-
Notifications
You must be signed in to change notification settings - Fork 48
/
DynamicsB2JointRevolute.go
569 lines (467 loc) · 17.4 KB
/
DynamicsB2JointRevolute.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
package box2d
import (
"fmt"
"math"
)
/// Revolute joint definition. This requires defining an
/// anchor point where the bodies are joined. The definition
/// uses local anchor points so that the initial configuration
/// can violate the constraint slightly. You also need to
/// specify the initial relative angle for joint limits. This
/// helps when saving and loading a game.
/// The local anchor points are measured from the body's origin
/// rather than the center of mass because:
/// 1. you might not know where the center of mass will be.
/// 2. if you add/remove shapes from a body and recompute the mass,
/// the joints will be broken.
type B2RevoluteJointDef struct {
B2JointDef
/// The local anchor point relative to bodyA's origin.
LocalAnchorA B2Vec2
/// The local anchor point relative to bodyB's origin.
LocalAnchorB B2Vec2
/// The bodyB angle minus bodyA angle in the reference state (radians).
ReferenceAngle float64
/// A flag to enable joint limits.
EnableLimit bool
/// The lower angle for the joint limit (radians).
LowerAngle float64
/// The upper angle for the joint limit (radians).
UpperAngle float64
/// A flag to enable the joint motor.
EnableMotor bool
/// The desired motor speed. Usually in radians per second.
MotorSpeed float64
/// The maximum motor torque used to achieve the desired motor speed.
/// Usually in N-m.
MaxMotorTorque float64
}
func MakeB2RevoluteJointDef() B2RevoluteJointDef {
res := B2RevoluteJointDef{
B2JointDef: MakeB2JointDef(),
}
res.Type = B2JointType.E_revoluteJoint
res.LocalAnchorA.Set(0.0, 0.0)
res.LocalAnchorB.Set(0.0, 0.0)
res.ReferenceAngle = 0.0
res.LowerAngle = 0.0
res.UpperAngle = 0.0
res.MaxMotorTorque = 0.0
res.MotorSpeed = 0.0
res.EnableLimit = false
res.EnableMotor = false
return res
}
/// A revolute joint constrains two bodies to share a common point while they
/// are free to rotate about the point. The relative rotation about the shared
/// point is the joint angle. You can limit the relative rotation with
/// a joint limit that specifies a lower and upper angle. You can use a motor
/// to drive the relative rotation about the shared point. A maximum motor torque
/// is provided so that infinite forces are not generated.
type B2RevoluteJoint struct {
*B2Joint
// Solver shared
M_localAnchorA B2Vec2
M_localAnchorB B2Vec2
M_impulse B2Vec3
M_motorImpulse float64
M_enableMotor bool
M_maxMotorTorque float64
M_motorSpeed float64
M_enableLimit bool
M_referenceAngle float64
M_lowerAngle float64
M_upperAngle float64
// Solver temp
M_indexA int
M_indexB int
M_rA B2Vec2
M_rB B2Vec2
M_localCenterA B2Vec2
M_localCenterB B2Vec2
M_invMassA float64
M_invMassB float64
M_invIA float64
M_invIB float64
M_mass B2Mat33 // effective mass for point-to-point constraint.
M_motorMass float64 // effective mass for motor/limit angular constraint.
M_limitState uint8
}
/// The local anchor point relative to bodyA's origin.
func (joint B2RevoluteJoint) GetLocalAnchorA() B2Vec2 {
return joint.M_localAnchorA
}
/// The local anchor point relative to bodyB's origin.
func (joint B2RevoluteJoint) GetLocalAnchorB() B2Vec2 {
return joint.M_localAnchorB
}
/// Get the reference angle.
