhir.harmonization.standardize_phones": {"fullname": "phdi.fhir.harmonization.standardize_phones", "modulename": "phdi.fhir.harmonization", "qualname": "standardize_phones", "kind": "function", "doc": "

    Standardizes all phone numbers in a given FHIR bundle or a FHIR resource.\nStandardization is done according to the underlying standardize_phone\nfunction in phdi.harmonization.

    \n\n
    Parameters
    \n\n
      \n
    • data: A FHIR bundle or FHIR-formatted JSON dict.
    • \n
    • overwrite: If true, data is modified in-place;\nif false, a copy of data modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The bundle or resource with phones appropriately standardized.

    \n
    \n", "signature": "(data: dict, overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.harmonization.standardize_dob": {"fullname": "phdi.fhir.harmonization.standardize_dob", "modulename": "phdi.fhir.harmonization", "qualname": "standardize_dob", "kind": "function", "doc": "

    Standardizes all birth dates in a given FHIR bundle or a FHIR resource.\nStandardization is done according to the underlying standardize_dob function in\nphdi.harmonization. The final birthDate will follow the FHIR STu3/R4 format\nof YYYY-MM-DD which will be stored in the Patient resource.

    \n\n
    Parameters
    \n\n
      \n
    • data: A FHIR bundle or FHIR-formatted JSON dict.
    • \n
    • format: A python DateTime format used to parse the birthDate within\nthe Patient resource. Default: %Y-%m-%d (also known as YYYY-MM-DD)
    • \n
    • overwrite: If true, data is modified in-place;\nif false, a copy of data modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The bundle or resource with bith dates appropriately standardized.

    \n
    \n", "signature": "(data: dict, format: str = '%Y-%m-%d', overwrite=True) -> dict:", "funcdef": "def"}, "phdi.fhir.linkage": {"fullname": "phdi.fhir.linkage", "modulename": "phdi.fhir.linkage", "kind": "module", "doc": "

    \n"}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"fullname": "phdi.fhir.linkage.add_patient_identifier_in_bundle", "modulename": "phdi.fhir.linkage", "qualname": "add_patient_identifier_in_bundle", "kind": "function", "doc": "

    Given a FHIR resource bundle:

    \n\n
      \n
    • Identifies all patient resource(s) in the bundle
    • \n
    • Adds the hash string to the list of identifiers held in that patient resource
    • \n
    \n\n
    Parameters
    \n\n
      \n
    • bundle: The FHIR bundle for whose patients to add a linking identifier.
    • \n
    • salt_str: The salt to use with the hash. This is intended to prevent\nreverse engineering of the PII used to create the hash.
    • \n
    • overwrite: If true, bundle is modified in-place;\nif false, a copy of bundle modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The bundle, resources updated with additional patient identifier.

    \n
    \n", "signature": "(bundle: dict, salt_str: str, overwrite: bool = True) -> dict:", "funcdef": "def"}, "phdi.fhir.linkage.add_patient_identifier": {"fullname": "phdi.fhir.linkage.add_patient_identifier", "modulename": "phdi.fhir.linkage", "qualname": "add_patient_identifier", "kind": "function", "doc": "

    Given a FHIR Patient resource:

    \n\n
      \n
    • Extracts name, DOB, and address information
    • \n
    • Computes a unique hash string based on these fields
    • \n
    • Adds the hash string to resource
    • \n
    \n\n
    Parameters
    \n\n
      \n
    • patient_resource: The FHIR patient resource to add a linking identifier.
    • \n
    • salt_str: The salt to use with the hash. This is intended to prevent\nreverse engineering of the PII used to create the hash.
    • \n
    • overwrite: If true, patient_resource is modified in-place;\nif false, a copy of patient_resource modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    The resource updated with additional patient identifier.

    \n
    \n", "signature": "(patient_resource: dict, salt_str: str, overwrite: bool = True):", "funcdef": "def"}, "phdi.fhir.tabulation": {"fullname": "phdi.fhir.tabulation", "modulename": "phdi.fhir.tabulation", "kind": "module", "doc": "

    \n"}, "phdi.fhir.tabulation.drop_invalid": {"fullname": "phdi.fhir.tabulation.drop_invalid", "modulename": "phdi.fhir.tabulation", "qualname": "drop_invalid", "kind": "function", "doc": "

    Removes resources from tabulated data if the resource contains an invalid value, as\nspecified in the invalid_values field in a user-defined schema. Users may provide\ninvalid values as a list, including empty string values (\"\") and\nNone/null values (null).

    \n\n
    Parameters
    \n\n
      \n
    • data: A list of lists containing data for a table. The first list in\nthe data value is a list of headers serving as the columns, and all subsequent\nlists are rows in the table.
    • \n
    • schema: A declarative, user-defined specification, for one or more tables,\nthat defines the metadata, properties, and columns of those tables as they\nrelate to FHIR resources.
    • \n
    • table_name: Name of the table to drop invalid values.
    • \n
    • return: A list of lists, without rows of data derived from the FHIR\nresources and elements that contained invalid values.\nThe first list in the data value is a list of headers serving as the\ncolumns, and all subsequent lists are rows in the table.
    • \n
    \n", "signature": "(data: List[list], schema: Dict, table_name: str) -> List[list]:", "funcdef": "def"}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"fullname": "phdi.fhir.tabulation.extract_data_from_fhir_search", "modulename": "phdi.fhir.tabulation", "qualname": "extract_data_from_fhir_search", "kind": "function", "doc": "

    Performs a FHIR search, continuously using the \"next\" url to perform\nsearch continuations until no additional search results are available.\nReturns a dictionary containing the data from all search responses.

    \n\n
    Parameters
    \n\n
      \n
    • search_url: The URL to a FHIR server with search criteria.
    • \n
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • KeyError: If the query returns no data from the FHIR server.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of FHIR resources returned from the search.

    \n
    \n", "signature": "(\tsearch_url: str,\tcred_manager: phdi.cloud.core.BaseCredentialManager = None) -> List[dict]:", "funcdef": "def"}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"fullname": "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental", "modulename": "phdi.fhir.tabulation", "qualname": "extract_data_from_fhir_search_incremental", "kind": "function", "doc": "

    Performs a FHIR search for a single page of data and returns a dictionary containing\nthe data and a next URL. If there is no next URL (this is the last page of data),\nthen return None as the next URL.

    \n\n
    Parameters
    \n\n
      \n
    • search_url: The URL to a FHIR server with search criteria.
    • \n
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • requests.HttpError: If the HTTP request was unsuccessful.
    • \n
    \n\n
    Returns
    \n\n
    \n

    Tuple containing single page of data as a list of dictionaries and the next\n URL.

    \n
    \n", "signature": "(\tsearch_url: str,\tcred_manager: phdi.cloud.core.BaseCredentialManager = None) -> Tuple[List[dict], str]:", "funcdef": "def"}, "phdi.fhir.tabulation.extract_data_from_schema": {"fullname": "phdi.fhir.tabulation.extract_data_from_schema", "modulename": "phdi.fhir.tabulation", "qualname": "extract_data_from_schema", "kind": "function", "doc": "

    Performs a full FHIR search for each table in the specified schema,\nand returns a dictionary mapping the table name to corresponding search results.

    \n\n
    Parameters
    \n\n
      \n
    • schema: A declarative, user-defined specification, for one or more tables,\nthat defines the metadata, properties, and columns of those tables as they\nrelate to FHIR resources.
    • \n
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A dict containing the mapping of a table and its columns, grouped by\n table name, to a list of FHIR resource element results returned from\n the search for each subsequent table name.

    \n
    \n", "signature": "(\tschema: dict,\tfhir_url: str,\tcred_manager: phdi.cloud.core.BaseCredentialManager = None) -> Dict[str, List[dict]]:", "funcdef": "def"}, "phdi.fhir.tabulation.tabulate_data": {"fullname": "phdi.fhir.tabulation.tabulate_data", "modulename": "phdi.fhir.tabulation", "qualname": "tabulate_data", "kind": "function", "doc": "

    Transforms a list of FHIR bundle resource entries into a tabular\nformat (given by a list of lists) using a user-defined schema.\nTabulation works using a two-pass procedure. First, resources\nthat are associated with one another in the provided schema\n(identified by the presence of a reference_location field in\none of the schema's columns) are grouped together. For each\ntable, one type of resource serves as the \"anchor\", which\ndefines the number of rows in the table, while referenced\nresources are either \"forwards\" or \"reverse\" references,\ndepending on their relationship to the anchor type. Second,\nthe aggregated resources are parsed for value extraction using\nthe schema's columns, and the results are stored in a list of\nlists for that table. The first entry in this list are the headers\nof the data, taken from the schema. This functions performs the\nabove procedure on one table from the schema, specified by a\ntable name.

    \n\n
    Parameters
    \n\n
      \n
    • data: A list of FHIR bundle resource entries to tabulate.
    • \n
    • schema: A declarative, user-defined specification, for one or more tables,\nthat defines the metadata, properties, and columns of those tables as they\nrelate to FHIR resources.
    • \n
    • table_name: A string specifying the name of a table defined\nin the given schema.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • KeyError: If the given table_name does not occur in the\nprovided schema.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of lists denoting the tabulated form of the data.\n The first list is a list of headers serving as the columns,\n and all subsequent lists are rows in the table.

    \n
    \n", "signature": "(data: List[dict], schema: dict, table_name: str) -> List[list]:", "funcdef": "def"}, "phdi.fhir.transport": {"fullname": "phdi.fhir.transport", "modulename": "phdi.fhir.transport", "kind": "module", "doc": "

    \n"}, "phdi.fhir.transport.http_request_with_reauth": {"fullname": "phdi.fhir.transport.http_request_with_reauth", "modulename": "phdi.fhir.transport", "qualname": "http_request_with_reauth", "kind": "function", "doc": "

    First, calls phdi.transport.http.http_request_with_retry(). If the first call\nfails with an authorization error (HTTP status 401), obtains a new token using the\ncred_manager. If the original request had an Authorization header, replaces\nit with the new token and re-initiates\nphdi.transport.http.http_request_with_retry().

    \n\n
    Parameters
    \n\n
      \n
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • \n
    • url: The url at which to make the HTTP request.
    • \n
    • retry_count: The number of times to retry the request, if the\nfirst attempt fails.
    • \n
    • request_type: The type of request to be made.
    • \n
    • allowed_methods: The list of allowed HTTP request methods (i.e.,\nPOST, PUT, etc.) for the specific URL and query.
    • \n
    • headers: JSON-type dictionary of headers to make the request with,\nincluding Authorization and content-type.
    • \n
    • data: JSON data in the case that the request requires data to be\nposted. Default: None
    • \n
    \n\n
    Returns
    \n\n
    \n

    A requests.Request object containing the response from the FHIR server.

    \n
    \n", "signature": "(\tcred_manager: phdi.cloud.core.BaseCredentialManager,\turl: str,\tretry_count: int,\trequest_type: Literal['GET', 'POST'],\tallowed_methods: List[str],\theaders: dict,\tdata: dict = None) -> requests.models.Response:", "funcdef": "def"}, "phdi.fhir.transport.fhir_server_get": {"fullname": "phdi.fhir.transport.fhir_server_get", "modulename": "phdi.fhir.transport", "qualname": "fhir_server_get", "kind": "function", "doc": "

    Submits a GET request to a FHIR server given a url and access token for\nauthentication.

    \n\n
    Parameters
    \n\n
      \n
    • url: A URL specifying a GET request on a FHIR server.
    • \n
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A requests.Request object containing the response from the FHIR server.

    \n
    \n", "signature": "(\turl: str,\tcred_manager: phdi.cloud.core.BaseCredentialManager) -> requests.models.Response:", "funcdef": "def"}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"fullname": "phdi.fhir.transport.upload_bundle_to_fhir_server", "modulename": "phdi.fhir.transport", "qualname": "upload_bundle_to_fhir_server", "kind": "function", "doc": "

    Uploads a FHIR resource bundle to the FHIR server.

    \n\n
    Parameters
    \n\n
      \n
    • bundle: A FHIR bundle (type \"batch\" or \"transaction\") to post. Each entry in\nthe bundle must contain a request element in addition to a resource.\nThe FHIR API provides additional details on creating\nFHIR-conformant batch/transaction\nbundles.
    • \n
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • \n
    • fhir_url: The url of the FHIR server to upload to.
    • \n
    • max_bundle_size: The maximum number of resources per bundle to upload to\nthe FHIR server.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A requests.Response object containing the response from the FHIR server.

    \n
    \n", "signature": "(\tbundle: dict,\tcred_manager: phdi.cloud.core.BaseCredentialManager,\tfhir_url: str,\tmax_bundle_size: int = 500) -> list[requests.models.Response]:", "funcdef": "def"}, "phdi.fhir.transport.export_from_fhir_server": {"fullname": "phdi.fhir.transport.export_from_fhir_server", "modulename": "phdi.fhir.transport", "qualname": "export_from_fhir_server", "kind": "function", "doc": "

    Initiates a FHIR $export operation, polls until it completes, and returns the\nsuccessful result.

    \n\n
    Parameters
    \n\n
      \n
    • cred_manager: The credential manager used to authenticate to the FHIR server.
    • \n
    • fhir_url: The FHIR server base URL.
    • \n
    • export_scope: Either Patient or Group/[id] as specified in the FHIR spec\n(https://hl7.org/fhir/uv/bulkdata/export/index.html#bulk-data-kick-off-request).
    • \n
    • since: A FHIR instant (https: //build.fhir.org/datatypes.html#instant)\ninstructing the export to include only resources created or modified after the\nspecified instant.
    • \n
    • resource_type: A comma-delimited list of FHIR resource types to include\nin exported files.
    • \n
    • container: The name of the storage container used to store exported files.
    • \n
    • poll_step: The number of seconds to wait between poll requests, waiting\nfor export files to be generated.
    • \n
    • poll_timeout: The maximum number of seconds to wait for export files to\nbe generated.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • polling.TimeoutException: If the FHIR server continually returns a 202\nstatus indicating in progress until the timeout is reached.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The JSON-formatted HTTP response of a completed export operation\n as a dictionary.

    \n
    \n", "signature": "(\tcred_manager: phdi.cloud.core.BaseCredentialManager,\tfhir_url: str,\texport_scope: str = '',\tsince: str = '',\tresource_type: str = '',\tcontainer: str = '',\tpoll_step: float = 30,\tpoll_timeout: float = 300) -> dict:", "funcdef": "def"}, "phdi.fhir.utils": {"fullname": "phdi.fhir.utils", "modulename": "phdi.fhir.utils", "kind": "module", "doc": "

    \n"}, "phdi.fhir.utils.apply_selection_criteria": {"fullname": "phdi.fhir.utils.apply_selection_criteria", "modulename": "phdi.fhir.utils", "qualname": "apply_selection_criteria", "kind": "function", "doc": "

    Returns value(s), according to the selection criteria, from a given list of values\nparsed from a FHIR resource. A single string value is returned - if the selected\nvalue is a complex structure (list or dict), it is converted to a string.

    \n\n
    Parameters
    \n\n
      \n
    • value: A list containing the values parsed from a FHIR resource.
    • \n
    • selection_criteria: A string indicating which element(s) of a list to select.
    • \n
    \n\n
    Returns
    \n\n
    \n

    Value(s) parsed from a FHIR resource that conform to the selection\n criteria.

    \n
    \n", "signature": "(\tvalue: List[Any],\tselection_criteria: Literal['first', 'last', 'random', 'all']) -> Union[str, List]:", "funcdef": "def"}, "phdi.fhir.utils.extract_value_with_resource_path": {"fullname": "phdi.fhir.utils.extract_value_with_resource_path", "modulename": "phdi.fhir.utils", "qualname": "extract_value_with_resource_path", "kind": "function", "doc": "

    Yields a single value from a resource based on a provided fhir_path.\nIf the path doesn't map to an extant value in the first, returns\nNone instead.

    \n\n
    Parameters
    \n\n
      \n
    • resource: The FHIR resource to extract a value from.
    • \n
    • path: The fhir_path at which the value can be found in the\nresource.
    • \n
    • selection_criteria: A string dictating which value to extract,\nif multiple values exist at the path location.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The extracted value, or None if the value doesn't exist.

    \n
    \n", "signature": "(\tresource: dict,\tpath: str,\tselection_criteria: Literal['first', 'last', 'random', 'all'] = 'first') -> Optional[Any]:", "funcdef": "def"}, "phdi.fhir.utils.find_entries_by_resource_type": {"fullname": "phdi.fhir.utils.find_entries_by_resource_type", "modulename": "phdi.fhir.utils", "qualname": "find_entries_by_resource_type", "kind": "function", "doc": "

    Collect all entries of a specific type in a bundle of FHIR data and\nreturn references to them in a list.

    \n\n
    Parameters
    \n\n
      \n
    • bundle: The FHIR bundle to search for resource entries.
    • \n
    • resource_type: The type of FHIR resource to find.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list holding all entries of the requested resource type that were\n found in the input bundle.

    \n
    \n", "signature": "(bundle: dict, resource_type: str) -> List[dict]:", "funcdef": "def"}, "phdi.fhir.utils.get_field": {"fullname": "phdi.fhir.utils.get_field", "modulename": "phdi.fhir.utils", "qualname": "get_field", "kind": "function", "doc": "

    Finds an instance of the specified field in a given FHIR- formatted JSON dictionary.\nOptionally, a particular \"use\" of a field can be provided such that only instances\nwith that purpose are considered. For example, find the name for a patient that has\na \"use\" of \"official\". \"Use\" here refers to the FHIR-based usage of classifying a\nvalue's purpose. If no instance of a field with the requested use case can be found,\ninstead return a specified default value for the field.

    \n\n
    Parameters
    \n\n
      \n
    • resource: A FHIR-formatted resource.
    • \n
    • field: The field to extract.
    • \n
    • index: The nth element of the field to return. If the index is greater than\nthe number of elements in the field, the last element will be returned. If the\nindex is less than 1, the first element will be returned. Default: 1.
    • \n
    • use: The 'use' the field must have to qualify for selection. Default: None.
    • \n
    • require_use: If True and no elements of the specified field have that\nuse, none will be returned. If False and no elements of the specified field have\nthat use, the nth element as indicated by the index parameter will be returned.\nThis parameter is ignored if no use is specified. Default: True.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The first instance of the field value matching the desired\n use, or a default field value if a match couldn't be found.

    \n
    \n", "signature": "(\tresource: dict,\tfield: str,\tindex: int = 1,\tuse: str = None,\trequire_use: bool = True) -> Any:", "funcdef": "def"}, "phdi.fhir.utils.get_fhirpathpy_parser": {"fullname": "phdi.fhir.utils.get_fhirpathpy_parser", "modulename": "phdi.fhir.utils", "qualname": "get_fhirpathpy_parser", "kind": "function", "doc": "

    Accepts a FHIRPath expression, and returns a callable function\nwhich returns the evaluated value at fhirpath_expression for\na specified FHIR resource.

    \n\n
    Parameters
    \n\n
      \n
    • fhirpath_expression: The FHIRPath expression to evaluate.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A function that, when called passing in a FHIR resource,\n will return value at fhirpath_expression.

    \n
    \n", "signature": "(fhirpath_expression: str) -> Callable:", "funcdef": "def"}, "phdi.fhir.utils.get_one_line_address": {"fullname": "phdi.fhir.utils.get_one_line_address", "modulename": "phdi.fhir.utils", "qualname": "get_one_line_address", "kind": "function", "doc": "

    Extracts a one-line string representation of an address from a\nJSON dictionary holding address information.

    \n\n
    Parameters
    \n\n
      \n
    • address: The FHIR-formatted address.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A one-line string representation of an address.

    \n
    \n", "signature": "(address: dict) -> str:", "funcdef": "def"}, "phdi.geospatial": {"fullname": "phdi.geospatial", "modulename": "phdi.geospatial", "kind": "module", "doc": "

    \n"}, "phdi.geospatial.GeocodeResult": {"fullname": "phdi.geospatial.GeocodeResult", "modulename": "phdi.geospatial", "qualname": "GeocodeResult", "kind": "class", "doc": "

    Represents a successful geocoding response.\nBased on the field nomenclature of a FHIR address, specified at\nhttps://www.hl7.org/fhir/datatypes.html#Address.

    \n"}, "phdi.geospatial.GeocodeResult.__init__": {"fullname": "phdi.geospatial.GeocodeResult.__init__", "modulename": "phdi.geospatial", "qualname": "GeocodeResult.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tline: List[str],\tcity: str,\tstate: str,\tpostal_code: str,\tcounty_fips: str,\tlat: float,\tlng: float,\tdistrict: Optional[str] = None,\tcountry: Optional[str] = None,\tcounty_name: Optional[str] = None,\tprecision: Optional[str] = None,\tgeoid: Optional[str] = None,\tcensus_tract: Optional[str] = None,\tcensus_block: Optional[str] = None)"}, "phdi.geospatial.BaseGeocodeClient": {"fullname": "phdi.geospatial.BaseGeocodeClient", "modulename": "phdi.geospatial", "qualname": "BaseGeocodeClient", "kind": "class", "doc": "

    Represents a vendor-agnostic geocoder client. Requires implementing\nclasses to define methods to geocode from both strings and dictionaries.\nCallers should use the provided interface functions (e.g., geocode_from_str)\nto interact with the underlying vendor-specific client property.

    \n", "bases": "abc.ABC"}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"fullname": "phdi.geospatial.BaseGeocodeClient.geocode_from_str", "modulename": "phdi.geospatial", "qualname": "BaseGeocodeClient.geocode_from_str", "kind": "function", "doc": "

    Geocodes the provided address, which is formatted as a string.

    \n\n
    Parameters
    \n\n
      \n
    • address: The address to geocode, given as a string.
    • \n
    • overwrite: If true, resource is modified in-place;\nif false, a copy of resource modified and returned. Default: True
    • \n
    \n\n
    Returns
    \n\n
    \n

    A geocoded address (if valid result) or None (if no valid result).

    \n
    \n", "signature": "(self, address: str) -> Optional[phdi.geospatial.core.GeocodeResult]:", "funcdef": "def"}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"fullname": "phdi.geospatial.BaseGeocodeClient.geocode_from_dict", "modulename": "phdi.geospatial", "qualname": "BaseGeocodeClient.geocode_from_dict", "kind": "function", "doc": "

    Geocodes the provided address, which is formatted as a dictionary.

