-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
260 lines (221 loc) · 7.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import torch
import argparse
import os
import numpy as np
import torch.nn.functional as F
from datasets.mvtec_supervised import MVTecDataset
from datasets.visa_supervised import VisaDataset
import models.vv_open_clip as open_clip
import torchvision.transforms as transforms
from utils.loss import FocalLoss, BinaryDiceLoss
from models.FiLo import FiLo
from tqdm import tqdm
from prefetch_generator import BackgroundGenerator
class DataLoaderX(torch.utils.data.DataLoader):
def __iter__(self):
return BackgroundGenerator(super().__iter__())
mvtec_obj_list = [
"bottle",
"cable",
"capsule",
"carpet",
"grid",
"hazelnut",
"leather",
"metal nut",
"pill",
"screw",
"tile",
"toothbrush",
"transistor",
"wood",
"zipper",
]
visa_obj_list = [
"candle",
"cashew",
"chewinggum",
"fryum",
"pipe fryum",
"macaroni1",
"macaroni2",
"pcb1",
"pcb2",
"pcb3",
"pcb4",
"capsules",
]
positions_list = ['top left', 'top', 'top right', 'left', 'center', 'right', 'bottom left', 'bottom', 'bottom right']
if __name__ == "__main__":
parser = argparse.ArgumentParser("FiLo Train", add_help=True)
parser.add_argument(
"--clip_model", type=str, default="ViT-L-14-336", help="model used"
)
parser.add_argument(
"--clip_pretrained",
type=str,
default="openai",
help="pretrained weight used",
)
parser.add_argument(
"--features_list",
type=int,
nargs="+",
default=[6, 12, 18, 24],
help="features used",
)
parser.add_argument(
"--train_data_path",
type=str,
default="./data/visa",
help="train dataset path",
)
parser.add_argument("--image_size", type=int, default=518, help="image size")
parser.add_argument(
"--dataset", type=str, default="visa", help="train dataset name"
)
parser.add_argument("--aug_rate", type=float, default=0.2, help="image size")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument(
"--learning_rate", type=float, default=0.001, help="learning rate"
)
parser.add_argument(
"--decoder_learning_rate", type=float, default=0.0001, help="learning rate for decoder"
)
parser.add_argument(
"--adapter_learning_rate", type=float, default=0.00001, help="learning rate for adapter"
)
parser.add_argument("--epoch", type=int, default=15, help="epochs")
parser.add_argument("--n_ctx", type=int, default=12, help="epochs")
parser.add_argument("--adapter_epoch", type=int, default=5, help="epochs")
parser.add_argument(
"--save_path",
type=str,
default="./ckpt",
help="path to save results",
)
parser.add_argument(
"--device", type=str, default="cuda", help="running on cpu only!, default=False"
)
args = parser.parse_args()
save_path = args.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
device = args.device
image_size = args.image_size
batch_size = args.batch_size
epochs = args.epoch
dataset_name = args.dataset
transform = transforms.Compose(
[
transforms.Resize((image_size, image_size)),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
]
)
_, _, preprocess = open_clip.create_model_and_transforms(
args.clip_model, image_size, pretrained=args.clip_pretrained
)
if dataset_name == "visa":
train_data = VisaDataset(
root=args.train_data_path,
transform=preprocess,
target_transform=transform,
)
else:
train_data = MVTecDataset(
root=args.train_data_path,
transform=preprocess,
target_transform=transform,
aug_rate=args.aug_rate,
)
train_dataloader = DataLoaderX(
train_data, batch_size=batch_size, shuffle=True, num_workers=8
)
obj_list = [x.replace("_", " ") for x in train_data.get_cls_names()]
filo_model = FiLo(obj_list, args, device).to(device)
main_part_param_groups = [
{'params': filo_model.decoder_cov.parameters(), 'lr': args.decoder_learning_rate},
{'params': filo_model.decoder_linear.parameters(), 'lr': args.decoder_learning_rate},
{'params': filo_model.normal_prompt_learner.parameters(), 'lr': args.learning_rate},
{'params': filo_model.abnormal_prompt_learner.parameters(), 'lr': args.learning_rate}
]
optimizer_main_part = torch.optim.AdamW(
main_part_param_groups,
betas=(0.5, 0.999),
)
adapter_param_groups = [
{'params': filo_model.adapter.parameters(), 'lr': args.adapter_learning_rate},
]
optimizer_adapter = torch.optim.AdamW(
adapter_param_groups,
betas=(0.5, 0.999),
)
# losses
loss_focal = FocalLoss()
loss_dice = BinaryDiceLoss()
with torch.no_grad():
obj_list = [x.replace("_", " ") for x in train_data.get_cls_names()]
for epoch in range(epochs):
loss_list = []
for items in tqdm(train_dataloader):
image = items["img"].to(device)
cls_name = items["cls_name"][0]
image_path = items["img_path"]
anomaly_cls = items["anomaly_class"][0]
label = items['anomaly'].to(device)
text_probs, anomaly_maps = filo_model(items, with_adapter=False)
# losses
gt = items["img_mask"].squeeze().to(device)
gt[gt > 0.5], gt[gt <= 0.5] = 1, 0
loss = 0
for num in range(len(anomaly_maps)):
loss += loss_focal(anomaly_maps[num], gt)
loss += loss_dice(anomaly_maps[num][:, 1, :, :], gt)
loss += loss_dice(anomaly_maps[num][:, 0, :, :], 1 - gt)
optimizer_main_part.zero_grad()
loss.backward()
optimizer_main_part.step()
loss_list.append(loss.item())
# logs
if (epoch + 1) % 1 == 0:
print(
"epoch [{}/{}], loss:{:.4f}".format(
epoch + 1, epochs, np.mean(loss_list)
)
)
for epoch in range(args.adapter_epoch):
loss_list = []
for items in tqdm(train_dataloader):
image = items["img"].to(device)
cls_name = items["cls_name"][0]
image_path = items["img_path"]
anomaly_cls = items["anomaly_class"][0]
label = items['anomaly'][0].to(device)
text_probs, anomaly_maps = filo_model(items, only_train_adapter=True, with_adapter=True)
# losses
text_probs = text_probs[:, 0, ...] / 0.07
loss = F.cross_entropy(text_probs.squeeze(), label)
loss_list.append(loss.item())
optimizer_adapter.zero_grad()
loss.backward()
optimizer_adapter.step()
loss_list.append(loss.item())
# logs
print(
"adapter epoch [{}/{}], loss:{:.4f}".format(
epoch + 1, args.adapter_epoch, np.mean(loss_list)
)
)
# save mode
save_name = + "filo_train_on_" + args.dataset
ckp_path = os.path.join(
save_path,
f"{save_name}.pth",
)
torch.save(
{
"filo": filo_model.state_dict(),
},
ckp_path,
)