func (joint B2RevoluteJoint) GetReferenceAngle() float64 {
return joint.M_referenceAngle
}
func (joint B2RevoluteJoint) GetMaxMotorTorque() float64 {
return joint.M_maxMotorTorque
}
func (joint B2RevoluteJoint) GetMotorSpeed() float64 {
return joint.M_motorSpeed
}
// Point-to-point constraint
// C = p2 - p1
// Cdot = v2 - v1
// = v2 + cross(w2, r2) - v1 - cross(w1, r1)
// J = [-I -r1_skew I r2_skew ]
// Identity used:
// w k % (rx i + ry j) = w * (-ry i + rx j)
// Motor constraint
// Cdot = w2 - w1
// J = [0 0 -1 0 0 1]
// K = invI1 + invI2
func (def *B2RevoluteJointDef) Initialize(bA *B2Body, bB *B2Body, anchor B2Vec2) {
def.BodyA = bA
def.BodyB = bB
def.LocalAnchorA = def.BodyA.GetLocalPoint(anchor)
def.LocalAnchorB = def.BodyB.GetLocalPoint(anchor)
def.ReferenceAngle = def.BodyB.GetAngle() - def.BodyA.GetAngle()
}
func MakeB2RevoluteJoint(def *B2RevoluteJointDef) *B2RevoluteJoint {
res := B2RevoluteJoint{
B2Joint: MakeB2Joint(def),
}
res.M_localAnchorA = def.LocalAnchorA
res.M_localAnchorB = def.LocalAnchorB
res.M_referenceAngle = def.ReferenceAngle
res.M_impulse.SetZero()
res.M_motorImpulse = 0.0
res.M_lowerAngle = def.LowerAngle
res.M_upperAngle = def.UpperAngle
res.M_maxMotorTorque = def.MaxMotorTorque
res.M_motorSpeed = def.MotorSpeed
res.M_enableLimit = def.EnableLimit
res.M_enableMotor = def.EnableMotor
res.M_limitState = B2LimitState.E_inactiveLimit
return &res
}
func (joint *B2RevoluteJoint) InitVelocityConstraints(data B2SolverData) {
joint.M_indexA = joint.M_bodyA.M_islandIndex
joint.M_indexB = joint.M_bodyB.M_islandIndex
joint.M_localCenterA = joint.M_bodyA.M_sweep.LocalCenter
joint.M_localCenterB = joint.M_bodyB.M_sweep.LocalCenter
joint.M_invMassA = joint.M_bodyA.M_invMass
joint.M_invMassB = joint.M_bodyB.M_invMass
joint.M_invIA = joint.M_bodyA.M_invI
joint.M_invIB = joint.M_bodyB.M_invI
aA := data.Positions[joint.M_indexA].A
vA := data.Velocities[joint.M_indexA].V
wA := data.Velocities[joint.M_indexA].W
aB := data.Positions[joint.M_indexB].A
vB := data.Velocities[joint.M_indexB].V
wB := data.Velocities[joint.M_indexB].W
qA := MakeB2RotFromAngle(aA)
qB := MakeB2RotFromAngle(aB)
joint.M_rA = B2RotVec2Mul(qA, B2Vec2Sub(joint.M_localAnchorA, joint.M_localCenterA))
joint.M_rB = B2RotVec2Mul(qB, B2Vec2Sub(joint.M_localAnchorB, joint.M_localCenterB))
// J = [-I -r1_skew I r2_skew]
// [ 0 -1 0 1]
// r_skew = [-ry; rx]
// Matlab
// K = [ mA+r1y^2*iA+mB+r2y^2*iB, -r1y*iA*r1x-r2y*iB*r2x, -r1y*iA-r2y*iB]
// [ -r1y*iA*r1x-r2y*iB*r2x, mA+r1x^2*iA+mB+r2x^2*iB, r1x*iA+r2x*iB]
// [ -r1y*iA-r2y*iB, r1x*iA+r2x*iB, iA+iB]
mA := joint.M_invMassA
mB := joint.M_invMassB
iA := joint.M_invIA
iB := joint.M_invIB
fixedRotation := (iA+iB == 0.0)
joint.M_mass.Ex.X = mA + mB + joint.M_rA.Y*joint.M_rA.Y*iA + joint.M_rB.Y*joint.M_rB.Y*iB
joint.M_mass.Ey.X = -joint.M_rA.Y*joint.M_rA.X*iA - joint.M_rB.Y*joint.M_rB.X*iB