    \n\n

    The given dictionary should conform to standard nomenclature around address\nfields, including:

    \n\n
      \n
    • street: the number and street address
    • \n
    • street2: additional street level information (if needed)
    • \n
    • apartment: apartment or suite number (if needed)
    • \n
    • city: city to geocode
    • \n
    • state: state to geocode
    • \n
    • postal_code: the postal code to use
    • \n
    • urbanization: urbanization code for area, sector, or regional
    • \n
    • development: (only used for Puerto Rican addresses)
    • \n
    \n\n

    There is no minimum number of fields that must be specified to use this\nfunction; however, a minimum of street, city, and state are suggested\nfor the best matches.

    \n\n
    Parameters
    \n\n
      \n
    • address: A dictionary with fields outlined above.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A geocoded address (if valid result) or None (if no valid result).

    \n
    \n", "signature": "(self, address: dict) -> Optional[phdi.geospatial.core.GeocodeResult]:", "funcdef": "def"}, "phdi.geospatial.SmartyGeocodeClient": {"fullname": "phdi.geospatial.SmartyGeocodeClient", "modulename": "phdi.geospatial", "qualname": "SmartyGeocodeClient", "kind": "class", "doc": "

    Represents a PHDI-supplied geocoding client using the Smarty API.\nRequires an authorization ID as well as an authentication token\nin order to build a street lookup client.

    \n", "bases": "phdi.geospatial.core.BaseGeocodeClient"}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"fullname": "phdi.geospatial.SmartyGeocodeClient.__init__", "modulename": "phdi.geospatial", "qualname": "SmartyGeocodeClient.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tsmarty_auth_id: str,\tsmarty_auth_token: str,\tlicenses: list[str] = ['us-standard-cloud'])"}, "phdi.geospatial.SmartyGeocodeClient.client": {"fullname": "phdi.geospatial.SmartyGeocodeClient.client", "modulename": "phdi.geospatial", "qualname": "SmartyGeocodeClient.client", "kind": "variable", "doc": "

    This property:

    \n\n
      \n
    1. defines a private instance variable __client
    2. \n
    3. makes it accessible through the use of .client()
    4. \n
    \n\n

    This property holds a Smarty-specific connection client that\nallows a user to geocode without directly referencing the\nunderlying vendor service client.

    \n", "annotation": ": smartystreets_python_sdk.us_street.client.Client"}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"fullname": "phdi.geospatial.SmartyGeocodeClient.geocode_from_str", "modulename": "phdi.geospatial", "qualname": "SmartyGeocodeClient.geocode_from_str", "kind": "function", "doc": "

    Geocodes the provided address, which is formatted as a string. If the\nresult cannot be latitude- or longitude-located, then Smarty failed\nto precisely geocode the address, so no result is returned. Raises\nan error if the provided address is empty.

    \n\n
    Parameters
    \n\n
      \n
    • address: The address to geocode, given as a string.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • ValueError: When the address does not include street number and name.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A geocoded address (if valid result) or None (if no valid result).

    \n
    \n", "signature": "(self, address: str) -> Optional[phdi.geospatial.core.GeocodeResult]:", "funcdef": "def"}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"fullname": "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict", "modulename": "phdi.geospatial", "qualname": "SmartyGeocodeClient.geocode_from_dict", "kind": "function", "doc": "

    Geocodes the provided address, which is formatted as a dictionary.

    \n\n

    The given dictionary should conform to standard nomenclature around address\nfields, including:

    \n\n
      \n
    • street: the number and street address
    • \n
    • street2: additional street level information (if needed)
    • \n
    • apartment: apartment or suite number (if needed)
    • \n
    • city: city to geocode
    • \n
    • state: state to geocode
    • \n
    • postal_code: the postal code to use
    • \n
    • urbanization: urbanization code for area, sector, or regional
    • \n
    • development: (only used for Puerto Rican addresses)
    • \n
    \n\n

    There is no minimum number of fields that must be specified to use this\nfunction; however, a minimum of street, city, and state are suggested\nfor the best matches.

    \n\n
    Parameters
    \n\n
      \n
    • address: A dictionary with fields outlined above.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • Exception: When the address street is an empty string.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A geocoded address (if valid result) or None (if no valid result).

    \n
    \n", "signature": "(self, address: dict) -> Optional[phdi.geospatial.core.GeocodeResult]:", "funcdef": "def"}, "phdi.geospatial.CensusGeocodeClient": {"fullname": "phdi.geospatial.CensusGeocodeClient", "modulename": "phdi.geospatial", "qualname": "CensusGeocodeClient", "kind": "class", "doc": "

    Implementation of a geocoding client using the Census API.

    \n", "bases": "phdi.geospatial.core.BaseGeocodeClient"}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"fullname": "phdi.geospatial.CensusGeocodeClient.geocode_from_str", "modulename": "phdi.geospatial", "qualname": "CensusGeocodeClient.geocode_from_str", "kind": "function", "doc": "

    Geocodes a string-formatted address using Census API with searchtype =\n\"onelineaddress\". If a result is found, encodes as a GeocodeResult object and\nreturn, otherwise the return None.

    \n\n
    Parameters
    \n\n
      \n
    • address: The address to geocode, given as a string.
    • \n
    • searchtype: onelineaddress OR address # doesn't yet support coordinates.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • ValueError: If address does not include street number and name.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A standardized address enriched with lat, lon, census tract, and more.\n Returns None if no valid result.

    \n
    \n", "signature": "(self, address: str) -> Optional[phdi.geospatial.core.GeocodeResult]:", "funcdef": "def"}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"fullname": "phdi.geospatial.CensusGeocodeClient.geocode_from_dict", "modulename": "phdi.geospatial", "qualname": "CensusGeocodeClient.geocode_from_dict", "kind": "function", "doc": "

    Geocodes the provided address, which is formatted as a dictionary.\nusing the Census API with searchtype = \"address\". If a result is found, encodes\nas a GeocodeResult object and return, otherwise returns None.

    \n\n

    The given dictionary should conform to standard nomenclature around address\nfields, including:

    \n\n
      \n
    • street: the number and street address
    • \n
    • street2: additional street level information (if needed)
    • \n
    • apartment: apartment or suite number (if needed)
    • \n
    • city: city to geocode
    • \n
    • state: state to geocode
    • \n
    • postal_code: the postal code to use
    • \n
    • urbanization: urbanization code for area, sector, or regional
    • \n
    • development: (only used for Puerto Rican addresses)
    • \n
    \n\n

    Street must be included to use this function; however, a minimum of street,\ncity, and state are suggested for the best matches.

    \n\n
    Parameters
    \n\n
      \n
    • address: A dictionary with fields outlined above.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • ValueError: If address does not include street number and name.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A standardized address enriched with lat, lon, census tract, and more.\n Returns None if no valid result.

    \n
    \n", "signature": "(self, address: dict) -> Optional[phdi.geospatial.core.GeocodeResult]:", "funcdef": "def"}, "phdi.harmonization": {"fullname": "phdi.harmonization", "modulename": "phdi.harmonization", "kind": "module", "doc": "

    \n"}, "phdi.harmonization.standardize_hl7_datetimes": {"fullname": "phdi.harmonization.standardize_hl7_datetimes", "modulename": "phdi.harmonization", "qualname": "standardize_hl7_datetimes", "kind": "function", "doc": "

    Prepares an HL7 message for conversion by normalizing / sanitizing\nfields that are known to contain datetime data in problematic formats. This\nfunction helps messages conform to expectations.

    \n\n

    This function accepts either segments terminated by \\r or \\n, but always\nreturns data with \\n as the segment terminator.

    \n\n
    Parameters
    \n\n
      \n
    • message: The raw HL7 message to sanitize.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The HL7 message with potential problem formats resolved. If the function\n is unable to parse a date, the original value is retained.

    \n
    \n", "signature": "(message: str) -> str:", "funcdef": "def"}, "phdi.harmonization.normalize_hl7_datetime_segment": {"fullname": "phdi.harmonization.normalize_hl7_datetime_segment", "modulename": "phdi.harmonization", "qualname": "normalize_hl7_datetime_segment", "kind": "function", "doc": "

    Applies datetime normalization to multiple fields in a segment,\noverwriting values in the input segment as necessary.

    \n\n
    Parameters
    \n\n
      \n
    • message: The HL7 message, represented as a list\nof indexable component strings (which is how the HL7 library\nprocesses and returns messages).
    • \n
    • segment_id: The segment type (MSH, PID, etc) of the field to replace.
    • \n
    • field_num: The field number to replace in the segment named by segment_id.
    • \n
    • field_list: The list of field numbers to replace in the segment named\nby segement_id.
    • \n
    \n", "signature": "(\tmessage: hl7.containers.Message,\tsegment_id: str,\tfield_list: list) -> None:", "funcdef": "def"}, "phdi.harmonization.normalize_hl7_datetime": {"fullname": "phdi.harmonization.normalize_hl7_datetime", "modulename": "phdi.harmonization", "qualname": "normalize_hl7_datetime", "kind": "function", "doc": "

    Splits HL7 datetime-formatted fields into the following parts:\n[.][+/-]

    \n\n

    Each group of integers is truncated to conform to the HL7\nspecification:

    \n\n
      \n
    • first integer group: max 14 digits
    • \n
    • following decimal point: max 4 digits
    • \n
    • following +/- (timezone): 4 digits
    • \n
    \n\n

    This normalization facilitates downstream processing using\ncloud providers that have particular requirements for dates.

    \n\n
    Parameters
    \n\n
      \n
    • hl7_datetime: The raw datetime string to clean.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The datetime string with normalizing substitutions\n performed, or the original HL7 datetime if no matching\n format could be found.

    \n
    \n", "signature": "(hl7_datetime: str) -> str:", "funcdef": "def"}, "phdi.harmonization.default_hl7_value": {"fullname": "phdi.harmonization.default_hl7_value", "modulename": "phdi.harmonization", "qualname": "default_hl7_value", "kind": "function", "doc": "

    Defaults a field value in an HL7 message.

    \n\n

    This function accepts either segments terminated by \\r or \\n, but always\nreturns data with \\n as the segment terminator.

    \n\n
    Parameters
    \n\n
      \n
    • message: A string representing the HL7 message used to modify\na value.
    • \n
    • segment_id: The segment type (MSH, PID, etc) of the field to replace.
    • \n
    • field_num: The field number to replace in the segment named by segment_id.
    • \n
    • default_value: If the selected field is blank, set the\nfield's value to this value.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The HL7 message with default value inserted at the\n specified segment location, if possible. If not, then the\n original message.

    \n
    \n", "signature": "(message: str, segment_id: str, field_num: int, default_value: str):", "funcdef": "def"}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"fullname": "phdi.harmonization.convert_hl7_batch_messages_to_list", "modulename": "phdi.harmonization", "qualname": "convert_hl7_batch_messages_to_list", "kind": "function", "doc": "

    Converts a batch file of messages into a list of strings\nrepresenting parts of the message. This function is based\non the following header/tail segments:

    \n\n
      \n
    • FHS is a \"File Header Segment,\" which is used to head a file\n(group of batches)
    • \n
    • FTS is a \"File Trailer Segment,\" which defines the end of a file
    • \n
    • BHS is \"Batch Header Segment,\" which defines the start of a batch
    • \n
    • BTS is \"Batch Trailer Segment,\" which defines the end of a batch
    • \n
    \n\n

    The structure of an HL7 Batch looks like this:\n[FHS] (file header segment) { [BHS] (batch header segment)\n{ [MSH (zero or more HL7 messages)\n....\n....\n....\n] }\n[BTS] (batch trailer segment)\n}\n[FTS] (file trailer segment)

    \n\n

    Ignores lines that start with these header/tail segments since we don't want to\ninclude them in a message.

    \n\n
    Parameters
    \n\n
      \n
    • content: The batch content to turn into a list.
    • \n
    • delimiter: The character delimiting messages in the batch.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of separated, cleaned HL7 messages.

    \n
    \n", "signature": "(content: str, delimiter: str = '\\n') -> List[str]:", "funcdef": "def"}, "phdi.harmonization.standardize_country_code": {"fullname": "phdi.harmonization.standardize_country_code", "modulename": "phdi.harmonization", "qualname": "standardize_country_code", "kind": "function", "doc": "

    Identifies the country represented and generates the desired type of the ISO\n3611 standardized country identifier for a given string representation of a country\n(whether a full name such as \"United States,\" or an abbreviation such as \"US\"\nor \"USA\"). If the country identifier cannot be determined, returns None.

    \n\n

    Example: If raw_country = \"United States of America,\" then

    \n\n
      \n
    • alpha_2 would be \"US\"
    • \n
    • alpha_3 would be \"USA\"
    • \n
    • numeric would be \"840\"
    • \n
    \n\n
    Parameters
    \n\n
      \n
    • raw_country: The string representation of the country to be\nput in ISO 3611 standardized form.
    • \n
    • code_type: One of 'alpha_2', 'alpha_3', or 'numeric'; the\ndesired identifier type to generate.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The standardized country identifier found in the resource's addresses.

    \n
    \n", "signature": "(\traw_country: str,\tcode_type: Literal['alpha_2', 'alpha_3', 'numeric'] = 'alpha_2') -> str:", "funcdef": "def"}, "phdi.harmonization.standardize_phone": {"fullname": "phdi.harmonization.standardize_phone", "modulename": "phdi.harmonization", "qualname": "standardize_phone", "kind": "function", "doc": "

    Parses phone number and generates its standardized ISO E.164 international format\nfor each given phone number and optional list of associated countries. If an input\nphone number can't be parsed, that number returns the empty string. Attempts\nto parse the inputs using the first successful strategy out of the following:

    \n\n
      \n
    1. parses the phone number on its own
    2. \n
    3. parses the phone number using the provided list of possible\nassociated countries
    4. \n
    5. parses the phone number using the US as country
    6. \n
    \n\n
    Parameters
    \n\n
      \n
    • raw_phone: One or more raw phone number(s) to standardize.
    • \n
    • countries: An optional list containing 2 letter ISO codes\nassociated with the phone numbers, signifying to which countries\nthe phone numbers might belong.
    • \n
    \n\n
    Returns
    \n\n
    \n

    Either a string or a list of strings, depending on the\n input of raw_phone, holding the standardized phone number(s).

    \n
    \n", "signature": "(\traw_phone: Union[str, List[str]],\tcountries: List = [None, 'US']) -> Union[str, List[str]]:", "funcdef": "def"}, "phdi.harmonization.standardize_name": {"fullname": "phdi.harmonization.standardize_name", "modulename": "phdi.harmonization", "qualname": "standardize_name", "kind": "function", "doc": "

    Performs basic standardization (described below) on each given name. Removes\npunctuation characters and performs a variety of additional cleaning operations.\nOther options can be toggled on or off using the relevant parameter.

    \n\n

    All options specified will be applied uniformly to each input name,\ni.e., specifying case = \"lower\" will make all given names lower case.

    \n\n
    Parameters
    \n\n
      \n
    • raw_name: Either a single string name or a list of strings,\neach representing a name.
    • \n
    • trim: If true, strips leading/trailing whitespace;\nif false, retains whitespace. Default: True
    • \n
    • case: What case to enforce on each name.

      \n\n
        \n
      • upper: All upper case
      • \n
      • lower: All lower case
      • \n
      • title: Title case
      • \n
      \n\n

      Default: upper\n:remove_numbers: If true, removes numeric characters from inputs;\nif false, retains numeric characters. Default True

    • \n
    \n\n
    Returns
    \n\n
    \n

    Either a string or a list of strings, depending on the\n input of raw_name, holding the cleaned name(s).

    \n
    \n", "signature": "(\traw_name: Union[str, List[str]],\ttrim: bool = True,\tcase: Literal['upper', 'lower', 'title'] = 'upper',\tremove_numbers: bool = True) -> Union[str, List[str]]:", "funcdef": "def"}, "phdi.harmonization.double_metaphone_string": {"fullname": "phdi.harmonization.double_metaphone_string", "modulename": "phdi.harmonization", "qualname": "double_metaphone_string", "kind": "function", "doc": "

    Performs the double metaphone phonetic encoding algorithm on the given\nstring. Returns a list holding the primary and secondary phonetic\nrepresentations of the string (including None if there is no valid\nsecondary encoding). This function expects basic text cleaning (e.g.\nremoval of numeric characters, trimming of spaces, etc.) to already\nhave been performed.

    \n\n
    Parameters
    \n\n
      \n
    • string: The string to phonetically encode.
    • \n
    • dmeta: An optional existing double metaphone object, in the case\none has already been instantiated for bulk processing.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of the primary and secondary encodings of the given\n string.

    \n
    \n", "signature": "(string: str, dmeta=None) -> List[Optional[str]]:", "funcdef": "def"}, "phdi.harmonization.compare_strings": {"fullname": "phdi.harmonization.compare_strings", "modulename": "phdi.harmonization", "qualname": "compare_strings", "kind": "function", "doc": "

    Returns the normalized similarity measure between string1 and string2, as\ndetermined by the similarlity measure. The higher the normalized similarity measure\n(up to 1.0), the more similar string1 and string2 are. A normalized similarity\nmeasure of 0.0 means string1 and string 2 are not at all similar. This function\nexpects basic text cleaning (e.g. removal of numeric characters, trimming of spaces,\netc.) to already have been performed on the input strings.

    \n\n
    Parameters
    \n\n
      \n
    • string1: First string for comparison.
    • \n
    • string2: Second string for comparison.
    • \n
    • similarity_measure: The method used to measure the similarity between two\nstrings, defaults to \"JaroWinkler\".
    • \n
    • JaroWinkler: a ratio of matching characters and transpositions needed to\ntransform string1 into string2.
    • \n
    • Levenshtein: the number of edits (excluding transpositions) needed to transform\nstring1 into string2.
    • \n
    • DamerauLevenshtein: the number of edits (including transpositions) needed to\ntransform string1 into string2.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The normalized similarity between string1 and string2, with 0 representing\n no similarity between string1 and string2, and 1 meaning string1 and string2 are\n dentical words.

    \n
    \n", "signature": "(\tstring1: str,\tstring2: str,\tsimilarity_measure: Literal['JaroWinkler', 'Levenshtein', 'DamerauLevenshtein'] = 'JaroWinkler') -> float:", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone": {"fullname": "phdi.harmonization.DoubleMetaphone", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone", "kind": "class", "doc": "

    A Double Metaphone parsing object capable of performing the double\ncoding algorithm on a given input string.

    \n"}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"fullname": "phdi.harmonization.DoubleMetaphone.check_word_start", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.check_word_start", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"fullname": "phdi.harmonization.DoubleMetaphone.process_vowel", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_vowel", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_b": {"fullname": "phdi.harmonization.DoubleMetaphone.process_b", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_b", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_c": {"fullname": "phdi.harmonization.DoubleMetaphone.process_c", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_c", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_d": {"fullname": "phdi.harmonization.DoubleMetaphone.process_d", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_d", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_f": {"fullname": "phdi.harmonization.DoubleMetaphone.process_f", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_f", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_g": {"fullname": "phdi.harmonization.DoubleMetaphone.process_g", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_g", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_h": {"fullname": "phdi.harmonization.DoubleMetaphone.process_h", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_h", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_j": {"fullname": "phdi.harmonization.DoubleMetaphone.process_j", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_j", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_k": {"fullname": "phdi.harmonization.DoubleMetaphone.process_k", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_k", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_l": {"fullname": "phdi.harmonization.DoubleMetaphone.process_l", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_l", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_m": {"fullname": "phdi.harmonization.DoubleMetaphone.process_m", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_m", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_n": {"fullname": "phdi.harmonization.DoubleMetaphone.process_n", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_n", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_p": {"fullname": "phdi.harmonization.DoubleMetaphone.process_p", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_p", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_q": {"fullname": "phdi.harmonization.DoubleMetaphone.process_q", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_q", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_r": {"fullname": "phdi.harmonization.DoubleMetaphone.process_r", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_r", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_s": {"fullname": "phdi.harmonization.DoubleMetaphone.process_s", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_s", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_t": {"fullname": "phdi.harmonization.DoubleMetaphone.process_t", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_t", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_v": {"fullname": "phdi.harmonization.DoubleMetaphone.process_v", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_v", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_w": {"fullname": "phdi.harmonization.DoubleMetaphone.process_w", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_w", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_x": {"fullname": "phdi.harmonization.DoubleMetaphone.process_x", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_x", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.process_z": {"fullname": "phdi.harmonization.DoubleMetaphone.process_z", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.process_z", "kind": "function", "doc": "

    \n", "signature": "(self):", "funcdef": "def"}, "phdi.harmonization.DoubleMetaphone.parse": {"fullname": "phdi.harmonization.DoubleMetaphone.parse", "modulename": "phdi.harmonization", "qualname": "DoubleMetaphone.parse", "kind": "function", "doc": "

    \n", "signature": "(self, input):", "funcdef": "def"}, "phdi.harmonization.standardize_birth_date": {"fullname": "phdi.harmonization.standardize_birth_date", "modulename": "phdi.harmonization", "qualname": "standardize_birth_date", "kind": "function", "doc": "

    Validates and standardizes a date of birth string into YYYY-MM-DD format.

    \n\n
    Parameters
    \n\n
      \n
    • raw_dob: One date of birth (dob) to standardize.
    • \n
    • existing_format: A python DateTime format used to parse the date of\nbirth within the Patient resource. Default: %Y-%m-%d (YYYY-MM-DD).
    • \n
    \n\n
    Returns
    \n\n
    \n

    Date of birth as a string in YYYY-MM-DD format\n or None if date of birth is invalid.

    \n
    \n", "signature": "(raw_dob: str, existing_format: str = '%Y-%m-%d') -> str:", "funcdef": "def"}, "phdi.linkage": {"fullname": "phdi.linkage", "modulename": "phdi.linkage", "kind": "module", "doc": "

    \n"}, "phdi.linkage.generate_hash_str": {"fullname": "phdi.linkage.generate_hash_str", "modulename": "phdi.linkage", "qualname": "generate_hash_str", "kind": "function", "doc": "

    Generates a hash for a given string of concatenated patient information. The hash\nserves as a \"unique\" identifier for the patient.

    \n\n
    Parameters
    \n\n
      \n
    • linking_identifier: The value to be hashed. For example, the concatenation\nof a patient's name, address, and date of birth, delimited by dashes.
    • \n
    • salt_str: The salt to use with the hash. This is intended to prevent\nreverse engineering of the PII used to create the hash.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The hash of the linking_identifier string.

    \n
    \n", "signature": "(linking_identifier: str, salt_str: str) -> str:", "funcdef": "def"}, "phdi.linkage.block_data": {"fullname": "phdi.linkage.block_data", "modulename": "phdi.linkage", "qualname": "block_data", "kind": "function", "doc": "

    Generates dictionary of blocked data where each key is a block\nand each value is a distinct list of lists containing the data\nfor a given block.

    \n\n
    Parameters
    \n\n
      \n
    • data: A pandas dataframe of records to be linked.
    • \n
    • blocks: List of columns to be used in blocks.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A dictionary of with the keys as the blocks and the\n values as the data within each block, stored as a list of\n lists.

