diff --git a/src/app/case-studies/la-county/page.tsx b/src/app/case-studies/la-county/page.tsx new file mode 100644 index 0000000..9ee7927 --- /dev/null +++ b/src/app/case-studies/la-county/page.tsx @@ -0,0 +1,143 @@ +import Link from 'next/link'; +import { Link as ExternalLink } from '@trussworks/react-uswds'; +import './styles.scss'; + +export default function LaCountyCaseStudy() { + return ( +
+ + Timely access to electronic case reporting (eCR) data is + critical for public health departments to respond swiftly to + disease outbreaks, especially during a public health emergency. + Unfortunately, not all public health jurisdictions can + effectively manage the flow of incoming eCR data. Due to + technical limitations with their existing disease surveillance + system, the Los Angeles County (LAC) Department of Public Health + faced challenges with processing eCR files, leaving this rich + source of data largely inaccessible to their disease + surveillance teams. + + + Because LAC's disease surveillance system couldn't process eCR + data fields, they set up a separate, patchwork data workflow to + collect eCR data. As a result, epidemiologists at LAC also had + to spend a considerable amount of time manually cleaning data + after it was processed. To efficiently monitor and respond to + disease outbreaks, LAC also needed to improve the overall + quality of the data processed through its disease surveillance + infrastructure. Better, more reliable data reduces the need for + manual cleaning and makes downstream analysis and case + investigation less onerous for epidemiologists and other public + health staff. + +
++ The DIBBs team worked with LAC to develop and deploy a + cutting-edge, modular data pipeline to automatically process and + enrich COVID-19 eCR files. This open-source, cloud-based + pipeline — composed of modular software components called Data + Integration Building Blocks (DIBBs) — helps significantly reduce + the time it takes for LAC's disease surveillance teams to + receive and act upon public health data, while also improving + the quality of that data. Over the course of the year-long + pilot, the DIBBs team: +
++ We are currently commencing pilots with jurisdictions to test + the eCR Viewer in a production data environment and further + validate the tool's downstream public health impact. Our aim is + to scale the eCR Viewer with a wide range of jurisdictions to + turn eCR into the go-to data source for case ascertainment and + investigation. +
++ Following the pilot, LAC now has access to an automated feed of + analysis-ready eCR data with fields relevant to downstream disease + teams. LAC plans to continue to leverage the DIBBs pipeline + infrastructure to give additional disease teams access to + processed eCR data, including the HIV and STD prevention team and + the Community Outbreak Team (focused on viral respiratory + pathogens). Through the LAC pilot, the DIBBs team gained insights + on how to use and adapt our modular, open-source solutions to + solve data challenges for multiple disease surveillance systems + across public health jurisdictions. +
+