joint.M_mass.Ez.X = -joint.M_rA.Y*iA - joint.M_rB.Y*iB
joint.M_mass.Ex.Y = joint.M_mass.Ey.X
joint.M_mass.Ey.Y = mA + mB + joint.M_rA.X*joint.M_rA.X*iA + joint.M_rB.X*joint.M_rB.X*iB
joint.M_mass.Ez.Y = joint.M_rA.X*iA + joint.M_rB.X*iB
joint.M_mass.Ex.Z = joint.M_mass.Ez.X
joint.M_mass.Ey.Z = joint.M_mass.Ez.Y
joint.M_mass.Ez.Z = iA + iB
joint.M_motorMass = iA + iB
if joint.M_motorMass > 0.0 {
joint.M_motorMass = 1.0 / joint.M_motorMass
}
if joint.M_enableMotor == false || fixedRotation {
joint.M_motorImpulse = 0.0
}
if joint.M_enableLimit && fixedRotation == false {
jointAngle := aB - aA - joint.M_referenceAngle
if math.Abs(joint.M_upperAngle-joint.M_lowerAngle) < 2.0*B2_angularSlop {
joint.M_limitState = B2LimitState.E_equalLimits
} else if jointAngle <= joint.M_lowerAngle {
if joint.M_limitState != B2LimitState.E_atLowerLimit {
joint.M_impulse.Z = 0.0
}
joint.M_limitState = B2LimitState.E_atLowerLimit
} else if jointAngle >= joint.M_upperAngle {
if joint.M_limitState != B2LimitState.E_atUpperLimit {
joint.M_impulse.Z = 0.0
}
joint.M_limitState = B2LimitState.E_atUpperLimit
} else {
joint.M_limitState = B2LimitState.E_inactiveLimit
joint.M_impulse.Z = 0.0
}
} else {
joint.M_limitState = B2LimitState.E_inactiveLimit
}
if data.Step.WarmStarting {
// Scale impulses to support a variable time step.
joint.M_impulse.OperatorScalarMultInplace(data.Step.DtRatio)
joint.M_motorImpulse *= data.Step.DtRatio
P := MakeB2Vec2(joint.M_impulse.X, joint.M_impulse.Y)
vA.OperatorMinusInplace(B2Vec2MulScalar(mA, P))
wA -= iA * (B2Vec2Cross(joint.M_rA, P) + joint.M_motorImpulse + joint.M_impulse.Z)
vB.OperatorPlusInplace(B2Vec2MulScalar(mB, P))
wB += iB * (B2Vec2Cross(joint.M_rB, P) + joint.M_motorImpulse + joint.M_impulse.Z)
} else {
joint.M_impulse.SetZero()
joint.M_motorImpulse = 0.0
}
data.Velocities[joint.M_indexA].V = vA
data.Velocities[joint.M_indexA].W = wA
data.Velocities[joint.M_indexB].V = vB
data.Velocities[joint.M_indexB].W = wB
}
func (joint *B2RevoluteJoint) SolveVelocityConstraints(data B2SolverData) {
vA := data.Velocities[joint.M_indexA].V
wA := data.Velocities[joint.M_indexA].W
vB := data.Velocities[joint.M_indexB].V
wB := data.Velocities[joint.M_indexB].W
mA := joint.M_invMassA
mB := joint.M_invMassB
iA := joint.M_invIA
iB := joint.M_invIB
fixedRotation := (iA+iB == 0.0)
// Solve motor constraint.
if joint.M_enableMotor && joint.M_limitState != B2LimitState.E_equalLimits && fixedRotation == false {
Cdot := wB - wA - joint.M_motorSpeed
impulse := -joint.M_motorMass * Cdot
oldImpulse := joint.M_motorImpulse
maxImpulse := data.Step.Dt * joint.M_maxMotorTorque
joint.M_motorImpulse = B2FloatClamp(joint.M_motorImpulse+impulse, -maxImpulse, maxImpulse)
impulse = joint.M_motorImpulse - oldImpulse
wA -= iA * impulse
wB += iB * impulse
}
// Solve limit constraint.