    \n
    \n", "signature": "(data: pandas.core.frame.DataFrame, blocks: List) -> dict:", "funcdef": "def"}, "phdi.linkage.match_within_block": {"fullname": "phdi.linkage.match_within_block", "modulename": "phdi.linkage", "qualname": "match_within_block", "kind": "function", "doc": "

    Performs matching on all candidate pairs of records within a given block\nof data. Actual partitioning of the data should be done outside this\nfunction, as it compares all possible pairs within the provided partition.\nUses a given construction of feature comparison rules as well as a\nmatch evaluation rule to determine the final verdict on whether two\nrecords are indeed a match.

    \n\n

    A feature function is of the form \"feature_match_X\" for some condition\nX; it must accept two records (lists of data), an index i in which the\nfeature to compare is stored, and the parameter **kwargs. It must return\na boolean indicating whether the features \"match\" for whatever definition\nof match the function uses (i.e. this allows modular logic to apply to\ndifferent features in the compared records). Note that not all features\nin a record need a comparison function defined.

    \n\n

    A match evaluation rule is a function of the form \"eval_X\" for some\ncondition X. It accepts as input a list of booleans, one for each feature\nthat was compared with feature funcs, and determines whether the\ncomparisons constitute a match according to X.

    \n\n
    Parameters
    \n\n
      \n
    • block: A list of records to check for matches. Each record in\nthe list is itself a list of features. The first feature of the\nrecord must be an \"id\" for the record.
    • \n
    • feature_funcs: A dictionary mapping feature indices to functions\nused to evaluate those features for a match.
    • \n
    • col_to_idx: A dictionary mapping column names to the numeric index\nin which they occur in order in the data.
    • \n
    • match_eval: A function for determining whether a given set of\nfeature comparisons constitutes a match for linkage.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of 2-tuples of the form (i,j), where i,j give the indices\n in the block of data of records deemed to match.

    \n
    \n", "signature": "(\tblock: List[List],\tfeature_funcs: dict[str, typing.Callable],\tcol_to_idx: dict[str, int],\tmatch_eval: Callable,\t**kwargs) -> List[tuple]:", "funcdef": "def"}, "phdi.linkage.feature_match_exact": {"fullname": "phdi.linkage.feature_match_exact", "modulename": "phdi.linkage", "qualname": "feature_match_exact", "kind": "function", "doc": "

    Determines whether a single feature in a given pair of records\nconstitutes an exact match (perfect equality).

    \n\n
    Parameters
    \n\n
      \n
    • record_i: One of the records in the candidate pair to evaluate.
    • \n
    • record_j: The second record in the candidate pair.
    • \n
    • feature_col: The name of the column being evaluated (e.g. \"city\").
    • \n
    • col_to_idx: A dictionary mapping column names to the numeric index\nin which they occur in order in the data.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A boolean indicating whether the features are an exact match.

    \n
    \n", "signature": "(\trecord_i: List,\trecord_j: List,\tfeature_col: str,\tcol_to_idx: dict[str, int],\t**kwargs: dict) -> bool:", "funcdef": "def"}, "phdi.linkage.feature_match_fuzzy_string": {"fullname": "phdi.linkage.feature_match_fuzzy_string", "modulename": "phdi.linkage", "qualname": "feature_match_fuzzy_string", "kind": "function", "doc": "

    Determines whether two strings in a given pair of records are close\nenough to constitute a partial match. The exact nature of the match\nis determined by the specified string comparison function (see\nharmonization/utils/compare_strings for more details) as well as a\nscoring threshold the comparison must meet or exceed.

    \n\n
    Parameters
    \n\n
      \n
    • record_i: One of the records in the candidate pair to evaluate.
    • \n
    • record_j: The second record in the candidate pair.
    • \n
    • feature_col: The name of the column being evaluated (e.g. \"city\").
    • \n
    • col_to_idx: A dictionary mapping column names to the numeric index\nin which they occur in order in the data.
    • \n
    • **kwargs: Optionally, a dictionary including specifications for\nthe string comparison metric to use, as well as the cutoff score\nbeyond which to classify the strings as a partial match.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A boolean indicating whether the features are a fuzzy match.

    \n
    \n", "signature": "(\trecord_i: List,\trecord_j: List,\tfeature_col: str,\tcol_to_idx: dict[str, int],\t**kwargs: dict) -> bool:", "funcdef": "def"}, "phdi.linkage.eval_perfect_match": {"fullname": "phdi.linkage.eval_perfect_match", "modulename": "phdi.linkage", "qualname": "eval_perfect_match", "kind": "function", "doc": "

    Determines whether a given set of feature comparisons represent a\n'perfect' match (i.e. whether all features that were compared match\nin whatever criteria was specified for them).

    \n\n
    Parameters
    \n\n
      \n
    • feature_comparisons: A list of 1s and 0s, one for each feature\nthat was compared during the match algorithm.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The evaluation of whether the given features all match.

    \n
    \n", "signature": "(feature_comparisons: List, **kwargs) -> bool:", "funcdef": "def"}, "phdi.linkage.compile_match_lists": {"fullname": "phdi.linkage.compile_match_lists", "modulename": "phdi.linkage", "qualname": "compile_match_lists", "kind": "function", "doc": "

    Turns a list of matches of either clusters or candidate pairs found\nduring linkage into a single unified structure holding all found matches\nacross all rules passes. E.g. if a single pass of a linkage algorithm\nuses three rules, hence generates three dictionaries of matches, this\nfunction will aggregate the results of those three separate dicts into\na single unified and deduplicated dictionary. For consistency during\nstatistical evaluation, the returned dictionary is always indexed by\nthe lower ID of the records in a given pair.

    \n\n
    Parameters
    \n\n
      \n
    • match_lists: A list of the dictionaries obtained during a run\nof the linkage algorithm, one dictionary per rule used in the run.
    • \n
    • cluster_mode: An optional boolean indicating whether the linkage\nalgorithm was run in cluster mode. Default is False.
    • \n
    \n\n
    Returns
    \n\n
    \n

    The aggregated dictionary of unified matches.

    \n
    \n", "signature": "(match_lists: List[dict], cluster_mode: bool = False):", "funcdef": "def"}, "phdi.linkage.feature_match_four_char": {"fullname": "phdi.linkage.feature_match_four_char", "modulename": "phdi.linkage", "qualname": "feature_match_four_char", "kind": "function", "doc": "

    Determines whether a string feature in a pair of records exactly matches\non the first four characters.

    \n\n
    Parameters
    \n\n
      \n
    • record_i: One of the records in the candidate pair to evaluate.
    • \n
    • record_j: The second record in the candidate pair.
    • \n
    • feature_col: The name of the column being evaluated (e.g. \"city\").
    • \n
    • col_to_idx: A dictionary mapping column names to the numeric index\nin which they occur in order in the data.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A boolean indicating whether the features are a match.

    \n
    \n", "signature": "(\trecord_i: List,\trecord_j: List,\tfeature_col: str,\tcol_to_idx: dict[str, int],\t**kwargs: dict) -> bool:", "funcdef": "def"}, "phdi.linkage.perform_linkage_pass": {"fullname": "phdi.linkage.perform_linkage_pass", "modulename": "phdi.linkage", "qualname": "perform_linkage_pass", "kind": "function", "doc": "

    Performs a partial run of a linkage algorithm using a single rule.\nEach rule in an algorithm is associated with its own pass through the\ndata.

    \n\n
    Parameters
    \n\n
      \n
    • data: Currently, a pandas dataframe of records to link. When we\nmove out of testing, this should become a LoL.
    • \n
    • blocks: A list of column headers to use as blocking assignments\nby which to partition the data.
    • \n
    • feature_funcs: A dictionary mapping feature indices to functions\nused to evaluate those features for a match.
    • \n
    • matching_rule: A function for determining whether a given set of\nfeature comparisons constitutes a match for linkage.
    • \n
    • cluster_ratio: An optional parameter indicating, if using the\nalgorithm in cluster mode, the required membership percentage a record\nmust score with an existing cluster in order to join.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A dictionary mapping each block found in the pass to the matches\n discovered within that block.

    \n
    \n", "signature": "(\tdata: pandas.core.frame.DataFrame,\tblocks: List,\tfeature_funcs: dict[str, typing.Callable],\tmatching_rule: Callable,\tcluster_ratio: Optional[float] = None,\t**kwargs) -> dict:", "funcdef": "def"}, "phdi.linkage.score_linkage_vs_truth": {"fullname": "phdi.linkage.score_linkage_vs_truth", "modulename": "phdi.linkage", "qualname": "score_linkage_vs_truth", "kind": "function", "doc": "

    Compute the statistical qualities of a run of record linkage against\nknown true results. This function assumes that matches have already\nbeen determined by the algorithm, and further assumes that true\nmatches have already been identified in the data.

    \n\n
    Parameters
    \n\n
      \n
    • found_matches: A dictionary mapping IDs of records to sets of\nother records which were determined to be a match.
    • \n
    • true_matches: A dictionary mapping IDs of records to sets of\nother records which are _known_ to be a true match.
    • \n
    • records_in_dataset: The number of records in the original data\nset to-link.
    • \n
    • expand_clusters_pairwise: Optionally, whether we need to take\nthe cross-product of members within the sets of the match list. This\nparameter only needs to be used if the linkage algorithm was run in\ncluster mode. Default is False.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A tuple reporting the sensitivity/precision, specificity/recall,\n positive prediction value, and F1 score of the linkage algorithm.

    \n
    \n", "signature": "(\tfound_matches: dict[typing.Union[int, str], set],\ttrue_matches: dict[typing.Union[int, str], set],\trecords_in_dataset: int,\texpand_clusters_pairwise: bool = False) -> tuple:", "funcdef": "def"}, "phdi.linkage.block_data_from_db": {"fullname": "phdi.linkage.block_data_from_db", "modulename": "phdi.linkage", "qualname": "block_data_from_db", "kind": "function", "doc": "

    Returns a list of lists containing records from the database that match on the\nincoming record's block values. If blocking on 'ZIP' and the incoming record's zip\ncode is '90210', the resulting block of data would contain records that all have the\nsame zip code of 90210.

    \n\n
    Parameters
    \n\n
      \n
    • db_name: Database name.
    • \n
    • table_name: Table name.
    • \n
    • block_data: Dictionary containing key value pairs for the column name for\nblocking and the data for the incoming record, e.g., [\"ZIP\"]: \"90210\".
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of records that are within the block, e.g., records that all have\n 90210 as their ZIP.

    \n
    \n", "signature": "(db_name: str, table_name: str, block_data: Dict) -> List[list]:", "funcdef": "def"}, "phdi.linkage.calculate_m_probs": {"fullname": "phdi.linkage.calculate_m_probs", "modulename": "phdi.linkage", "qualname": "calculate_m_probs", "kind": "function", "doc": "

    For a given set of patient records, calculate the per-field\nm-probability. The m-probability for field X is defined as the\nprobability that a pair of records A and B have the same value in\nX, given that A and B are a true matching pair. This function\nincorporates LaPlacian Smoothing to account for unseen data and\nto resolve future logarithms against 0.

    \n\n
    Parameters
    \n\n
      \n
    • data: A pandas dataframe of patient records to compute\nprobabilities for.
    • \n
    • true_matches: A dictionary holding the IDs of record pairs\nthat are true matches in the data set. The format of the dictionary\nshould be such that the IDs of the \"lower numbered\" records in each\nmatch pair are the keys, and the values are sets of the \"higher\nnumbered\" records in each pair.
    • \n
    • cols: Optionally, a list of columns to compute probabilities\nfor. If not supplied, computes probabilities across all fields.\nDefault is None.
    • \n
    • file_to_write: Optionally, a destination filepath at which to\nwrite the probabilities in JSON format. Default is None.
    • \n
    \n", "signature": "(\tdata: pandas.core.frame.DataFrame,\ttrue_matches: dict,\tcols: Optional[List[str]] = None,\tfile_to_write: Optional[pathlib.Path] = None):", "funcdef": "def"}, "phdi.linkage.calculate_u_probs": {"fullname": "phdi.linkage.calculate_u_probs", "modulename": "phdi.linkage", "qualname": "calculate_u_probs", "kind": "function", "doc": "

    For a given set of patient records, calculate the per-field\nu-probability. The u-probability for field X is defined as the\nprobability that a pair of records A and B have the same value in\nX, given that A and B are not a true matching pair. This function\nincorporates LaPlacian Smoothing to account for unseen data and\nto handle future logarithms against 0.

    \n\n

    Note: This function can be slow to compute for large data sets.\nIt is recommended to pass only a representative subsample of the\ndata to the function (we recommend sampling ~25k candidate pairs\nfrom a sub-sample of ~25k records), even if the sample operation\nis used.

    \n\n
    Parameters
    \n\n
      \n
    • data: A pandas dataframe of patient records to compute\nprobabilities for.
    • \n
    • true_matches: A dictionary holding the IDs of record pairs\nthat are true matches in the data set. The format of the dictionary\nshould be such that the IDs of the \"lower numbered\" records in each\nmatch pair are the keys, and the values are sets of the \"higher\nnumbered\" records in each pair.
    • \n
    • n_samples: Optionally, a number of samples to take from the\nlist of possible pairs to compute probabilities over.
    • \n
    • cols: Optionally, a list of columns to compute probabilities\nfor. If not supplied, computes probabilities across all fields.\nDefault is None.
    • \n
    • file_to_write: Optionally, a destination filepath at which to\nwrite the probabilities in JSON format. Default is None.
    • \n
    \n", "signature": "(\tdata: pandas.core.frame.DataFrame,\ttrue_matches: dict,\tn_samples: Optional[int] = None,\tcols: Optional[List] = None,\tfile_to_write: Optional[pathlib.Path] = None):", "funcdef": "def"}, "phdi.linkage.load_json_probs": {"fullname": "phdi.linkage.load_json_probs", "modulename": "phdi.linkage", "qualname": "load_json_probs", "kind": "function", "doc": "

    Load a dictionary of probabilities from a JSON-formatted file.\nThe probabilities correspond to previously computed m-, u-, or\nlog-odds probabilities derived from patient records, with one\nscore for each field (column) appearing in the data.

    \n\n
    Parameters
    \n\n
      \n
    • path: The file path to load the data from.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A dictionary of probability scores, one for each field\n in the data set on which they were computed.

    \n
    \n\n
    Raises
    \n\n
      \n
    • FileNotFoundError: If a file does not exist at the given\npath.
    • \n
    • JSONDecodeError: If the file cannot be read as valid JSON.
    • \n
    \n", "signature": "(path: pathlib.Path):", "funcdef": "def"}, "phdi.linkage.calculate_log_odds": {"fullname": "phdi.linkage.calculate_log_odds", "modulename": "phdi.linkage", "qualname": "calculate_log_odds", "kind": "function", "doc": "

    Calculate the per-field log odds ratio score that two records will\nmatch in a given field. Measures the likelihood that two records\nmatch on a column due to being a true match as opposed to random\nchance.

    \n\n
    Parameters
    \n\n
      \n
    • m_probs: A dictionary of m-probabilities computed per field.
    • \n
    • u_probs: A dictionary of u_probabilities computed per field.
    • \n
    • file_to_write: Optionally, a destination filepath at which\nto write the probabilities in JSON format. Default is None.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • ValueError: If the supplied m- and u- probability dictionaries\ndo not share an equal key set.
    • \n
    \n", "signature": "(\tm_probs: dict,\tu_probs: dict,\tfile_to_write: Optional[pathlib.Path] = None):", "funcdef": "def"}, "phdi.linkage.feature_match_log_odds_exact": {"fullname": "phdi.linkage.feature_match_log_odds_exact", "modulename": "phdi.linkage", "qualname": "feature_match_log_odds_exact", "kind": "function", "doc": "

    Determines whether two feature values in two records should earn the full\nlog-odds similarity score (i.e. they match exactly) or whether they\nshould earn no weight (they differ). Used for fields for which fuzzy\ncomparisons are inappropriate, such as sex.

    \n\n
    Parameters
    \n\n
      \n
    • record_i: One of the records in the candidate pair to evaluate.
    • \n
    • record_j: The second record in the candidate pair.
    • \n
    • feature_col: The name of the column being evaluated (e.g. \"city\").
    • \n
    • col_to_idx: A dictionary mapping column names to the numeric index\nin which they occur in order in the data.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A float of the score the feature comparison earned.

    \n
    \n", "signature": "(\trecord_i: List,\trecord_j: List,\tfeature_col: str,\tcol_to_idx: dict[str, int],\t**kwargs: dict) -> float:", "funcdef": "def"}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"fullname": "phdi.linkage.feature_match_log_odds_fuzzy_compare", "modulename": "phdi.linkage", "qualname": "feature_match_log_odds_fuzzy_compare", "kind": "function", "doc": "

    Determines the weighted string-odds similarly score earned by two\nfeature values in two records, as a function of the pre-computed\nlog-odds weights and the string similarity between the two features.\nThis scales the full score that would be earned from a perfect\nmatch to a degree of partial weight appropriate to how similar the\ntwo strings are.

    \n\n
    Parameters
    \n\n
      \n
    • record_i: One of the records in the candidate pair to evaluate.
    • \n
    • record_j: The second record in the candidate pair.
    • \n
    • feature_col: The name of the column being evaluated (e.g. \"city\").
    • \n
    • col_to_idx: A dictionary mapping column names to the numeric index\nin which they occur in order in the data.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A float of the score the feature comparison earned.

    \n
    \n", "signature": "(\trecord_i: List,\trecord_j: List,\tfeature_col: str,\tcol_to_idx: dict[str, int],\t**kwargs: dict) -> float:", "funcdef": "def"}, "phdi.linkage.profile_log_odds": {"fullname": "phdi.linkage.profile_log_odds", "modulename": "phdi.linkage", "qualname": "profile_log_odds", "kind": "function", "doc": "

    Basic graphical profiler for log-odds histogram analysis. Using the\nraw data and previously known true matches, the function computes one\nlist of log-odds scores that that would be earned by true matches under\na given linkage rule, and another list of scores that would be earned\nby a random sampling of non-matches under the same linkage rule. These\nlists are used to plot bimodal histograms so that the cutoff threshold\nbetween non-matchces and true matches can be visually determined.

    \n\n
    Parameters
    \n\n
      \n
    • data: A pandas data frame holding the raw patient record data.
    • \n
    • true_matches: A dictionary of known true matches in the data.
    • \n
    • log_odds: A dictionary whose keys are the column fields of data\nand whose values are the log-odds scores that two values match relative\nto random chance.
    • \n
    • exact_cols: A list of columns to be evaluated using equality\ncomparisons.
    • \n
    • fuzzy_cols: A list of columns to be evaluated using fuzzy weighted\ncomparisons.
    • \n
    • idx_to_col: A dictionary mapping the number of a column in a list\nrepresentation of the data, to the name of the column in a pandas\nrepresentation.
    • \n
    • neg_samples: Optionally, how many non-match samples to compute a\nscore for when generating the histogram.
    • \n
    \n", "signature": "(\tdata: pandas.core.frame.DataFrame,\ttrue_matches: dict,\tlog_odds: dict,\texact_cols: List,\tfuzzy_cols: List,\tidx_to_col: dict,\tneg_samples: int = 50000) -> None:", "funcdef": "def"}, "phdi.linkage.eval_log_odds_cutoff": {"fullname": "phdi.linkage.eval_log_odds_cutoff", "modulename": "phdi.linkage", "qualname": "eval_log_odds_cutoff", "kind": "function", "doc": "

    Determines whether a given set of feature comparisons matches enough\nto be the result of a true patient link instead of just random chance.\nThis is represented using previously computed log-odds ratios.

    \n\n
    Parameters
    \n\n
      \n
    • feature_comparisons: A list of floats representing the log-odds\nscore of each field computed on.
    • \n
    \n\n
    Returns
    \n\n
    \n

    Whether the feature comparisons score well enough to be\n considered a match.

    \n
    \n", "signature": "(feature_comparisons: List, **kwargs) -> bool:", "funcdef": "def"}, "phdi.linkage.BaseMPIConnectorClient": {"fullname": "phdi.linkage.BaseMPIConnectorClient", "modulename": "phdi.linkage", "qualname": "BaseMPIConnectorClient", "kind": "class", "doc": "

    Represents a vendor-agnostic Master Patient Index (MPI) connector client. Requires\nimplementing classes to define methods to retrive blocks of data from the MPI.\nCallers should use the provided interface functions (e.g., block_data)\nto interact with the underlying vendor-specific client property.

    \n", "bases": "abc.ABC"}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"fullname": "phdi.linkage.BaseMPIConnectorClient.block_data", "modulename": "phdi.linkage", "qualname": "BaseMPIConnectorClient.block_data", "kind": "function", "doc": "

    Returns a list of lists containing records from the database that match on the\nincoming record's block values. If blocking on 'ZIP' and the incoming record's\nzip code is '90210', the resulting block of data would contain records that all\nhave the same zip code of 90210.

    \n", "signature": "() -> List[list]:", "funcdef": "def"}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"fullname": "phdi.linkage.BaseMPIConnectorClient.get_connection", "modulename": "phdi.linkage", "qualname": "BaseMPIConnectorClient.get_connection", "kind": "function", "doc": "

    Creates a connection to the database associated with the connector class.\nThe connection is returned for use in other class methods as a context\nmanager, and should generally not be called externally to the client.\nAlso used for testing the validity of a connection when the client\nconnector is instantiated. The return type is set to any here since the\nexact \"class\" of the client's connection is unknown in the abstract.

    \n", "signature": "() -> Optional[<built-in function any>]:", "funcdef": "def"}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"fullname": "phdi.linkage.BaseMPIConnectorClient.insert_match_patient", "modulename": "phdi.linkage", "qualname": "BaseMPIConnectorClient.insert_match_patient", "kind": "function", "doc": "

    If a matching person ID has been found in the MPI, inserts a new patient into\nthe patient table, including the matched person id, to link the new patient\nand matched person ID; else inserts a new patient into the patient table and\ninserts a new person into the person table with a new person ID, linking the\nnew person ID to the new patient.

    \n", "signature": "() -> None:", "funcdef": "def"}, "phdi.linkage.extract_blocking_values_from_record": {"fullname": "phdi.linkage.extract_blocking_values_from_record", "modulename": "phdi.linkage", "qualname": "extract_blocking_values_from_record", "kind": "function", "doc": "

    Extracts values from a given patient record for eventual use in database\nrecord linkage blocking. A list of fields to block on, as well as a mapping\nof those fields to any desired transformations of their extracted values,\nis used to fhir-path parse the value out of the incoming patient record.

    \n\n

    Currently supported blocking fields:

    \n\n
      \n
    • first_name
    • \n
    • last_name
    • \n
    • birthdate
    • \n
    • address
    • \n
    • city
    • \n
    • state
    • \n
    • zip
    • \n
    • sex
    • \n
    • mrn
    • \n
    \n\n

    Currently supported transformations on extracted fields:

    \n\n
      \n
    • first4: the first four characters of the value
    • \n
    • last4: the last four characters of the value
    • \n
    \n\n
    Parameters
    \n\n
      \n
    • record: A FHIR-formatted Patient record.
    • \n
    • blocking_fields: A List of dictionaries giving the blocking\nfields and any transformations that should be applied to them. Each\ndictionary in the list should include a \"value\" key with one of the\nsupported blocking fields above, and may also optionally contain a\n\"transformation\" key whose value is one of our supported transforms.
    • \n
    \n", "signature": "(record: dict, blocking_fields: List[dict]) -> dict:", "funcdef": "def"}, "phdi.linkage.write_linkage_config": {"fullname": "phdi.linkage.write_linkage_config", "modulename": "phdi.linkage", "qualname": "write_linkage_config", "kind": "function", "doc": "

    Save a provided algorithm description as a JSON dictionary at the provided\nfilepath location. Algorithm descriptions are lists of dictionaries, one\nfor each pass of the algorithm, whose keys are parameter values for a\nlinkage pass (drawn from the list \"funcs\", \"blocks\", \"matching_rule\",\nand optionally \"cluster_ratio\" and \"kwargs\") and whose values are\nas follows:

    \n\n
      \n
    • \"funcs\" should map to a dictionary mapping column index to the\nname of a function in the DIBBS linkage module (such as\nfeature_match_fuzzy_string)--note that these are the actual\nfunctions, not string names of the functions
    • \n
    • \"blocks\" should map to a list of columns to block on (e.g.\n[\"MRN4\", \"ADDRESS4\"])
    • \n
    • \"matching_rule\" should map to one of the evaluation rule functions\nin the DIBBS linkage module (i.e. eval_perfect_match)
    • \n
    • \"cluster_ratio\" should map to a float, if provided
    • \n
    • \"kwargs\" should map to a dictionary of keyword arguments and their\nassociated values, if provided
    • \n
    \n\n

    Here's an example of a simple single-pass linkage algorithm that blocks\non zip code, then matches on exact first name, exact last name, and\nfuzzy date of birth (using, say, Levenshtein similarity with a score\nthreshold of 0.8) in dictionary descriptor form (for the sake of the\nexample, let's assume the data has the column order first, last, DOB):

    \n\n

    [{\n \"funcs\": {\n 0: feature_match_exact,\n 1: feature_match_exact,\n 2: feature_match_fuzzy_string,\n 3: feature_match_fuzzy_string,\n },\n \"blocks\": [\"ZIP\"],\n \"matching_rule\": eval_perfect_match,\n \"kwargs\": {\n \"similarity-measure\": \"Levenshtein\",\n \"threshold\": 0.8\n }\n}]

    \n\n
    Parameters
    \n\n
      \n
    • linkage_algo: A list of dictionaries whose key-value pairs correspond\nto the rules above.
    • \n
    • file_to_write: The path to the destination JSON file to write.
    • \n
    \n", "signature": "(linkage_algo: List[dict], file_to_write: pathlib.Path) -> None:", "funcdef": "def"}, "phdi.linkage.read_linkage_config": {"fullname": "phdi.linkage.read_linkage_config", "modulename": "phdi.linkage", "qualname": "read_linkage_config", "kind": "function", "doc": "

    Reads and generates a record linkage algorithm configuration list from\nthe provided filepath, which should point to a JSON file. A record\nlinkage configuration list is a list of dictionaries--one for each\npass in the algorithm it describes--containing information on the\nblocking fields, functions, cluster thresholds, and keyword arguments\nfor that pass of the linkage algorithm. For a full example of all the\ncomponents involved in a linkage description structure, see the doc\nstring for write_linkage_config.

    \n\n
    Parameters
    \n\n
      \n
    • config_file: A pathlib.Path string pointing to a JSON file\nthat describes the algorithm to decode.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of dictionaries whose values can be passed to the\n various parts of linkage pass function.

    \n
    \n", "signature": "(config_file: pathlib.Path) -> List[dict]:", "funcdef": "def"}, "phdi.linkage.DIBBsConnectorClient": {"fullname": "phdi.linkage.DIBBsConnectorClient", "modulename": "phdi.linkage", "qualname": "DIBBsConnectorClient", "kind": "class", "doc": "

    Represents a Postgres-specific Master Patient Index (MPI) connector\nclient for the DIBBs implementation of the record linkage building\nblock. Callers should use the provided interface functions (e.g.,\nblock_vals) to interact with the underlying vendor-specific client\nproperty.

    \n\n

    When instantiating a DIBBSConnectorClient, the connection to the\ndatabase is automatically tested using the provided parameters.\nA refused, timed-out, or otherwise error-ed connection will raise\nan immediate exception.

    \n", "bases": "phdi.linkage.core.BaseMPIConnectorClient"}, "phdi.linkage.DIBBsConnectorClient.__init__": {"fullname": "phdi.linkage.DIBBsConnectorClient.__init__", "modulename": "phdi.linkage", "qualname": "DIBBsConnectorClient.__init__", "kind": "function", "doc": "

    \n", "signature": "(\tdatabase: str,\tuser: str,\tpassword: str,\thost: str,\tport: str,\tpatient_table: str,\tperson_table: str)"}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"fullname": "phdi.linkage.DIBBsConnectorClient.get_connection", "modulename": "phdi.linkage", "qualname": "DIBBsConnectorClient.get_connection", "kind": "function", "doc": "

    Simple method for initiating a connection to the database specified\nby the parameters given to the class' instantiation.

    \n", "signature": "(self) -> Optional[psycopg2.extensions.connection]:", "funcdef": "def"}, "phdi.linkage.DIBBsConnectorClient.block_data": {"fullname": "phdi.linkage.DIBBsConnectorClient.block_data", "modulename": "phdi.linkage", "qualname": "DIBBsConnectorClient.block_data", "kind": "function", "doc": "

    Returns a list of lists containing records from the database that match on the\nincoming record's block values. If blocking on 'ZIP' and the incoming record's\nzip code is '90210', the resulting block of data would contain records that all\nhave the same zip code of 90210.

    \n\n
    Parameters
    \n\n
      \n
    • block_vals: Dictionary containing key value pairs for the column name for\nblocking and the data for the incoming record as well as any transformations,\ne.g., {\"ZIP\": {\"value\": \"90210\"}} or\n{\"ZIP\": {\"value\": \"90210\",}, \"transformation\":\"first4\"}.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of records that are within the block, e.g., records that all\n have 90210 as their ZIP.

    \n
    \n", "signature": "(self, block_vals: Dict) -> List[list]:", "funcdef": "def"}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"fullname": "phdi.linkage.DIBBsConnectorClient.insert_match_patient", "modulename": "phdi.linkage", "qualname": "DIBBsConnectorClient.insert_match_patient", "kind": "function", "doc": "

    If a matching person ID has been found in the MPI, inserts a new patient into\nthe patient table, including the matched person id, to link the new patient\nand matched person ID; else inserts a new patient into the patient table and\ninserts a new person into the person table with a new person ID, linking the\nnew person ID to the new patient.

    \n\n
    Parameters
    \n\n
      \n
    • patient_resource: A FHIR patient resource.
    • \n
    • person_id: The person ID matching the patient record if a match has been\nfound in the MPI, defaults to None.
    • \n
    • external_person_id: The external person id for the person that matches\nthe patient record if a match has been found in the MPI, defaults to None.
    • \n
    \n\n
    Returns
    \n\n
    \n

    the person id

    \n
    \n", "signature": "(\tself,\tpatient_resource: Dict,\tperson_id=None,\texternal_person_id=None) -> Optional[tuple]:", "funcdef": "def"}, "phdi.linkage.link_record_against_mpi": {"fullname": "phdi.linkage.link_record_against_mpi", "modulename": "phdi.linkage", "qualname": "link_record_against_mpi", "kind": "function", "doc": "

    Runs record linkage on a single incoming record (extracted from a FHIR\nbundle) using an existing database as an MPI. Uses a flexible algorithm\nconfiguration to allow customization of the exact kind of linkage to\nrun. Linkage is assumed to run using cluster membership (i.e. the new\nrecord must match a certain proportion of existing records all assigned\nto a person in order to match), and if multiple persons are matched,\nthe new record is linked to the person with the strongest membership\npercentage.

    \n\n
    Parameters
    \n\n
      \n
    • record: The FHIR-formatted patient resource to try to match to\nother records in the MPI.
    • \n
    • algo_config: An algorithm configuration consisting of a list\nof dictionaries describing the algorithm to run. See\nread_linkage_config and write_linkage_config for more details.
    • \n
    • db_client: An instantiated connection to an MPI database.\n:returns: A tuple consisting of a boolean indicating whether a match\nwas found for the new record in the MPI, followed by the ID of the\nPerson entity now associated with the incoming patient (either a\nnew Person ID or the ID of an existing matched Person).
    • \n
    \n", "signature": "(\trecord: dict,\talgo_config: List[dict],\tdb_client: phdi.linkage.core.BaseMPIConnectorClient,\texternal_person_id: str = None) -> tuple[bool, str]:", "funcdef": "def"}, "phdi.linkage.add_person_resource": {"fullname": "phdi.linkage.add_person_resource", "modulename": "phdi.linkage", "qualname": "add_person_resource", "kind": "function", "doc": "

    Adds a simplified person resource to a bundle if the patient resource in the bundle\nmatches an existing record in the Master Patient Index. Returns the bundle with\nthe newly added person resource.

    \n\n
    Parameters
    \n\n
      \n
    • person_id: _description_
    • \n
    • patient_id: _description_
    • \n
    • bundle: _description_, defaults to Field(description=\"A FHIR bundle\")
    • \n
    \n\n
    Returns
    \n\n
    \n

    _description_

    \n
    \n", "signature": "(\tperson_id: str,\tpatient_id: str,\tbundle: dict = FieldInfo(default=PydanticUndefined, description='A FHIR bundle', extra={})) -> dict:", "funcdef": "def"}, "phdi.linkage.convert_to_patient_fhir_resources": {"fullname": "phdi.linkage.convert_to_patient_fhir_resources", "modulename": "phdi.linkage", "qualname": "convert_to_patient_fhir_resources", "kind": "function", "doc": "

    Converts and returns a row of patient data into patient resource in a FHIR-formatted\npatient resouce with a newly generated patient id as well as the iris_id.

    \n\n
    Parameters
    \n\n
      \n
    • data: Dictionary of patient data that optionionally includes the following\nfields: mrn, ssn, first_name, middle_name, last_name, home_phone, cell-phone, sex,\nbirthdate, address, city, state, zip.
    • \n
    \n\n
    Returns
    \n\n
    \n

    Tuple of the iris_id and FHIR-formatted patient resource.

    \n
    \n", "signature": "(data: Dict) -> Tuple:", "funcdef": "def"}, "phdi.tabulation": {"fullname": "phdi.tabulation", "modulename": "phdi.tabulation", "kind": "module", "doc": "

    \n"}, "phdi.tabulation.load_schema": {"fullname": "phdi.tabulation.load_schema", "modulename": "phdi.tabulation", "qualname": "load_schema", "kind": "function", "doc": "

    Given the path to a local YAML or JSON file containing a schema,\nloads the file and return the resulting schema as a dictionary.\nIf the file can't be found, raises an error.

    \n\n
    Parameters
    \n\n
      \n
    • path: The file path to a YAML file holding a schema.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • ValueError: If the provided path points to an unsupported file type.
    • \n
    • FileNotFoundError: If the file to be loaded could not be found.
    • \n
    • JSONDecodeError: If a JSON file is provided with invalid JSON.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A dict representing a schema read from the given path.

    \n
    \n", "signature": "(path: pathlib.Path) -> dict:", "funcdef": "def"}, "phdi.tabulation.validate_schema": {"fullname": "phdi.tabulation.validate_schema", "modulename": "phdi.tabulation", "qualname": "validate_schema", "kind": "function", "doc": "

    Validates the schema structure, ensuring all required schema elements are present\nand all schema elements are of the expected data type.

    \n\n
    Parameters
    \n\n
      \n
    • schema: A declarative, user-defined specification, for one or more tables,\nthat defines the metadata, properties, and columns of those tables as they\nrelate to FHIR resources.
    • \n
    \n\n
    Raises
    \n\n
      \n
    • jsonschema.exception.ValidationError: If the schema is invalid.
    • \n
    \n", "signature": "(schema: dict):", "funcdef": "def"}, "phdi.tabulation.write_data": {"fullname": "phdi.tabulation.write_data", "modulename": "phdi.tabulation", "qualname": "write_data", "kind": "function", "doc": "

    Writes a set of tabulated data to a particular output format on disk\n(one of CSV, Parquet, or SQL). For CSV and Parquet writing, a filename\nmust be provided to write output to. In the case of the SQL format,\na database file (if one exists and is being modified) must be specified\nalong with a table name in place of a filename. Creates new data files\nif the given options specify a file that doesn't exist, and appends\ndata to already-present files if they do.

    \n\n
    Parameters
    \n\n
      \n
    • tabulated_data: A list of lists in which the first element\nis the headers for the table-to-write and subsequent elements\nare rows in the table.
    • \n
    • directory: The directory in which to write the output data\n(if output_type is CSV or Parquet), or the directory in which\nthe db_file is stored (if a database already exists) or should\nbe created in (if a database does not already exist).
    • \n
    • output_type: The format the data should be written to.
    • \n
    • filename: The name of the CSV or Parquet file data should be\nwritten to. Omit if output_type is SQL. Default: None.
    • \n
    • db_file: The name of the database file to either create or\naccess when writing to a SQL format. Omit if output_type is not\nSQL. Default: None.
    • \n
    • db_tablename: The name of the table in the database to create\nor write data to. Omit if output_type is not SQL. Default: None.
    • \n
    • pq_writer: A pre-existing ParquetWriter object that can be\nused to append data to a parquet format. Used in cases where\nincremental writing to a parquet destination is desired. Omit if\noutput_type is not Parquet. Default: None.
    • \n
    \n", "signature": "(\ttabulated_data: List[List],\tdirectory: str,\toutput_type: Literal['csv', 'parquet', 'sql'],\tfilename: str = None,\tdb_file: str = None,\tdb_tablename: str = None,\tpq_writer: pyarrow.parquet.core.ParquetWriter = None,\tschema: dict = None,\ttable_name: str = None) -> Optional[pyarrow.parquet.core.ParquetWriter]:", "funcdef": "def"}, "phdi.transport": {"fullname": "phdi.transport", "modulename": "phdi.transport", "kind": "module", "doc": "

    \n"}, "phdi.transport.http_request_with_retry": {"fullname": "phdi.transport.http_request_with_retry", "modulename": "phdi.transport", "qualname": "http_request_with_retry", "kind": "function", "doc": "

    Executes an HTTP request, retrying the request if the returned HTTP status code\nis one of a specified list of codes.

    \n\n
    Parameters
    \n\n
      \n
    • url: The url at which to make the HTTP request.
    • \n
    • retry_count: The number of times to retry the request, if the\nfirst attempt fails.
    • \n
    • request_type: The type of request to be made. Currently supports\nGET and POST.
    • \n
    • allowed_methods: The list of allowed HTTP request methods (i.e.,\nPOST, PUT) for the specific URL and query.
    • \n
    • headers: JSON-type dictionary of headers to make the request with,\nincluding Authorization and content-type.
    • \n
    • data: The data as a JSON-formatted dictionary, used when the request\nrequires data to be posted. Default: None
    • \n
    \n\n
    Raises
    \n\n
      \n
    • ValueError: An unsupported HTTP method (e.g., PATCH, DELETE) was passed\nto the request_type parameter.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A HTTP request response.

    \n
    \n", "signature": "(\turl: str,\tretry_count: int,\trequest_type: Literal['GET', 'POST'],\tallowed_methods: List[str],\theaders: dict,\tdata: dict = None) -> requests.models.Response:", "funcdef": "def"}, "phdi.validation": {"fullname": "phdi.validation", "modulename": "phdi.validation", "kind": "module", "doc": "

    \n"}, "phdi.validation.validate_ecr": {"fullname": "phdi.validation.validate_ecr", "modulename": "phdi.validation", "qualname": "validate_ecr", "kind": "function", "doc": "

    Receives an ecr message (a combined RR and eICR), a configuration of\nwhat fields are to be validated and how they are to be validated, as\nwell as a list of error message types to include (default is all fatal\nerrors, basic errors, warnings, and information). The result of\nvalidation is returned in a dictionary that also contains a boolean\nif the ecr message is valid or not.

    \n\n
    Parameters
    \n\n
      \n
    • ecr_message: A eCR message that contains both eICR and RR fields.
    • \n
    • config: A dictionary of the requirements for validation of the\neCR message.
    • \n
    • include_error_types: A list of error message types to include\nin the final validation response. Default (fatal, errors,\nwarnings, information)
    • \n
    \n\n
    Returns
    \n\n
    \n

    A dictionary containing bool message_valid as well as a\n dictionary containing the validation results/errors.

    \n
    \n", "signature": "(ecr_message: str, config: dict, include_error_types: list) -> dict:", "funcdef": "def"}, "phdi.validation.get_ecr_message_ids": {"fullname": "phdi.validation.get_ecr_message_ids", "modulename": "phdi.validation", "qualname": "get_ecr_message_ids", "kind": "function", "doc": "

    \n", "signature": "(parsed_ecr) -> dict:", "funcdef": "def"}, "phdi.validation.get_xml_element_details": {"fullname": "phdi.validation.get_xml_element_details", "modulename": "phdi.validation", "qualname": "get_xml_element_details", "kind": "function", "doc": "

    Gets the name, value, of the xml element referenced as well\nas the details of any configured relative xml elements for\nthe referenced xml element and formats this information into\na single string for use in the validation messages.

    \n\n
    Parameters
    \n\n
      \n
    • xml_element: The key xml element.
    • \n
    • config_field: A dictionary of the configured requirements\nfor the xml element.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A single string containing the information about the\n key xml element and its attribute(s).

    \n
    \n", "signature": "(xml_element, config_field) -> str:", "funcdef": "def"}, "phdi.validation.validate_xml_elements": {"fullname": "phdi.validation.validate_xml_elements", "modulename": "phdi.validation", "qualname": "validate_xml_elements", "kind": "function", "doc": "

    Matches the xml_elements to the config field requirements for\nvalues, attributes, and relative xml element requirements for\nvalues, and attributes. Returns list of matching fields.

    \n\n
    Parameters
    \n\n
      \n
    • xml_elements: A list of xml elements
    • \n
    • config_field: A dictionary of the requirements of the field.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of matched xml elemnts

    \n
    \n", "signature": "(xml_elements, config_field) -> list:", "funcdef": "def"}, "phdi.validation.validate_xml_attributes": {"fullname": "phdi.validation.validate_xml_attributes", "modulename": "phdi.validation", "qualname": "validate_xml_attributes", "kind": "function", "doc": "

    Validates an xml element by checking if the configured attribute(s) exist\nand match the configured regex pattern for the value of the attribute.\nIf the xml element, and it's subsequent attribute(s), do not pass the checks,\nbased upon what is in the configuration, then an error message is added to\nthe validation results.

    \n\n
    Parameters
    \n\n
      \n
    • xml_element: The xml element that will have its attributes validated.
    • \n
    • config_field: A dictionary that contains the configuration that\nspecifies what the attribute(s) for the xml element should be named\nand how the values should be patterned.
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of errors or an empty list. If the list is empty then\n the validation was successful.

    \n
    \n", "signature": "(xml_element, config_field) -> list:", "funcdef": "def"}, "phdi.validation.validate_xml_value": {"fullname": "phdi.validation.validate_xml_value", "modulename": "phdi.validation", "qualname": "validate_xml_value", "kind": "function", "doc": "

    Validates the value of an xml element (ie... between the tags) based upon\nvalidating the xml element exists within the relative xml element location\nbased upon the configuration of the parent of the xml element.\nThen it validates that the value of xml element matches the value pattern\nlisted in the config.

    \n\n
    Parameters
    \n\n
      \n
    • xml_element: The key xml element being evaluated.
    • \n
    • config_field: A dictionary that contains the configuration information\nnecessary to validate the location and value of the key xml element
    • \n
    \n\n
    Returns
    \n\n
    \n

    A list of error messages if validation fails, otherwise an\n empty list.