if joint.M_enableLimit && joint.M_limitState != B2LimitState.E_inactiveLimit && fixedRotation == false {
Cdot1 := B2Vec2Sub(B2Vec2Sub(B2Vec2Add(vB, B2Vec2CrossScalarVector(wB, joint.M_rB)), vA), B2Vec2CrossScalarVector(wA, joint.M_rA))
Cdot2 := wB - wA
Cdot := MakeB2Vec3(Cdot1.X, Cdot1.Y, Cdot2)
impulse := joint.M_mass.Solve33(Cdot).OperatorNegate()
if joint.M_limitState == B2LimitState.E_equalLimits {
joint.M_impulse.OperatorPlusInplace(impulse)
} else if joint.M_limitState == B2LimitState.E_atLowerLimit {
newImpulse := joint.M_impulse.Z + impulse.Z
if newImpulse < 0.0 {
rhs := B2Vec2Add(Cdot1.OperatorNegate(), B2Vec2MulScalar(joint.M_impulse.Z, MakeB2Vec2(joint.M_mass.Ez.X, joint.M_mass.Ez.Y)))
reduced := joint.M_mass.Solve22(rhs)
impulse.X = reduced.X
impulse.Y = reduced.Y
impulse.Z = -joint.M_impulse.Z
joint.M_impulse.X += reduced.X
joint.M_impulse.Y += reduced.Y
joint.M_impulse.Z = 0.0
} else {
joint.M_impulse.OperatorPlusInplace(impulse)
}
} else if joint.M_limitState == B2LimitState.E_atUpperLimit {
newImpulse := joint.M_impulse.Z + impulse.Z
if newImpulse > 0.0 {
rhs := B2Vec2Add(Cdot1.OperatorNegate(), B2Vec2MulScalar(joint.M_impulse.Z, MakeB2Vec2(joint.M_mass.Ez.X, joint.M_mass.Ez.Y)))
reduced := joint.M_mass.Solve22(rhs)
impulse.X = reduced.X
impulse.Y = reduced.Y
impulse.Z = -joint.M_impulse.Z
joint.M_impulse.X += reduced.X
joint.M_impulse.Y += reduced.Y
joint.M_impulse.Z = 0.0
} else {
joint.M_impulse.OperatorPlusInplace(impulse)
}
}
P := MakeB2Vec2(impulse.X, impulse.Y)
vA.OperatorMinusInplace(B2Vec2MulScalar(mA, P))
wA -= iA * (B2Vec2Cross(joint.M_rA, P) + impulse.Z)
vB.OperatorPlusInplace(B2Vec2MulScalar(mB, P))
wB += iB * (B2Vec2Cross(joint.M_rB, P) + impulse.Z)
} else {
// Solve point-to-point constraint
Cdot := B2Vec2Sub(B2Vec2Sub(B2Vec2Add(vB, B2Vec2CrossScalarVector(wB, joint.M_rB)), vA), B2Vec2CrossScalarVector(wA, joint.M_rA))
impulse := joint.M_mass.Solve22(Cdot.OperatorNegate())
joint.M_impulse.X += impulse.X
joint.M_impulse.Y += impulse.Y
vA.OperatorMinusInplace(B2Vec2MulScalar(mA, impulse))
wA -= iA * B2Vec2Cross(joint.M_rA, impulse)
vB.OperatorPlusInplace(B2Vec2MulScalar(mB, impulse))
wB += iB * B2Vec2Cross(joint.M_rB, impulse)
}
data.Velocities[joint.M_indexA].V = vA
data.Velocities[joint.M_indexA].W = wA
data.Velocities[joint.M_indexB].V = vB
data.Velocities[joint.M_indexB].W = wB
}
func (joint *B2RevoluteJoint) SolvePositionConstraints(data B2SolverData) bool {
cA := data.Positions[joint.M_indexA].C
aA := data.Positions[joint.M_indexA].A
cB := data.Positions[joint.M_indexB].C
aB := data.Positions[joint.M_indexB].A
qA := MakeB2RotFromAngle(aA)
qB := MakeB2RotFromAngle(aB)
angularError := 0.0
positionError := 0.0
fixedRotation := (joint.M_invIA+joint.M_invIB == 0.0)
// Solve angular limit constraint.