    \n
    \n", "signature": "(xml_element, config_field) -> list:", "funcdef": "def"}}, "docInfo": {"phdi": {"qualname": 0, "fullname": 1, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.cloud": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.cloud.azure": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.cloud.azure.AzureCredentialManager": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 12}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 51}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 34}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 32, "bases": 0, "doc": 74}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 37, "bases": 0, "doc": 89}, "phdi.cloud.azure.AzureCloudContainerConnection": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 14}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 48}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 90}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 86}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 25}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 68}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 101}, "phdi.cloud.core": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.cloud.core.BaseCredentialManager": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 11}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 22}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 24}, "phdi.cloud.core.BaseCloudStorageConnection": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 16}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 82}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 82}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 25}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 66}, "phdi.cloud.gcp": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.cloud.gcp.GcpCredentialManager": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 9}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 30}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 33}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 26}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 14, "bases": 0, "doc": 25}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 14}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 4, "bases": 0, "doc": 8}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 86}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 85}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 25}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 51, "bases": 0, "doc": 68}, "phdi.containers": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.containers.base_service": {"qualname": 0, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.containers.base_service.StatusResponse": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 3, "doc": 13}, "phdi.containers.base_service.BaseService": {"qualname": 1, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.containers.base_service.BaseService.__init__": {"qualname": 3, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 92, "bases": 0, "doc": 97}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"qualname": 5, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.containers.base_service.BaseService.start": {"qualname": 2, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 41}, "phdi.fhir": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.cloud": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.cloud.download_from_fhir_export_response": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 64, "bases": 0, "doc": 114}, "phdi.fhir.conversion": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 100}, "phdi.fhir.conversion.convert_to_fhir": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 93, "bases": 0, "doc": 256}, "phdi.fhir.geospatial": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 47}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 84}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 89}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 36}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 64, "bases": 0, "doc": 3}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"qualname": 3, "fullname": 6, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 47}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 100}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 96}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"qualname": 1, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 0, "bases": 5, "doc": 18}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 124}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 34, "bases": 0, "doc": 104}, "phdi.fhir.harmonization": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.harmonization.double_metaphone_bundle": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 112}, "phdi.fhir.harmonization.double_metaphone_patient": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 223}, "phdi.fhir.harmonization.standardize_names": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 127, "bases": 0, "doc": 154}, "phdi.fhir.harmonization.standardize_phones": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 29, "bases": 0, "doc": 101}, "phdi.fhir.harmonization.standardize_dob": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 56, "bases": 0, "doc": 154}, "phdi.fhir.linkage": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 47, "bases": 0, "doc": 137}, "phdi.fhir.linkage.add_patient_identifier": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 138}, "phdi.fhir.tabulation": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.tabulation.drop_invalid": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 187}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 115}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"qualname": 6, "fullname": 9, "annotation": 0, "default_value": 0, "signature": 71, "bases": 0, "doc": 129}, "phdi.fhir.tabulation.extract_data_from_schema": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 82, "bases": 0, "doc": 127}, "phdi.fhir.tabulation.tabulate_data": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 52, "bases": 0, "doc": 306}, "phdi.fhir.transport": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.transport.http_request_with_reauth": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 148, "bases": 0, "doc": 228}, "phdi.fhir.transport.fhir_server_get": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 57, "bases": 0, "doc": 82}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 95, "bases": 0, "doc": 144}, "phdi.fhir.transport.export_from_fhir_server": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 172, "bases": 0, "doc": 243}, "phdi.fhir.utils": {"qualname": 0, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.fhir.utils.apply_selection_criteria": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 109}, "phdi.fhir.utils.extract_value_with_resource_path": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 100, "bases": 0, "doc": 123}, "phdi.fhir.utils.find_entries_by_resource_type": {"qualname": 5, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 86}, "phdi.fhir.utils.get_field": {"qualname": 2, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 86, "bases": 0, "doc": 271}, "phdi.fhir.utils.get_fhirpathpy_parser": {"qualname": 3, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 72}, "phdi.fhir.utils.get_one_line_address": {"qualname": 4, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 54}, "phdi.geospatial": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.geospatial.GeocodeResult": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 25}, "phdi.geospatial.GeocodeResult.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 260, "bases": 0, "doc": 3}, "phdi.geospatial.BaseGeocodeClient": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 43}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 85}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 189}, "phdi.geospatial.SmartyGeocodeClient": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 31}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 64, "bases": 0, "doc": 3}, "phdi.geospatial.SmartyGeocodeClient.client": {"qualname": 2, "fullname": 4, "annotation": 8, "default_value": 0, "signature": 0, "bases": 0, "doc": 52}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 110}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 210}, "phdi.geospatial.CensusGeocodeClient": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 12}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 115}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 45, "bases": 0, "doc": 231}, "phdi.harmonization": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.harmonization.standardize_hl7_datetimes": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 111}, "phdi.harmonization.normalize_hl7_datetime_segment": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 54, "bases": 0, "doc": 116}, "phdi.harmonization.normalize_hl7_datetime": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 20, "bases": 0, "doc": 125}, "phdi.harmonization.default_hl7_value": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 49, "bases": 0, "doc": 154}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"qualname": 6, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 50, "bases": 0, "doc": 205}, "phdi.harmonization.standardize_country_code": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 77, "bases": 0, "doc": 159}, "phdi.harmonization.standardize_phone": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 85, "bases": 0, "doc": 174}, "phdi.harmonization.standardize_name": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 142, "bases": 0, "doc": 203}, "phdi.harmonization.double_metaphone_string": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 39, "bases": 0, "doc": 120}, "phdi.harmonization.compare_strings": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 84, "bases": 0, "doc": 208}, "phdi.harmonization.DoubleMetaphone": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 20}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_b": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_c": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_d": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_f": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_g": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_h": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_j": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_k": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_l": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_m": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_n": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_p": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_q": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_r": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_s": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_t": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_v": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_w": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_x": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.process_z": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 11, "bases": 0, "doc": 3}, "phdi.harmonization.DoubleMetaphone.parse": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 3}, "phdi.harmonization.standardize_birth_date": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 97}, "phdi.linkage": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.linkage.generate_hash_str": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 106}, "phdi.linkage.block_data": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 44, "bases": 0, "doc": 99}, "phdi.linkage.match_within_block": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 106, "bases": 0, "doc": 352}, "phdi.linkage.feature_match_exact": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 121}, "phdi.linkage.feature_match_fuzzy_string": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 188}, "phdi.linkage.eval_perfect_match": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 81}, "phdi.linkage.compile_match_lists": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 41, "bases": 0, "doc": 163}, "phdi.linkage.feature_match_four_char": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 120}, "phdi.linkage.perform_linkage_pass": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 120, "bases": 0, "doc": 188}, "phdi.linkage.score_linkage_vs_truth": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 120, "bases": 0, "doc": 190}, "phdi.linkage.block_data_from_db": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 48, "bases": 0, "doc": 137}, "phdi.linkage.calculate_m_probs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 103, "bases": 0, "doc": 200}, "phdi.linkage.calculate_u_probs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 124, "bases": 0, "doc": 275}, "phdi.linkage.load_json_probs": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 127}, "phdi.linkage.calculate_log_odds": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 61, "bases": 0, "doc": 130}, "phdi.linkage.feature_match_log_odds_exact": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 145}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"qualname": 6, "fullname": 8, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 163}, "phdi.linkage.profile_log_odds": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 115, "bases": 0, "doc": 248}, "phdi.linkage.eval_log_odds_cutoff": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 27, "bases": 0, "doc": 86}, "phdi.linkage.BaseMPIConnectorClient": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 2, "doc": 47}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 52}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 35, "bases": 0, "doc": 75}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 10, "bases": 0, "doc": 68}, "phdi.linkage.extract_blocking_values_from_record": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 36, "bases": 0, "doc": 202}, "phdi.linkage.write_linkage_config": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 43, "bases": 0, "doc": 378}, "phdi.linkage.read_linkage_config": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 143}, "phdi.linkage.DIBBsConnectorClient": {"qualname": 1, "fullname": 3, "annotation": 0, "default_value": 0, "signature": 0, "bases": 4, "doc": 76}, "phdi.linkage.DIBBsConnectorClient.__init__": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 83, "bases": 0, "doc": 3}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 30, "bases": 0, "doc": 21}, "phdi.linkage.DIBBsConnectorClient.block_data": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 31, "bases": 0, "doc": 141}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 58, "bases": 0, "doc": 156}, "phdi.linkage.link_record_against_mpi": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 97, "bases": 0, "doc": 213}, "phdi.linkage.add_person_resource": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 90, "bases": 0, "doc": 85}, "phdi.linkage.convert_to_patient_fhir_resources": {"qualname": 5, "fullname": 7, "annotation": 0, "default_value": 0, "signature": 19, "bases": 0, "doc": 97}, "phdi.tabulation": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.tabulation.load_schema": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 24, "bases": 0, "doc": 134}, "phdi.tabulation.validate_schema": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 16, "bases": 0, "doc": 83}, "phdi.tabulation.write_data": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 228, "bases": 0, "doc": 350}, "phdi.transport": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.transport.http_request_with_retry": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 121, "bases": 0, "doc": 197}, "phdi.validation": {"qualname": 0, "fullname": 2, "annotation": 0, "default_value": 0, "signature": 0, "bases": 0, "doc": 3}, "phdi.validation.validate_ecr": {"qualname": 2, "fullname": 4, "annotation": 0, "default_value": 0, "signature": 42, "bases": 0, "doc": 163}, "phdi.validation.get_ecr_message_ids": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 15, "bases": 0, "doc": 3}, "phdi.validation.get_xml_element_details": {"qualname": 4, "fullname": 6, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 102}, "phdi.validation.validate_xml_elements": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 77}, "phdi.validation.validate_xml_attributes": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 143}, "phdi.validation.validate_xml_value": {"qualname": 3, "fullname": 5, "annotation": 0, "default_value": 0, "signature": 21, "bases": 0, "doc": 122}}, "length": 186, "save": true}, "index": {"qualname": {"root": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 9, "a": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.utils.get_one_line_address": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 9}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {"phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.validation.get_ecr_message_ids": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 16}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 13, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {"phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}}, "df": 3}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.feature_match_four_char": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 3}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}}, "df": 9, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_one_line_address": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {"phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}}, "df": 1, "o": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 5, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 3}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 8}}}}}}}}}, "r": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.parse": {"tf": 1}}, "df": 24}}}}}}}}}}}}}, "b": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 10}, "e": {"docs": {"phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"phdi.linkage.block_data_from_db": {"tf": 1}}, "df": 1}}, "u": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 4}}}}}}, "l": {"docs": {"phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_one_line_address": {"tf": 1}}, "df": 1}, "k": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 2}}, "g": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 5}}}, "b": {"docs": {"phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 6}}}}}, "y": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 5}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {"phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.validation.validate_xml_elements": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {"phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}}, "df": 21}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}}, "df": 3}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 6}}}}, "h": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.DoubleMetaphone.parse": {"tf": 1}}, "df": 1, "r": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.harmonization.standardize_phones": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.add_person_resource": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {"phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}, "l": {"7": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {"phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 13}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 8, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 5}}}}}}, "u": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.feature_match_four_char": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 6, "s": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}, "m": {"docs": {"phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 10}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 2}}}}}}}}}, "w": {"docs": {"phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {"phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.tabulation.validate_schema": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 5}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}, "j": {"docs": {"phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {"phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}}, "df": 1}, "q": {"docs": {"phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}}, "df": 1}, "x": {"docs": {"phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "l": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 4}}}, "z": {"docs": {"phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}}, "df": 1}}}, "fullname": {"root": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 9, "p": {"docs": {"phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"phdi": {"tf": 1}, "phdi.cloud": {"tf": 1}, "phdi.cloud.azure": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.containers": {"tf": 1}, "phdi.containers.base_service": {"tf": 1}, "phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.containers.base_service.BaseService": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir": {"tf": 1}, "phdi.fhir.cloud": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.parse": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_ecr_message_ids": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 186}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.harmonization.standardize_phones": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}}, "df": 21}}}}, "b": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}}, "df": 3}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 6}}}}, "h": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.DoubleMetaphone.parse": {"tf": 1}}, "df": 1, "r": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.add_person_resource": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {"phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud": {"tf": 1}, "phdi.cloud.azure": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.cloud": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 37}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}}, "df": 3}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.containers": {"tf": 1}, "phdi.containers.base_service": {"tf": 1}, "phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.containers.base_service.BaseService": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}}, "df": 10}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.conversion": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 3}}}}, "t": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 2}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.core": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}}, "df": 9}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.feature_match_four_char": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 3}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}}, "df": 13, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}}, "df": 7}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}}, "df": 3}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 5, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.utils.get_one_line_address": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 1}}}}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 9}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}}, "df": 1}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {"phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 1}}}, "g": {"docs": {"phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.validation.get_ecr_message_ids": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 16}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.geospatial": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.geospatial": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 26}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 13, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 2}}}}}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"phdi.cloud.gcp": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 12, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 6}}}}}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}}, "df": 9, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 3}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_one_line_address": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {"phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}}, "df": 1, "o": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 5, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.tabulation": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.tabulation": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 10}}}, "e": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.transport": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 7}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service": {"tf": 1}, "phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.containers.base_service.BaseService": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}}, "df": 6}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 3}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}}, "df": 2}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}}, "df": 1}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}}, "df": 2}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 8}}}}}}}}}, "r": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 3}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}}, "df": 1, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 4}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 3, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.parse": {"tf": 1}}, "df": 24}}}}}}}}}}}}}, "b": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 10}, "e": {"docs": {"phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 1}}}}}}, "b": {"docs": {"phdi.linkage.block_data_from_db": {"tf": 1}}, "df": 1}}, "u": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 4}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.utils": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}}, "df": 7}}}}}, "l": {"docs": {"phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "k": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.linkage": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 38}}}}, "e": {"docs": {"phdi.fhir.utils.get_one_line_address": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 2}}, "g": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 5}}}, "b": {"docs": {"phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}}, "df": 1}, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service": {"tf": 1}, "phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.containers.base_service.BaseService": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}}, "df": 6, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}}, "df": 5}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 3}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}}, "df": 4}}}}}}}}}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 6}}}}}, "y": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 5}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {"phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.validation.validate_xml_elements": {"tf": 1}}, "df": 1}}}}}}}}, "h": {"docs": {"phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.harmonization": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.parse": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 42}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}, "l": {"7": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 5}, "docs": {}, "df": 0}}, "f": {"docs": {"phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir": {"tf": 1}, "phdi.fhir.cloud": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.4142135623730951}, "phdi.fhir.conversion": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1.4142135623730951}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 46, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 13}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 5}}}}}}, "u": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 2}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.feature_match_four_char": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 6, "s": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 1}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 1}}}, "d": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}, "m": {"docs": {"phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 10}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 2}}}}}}}}}, "w": {"docs": {"phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {"phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.tabulation.validate_schema": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 5}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.validation": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_ecr_message_ids": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 7}}}}}}}}}, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}, "j": {"docs": {"phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {"phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}}, "df": 1}, "q": {"docs": {"phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}}, "df": 1}, "x": {"docs": {"phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}}, "df": 1, "m": {"docs": {}, "df": 0, "l": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 4}}}, "z": {"docs": {"phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}}, "df": 1}}}, "annotation": {"root": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 2}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "k": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 2}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 2}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 2}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 2}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}, "default_value": {"root": {"docs": {}, "df": 0}}, "signature": {"root": {"1": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}, "2": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}}, "df": 1}, "3": {"0": {"0": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}, "docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}, "9": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.__init__": {"tf": 2.449489742783178}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 2.8284271247461903}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 2}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 2.8284271247461903}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 2.8284271247461903}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 3.1622776601683795}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1.4142135623730951}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_country_code": {"tf": 2.8284271247461903}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 2.8284271247461903}, "phdi.harmonization.compare_strings": {"tf": 2.8284271247461903}, "phdi.harmonization.standardize_birth_date": {"tf": 1.4142135623730951}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 2.449489742783178}, "phdi.transport.http_request_with_retry": {"tf": 2}}, "df": 24}, "docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}, "5": {"0": {"0": {"0": {"0": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "8": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}}, "df": 3}, "docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 5.656854249492381}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 3.4641016151377544}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 5.0990195135927845}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 5.291502622129181}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 5.830951894845301}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 6.6332495807108}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 7.0710678118654755}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 4.123105625617661}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 6.4031242374328485}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 5.291502622129181}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 3.4641016151377544}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 3.4641016151377544}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 6.6332495807108}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 7.0710678118654755}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 4.123105625617661}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 5.744562646538029}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 4.242640687119285}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 4.898979485566356}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 3.4641016151377544}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 3.4641016151377544}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 2}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 6.6332495807108}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 7.810249675906654}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 4.123105625617661}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 6.4031242374328485}, "phdi.containers.base_service.BaseService.__init__": {"tf": 8.246211251235321}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 3.1622776601683795}, "phdi.containers.base_service.BaseService.start": {"tf": 4.47213595499958}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 7.14142842854285}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 3.7416573867739413}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 8.717797887081348}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 5.291502622129181}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 5.291502622129181}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 6.928203230275509}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 5.291502622129181}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 5.291502622129181}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 5.291502622129181}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 5.291502622129181}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 4.898979485566356}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 5.656854249492381}, "phdi.fhir.harmonization.standardize_names": {"tf": 10}, "phdi.fhir.harmonization.standardize_phones": {"tf": 4.898979485566356}, "phdi.fhir.harmonization.standardize_dob": {"tf": 6.6332495807108}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 6.164414002968976}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 6}, "phdi.fhir.tabulation.drop_invalid": {"tf": 6.48074069840786}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 7}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 7.54983443527075}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 8.12403840463596}, "phdi.fhir.tabulation.tabulate_data": {"tf": 6.48074069840786}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 10.770329614269007}, "phdi.fhir.transport.fhir_server_get": {"tf": 6.782329983125268}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 8.660254037844387}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 11.661903789690601}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 8.306623862918075}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 8.717797887081348}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 5.385164807134504}, "phdi.fhir.utils.get_field": {"tf": 8.426149773176359}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 4}, "phdi.fhir.utils.get_one_line_address": {"tf": 4}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 14.560219778561036}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 6.082762530298219}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 6.082762530298219}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 6.928203230275509}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 6.082762530298219}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 6.082762530298219}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 6.082762530298219}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 6.082762530298219}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 4}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 6.557438524302}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 4}, "phdi.harmonization.default_hl7_value": {"tf": 6.164414002968976}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 6.4031242374328485}, "phdi.harmonization.standardize_country_code": {"tf": 7.416198487095663}, "phdi.harmonization.standardize_phone": {"tf": 8.306623862918075}, "phdi.harmonization.standardize_name": {"tf": 10.535653752852738}, "phdi.harmonization.double_metaphone_string": {"tf": 5.656854249492381}, "phdi.harmonization.compare_strings": {"tf": 8}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 3.1622776601683795}, "phdi.harmonization.DoubleMetaphone.parse": {"tf": 3.7416573867739413}, "phdi.harmonization.standardize_birth_date": {"tf": 6}, "phdi.linkage.generate_hash_str": {"tf": 4.898979485566356}, "phdi.linkage.block_data": {"tf": 6}, "phdi.linkage.match_within_block": {"tf": 9.219544457292887}, "phdi.linkage.feature_match_exact": {"tf": 8.06225774829855}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 8.06225774829855}, "phdi.linkage.eval_perfect_match": {"tf": 4.69041575982343}, "phdi.linkage.compile_match_lists": {"tf": 5.744562646538029}, "phdi.linkage.feature_match_four_char": {"tf": 8.06225774829855}, "phdi.linkage.perform_linkage_pass": {"tf": 9.848857801796104}, "phdi.linkage.score_linkage_vs_truth": {"tf": 9.695359714832659}, "phdi.linkage.block_data_from_db": {"tf": 6.082762530298219}, "phdi.linkage.calculate_m_probs": {"tf": 9.1104335791443}, "phdi.linkage.calculate_u_probs": {"tf": 10}, "phdi.linkage.load_json_probs": {"tf": 4.242640687119285}, "phdi.linkage.calculate_log_odds": {"tf": 6.928203230275509}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 8.06225774829855}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 8.06225774829855}, "phdi.linkage.profile_log_odds": {"tf": 9.433981132056603}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 4.69041575982343}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 3.7416573867739413}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 5.291502622129181}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 3}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 5.385164807134504}, "phdi.linkage.write_linkage_config": {"tf": 5.744562646538029}, "phdi.linkage.read_linkage_config": {"tf": 5}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 8.18535277187245}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 5}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 5}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 6.708203932499369}, "phdi.linkage.link_record_against_mpi": {"tf": 8.774964387392123}, "phdi.linkage.add_person_resource": {"tf": 8.426149773176359}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 4}, "phdi.tabulation.load_schema": {"tf": 4.47213595499958}, "phdi.tabulation.validate_schema": {"tf": 3.7416573867739413}, "phdi.tabulation.write_data": {"tf": 13.416407864998739}, "phdi.transport.http_request_with_retry": {"tf": 9.746794344808963}, "phdi.validation.validate_ecr": {"tf": 5.656854249492381}, "phdi.validation.get_ecr_message_ids": {"tf": 3.4641016151377544}, "phdi.validation.get_xml_element_details": {"tf": 4}, "phdi.validation.validate_xml_elements": {"tf": 4}, "phdi.validation.validate_xml_attributes": {"tf": 4}, "phdi.validation.validate_xml_value": {"tf": 4}}, "df": 144, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 10}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 5}}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 2}}}}, "w": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 4}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}}, "df": 1}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}}, "g": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.4142135623730951}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.4142135623730951}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 51, "s": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}}, "df": 2}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 10}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}, "k": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 2}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 2}}, "t": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}}}}}, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 2}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 2}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 2}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 2.23606797749979}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 3.4641016151377544}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1.7320508075688772}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 2}, "phdi.harmonization.standardize_name": {"tf": 2}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_birth_date": {"tf": 1.7320508075688772}, "phdi.linkage.generate_hash_str": {"tf": 2}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 2.6457513110645907}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 2.23606797749979}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 76, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"1": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}, "2": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}, "docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 3}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1}, "phdi.harmonization.DoubleMetaphone.parse": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 61}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 2}}}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 2}}}}}}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}}}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 2.6457513110645907}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 2.449489742783178}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 27}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 18}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 1, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}}, "df": 13}}}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 2.6457513110645907}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 17}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 2}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 6, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 8}}}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {"phdi.linkage.add_person_resource": {"tf": 1}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}}, "df": 1}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 6}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 9}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 2}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}}, "z": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 16}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 8}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}}, "df": 8}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 4, "s": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}}, "df": 1}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 9}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 2}}, "s": {"docs": {"phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {"phdi.linkage.add_person_resource": {"tf": 1}}, "df": 1, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}}, "df": 1}}}}}}, "z": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1.4142135623730951}}, "df": 3}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1}}, "df": 1}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 2, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.7320508075688772}}, "df": 1}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 4}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 7}}}}}}}, "u": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "l": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 10}}, "t": {"docs": {}, "df": 0, "f": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}}, "df": 3}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}}, "df": 7}}}}, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 3, "e": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}}, "df": 2, "r": {"docs": {"phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}}, "df": 12}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 11, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 2}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 7}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 21}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2, "y": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1.4142135623730951}}, "df": 1}, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 2}}, "l": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 3}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 2}}}}}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}, "m": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 3, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 10}}}}}, "x": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 4}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 8}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 4}}}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 17}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 3}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1.4142135623730951}}, "df": 9, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 7}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 5}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.tabulation.write_data": {"tf": 1.7320508075688772}}, "df": 1, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "g": {"2": {"docs": {"phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}}}}, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.add_person_resource": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "q": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}}, "df": 3}}}}}}, "d": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}}}}}, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 2}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {"phdi.linkage.add_person_resource": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 3}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.validation.validate_ecr": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.validation.validate_xml_elements": {"tf": 1}}, "df": 1}}}}}}}}, "d": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1.7320508075688772}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.7320508075688772}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.get_ecr_message_ids": {"tf": 1}}, "df": 62}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 2}}}}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 15, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 5}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {"phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 1}}, "b": {"docs": {"phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 3}}, "g": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 6}}}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 6}}}}}}}}}}}}, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.validation.validate_ecr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 20}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.GeocodeResult.__init__": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 7}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 11, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 5, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 5, "n": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 2, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 2}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 14}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.DoubleMetaphone.parse": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}}, "df": 7, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}}}}}}, "x": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 7}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 3}}}}}}, "l": {"7": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 2}, "j": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 4, "r": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}}, "x": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 4}}}}}, "bases": {"root": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 9}}}, "y": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 9}}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "c": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1.4142135623730951}}, "df": 5}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}}, "df": 2}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}}, "df": 4}}}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}}}}}, "doc": {"root": {"0": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 2}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}}, "df": 5, "s": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}}, "df": 1}}, "1": {"4": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}, "6": {"4": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}}, "df": 1}}, "2": {"0": {"2": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "5": {"docs": {}, "df": 0, "k": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}}, "df": 1}}, "docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 5}, "3": {"6": {"1": {"1": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 2}, "4": {"0": {"1": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1.4142135623730951}}, "df": 1}, "8": {"4": {"0": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}, "docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}}, "df": 2}, "9": {"0": {"2": {"1": {"0": {"docs": {"phdi.linkage.block_data_from_db": {"tf": 2}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 2.23606797749979}}, "df": 3}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {}, "df": 0}, "docs": {"phdi": {"tf": 1.7320508075688772}, "phdi.cloud": {"tf": 1.7320508075688772}, "phdi.cloud.azure": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCredentialManager": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 4.47213595499958}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 3.7416573867739413}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 5.291502622129181}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 5.291502622129181}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 4.358898943540674}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 5.656854249492381}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 4.898979485566356}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 3.4641016151377544}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 5.291502622129181}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 5.744562646538029}, "phdi.cloud.core": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCredentialManager": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 3.4641016151377544}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 3.4641016151377544}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 5.916079783099616}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 4.898979485566356}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 3.4641016151377544}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 5.291502622129181}, "phdi.cloud.gcp": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 3.7416573867739413}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 3.4641016151377544}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 3.4641016151377544}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 3.4641016151377544}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 5.744562646538029}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 4.898979485566356}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 3.4641016151377544}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 5.291502622129181}, "phdi.containers": {"tf": 1.7320508075688772}, "phdi.containers.base_service": {"tf": 1.7320508075688772}, "phdi.containers.base_service.StatusResponse": {"tf": 1.7320508075688772}, "phdi.containers.base_service.BaseService": {"tf": 1.7320508075688772}, "phdi.containers.base_service.BaseService.__init__": {"tf": 5.385164807134504}, "phdi.containers.base_service.BaseService.add_health_check_endpoint": {"tf": 1.7320508075688772}, "phdi.containers.base_service.BaseService.start": {"tf": 3.7416573867739413}, "phdi.fhir": {"tf": 1.7320508075688772}, "phdi.fhir.cloud": {"tf": 1.7320508075688772}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 6.4031242374328485}, "phdi.fhir.conversion": {"tf": 1.7320508075688772}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 5.291502622129181}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 8.48528137423857}, "phdi.fhir.geospatial": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 5.744562646538029}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 5.744562646538029}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.__init__": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 2.6457513110645907}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 6.164414002968976}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 6.164414002968976}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 5.744562646538029}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 5.744562646538029}, "phdi.fhir.harmonization": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 5.830951894845301}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 6.244997998398398}, "phdi.fhir.harmonization.standardize_names": {"tf": 7.14142842854285}, "phdi.fhir.harmonization.standardize_phones": {"tf": 6.082762530298219}, "phdi.fhir.harmonization.standardize_dob": {"tf": 6.6332495807108}, "phdi.fhir.linkage": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 6.708203932499369}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 6.855654600401044}, "phdi.fhir.tabulation": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.drop_invalid": {"tf": 5.385164807134504}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 6.244997998398398}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 6.244997998398398}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 5.477225575051661}, "phdi.fhir.tabulation.tabulate_data": {"tf": 6.928203230275509}, "phdi.fhir.transport": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 8}, "phdi.fhir.transport.fhir_server_get": {"tf": 5.477225575051661}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 6.782329983125268}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 8.54400374531753}, "phdi.fhir.utils": {"tf": 1.7320508075688772}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 5.291502622129181}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 6.4031242374328485}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 5.291502622129181}, "phdi.fhir.utils.get_field": {"tf": 6.557438524302}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 5}, "phdi.fhir.utils.get_one_line_address": {"tf": 4.795831523312719}, "phdi.geospatial": {"tf": 1.7320508075688772}, "phdi.geospatial.GeocodeResult": {"tf": 2.23606797749979}, "phdi.geospatial.GeocodeResult.__init__": {"tf": 1.7320508075688772}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1.7320508075688772}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 5.744562646538029}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 8.18535277187245}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.__init__": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 3.7416573867739413}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 5.830951894845301}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 8.831760866327848}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 6.324555320336759}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 8.831760866327848}, "phdi.harmonization": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 5.744562646538029}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 5.744562646538029}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 6.708203932499369}, "phdi.harmonization.default_hl7_value": {"tf": 7}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 7.14142842854285}, "phdi.harmonization.standardize_country_code": {"tf": 6.557438524302}, "phdi.harmonization.standardize_phone": {"tf": 6.082762530298219}, "phdi.harmonization.standardize_name": {"tf": 7.810249675906654}, "phdi.harmonization.double_metaphone_string": {"tf": 5.291502622129181}, "phdi.harmonization.compare_strings": {"tf": 6.48074069840786}, "phdi.harmonization.DoubleMetaphone": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.check_word_start": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_vowel": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_b": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_c": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_d": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_f": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_g": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_h": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_j": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_k": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_l": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_m": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_n": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_p": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_q": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_r": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_s": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_t": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_v": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_w": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_x": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.process_z": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone.parse": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_birth_date": {"tf": 5.477225575051661}, "phdi.linkage": {"tf": 1.7320508075688772}, "phdi.linkage.generate_hash_str": {"tf": 5.291502622129181}, "phdi.linkage.block_data": {"tf": 5.291502622129181}, "phdi.linkage.match_within_block": {"tf": 6.6332495807108}, "phdi.linkage.feature_match_exact": {"tf": 6.164414002968976}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 6.557438524302}, "phdi.linkage.eval_perfect_match": {"tf": 4.795831523312719}, "phdi.linkage.compile_match_lists": {"tf": 5.291502622129181}, "phdi.linkage.feature_match_four_char": {"tf": 6.164414002968976}, "phdi.linkage.perform_linkage_pass": {"tf": 6.557438524302}, "phdi.linkage.score_linkage_vs_truth": {"tf": 6.164414002968976}, "phdi.linkage.block_data_from_db": {"tf": 5.916079783099616}, "phdi.linkage.calculate_m_probs": {"tf": 5.385164807134504}, "phdi.linkage.calculate_u_probs": {"tf": 6.082762530298219}, "phdi.linkage.load_json_probs": {"tf": 6.244997998398398}, "phdi.linkage.calculate_log_odds": {"tf": 5.916079783099616}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 6.164414002968976}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 6.164414002968976}, "phdi.linkage.profile_log_odds": {"tf": 6.6332495807108}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 4.795831523312719}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 7.280109889280518}, "phdi.linkage.write_linkage_config": {"tf": 9.9498743710662}, "phdi.linkage.read_linkage_config": {"tf": 5.196152422706632}, "phdi.linkage.DIBBsConnectorClient": {"tf": 2.449489742783178}, "phdi.linkage.DIBBsConnectorClient.__init__": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 5.916079783099616}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 5.656854249492381}, "phdi.linkage.link_record_against_mpi": {"tf": 5.291502622129181}, "phdi.linkage.add_person_resource": {"tf": 5.830951894845301}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 5.196152422706632}, "phdi.tabulation": {"tf": 1.7320508075688772}, "phdi.tabulation.load_schema": {"tf": 6.6332495807108}, "phdi.tabulation.validate_schema": {"tf": 5}, "phdi.tabulation.write_data": {"tf": 8.12403840463596}, "phdi.transport": {"tf": 1.7320508075688772}, "phdi.transport.http_request_with_retry": {"tf": 7.745966692414834}, "phdi.validation": {"tf": 1.7320508075688772}, "phdi.validation.validate_ecr": {"tf": 5.744562646538029}, "phdi.validation.get_ecr_message_ids": {"tf": 1.7320508075688772}, "phdi.validation.get_xml_element_details": {"tf": 5.291502622129181}, "phdi.validation.validate_xml_elements": {"tf": 5.0990195135927845}, "phdi.validation.validate_xml_attributes": {"tf": 5.291502622129181}, "phdi.validation.validate_xml_value": {"tf": 5.196152422706632}}, "df": 186, "d": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.7320508075688772}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 9}, "d": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 2.23606797749979}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 2.23606797749979}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 2}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}}, "df": 29, "s": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 6}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 4}, "r": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 2.23606797749979}}, "df": 4, "s": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1}}}}, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}, "s": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 5}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 5}}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 4}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}}, "df": 2}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 3}}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 5}, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 2}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}}}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 3, "w": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 7, "n": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 4}}}, "c": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.DoubleMetaphone": {"tf": 1.4142135623730951}}, "df": 4}}}}, "n": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1, "e": {"docs": {"phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}}, "df": 3}}, "b": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.linkage.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 2}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.7320508075688772}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 2}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 2}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 45}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 9}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "s": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.tabulation.write_data": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1.7320508075688772}}, "df": 1}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.block_data": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.feature_match_log_odds_exact": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 2.23606797749979}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 2.23606797749979}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 5, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 2}}, "a": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2.449489742783178}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 2}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.7320508075688772}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.block_data": {"tf": 2}, "phdi.linkage.match_within_block": {"tf": 2.23606797749979}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.7320508075688772}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_m_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_u_probs": {"tf": 2.23606797749979}, "phdi.linkage.load_json_probs": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 2.6457513110645907}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.7320508075688772}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 3}, "phdi.transport.http_request_with_retry": {"tf": 1.7320508075688772}}, "df": 41, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 4}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 2.23606797749979}}, "df": 9}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_birth_date": {"tf": 1.7320508075688772}}, "df": 2}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.7320508075688772}}, "df": 2}}}}, "e": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 1}}, "b": {"docs": {"phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.7320508075688772}}, "df": 3}}, "a": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 2}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 2.23606797749979}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 2.23606797749979}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 2}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 2.23606797749979}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.7320508075688772}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1.7320508075688772}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 3.1622776601683795}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 2}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 2}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 2}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 2}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 2}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 2}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2.8284271247461903}, "phdi.fhir.harmonization.standardize_names": {"tf": 2}, "phdi.fhir.harmonization.standardize_phones": {"tf": 2}, "phdi.fhir.harmonization.standardize_dob": {"tf": 2.23606797749979}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 2}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2.8284271247461903}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 2}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 2.449489742783178}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 2.449489742783178}, "phdi.fhir.tabulation.tabulate_data": {"tf": 3.7416573867739413}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.fhir_server_get": {"tf": 2.6457513110645907}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 2.23606797749979}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 2.449489742783178}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 3.1622776601683795}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 2.23606797749979}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 2}, "phdi.fhir.utils.get_field": {"tf": 3.3166247903554}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 2.23606797749979}, "phdi.fhir.utils.get_one_line_address": {"tf": 1.7320508075688772}, "phdi.geospatial.GeocodeResult": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 2}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 2}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 2}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 2.23606797749979}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 2.449489742783178}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1.7320508075688772}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 3.3166247903554}, "phdi.harmonization.standardize_country_code": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 2.449489742783178}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.harmonization.DoubleMetaphone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_birth_date": {"tf": 1.7320508075688772}, "phdi.linkage.generate_hash_str": {"tf": 2}, "phdi.linkage.block_data": {"tf": 2.449489742783178}, "phdi.linkage.match_within_block": {"tf": 4.58257569495584}, "phdi.linkage.feature_match_exact": {"tf": 2}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 2.8284271247461903}, "phdi.linkage.eval_perfect_match": {"tf": 1.7320508075688772}, "phdi.linkage.compile_match_lists": {"tf": 2.8284271247461903}, "phdi.linkage.feature_match_four_char": {"tf": 2.23606797749979}, "phdi.linkage.perform_linkage_pass": {"tf": 3.605551275463989}, "phdi.linkage.score_linkage_vs_truth": {"tf": 2.449489742783178}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 3}, "phdi.linkage.calculate_u_probs": {"tf": 3.4641016151377544}, "phdi.linkage.load_json_probs": {"tf": 2}, "phdi.linkage.calculate_log_odds": {"tf": 2.449489742783178}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 2.23606797749979}, "phdi.linkage.profile_log_odds": {"tf": 3.4641016151377544}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 2}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 2.23606797749979}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 2.6457513110645907}, "phdi.linkage.write_linkage_config": {"tf": 3.3166247903554}, "phdi.linkage.read_linkage_config": {"tf": 3}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 2.8284271247461903}, "phdi.linkage.link_record_against_mpi": {"tf": 3.1622776601683795}, "phdi.linkage.add_person_resource": {"tf": 1.7320508075688772}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.7320508075688772}, "phdi.tabulation.load_schema": {"tf": 2.8284271247461903}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 3.7416573867739413}, "phdi.transport.http_request_with_retry": {"tf": 1.7320508075688772}, "phdi.validation.validate_ecr": {"tf": 3.1622776601683795}, "phdi.validation.get_xml_element_details": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_elements": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 128, "z": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 8, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1.4142135623730951}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 9, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1.4142135623730951}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 4}}}, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}}, "df": 4}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 3}}}}}, "n": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 2.449489742783178}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 40, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1.7320508075688772}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2.23606797749979}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.7320508075688772}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 2.23606797749979}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 2.8284271247461903}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 2}, "phdi.linkage.calculate_u_probs": {"tf": 2}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 2}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 2.23606797749979}, "phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.4142135623730951}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 2}, "phdi.transport.http_request_with_retry": {"tf": 1.7320508075688772}, "phdi.validation.validate_ecr": {"tf": 2}, "phdi.validation.get_xml_element_details": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_elements": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 77}, "y": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 5}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 9}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}}, "df": 3}}}}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 4}}}}}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.7320508075688772}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2.23606797749979}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.match_within_block": {"tf": 2}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 2.23606797749979}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.4142135623730951}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 2}, "phdi.validation.get_xml_element_details": {"tf": 1.4142135623730951}}, "df": 57, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 7}}}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 5}, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}}, "df": 3}}}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 8}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}, "b": {"docs": {}, "df": 0, "c": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}}, "df": 1}, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 6}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 1}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}}}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 9}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"4": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1}, "docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 2.23606797749979}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 2}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 2.23606797749979}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 2.6457513110645907}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 2.449489742783178}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 2.449489742783178}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 2.6457513110645907}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 15, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 6}}}}}}, "s": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}}, "df": 3}}}}}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2.23606797749979}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2.6457513110645907}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1.7320508075688772}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 2}, "phdi.linkage.calculate_u_probs": {"tf": 2}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.7320508075688772}, "phdi.linkage.write_linkage_config": {"tf": 2}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}}, "df": 30, "a": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 2}}}, "l": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 2}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.7320508075688772}, "phdi.linkage.eval_perfect_match": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 26, "o": {"docs": {}, "df": 0, "w": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "g": {"docs": {}, "df": 0, "o": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 1.7320508075688772}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.7320508075688772}, "phdi.linkage.write_linkage_config": {"tf": 2}, "phdi.linkage.read_linkage_config": {"tf": 2}, "phdi.linkage.link_record_against_mpi": {"tf": 1.7320508075688772}}, "df": 11}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 4}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 3}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "a": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 2}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1.7320508075688772}}, "df": 4}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}}, "df": 3}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 2}}}}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 3}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1.4142135623730951}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 12, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 2}}, "df": 2, "s": {"docs": {"phdi.validation.validate_xml_elements": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 2}}}}}}}}}, "f": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 10, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 14, "s": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}}, "df": 3}}}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 7, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 6}, "d": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.7320508075688772}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}}, "df": 5}}}}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 2}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 8}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 3}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 6, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 2}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 2}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 2}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}}, "df": 13, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 22}}}, "s": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 5}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 10, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}}, "df": 3}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "g": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1.7320508075688772}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 7, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 5}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.validation.get_xml_element_details": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}}, "df": 2}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 6, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}}, "df": 1}, "d": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 2}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 3}}}}}}}}, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}}}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}, "a": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}, "d": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}, "x": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 2}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 4, "s": {"docs": {"phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 4}, "d": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.4142135623730951}}, "df": 4}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 5, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.7320508075688772}}, "df": 6}}}}}, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}, "d": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.validation.validate_ecr": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 11, "s": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.DoubleMetaphone": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}}, "df": 2}}}}}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 3, "n": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 2.8284271247461903}, "phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 2}}, "df": 1}}}}}}}, "p": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 15}}, "l": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 7, "u": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1.7320508075688772}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 13, "s": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 9}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 1}}}}, "s": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 3}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 1}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 4, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}}, "df": 3}}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 2}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 14}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}}, "df": 3}}}}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1.7320508075688772}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 6, "s": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 2}}}}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 4, "s": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.7320508075688772}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}}, "df": 6}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1.4142135623730951}, "phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.start": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 1}}}, "s": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 12, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}}, "df": 3}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}}, "df": 8}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 2.6457513110645907}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 8, "s": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 4}}, "d": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 2}}, "s": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 3}}}}}}}, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 1}}}}}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.DoubleMetaphone": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 8}}}}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "f": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 2}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1, "a": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.7320508075688772}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}}, "df": 4}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 10}}}, "s": {"docs": {}, "df": 0, "v": {"docs": {"phdi.tabulation.write_data": {"tf": 2}}, "df": 1}}}, "m": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1.7320508075688772}}, "df": 5, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.7320508075688772}, "phdi.fhir.transport.fhir_server_get": {"tf": 1.4142135623730951}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 13}, "d": {"docs": {"phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 1}}}, "p": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 2.23606797749979}}, "df": 3, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 14}}}}}, "y": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 3}, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}, "x": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 3.3166247903554}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 2}, "phdi.linkage.eval_perfect_match": {"tf": 2}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.7320508075688772}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 2.6457513110645907}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 2}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 23, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_elements": {"tf": 1}}, "df": 11}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 2}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 2}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 2.449489742783178}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 17}, "d": {"docs": {"phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_elements": {"tf": 1}}, "df": 4}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 2}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 2}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 2}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 2}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 2}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 2.23606797749979}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 2.8284271247461903}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 10, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 2}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 6}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 5}}}}, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}}, "df": 4}}}}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}}, "df": 7}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.compare_strings": {"tf": 2.449489742783178}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.7320508075688772}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 2}}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "m": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 14}}}, "y": {"docs": {"phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 1}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}, "e": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 15}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}, "m": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_birth_date": {"tf": 1.7320508075688772}}, "df": 2}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 10}}, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 3}}}}}}}, "s": {"docs": {}, "df": 0, "h": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 3}}, "p": {"docs": {}, "df": 0, "i": {"docs": {"phdi.linkage.BaseMPIConnectorClient": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.link_record_against_mpi": {"tf": 2}}, "df": 5}}, "r": {"docs": {}, "df": 0, "n": {"4": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1}, "docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 2}}}, "u": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1.7320508075688772}}, "df": 3, "s": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 2, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 3.3166247903554}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 21, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 38}, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.7320508075688772}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 5}, "r": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 5, "s": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1.7320508075688772}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}}, "df": 23}}}, "a": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}}, "df": 1, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {}, "df": 0, "l": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 2.449489742783178}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.7320508075688772}, "phdi.fhir.transport.fhir_server_get": {"tf": 1.7320508075688772}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1.7320508075688772}}, "df": 10}, "b": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}}, "df": 3}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "f": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}}, "df": 1}}, "p": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 4}}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.7320508075688772}}, "df": 2}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}}, "df": 2}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 2}}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 2}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}}, "df": 1}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}}, "df": 2}}}}}}}}, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.tabulation.load_schema": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}}}}}}}, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 8}}}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}, "k": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}}}, "f": {"1": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 2}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.linkage.generate_hash_str": {"tf": 1.7320508075688772}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 3}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.7320508075688772}, "phdi.linkage.block_data_from_db": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_m_probs": {"tf": 2.23606797749979}, "phdi.linkage.calculate_u_probs": {"tf": 2.449489742783178}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.read_linkage_config": {"tf": 2}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_elements": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}}, "df": 66, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.4142135623730951}}, "df": 1}}, "m": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.7320508075688772}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 5, "a": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 2}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 2}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 2.23606797749979}}, "df": 12, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 24}}}, "s": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 2}}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1.7320508075688772}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 4}}}, "s": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1.4142135623730951}}, "df": 14}}, "r": {"docs": {"phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}}, "df": 2}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 2}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 37}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 19}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.validation.validate_ecr": {"tf": 1.4142135623730951}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 2}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 2}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_phones": {"tf": 2}, "phdi.fhir.harmonization.standardize_dob": {"tf": 2.23606797749979}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 2.23606797749979}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 2}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.fhir_server_get": {"tf": 2}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 3.1622776601683795}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 3}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.7320508075688772}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.7320508075688772}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_field": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.4142135623730951}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 42, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 2.23606797749979}}, "df": 1}}}}}}, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 2.6457513110645907}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 2}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1.7320508075688772}, "phdi.tabulation.load_schema": {"tf": 2.8284271247461903}, "phdi.tabulation.write_data": {"tf": 2.449489742783178}}, "df": 19, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.7320508075688772}}, "df": 8, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "s": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 2}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 2}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 5}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 4}}, "d": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 3.605551275463989}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 2.23606797749979}, "phdi.harmonization.default_hl7_value": {"tf": 2.449489742783178}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 2}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 16, "s": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 2.6457513110645907}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_elements": {"tf": 1}}, "df": 17}}}}, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"4": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 2}, "docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.7320508075688772}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 16}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}, "o": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 2}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.7320508075688772}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 2.449489742783178}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 23, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 9}}}}}, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}}, "df": 3}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 6}}, "z": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 2}}, "df": 4}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 3.1622776601683795}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.7320508075688772}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.7320508075688772}, "phdi.linkage.write_linkage_config": {"tf": 2.23606797749979}}, "df": 10, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 2.23606797749979}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 7}}}}}}}}, "t": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 8, "o": {"docs": {"phdi.cloud.azure.AzureCredentialManager": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 3}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 2.23606797749979}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 2.23606797749979}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 2}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 2.23606797749979}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 2.6457513110645907}, "phdi.fhir.transport.fhir_server_get": {"tf": 1.7320508075688772}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 3}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 3}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 2}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.7320508075688772}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_field": {"tf": 2}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1.7320508075688772}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 2.23606797749979}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 2.23606797749979}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 2.23606797749979}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 2}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 2}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1.7320508075688772}, "phdi.harmonization.default_hl7_value": {"tf": 2}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 2.6457513110645907}, "phdi.harmonization.standardize_birth_date": {"tf": 1.4142135623730951}, "phdi.linkage.generate_hash_str": {"tf": 2}, "phdi.linkage.