if joint.M_enableLimit && joint.M_limitState != B2LimitState.E_inactiveLimit && fixedRotation == false {
angle := aB - aA - joint.M_referenceAngle
limitImpulse := 0.0
if joint.M_limitState == B2LimitState.E_equalLimits {
// Prevent large angular corrections
C := B2FloatClamp(angle-joint.M_lowerAngle, -B2_maxAngularCorrection, B2_maxAngularCorrection)
limitImpulse = -joint.M_motorMass * C
angularError = math.Abs(C)
} else if joint.M_limitState == B2LimitState.E_atLowerLimit {
C := angle - joint.M_lowerAngle
angularError = -C
// Prevent large angular corrections and allow some slop.
C = B2FloatClamp(C+B2_angularSlop, -B2_maxAngularCorrection, 0.0)
limitImpulse = -joint.M_motorMass * C
} else if joint.M_limitState == B2LimitState.E_atUpperLimit {
C := angle - joint.M_upperAngle
angularError = C
// Prevent large angular corrections and allow some slop.
C = B2FloatClamp(C-B2_angularSlop, 0.0, B2_maxAngularCorrection)
limitImpulse = -joint.M_motorMass * C
}
aA -= joint.M_invIA * limitImpulse
aB += joint.M_invIB * limitImpulse
}
// Solve point-to-point constraint.
{
qA.Set(aA)
qB.Set(aB)
rA := B2RotVec2Mul(qA, B2Vec2Sub(joint.M_localAnchorA, joint.M_localCenterA))
rB := B2RotVec2Mul(qB, B2Vec2Sub(joint.M_localAnchorB, joint.M_localCenterB))
C := B2Vec2Sub(B2Vec2Sub(B2Vec2Add(cB, rB), cA), rA)
positionError = C.Length()
mA := joint.M_invMassA
mB := joint.M_invMassB
iA := joint.M_invIA
iB := joint.M_invIB
var K B2Mat22
K.Ex.X = mA + mB + iA*rA.Y*rA.Y + iB*rB.Y*rB.Y
K.Ex.Y = -iA*rA.X*rA.Y - iB*rB.X*rB.Y
K.Ey.X = K.Ex.Y
K.Ey.Y = mA + mB + iA*rA.X*rA.X + iB*rB.X*rB.X
impulse := K.Solve(C).OperatorNegate()
cA.OperatorMinusInplace(B2Vec2MulScalar(mA, impulse))
aA -= iA * B2Vec2Cross(rA, impulse)
cB.OperatorPlusInplace(B2Vec2MulScalar(mB, impulse))
aB += iB * B2Vec2Cross(rB, impulse)
}
data.Positions[joint.M_indexA].C = cA
data.Positions[joint.M_indexA].A = aA
data.Positions[joint.M_indexB].C = cB
data.Positions[joint.M_indexB].A = aB
return positionError <= B2_linearSlop && angularError <= B2_angularSlop
}
func (joint B2RevoluteJoint) GetAnchorA() B2Vec2 {
return joint.M_bodyA.GetWorldPoint(joint.M_localAnchorA)
}
func (joint B2RevoluteJoint) GetAnchorB() B2Vec2 {
return joint.M_bodyB.GetWorldPoint(joint.M_localAnchorB)
}
func (joint B2RevoluteJoint) GetReactionForce(inv_dt float64) B2Vec2 {
P := MakeB2Vec2(joint.M_impulse.X, joint.M_impulse.Y)
return B2Vec2MulScalar(inv_dt, P)
}
func (joint B2RevoluteJoint) GetReactionTorque(inv_dt float64) float64 {
return inv_dt * joint.M_impulse.Z
}
func (joint B2RevoluteJoint) GetJointAngle() float64 {
bA := joint.M_bodyA
bB := joint.M_bodyB
return bB.M_sweep.A - bA.M_sweep.A - joint.M_referenceAngle
}