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 3.3166247903554}, "phdi.linkage.feature_match_exact": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 2.449489742783178}, "phdi.linkage.feature_match_four_char": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 2.6457513110645907}, "phdi.linkage.score_linkage_vs_truth": {"tf": 2.6457513110645907}, "phdi.linkage.calculate_m_probs": {"tf": 2.449489742783178}, "phdi.linkage.calculate_u_probs": {"tf": 3.3166247903554}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 2}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 2.23606797749979}, "phdi.linkage.profile_log_odds": {"tf": 2.6457513110645907}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 2}, "phdi.linkage.write_linkage_config": {"tf": 3.3166247903554}, "phdi.linkage.read_linkage_config": {"tf": 2}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 2}, "phdi.linkage.link_record_against_mpi": {"tf": 3.3166247903554}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}, "phdi.tabulation.load_schema": {"tf": 2}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 3.872983346207417}, "phdi.transport.http_request_with_retry": {"tf": 2.449489742783178}, "phdi.validation.validate_ecr": {"tf": 2}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 100, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 2}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}}, "df": 8}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 3.4641016151377544}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 2}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 2.6457513110645907}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 2.449489742783178}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 3.1622776601683795}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 2.449489742783178}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 2.449489742783178}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 2.23606797749979}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 2.449489742783178}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.7320508075688772}, "phdi.containers.base_service.StatusResponse": {"tf": 1.7320508075688772}, "phdi.containers.base_service.BaseService.__init__": {"tf": 2.8284271247461903}, "phdi.containers.base_service.BaseService.start": {"tf": 1.4142135623730951}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 2.449489742783178}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 3.3166247903554}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 2.6457513110645907}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 2}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 2}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 4}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_dob": {"tf": 2.6457513110645907}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 3}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 2.6457513110645907}, "phdi.fhir.tabulation.drop_invalid": {"tf": 3.605551275463989}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 2.8284271247461903}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 2.8284271247461903}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 2.6457513110645907}, "phdi.fhir.tabulation.tabulate_data": {"tf": 5.0990195135927845}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 4.358898943540674}, "phdi.fhir.transport.fhir_server_get": {"tf": 2}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 3.3166247903554}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 3.7416573867739413}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 2}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 3}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 2}, "phdi.fhir.utils.get_field": {"tf": 4.795831523312719}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 2.23606797749979}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 2.449489742783178}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 2.449489742783178}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 2.449489742783178}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 2.23606797749979}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 3}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 2.23606797749979}, "phdi.harmonization.default_hl7_value": {"tf": 3.3166247903554}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 3}, "phdi.harmonization.standardize_country_code": {"tf": 3}, "phdi.harmonization.standardize_phone": {"tf": 3.605551275463989}, "phdi.harmonization.standardize_name": {"tf": 1.7320508075688772}, "phdi.harmonization.double_metaphone_string": {"tf": 2.8284271247461903}, "phdi.harmonization.compare_strings": {"tf": 3.3166247903554}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1.4142135623730951}, "phdi.linkage.generate_hash_str": {"tf": 3.1622776601683795}, "phdi.linkage.block_data": {"tf": 2.23606797749979}, "phdi.linkage.match_within_block": {"tf": 4.47213595499958}, "phdi.linkage.feature_match_exact": {"tf": 3}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 4}, "phdi.linkage.eval_perfect_match": {"tf": 1.7320508075688772}, "phdi.linkage.compile_match_lists": {"tf": 3}, "phdi.linkage.feature_match_four_char": {"tf": 3.1622776601683795}, "phdi.linkage.perform_linkage_pass": {"tf": 2.449489742783178}, "phdi.linkage.score_linkage_vs_truth": {"tf": 3.3166247903554}, "phdi.linkage.block_data_from_db": {"tf": 3}, "phdi.linkage.calculate_m_probs": {"tf": 3.7416573867739413}, "phdi.linkage.calculate_u_probs": {"tf": 4.242640687119285}, "phdi.linkage.load_json_probs": {"tf": 2.6457513110645907}, "phdi.linkage.calculate_log_odds": {"tf": 2}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 3.3166247903554}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 4}, "phdi.linkage.profile_log_odds": {"tf": 3.605551275463989}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 2.23606797749979}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 3.1622776601683795}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 2.8284271247461903}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 3}, "phdi.linkage.write_linkage_config": {"tf": 4}, "phdi.linkage.read_linkage_config": {"tf": 2.8284271247461903}, "phdi.linkage.DIBBsConnectorClient": {"tf": 2.6457513110645907}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 3}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 4}, "phdi.linkage.link_record_against_mpi": {"tf": 3.7416573867739413}, "phdi.linkage.add_person_resource": {"tf": 2.23606797749979}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.7320508075688772}, "phdi.tabulation.load_schema": {"tf": 2.8284271247461903}, "phdi.tabulation.validate_schema": {"tf": 2}, "phdi.tabulation.write_data": {"tf": 4.47213595499958}, "phdi.transport.http_request_with_retry": {"tf": 3.7416573867739413}, "phdi.validation.validate_ecr": {"tf": 2.449489742783178}, "phdi.validation.get_xml_element_details": {"tf": 3.1622776601683795}, "phdi.validation.validate_xml_elements": {"tf": 2}, "phdi.validation.validate_xml_attributes": {"tf": 3.872983346207417}, "phdi.validation.validate_xml_value": {"tf": 3.7416573867739413}}, "df": 122, "n": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 8}, "m": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 5}, "y": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 2}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 14}, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 4, "o": {"docs": {}, "df": 0, "f": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 6}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 5}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 34}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 2.23606797749979}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 2}, "phdi.linkage.calculate_m_probs": {"tf": 2}, "phdi.linkage.calculate_u_probs": {"tf": 2}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 2.23606797749979}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 2}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 45}, "n": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}}, "df": 1}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 3}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1.7320508075688772}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 11}}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 2.23606797749979}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 2}, "phdi.linkage.score_linkage_vs_truth": {"tf": 2}, "phdi.linkage.calculate_m_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_u_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 2.23606797749979}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 26}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}}}}}}}}}}}, "i": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}}, "df": 3}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 2}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 2}}}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}}, "df": 1}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1.7320508075688772}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 2}}, "df": 1}}}}}, "y": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "z": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 2}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 3}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}, "r": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 2.23606797749979}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 2.23606797749979}, "phdi.fhir.tabulation.tabulate_data": {"tf": 3}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.tabulation.write_data": {"tf": 2}}, "df": 7, "s": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.tabulation.validate_schema": {"tf": 1.4142135623730951}}, "df": 4}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2, "n": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 2}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 2}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 2.449489742783178}, "phdi.transport.http_request_with_retry": {"tf": 2.23606797749979}}, "df": 18, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.7320508075688772}}, "df": 4}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "o": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.4142135623730951}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 5, "s": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}}, "df": 2}}}}, "r": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 2}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 8}}}, "n": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 3, "e": {"docs": {}, "df": 0, "w": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 2.6457513110645907}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 2.6457513110645907}, "phdi.linkage.link_record_against_mpi": {"tf": 2}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 11, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.add_person_resource": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 4}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1.7320508075688772}}, "df": 4}}}}, "x": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 2}}, "df": 2}}, "g": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}, "o": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 2}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}}, "df": 14, "n": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.7320508075688772}}, "df": 2, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 2}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 20, "/": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1}}}}}}}, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 2}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 19, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 3}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 4}}}}}}}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 2}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.compare_strings": {"tf": 2}}, "df": 1}}}}}}}}, "w": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 2.23606797749979}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 2.23606797749979}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2.449489742783178}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 2.8284271247461903}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 2.23606797749979}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.7320508075688772}, "phdi.tabulation.write_data": {"tf": 2}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 40, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 18}, "d": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 3}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}}}, "u": {"docs": {}, "df": 0, "m": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 2, "b": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 3}, "phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 19, "s": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 5}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 11}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 20, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 2}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 2}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 2}}, "df": 5}}}}}, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 2.6457513110645907}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 48, "g": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "x": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 2}}}}}}}}}}}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.geospatial.GeocodeResult": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}}}}}}}, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 12, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 6}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 8, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 7}}}}}}}}, "f": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 2.23606797749979}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 2}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 2.23606797749979}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 2}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 2}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 2.23606797749979}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 3}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2.6457513110645907}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 2}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.tabulate_data": {"tf": 3.7416573867739413}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 2}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 2.23606797749979}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.4142135623730951}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 2}, "phdi.fhir.utils.get_field": {"tf": 3.1622776601683795}, "phdi.fhir.utils.get_one_line_address": {"tf": 1.4142135623730951}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.7320508075688772}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 3}, "phdi.harmonization.standardize_country_code": {"tf": 2.23606797749979}, "phdi.harmonization.standardize_phone": {"tf": 2.23606797749979}, "phdi.harmonization.standardize_name": {"tf": 2}, "phdi.harmonization.double_metaphone_string": {"tf": 2.23606797749979}, "phdi.harmonization.compare_strings": {"tf": 2.449489742783178}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 2.23606797749979}, "phdi.linkage.generate_hash_str": {"tf": 2.23606797749979}, "phdi.linkage.block_data": {"tf": 2.449489742783178}, "phdi.linkage.match_within_block": {"tf": 4.123105625617661}, "phdi.linkage.feature_match_exact": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 2}, "phdi.linkage.eval_perfect_match": {"tf": 1.7320508075688772}, "phdi.linkage.compile_match_lists": {"tf": 3}, "phdi.linkage.feature_match_four_char": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 2.23606797749979}, "phdi.linkage.score_linkage_vs_truth": {"tf": 3.1622776601683795}, "phdi.linkage.block_data_from_db": {"tf": 2}, "phdi.linkage.calculate_m_probs": {"tf": 2.8284271247461903}, "phdi.linkage.calculate_u_probs": {"tf": 3.4641016151377544}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 2.23606797749979}, "phdi.linkage.profile_log_odds": {"tf": 3.1622776601683795}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 2.23606797749979}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 3}, "phdi.linkage.write_linkage_config": {"tf": 3.4641016151377544}, "phdi.linkage.read_linkage_config": {"tf": 2.23606797749979}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 2}, "phdi.linkage.link_record_against_mpi": {"tf": 2.8284271247461903}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.7320508075688772}, "phdi.tabulation.validate_schema": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 2.8284271247461903}, "phdi.transport.http_request_with_retry": {"tf": 2.449489742783178}, "phdi.validation.validate_ecr": {"tf": 2.449489742783178}, "phdi.validation.get_xml_element_details": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_elements": {"tf": 2.23606797749979}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 2.449489742783178}}, "df": 107, "f": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}}, "df": 2}}}}}}}, "n": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 2}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 33, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2.23606797749979}, "phdi.fhir.utils.get_one_line_address": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 29, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 9}}}}, "s": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}}}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 1}}}}}}, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 4, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 3}}, "df": 2}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 2}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 14}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}}}}}}}}, "w": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 3}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 7}}}}, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 2}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.4142135623730951}}, "df": 6}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"phdi.tabulation.write_data": {"tf": 2}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 8, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 102}}}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 5, "d": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 3}, "s": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 2}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.DoubleMetaphone": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 3}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 3}}}, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 3}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.tabulation.write_data": {"tf": 2.6457513110645907}}, "df": 1, "w": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.validation.validate_xml_value": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}}, "df": 2}}}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.read_linkage_config": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 7}, "s": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 2.23606797749979}, "phdi.linkage.load_json_probs": {"tf": 1.7320508075688772}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 2.23606797749979}}, "df": 7, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 2.449489742783178}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 2.449489742783178}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 3.1622776601683795}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.linkage.add_person_resource": {"tf": 1.7320508075688772}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 2.449489742783178}}, "df": 27, "s": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 1}}}}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.7320508075688772}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 5}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.7320508075688772}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_m_probs": {"tf": 2}, "phdi.linkage.calculate_u_probs": {"tf": 2}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}}, "df": 8, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.7320508075688772}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 7}, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}}, "df": 1, "r": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}, "s": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 5}, "d": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 2}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1.4142135623730951}, "phdi.tabulation.load_schema": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 20}}}}}, "j": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1.4142135623730951}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 6}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 4}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 4}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_u_probs": {"tf": 1.7320508075688772}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 2}, "phdi.linkage.calculate_u_probs": {"tf": 2.23606797749979}, "phdi.linkage.load_json_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_log_odds": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}, "s": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}}, "df": 1}}, "d": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {"phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 2, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "x": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 4}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 2, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 3}}}}}}}, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}, "i": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 3}, "d": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}}, "df": 3}}, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 4}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.7320508075688772}}, "df": 1, "s": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1.7320508075688772}}, "df": 5, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "m": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 15}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.DoubleMetaphone": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}}, "df": 4}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 2}}}}}}}, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 2.6457513110645907}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 3.605551275463989}, "phdi.linkage.link_record_against_mpi": {"tf": 2.23606797749979}, "phdi.linkage.add_person_resource": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 13}}}, "o": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_phones": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 3.4641016151377544}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.4142135623730951}}, "df": 3, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}}, "df": 2, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 1}}}}}}}, "s": {"docs": {"phdi.fhir.harmonization.standardize_phones": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 2}}}}}, "q": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}, "r": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 2, "e": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 2.449489742783178}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 2.6457513110645907}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 2.23606797749979}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_dob": {"tf": 2}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 2.6457513110645907}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.7320508075688772}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 2}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 2}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1.7320508075688772}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.4142135623730951}}, "df": 35, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 13}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1.7320508075688772}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 2}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 11, "s": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}}, "df": 1}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}}, "df": 1}}}}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 2}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 11, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 5}}}, "s": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 6, "/": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {"phdi.validation.validate_ecr": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 3.3166247903554}, "phdi.fhir.transport.fhir_server_get": {"tf": 1.7320508075688772}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 3.3166247903554}}, "df": 7, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}}, "df": 5}}, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 2}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 6}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 3}, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 6}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1.7320508075688772}}, "df": 4}}}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 11, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.7320508075688772}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.4142135623730951}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.4142135623730951}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 95}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 2}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 27}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}}, "df": 1}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.BaseMPIConnectorClient": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 2}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}}, "df": 2, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}, "s": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "f": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}}, "df": 3}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1.4142135623730951}}, "df": 2}, "s": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}, "g": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 4}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 4}}}}}}, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 2}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.eval_perfect_match": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 6}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.utils.get_one_line_address": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 3, "s": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.7320508075688772}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 3}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 7}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 3}}}}}}}}, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.7320508075688772}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2, "d": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 1}, "s": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}}, "df": 2}}, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}}, "df": 2}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 4}}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.match_within_block": {"tf": 2}, "phdi.linkage.feature_match_exact": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_four_char": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.7320508075688772}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 2.23606797749979}, "phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 2.449489742783178}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 20, "s": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 2.449489742783178}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 2.449489742783178}, "phdi.linkage.block_data_from_db": {"tf": 2}, "phdi.linkage.calculate_m_probs": {"tf": 2.23606797749979}, "phdi.linkage.calculate_u_probs": {"tf": 2.449489742783178}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 2}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}}, "df": 18}}}, "m": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.validation.validate_ecr": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "w": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 12}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1.4142135623730951}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 14}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 1}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 3}}}}}, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 2.23606797749979}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}}, "df": 2}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}, "w": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 3}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.7320508075688772}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 2}}, "df": 5, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 3}}}, "n": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 14}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 1}}}, "l": {"docs": {"phdi.tabulation.load_schema": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "k": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 4, "u": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}}, "df": 2}}, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}, "n": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 2, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 1}}}}}}}, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.standardize_name": {"tf": 2}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 4}}}, "g": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 2}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.4142135623730951}}, "df": 6, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"phdi.tabulation.load_schema": {"tf": 1}}, "df": 1}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.tabulation.load_schema": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2.6457513110645907}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2.8284271247461903}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 2}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.7320508075688772}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_phone": {"tf": 2}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.linkage.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.match_within_block": {"tf": 2.23606797749979}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 2.23606797749979}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.7320508075688772}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.read_linkage_config": {"tf": 2}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_elements": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_attributes": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 47, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2}, "phdi.linkage.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 19}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.validation.validate_xml_value": {"tf": 1}}, "df": 1}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}}, "df": 2}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1.7320508075688772}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1.4142135623730951}}, "df": 2, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}, "k": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 5}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 2}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.7320508075688772}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 2.23606797749979}, "phdi.linkage.read_linkage_config": {"tf": 2.449489742783178}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 2.23606797749979}}, "df": 10}}}}}, "b": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"4": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}, "docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 6}}, "t": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2}}}}}}}, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}}}}}}}}}}}}, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}}}, "t": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_containers": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_containers": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 2}}, "df": 20, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 3, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}}, "df": 2}, "d": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.7320508075688772}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 10, "s": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.7320508075688772}}, "df": 2}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 3}, "phdi.tabulation.load_schema": {"tf": 2}, "phdi.tabulation.validate_schema": {"tf": 2.23606797749979}}, "df": 6}}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 1}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.__init__": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 14, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 5, "s": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 2.23606797749979}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 20}, "s": {"docs": {"phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 3}}}}}}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 6, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"1": {"docs": {"phdi.harmonization.compare_strings": {"tf": 3.1622776601683795}}, "df": 1}, "2": {"docs": {"phdi.harmonization.compare_strings": {"tf": 3}}, "df": 1}, "docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.7320508075688772}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 2.23606797749979}, "phdi.harmonization.compare_strings": {"tf": 1.7320508075688772}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1.4142135623730951}, "phdi.linkage.generate_hash_str": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 2}, "phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.validation.get_xml_element_details": {"tf": 1.4142135623730951}}, "df": 33, "s": {"docs": {"phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 8}}}, "p": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}}, "df": 1}}, "e": {"docs": {}, "df": 0, "t": {"2": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}, "docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 2}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 2.23606797749979}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 2.449489742783178}}, "df": 8}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 5}}}}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 7}}, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1.4142135623730951}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 12}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 5, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 4, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 5}, "d": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}}, "df": 7}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 4}}, "e": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 5, "s": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}}, "df": 1}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 2}}}}}}}}, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}}, "df": 1}}}, "u": {"3": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "r": {"4": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0}}}, "docs": {}, "df": 0}, "e": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 2.23606797749979}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}}, "df": 23}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 2.6457513110645907}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 7, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1.7320508075688772}}, "df": 2}}}, "s": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.__init__": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.fhir_server_get": {"tf": 2}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 2.23606797749979}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.7320508075688772}}, "df": 9}, "s": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.7320508075688772}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 2}}}}, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}, "t": {"docs": {"phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 13, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}}, "df": 3}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 2.6457513110645907}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.7320508075688772}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}}, "df": 4, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 2}}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1.7320508075688772}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}}, "df": 3}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 2}}}}}}, "g": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 2.6457513110645907}, "phdi.harmonization.default_hl7_value": {"tf": 2.449489742783178}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 2.8284271247461903}}, "df": 4, "s": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 3}, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}, "x": {"docs": {"phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 3}}, "u": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 5}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 2}}, "df": 7}}, "s": {"docs": {"phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 1}}}}}}, "c": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 4}}}}}}}, "h": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 7}}, "b": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 5}}}}}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.fhir_server_get": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}, "g": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}}}}, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 4, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}}, "df": 2}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2}}}}}}}}, "d": {"docs": {}, "df": 0, "k": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 2}}, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 2}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 7}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 2}}}, "e": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.linkage.generate_hash_str": {"tf": 1.4142135623730951}}, "df": 3}}, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}, "e": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}}}, "y": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1}, "k": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 1}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1.4142135623730951}}, "df": 10}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 3}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}}}}}}}, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.compare_strings": {"tf": 2.6457513110645907}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}}, "df": 4}}}, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}, "y": {"docs": {"phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 1}}}}}}, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 2}, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.add_person_resource": {"tf": 1}}, "df": 1}}}}}}}}}, "o": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 2, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1}}}, "s": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 1}}, "q": {"docs": {}, "df": 0, "l": {"docs": {"phdi.tabulation.write_data": {"tf": 2.449489742783178}}, "df": 1}}}, "g": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 18, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.transport.fhir_server_get": {"tf": 1.4142135623730951}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 4, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.core.BaseCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 6}}, "o": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}}, "df": 10, "r": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 2}}}}}}, "d": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 10}, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 7}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}}, "df": 10}}}}}}}, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 2}, "s": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 6}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}}}}, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1, "n": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.transport.fhir_server_get": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 55}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}}}}}, "c": {"docs": {}, "df": 0, "p": {"docs": {"phdi.cloud.gcp.GcpCredentialManager": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}}, "df": 7, "c": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.gcp.GcpCloudStorageConnection.__init__": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "p": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1.4142135623730951}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 2}}, "/": {"docs": {}, "df": 0, "[": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 2}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 12, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2.8284271247461903}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_dob": {"tf": 2}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2.449489742783178}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 2.8284271247461903}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.7320508075688772}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 2}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 2.8284271247461903}, "phdi.linkage.feature_match_exact": {"tf": 2.449489742783178}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 2.449489742783178}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.7320508075688772}, "phdi.linkage.feature_match_four_char": {"tf": 2.449489742783178}, "phdi.linkage.perform_linkage_pass": {"tf": 2}, "phdi.linkage.score_linkage_vs_truth": {"tf": 2}, "phdi.linkage.calculate_m_probs": {"tf": 2.23606797749979}, "phdi.linkage.calculate_u_probs": {"tf": 2.23606797749979}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 2.449489742783178}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 2.449489742783178}, "phdi.linkage.profile_log_odds": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.link_record_against_mpi": {"tf": 1.7320508075688772}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 3}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 72, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}, "t": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 2}}, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 3}}}}}}}}, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 5}}}, "r": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}}, "df": 3}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 4, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.core.BaseCredentialManager": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 5}}}}, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}}}}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 3}}}}, "g": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.harmonization.normalize_hl7_datetime": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 12}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}}, "df": 1}}}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}}}}, "c": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.7320508075688772}}, "df": 9, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 4}, "d": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 12}}}}}}, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.block_data_from_db": {"tf": 1.7320508075688772}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}}, "df": 5}}}}, "r": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 2}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.get_xml_element_details": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 11}}}}}}}}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.tabulation.drop_invalid": {"tf": 2.23606797749979}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 4}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 9}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 2}}}}, "e": {"docs": {}, "df": 0, "x": {"docs": {"phdi.fhir.utils.get_field": {"tf": 2}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}}, "df": 11, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}, "p": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.harmonization.DoubleMetaphone": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}}, "df": 2}}}}, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.feature_match_log_odds_exact": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "d": {"docs": {"phdi.cloud.gcp.GcpCredentialManager.get_project_id": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.7320508075688772}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 2.23606797749979}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 3.1622776601683795}, "phdi.linkage.link_record_against_mpi": {"tf": 1.7320508075688772}, "phdi.linkage.add_person_resource": {"tf": 1.4142135623730951}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.7320508075688772}}, "df": 13, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}}, "df": 2}}, "f": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}}, "df": 2}, "r": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_country_code": {"tf": 2}, "phdi.linkage.generate_hash_str": {"tf": 1.7320508075688772}}, "df": 4, "s": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}}, "df": 1}}, "d": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 2}}}}}}}}, "s": {"docs": {"phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}}, "df": 4}, "x": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 7}}, "f": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_credential_object": {"tf": 1}, "phdi.cloud.gcp.GcpCredentialManager.get_access_token": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 2}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 2}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.7320508075688772}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_field": {"tf": 2.6457513110645907}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 2}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 2}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 2}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 2}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 2.23606797749979}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 2}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 2}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 3.1622776601683795}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 65}, "s": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 2}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_field": {"tf": 2}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.7320508075688772}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 2.449489742783178}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 2}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_u_probs": {"tf": 2.23606797749979}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 2}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 3}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_attributes": {"tf": 1.7320508075688772}}, "df": 62, "o": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}}, "df": 2}}, "t": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 2}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 12, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 7, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "f": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}}, "df": 5}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 4}}}}}}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}}}}, "g": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1.4142135623730951}}, "df": 1}}}, "e": {"docs": {"phdi.validation.validate_xml_value": {"tf": 1}}, "df": 1}}, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}}, "df": 24, "x": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}}, "df": 1}}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 2}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 2.449489742783178}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}}, "df": 1}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 2.23606797749979}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}}}}}, "s": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}}, "df": 2}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.tabulation.validate_schema": {"tf": 1}}, "df": 1}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 4, "s": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 3}, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.7320508075688772}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 7}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 1}}, "df": 2, "s": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 4}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.4142135623730951}}, "df": 1, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}}}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 5}}}}, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 2}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 6, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}}, "df": 2}}}}}, "c": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}}, "df": 3}}}}}, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}}, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}}, "df": 4, "s": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 1, "d": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}}, "df": 3}, "s": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 2}}}}}, "d": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}}, "df": 1, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.start": {"tf": 1.4142135623730951}}, "df": 3}}}}}}, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.tabulation.validate_schema": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1.7320508075688772}}, "df": 3}}}, "y": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}}, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 3}}}}}}}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 2}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}}}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.4142135623730951}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 15}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 2}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}}, "df": 2}}}, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 7}}}}, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 2}, "phdi.linkage.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 20}}, "r": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}}, "df": 1, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1.7320508075688772}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 3}}}}}, "f": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "c": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 2.23606797749979}}, "df": 2}}, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}}, "df": 1}}}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 2}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 2.449489742783178}, "phdi.validation.validate_xml_elements": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 2.23606797749979}, "phdi.validation.validate_xml_value": {"tf": 2.8284271247461903}}, "df": 10, "s": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1.7320508075688772}, "phdi.tabulation.validate_schema": {"tf": 1.4142135623730951}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1.7320508075688772}}, "df": 7}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.validation.validate_xml_elements": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}}, "df": 2}}}, "s": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}}, "df": 2}, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 7, "s": {"docs": {"phdi.validation.validate_ecr": {"tf": 1.7320508075688772}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 2}}}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}}, "df": 5}}, "v": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}}, "df": 2, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 8, "d": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 8}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 4}}}}}}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 1, "t": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.extract_blocking_values_from_record": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}}, "df": 1}}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.calculate_log_odds": {"tf": 1}}, "df": 1, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 2}}}}}}}}, "b": {"docs": {"phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}}, "df": 2, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_access_token": {"tf": 1}, "phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 2.6457513110645907}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 2.23606797749979}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.7320508075688772}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 2.23606797749979}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1.7320508075688772}, "phdi.tabulation.write_data": {"tf": 2.449489742783178}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}}, "df": 43, "g": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}}, "df": 4}}}}}}}, "f": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 2}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 5}}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.harmonization.standardize_phone": {"tf": 1}}, "df": 1}}, "w": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.harmonization.double_metaphone_string": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}}, "df": 5}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 8}}}, "y": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}}}, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}}}, "y": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_schema": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.7320508075688772}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.4142135623730951}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 20}, "l": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "b": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1.7320508075688772}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.7320508075688772}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}}, "df": 7}, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.linkage.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.match_within_block": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 2}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 2}}, "df": 10, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.block_data": {"tf": 1}}, "df": 1}}, "s": {"docs": {"phdi.linkage.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 2}}, "df": 4}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 2.23606797749979}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}}, "df": 6}}}}}}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {"phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 1}}}}, "o": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "l": {"docs": {"phdi.validation.validate_ecr": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 8, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 3}}}, "u": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_containers": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1.7320508075688772}}, "df": 4}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 2.449489742783178}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 2.449489742783178}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 2.449489742783178}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 2}, "phdi.fhir.harmonization.standardize_names": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1.7320508075688772}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 2.6457513110645907}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 2.449489742783178}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 2}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.linkage.add_person_resource": {"tf": 2.23606797749979}}, "df": 13, "s": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 2}}}}}, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}}, "df": 3, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 1}}}}}}, "l": {"docs": {}, "df": 0, "k": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}}, "df": 2}}, "t": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1}}, "df": 3}}, "a": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 2, "s": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}}}}}}}, "d": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 8}}, "i": {"docs": {}, "df": 0, "c": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}}, "df": 5}}}, "t": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 3.1622776601683795}}, "df": 2, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.transport.upload_bundle_to_fhir_server": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}}}}}, "i": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 2.23606797749979}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 4, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 3}}}}}}}, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}}, "df": 1}}, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}, "h": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}}, "df": 1}}, "t": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}}, "df": 1}}}, "v": {"1": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}}, "df": 1}, "2": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}, "docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1.7320508075688772}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.7320508075688772}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 2.23606797749979}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 2.6457513110645907}, "phdi.fhir.utils.get_field": {"tf": 2}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 2.449489742783178}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 2.23606797749979}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.7320508075688772}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 2}}, "df": 25, "s": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 2.449489742783178}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1.4142135623730951}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.validation.validate_xml_elements": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 19}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 6}}}}}}}, "i": {"docs": {}, "df": 0, "d": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}}, "df": 9, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.validation.validate_xml_value": {"tf": 1}}, "df": 1, "s": {"docs": {"phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.tabulation.validate_schema": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 4}, "d": {"docs": {"phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 2}}, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.validation.validate_ecr": {"tf": 2}, "phdi.validation.get_xml_element_details": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 4, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.tabulation.validate_schema": {"tf": 1}}, "df": 1}}}}}}}, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.validation.validate_xml_value": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}}, "df": 1}}}}}, "s": {"docs": {"phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 2}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 2.23606797749979}}, "df": 1}}}, "r": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "b": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 1}}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "y": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}}, "df": 1}}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 1}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1.4142135623730951}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}}, "df": 5}}}}}, "i": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "y": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}}}, "k": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "y": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 2}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_value": {"tf": 1.4142135623730951}}, "df": 9, "s": {"docs": {"phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 6}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 2}}}}}, "w": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 2}}}}}}, "n": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 4}}}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "k": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}, "n": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 1}}}, "w": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}}, "df": 3}}}}}}, "w": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.7320508075688772}, "phdi.linkage.read_linkage_config": {"tf": 1}}, "df": 11}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.cloud.azure.AzureCredentialManager.get_secret": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}}, "df": 4}}, "t": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_country_code": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 2}, "phdi.linkage.feature_match_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.eval_perfect_match": {"tf": 1.7320508075688772}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1.4142135623730951}, "phdi.linkage.link_record_against_mpi": {"tf": 1}}, "df": 16}}}}, "n": {"docs": {"phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 9}}, "i": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {"phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_resource": {"tf": 1}, "phdi.fhir.geospatial.BaseFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.fhir.utils.apply_selection_criteria": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_str": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 2}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1.7320508075688772}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 31}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}}, "df": 2}}}}}}}, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}}, "a": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.standardize_name": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1.4142135623730951}}, "df": 3, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}}, "df": 2}}}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.7320508075688772}, "phdi.fhir.geospatial.BaseFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_bundle": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.4142135623730951}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 2.23606797749979}, "phdi.fhir.utils.get_field": {"tf": 1.4142135623730951}, "phdi.geospatial.BaseGeocodeClient": {"tf": 1}, "phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1.4142135623730951}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1.7320508075688772}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.default_hl7_value": {"tf": 1.4142135623730951}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.generate_hash_str": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1.4142135623730951}, "phdi.linkage.load_json_probs": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1.4142135623730951}, "phdi.linkage.add_person_resource": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 53, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.download_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.list_objects": {"tf": 1}, "phdi.cloud.azure.AzureCloudContainerConnection.blob_exists": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.core.BaseCloudStorageConnection.list_objects": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.download_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1}, "phdi.cloud.gcp.GcpCloudStorageConnection.list_objects": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}, "phdi.linkage.block_data": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.validation.validate_xml_value": {"tf": 1}}, "df": 20}}, "o": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 3}}}}}, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.start": {"tf": 1}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.fhir.utils.get_field": {"tf": 2}, "phdi.fhir.utils.get_fhirpathpy_parser": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 11}}}, "a": {"docs": {}, "df": 0, "y": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}}, "df": 1}, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1.4142135623730951}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 9}, "i": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1.4142135623730951}}, "df": 1, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1}}, "r": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "s": {"docs": {"phdi.validation.validate_ecr": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient.geocode_client": {"tf": 1}}, "df": 1}}}}}, "i": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.CensusFhirGeocodeClient.geocode_resource": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1}, "phdi.linkage.link_record_against_mpi": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 2}}, "df": 8, "s": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}, "r": {"docs": {"phdi.tabulation.write_data": {"tf": 1}}, "df": 1}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.tabulation.write_data": {"tf": 1.7320508075688772}}, "df": 1}}}, "t": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "n": {"docs": {"phdi.tabulation.write_data": {"tf": 1.4142135623730951}}, "df": 1}}}}}}, "e": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 4, "l": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient": {"tf": 1}, "phdi.linkage.match_within_block": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1.4142135623730951}, "phdi.linkage.eval_log_odds_cutoff": {"tf": 1}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1.4142135623730951}, "phdi.validation.get_xml_element_details": {"tf": 1}}, "df": 10}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.linkage.eval_perfect_match": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1}}, "df": 4}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 2, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 2}}, "s": {"docs": {"phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 1}}}}}}, "o": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.tabulation.tabulate_data": {"tf": 1}}, "df": 1}}, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {"phdi.harmonization.standardize_country_code": {"tf": 1.7320508075688772}, "phdi.linkage.block_data_from_db": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1}}, "df": 6}}}}}, "j": {"docs": {"phdi.linkage.match_within_block": {"tf": 1.4142135623730951}, "phdi.linkage.feature_match_exact": {"tf": 1}, "phdi.linkage.feature_match_fuzzy_string": {"tf": 1}, "phdi.linkage.feature_match_four_char": {"tf": 1}, "phdi.linkage.feature_match_log_odds_exact": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}}, "df": 6, "s": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.cloud.azure.AzureCloudContainerConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.core.BaseCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.cloud.gcp.GcpCloudStorageConnection.upload_object": {"tf": 1.4142135623730951}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.harmonization.double_metaphone_patient": {"tf": 1}, "phdi.fhir.harmonization.standardize_names": {"tf": 1}, "phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.load_json_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_log_odds": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.read_linkage_config": {"tf": 1.4142135623730951}, "phdi.tabulation.load_schema": {"tf": 1.7320508075688772}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}}, "df": 20, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.linkage.load_json_probs": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 2}}}}}}}}}}}, "s": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "a": {"docs": {"phdi.tabulation.validate_schema": {"tf": 1}}, "df": 1}}}}}}}}}, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "k": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}}, "o": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {"phdi.linkage.perform_linkage_pass": {"tf": 1}}, "df": 1}}}, "u": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {"phdi.linkage.eval_log_odds_cutoff": {"tf": 1}}, "df": 1}}}}, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.cloud.core.BaseCloudStorageConnection": {"tf": 1}}, "df": 1}}, "s": {"docs": {"phdi.harmonization.standardize_hl7_datetimes": {"tf": 1}}, "df": 1}}, "d": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "h": {"docs": {"phdi.containers.base_service.StatusResponse": {"tf": 1}, "phdi.containers.base_service.BaseService.__init__": {"tf": 1.4142135623730951}, "phdi.containers.base_service.BaseService.start": {"tf": 1.4142135623730951}}, "df": 3}}}, "d": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 1, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 2}}, "df": 2, "s": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.drop_invalid": {"tf": 1.4142135623730951}, "phdi.fhir.tabulation.tabulate_data": {"tf": 1.4142135623730951}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1.4142135623730951}, "phdi.linkage.perform_linkage_pass": {"tf": 1}, "phdi.tabulation.write_data": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1.4142135623730951}}, "df": 7}, "/": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {"phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.4142135623730951}}, "df": 1}}}}}}}}}, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.utils.get_field": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.get_connection": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}}, "df": 4}}, "n": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.compile_match_lists": {"tf": 1}}, "df": 1}}}}, "t": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "p": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 2.6457513110645907}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 2.449489742783178}}, "df": 5, "s": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1, ":": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "l": {"7": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 2}, "docs": {}, "df": 0}}, "w": {"docs": {}, "df": 0, "w": {"docs": {}, "df": 0, "w": {"docs": {"phdi.geospatial.GeocodeResult": {"tf": 1}}, "df": 1}}}}}}}, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "r": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.fhir.tabulation.extract_data_from_fhir_search_incremental": {"tf": 1}}, "df": 2}}}}}}}, "m": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "#": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}}, "df": 1}}}}}}}}, "b": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "k": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "t": {"docs": {"phdi.fhir.transport.export_from_fhir_server": {"tf": 1}}, "df": 1}}}}}}}, "a": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "s": {"docs": {"phdi.geospatial.GeocodeResult": {"tf": 1}}, "df": 1}}}}}}}}}}}, "o": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "g": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.harmonization.double_metaphone_bundle": {"tf": 1}, "phdi.fhir.utils.find_entries_by_resource_type": {"tf": 1}, "phdi.fhir.utils.get_one_line_address": {"tf": 1}, "phdi.harmonization.standardize_phone": {"tf": 1}, "phdi.harmonization.standardize_name": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.compile_match_lists": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.tabulation.load_schema": {"tf": 1}}, "df": 12}}}, "s": {"docs": {"phdi.geospatial.SmartyGeocodeClient.client": {"tf": 1}}, "df": 1}}}, "w": {"docs": {"phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1}, "phdi.linkage.feature_match_log_odds_fuzzy_compare": {"tf": 1}, "phdi.linkage.profile_log_odds": {"tf": 1}, "phdi.validation.validate_ecr": {"tf": 1}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 5, "e": {"docs": {}, "df": 0, "v": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.geospatial.BaseGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.SmartyGeocodeClient.geocode_from_dict": {"tf": 1}, "phdi.geospatial.CensusGeocodeClient.geocode_from_dict": {"tf": 1}}, "df": 3}}}}}, "m": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 1}}}, "l": {"7": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.geospatial.GeocodeResult": {"tf": 1}, "phdi.harmonization.standardize_hl7_datetimes": {"tf": 1.7320508075688772}, "phdi.harmonization.normalize_hl7_datetime_segment": {"tf": 1.4142135623730951}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 2}, "phdi.harmonization.default_hl7_value": {"tf": 1.7320508075688772}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1.7320508075688772}}, "df": 7, "v": {"2": {"docs": {"phdi.fhir.conversion.convert_to_fhir": {"tf": 1.4142135623730951}}, "df": 1}, "docs": {}, "df": 0}}, "docs": {}, "df": 0}, "a": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.geospatial.SmartyFhirGeocodeClient": {"tf": 1}, "phdi.fhir.geospatial.CensusFhirGeocodeClient": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 3}}}}, "r": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "z": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "n": {"docs": {"phdi.fhir.harmonization.standardize_phones": {"tf": 1}, "phdi.fhir.harmonization.standardize_dob": {"tf": 1}}, "df": 2, "/": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "s": {"docs": {}, "df": 0, "/": {"docs": {}, "df": 0, "c": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "p": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "e": {"docs": {"phdi.linkage.feature_match_fuzzy_string": {"tf": 1}}, "df": 1}}}}}}}}}}}}}}}}}}}}}}}}}, "s": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.insert_match_patient": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.insert_match_patient": {"tf": 1.7320508075688772}}, "df": 5, "h": {"docs": {"phdi.fhir.linkage.add_patient_identifier_in_bundle": {"tf": 1.7320508075688772}, "phdi.fhir.linkage.add_patient_identifier": {"tf": 2}, "phdi.linkage.generate_hash_str": {"tf": 2.23606797749979}}, "df": 3, "e": {"docs": {}, "df": 0, "d": {"docs": {"phdi.linkage.generate_hash_str": {"tf": 1}}, "df": 1}}}}, "d": {"docs": {"phdi.fhir.transport.http_request_with_reauth": {"tf": 1}}, "df": 1}, "v": {"docs": {}, "df": 0, "e": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1.7320508075688772}, "phdi.harmonization.normalize_hl7_datetime": {"tf": 1}, "phdi.harmonization.double_metaphone_string": {"tf": 1}, "phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.score_linkage_vs_truth": {"tf": 1.4142135623730951}, "phdi.linkage.block_data_from_db": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 1.4142135623730951}, "phdi.validation.validate_xml_attributes": {"tf": 1}}, "df": 11}}}, "i": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "h": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {"phdi.harmonization.compare_strings": {"tf": 1}, "phdi.linkage.calculate_m_probs": {"tf": 1}, "phdi.linkage.calculate_u_probs": {"tf": 1}}, "df": 3}}}}, "s": {"docs": {}, "df": 0, "t": {"docs": {}, "df": 0, "o": {"docs": {}, "df": 0, "g": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "a": {"docs": {}, "df": 0, "m": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1.4142135623730951}}, "df": 1, "s": {"docs": {"phdi.linkage.profile_log_odds": {"tf": 1}}, "df": 1}}}}}}}}}}, "z": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "o": {"docs": {"phdi.containers.base_service.BaseService.__init__": {"tf": 1}, "phdi.harmonization.convert_hl7_batch_messages_to_list": {"tf": 1}}, "df": 2}}}, "i": {"docs": {}, "df": 0, "p": {"docs": {"phdi.linkage.block_data_from_db": {"tf": 2.23606797749979}, "phdi.linkage.BaseMPIConnectorClient.block_data": {"tf": 1.7320508075688772}, "phdi.linkage.extract_blocking_values_from_record": {"tf": 1}, "phdi.linkage.write_linkage_config": {"tf": 1.4142135623730951}, "phdi.linkage.DIBBsConnectorClient.block_data": {"tf": 2.449489742783178}, "phdi.linkage.convert_to_patient_fhir_resources": {"tf": 1}}, "df": 6}}}, "y": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1}, "phdi.harmonization.standardize_birth_date": {"tf": 1}}, "df": 2, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "d": {"docs": {}, "df": 0, "s": {"docs": {"phdi.fhir.cloud.download_from_fhir_export_response": {"tf": 1}, "phdi.fhir.utils.extract_value_with_resource_path": {"tf": 1}}, "df": 2}}}}}, "y": {"docs": {}, "df": 0, "y": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.harmonization.standardize_dob": {"tf": 1.4142135623730951}, "phdi.harmonization.standardize_birth_date": {"tf": 1.7320508075688772}}, "df": 2}}}, "e": {"docs": {}, "df": 0, "t": {"docs": {"phdi.geospatial.CensusGeocodeClient.geocode_from_str": {"tf": 1}}, "df": 1}}, "a": {"docs": {}, "df": 0, "m": {"docs": {}, "df": 0, "l": {"docs": {"phdi.tabulation.load_schema": {"tf": 1.4142135623730951}}, "df": 1}}}}, "x": {"docs": {"phdi.linkage.match_within_block": {"tf": 2.23606797749979}, "phdi.linkage.calculate_m_probs": {"tf": 1.4142135623730951}, "phdi.linkage.calculate_u_probs": {"tf": 1.4142135623730951}}, "df": 3, "m": {"docs": {}, "df": 0, "l": {"docs": {"phdi.fhir.conversion.add_rr_data_to_eicr": {"tf": 1.7320508075688772}, "phdi.fhir.conversion.convert_to_fhir": {"tf": 1}, "phdi.validation.get_xml_element_details": {"tf": 2.6457513110645907}, "phdi.validation.validate_xml_elements": {"tf": 2.23606797749979}, "phdi.validation.validate_xml_attributes": {"tf": 2.23606797749979}, "phdi.validation.validate_xml_value": {"tf": 2.8284271247461903}}, "df": 6}}}, "q": {"docs": {}, "df": 0, "u": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "r": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.tabulation.extract_data_from_fhir_search": {"tf": 1}, "phdi.fhir.transport.http_request_with_reauth": {"tf": 1}, "phdi.transport.http_request_with_retry": {"tf": 1}}, "df": 3}}}, "a": {"docs": {}, "df": 0, "l": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "f": {"docs": {}, "df": 0, "y": {"docs": {"phdi.fhir.utils.get_field": {"tf": 1}}, "df": 1}}, "t": {"docs": {}, "df": 0, "i": {"docs": {}, "df": 0, "e": {"docs": {}, "df": 0, "s": {"docs": {"phdi.linkage.score_linkage_vs_truth": {"tf": 1}}, "df": 1}}}}}}}}}}}}, "pipeline": ["trimmer"], "_isPrebuiltIndex": true}; + + // mirrored in build-search-index.js (part 1) + // Also split on html tags. this is a cheap heuristic, but good enough. + elasticlunr.tokenizer.setSeperator(/[\s\-.;&_'"=,()]+|<[^>]*>/); + + let searchIndex; + if (docs._isPrebuiltIndex) { + console.info("using precompiled search index"); + searchIndex = elasticlunr.Index.load(docs); + } else { + console.time("building search index"); + // mirrored in build-search-index.js (part 2) + searchIndex = elasticlunr(function () { + this.pipeline.remove(elasticlunr.stemmer); + this.pipeline.remove(elasticlunr.stopWordFilter); + this.addField("qualname"); + this.addField("fullname"); + this.addField("annotation"); + this.addField("default_value"); + this.addField("signature"); + this.addField("bases"); + this.addField("doc"); + this.setRef("fullname"); + }); + for (let doc of docs) { + searchIndex.addDoc(doc); + } + console.timeEnd("building search index"); + } + + return (term) => searchIndex.search(term, { + fields: { + qualname: {boost: 4}, + fullname: {boost: 2}, + annotation: {boost: 2}, + default_value: {boost: 2}, + signature: {boost: 2}, + bases: {boost: 2}, + doc: {boost: 1}, + }, + expand: true + }); +})(); \ No newline at end of file