func (joint *B2RevoluteJoint) GetJointSpeed() float64 {
bA := joint.M_bodyA
bB := joint.M_bodyB
return bB.M_angularVelocity - bA.M_angularVelocity
}
func (joint B2RevoluteJoint) IsMotorEnabled() bool {
return joint.M_enableMotor
}
func (joint *B2RevoluteJoint) EnableMotor(flag bool) {
if flag != joint.M_enableMotor {
joint.M_bodyA.SetAwake(true)
joint.M_bodyB.SetAwake(true)
joint.M_enableMotor = flag
}
}
func (joint B2RevoluteJoint) GetMotorTorque(inv_dt float64) float64 {
return inv_dt * joint.M_motorImpulse
}
func (joint *B2RevoluteJoint) SetMotorSpeed(speed float64) {
if speed != joint.M_motorSpeed {
joint.M_bodyA.SetAwake(true)
joint.M_bodyB.SetAwake(true)
joint.M_motorSpeed = speed
}
}
func (joint *B2RevoluteJoint) SetMaxMotorTorque(torque float64) {
if torque != joint.M_maxMotorTorque {
joint.M_bodyA.SetAwake(true)
joint.M_bodyB.SetAwake(true)
joint.M_maxMotorTorque = torque
}
}
func (joint B2RevoluteJoint) IsLimitEnabled() bool {
return joint.M_enableLimit
}
func (joint *B2RevoluteJoint) EnableLimit(flag bool) {
if flag != joint.M_enableLimit {
joint.M_bodyA.SetAwake(true)
joint.M_bodyB.SetAwake(true)
joint.M_enableLimit = flag
joint.M_impulse.Z = 0.0
}
}
func (joint B2RevoluteJoint) GetLowerLimit() float64 {
return joint.M_lowerAngle
}
func (joint B2RevoluteJoint) GetUpperLimit() float64 {
return joint.M_upperAngle
}
func (joint *B2RevoluteJoint) SetLimits(lower float64, upper float64) {
B2Assert(lower <= upper)
if lower != joint.M_lowerAngle || upper != joint.M_upperAngle {
joint.M_bodyA.SetAwake(true)
joint.M_bodyB.SetAwake(true)
joint.M_impulse.Z = 0.0
joint.M_lowerAngle = lower
joint.M_upperAngle = upper
}
}
func (joint *B2RevoluteJoint) Dump() {
indexA := joint.M_bodyA.M_islandIndex
indexB := joint.M_bodyB.M_islandIndex
fmt.Printf(" b2RevoluteJointDef jd;\n")
fmt.Printf(" jd.bodyA = bodies[%d];\n", indexA)
fmt.Printf(" jd.bodyB = bodies[%d];\n", indexB)
fmt.Printf(" jd.collideConnected = bool(%v);\n", joint.M_collideConnected)
fmt.Printf(" jd.localAnchorA.Set(%.15f, %.15f);\n", joint.M_localAnchorA.X, joint.M_localAnchorA.Y)
fmt.Printf(" jd.localAnchorB.Set(%.15f, %.15f);\n", joint.M_localAnchorB.X, joint.M_localAnchorB.Y)
fmt.Printf(" jd.referenceAngle = %.15f;\n", joint.M_referenceAngle)
fmt.Printf(" jd.enableLimit = bool(%v);\n", joint.M_enableLimit)
fmt.Printf(" jd.lowerAngle = %.15f;\n", joint.M_lowerAngle)
fmt.Printf(" jd.upperAngle = %.15f;\n", joint.M_upperAngle)
fmt.Printf(" jd.enableMotor = bool(%v);\n", joint.M_enableMotor)
fmt.Printf(" jd.motorSpeed = %.15f;\n", joint.M_motorSpeed)
fmt.Printf(" jd.maxMotorTorque = %.15f;\n", joint.M_maxMotorTorque)
fmt.Printf(" joints[%d] = m_world.CreateJoint(&jd);\n", joint.M_index)
}