-
Notifications
You must be signed in to change notification settings - Fork 7
/
gbt_churn_pyspark.py
150 lines (115 loc) · 6.82 KB
/
gbt_churn_pyspark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
## Spark ML - Gradient Boost Tree
from pyspark.sql import SparkSession
from pyspark.sql.types import *
from pyspark.sql.functions import trim
import pandas as pd
import cdsw
import time
import sys
#initalize Spark Session
spark = SparkSession.builder \
.appName("Churn - GBT") \
.master("local[*]") \
.config('spark.shuffle.service.enabled',"True") \
.getOrCreate()
### Start Timer
startTime = time.process_time()
## Spark Version
spark.version
#Define Dataframe Schema
schemaData = StructType([StructField("state", StringType(), True),StructField("account_length", DoubleType(), True),StructField("area_code", StringType(), True),StructField("phone_number", StringType(), True),StructField("intl_plan", StringType(), True),StructField("voice_mail_plan", StringType(), True),StructField("number_vmail_messages", DoubleType(), True), StructField("total_day_minutes", DoubleType(), True), StructField("total_day_calls", DoubleType(), True), StructField("total_day_charge", DoubleType(), True), StructField("total_eve_minutes", DoubleType(), True), StructField("total_eve_calls", DoubleType(), True), StructField("total_eve_charge", DoubleType(), True), StructField("total_night_minutes", DoubleType(), True), StructField("total_night_calls", DoubleType(), True), StructField("total_night_charge", DoubleType(), True), StructField("total_intl_minutes", DoubleType(), True), StructField("total_intl_calls", DoubleType(), True), StructField("total_intl_charge", DoubleType(), True), StructField("number_customer_service_calls", DoubleType(), True), StructField("churned", StringType(), True)])
#Build Dataframe from File
raw_data = spark.read.schema(schemaData).csv('file:///home/cdsw/data/churn.all')
churn_data=raw_data.withColumn("intl_plan",trim(raw_data.intl_plan))
reduced_numeric_cols = ["account_length", "number_vmail_messages",
"total_day_charge",
"total_night_charge", "total_intl_calls",
"total_intl_charge","number_customer_service_calls"]
reduced_numeric_cols1 = ["account_length", "number_vmail_messages", "total_day_calls",
"total_day_charge", "total_eve_calls", "total_eve_charge",
"total_night_calls", "total_night_charge", "total_intl_calls",
"total_intl_charge","number_customer_service_calls"]
#Review DataSet Balance
churn_data.registerTempTable("ChurnData")
sqlResult = spark.sql("SELECT churned, COUNT(churned) as Churned FROM ChurnData group by churned")
sqlResult.show()
#Feature Engineering
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.feature import StandardScaler
#String to Index
label_indexer = StringIndexer(inputCol = 'churned', outputCol = 'label')
plan_indexer = StringIndexer(inputCol = 'intl_plan', outputCol = 'intl_plan_indexed')
input_cols=['intl_plan_indexed'] + reduced_numeric_cols1
#Feature Vector Assembler
assembler = VectorAssembler(inputCols = input_cols, outputCol = 'features')
#Standard Scaler
scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",withStd=True, withMean=False)
#Configure Gradient Boost Tree Classifier Model
from pyspark.ml.classification import GBTClassifier
gbtclassifier = GBTClassifier(labelCol = 'label', featuresCol = 'scaledFeatures')
#Set GTB Pipeline Stages
from pyspark.ml import Pipeline
GBTpipeline = Pipeline(stages=[plan_indexer, label_indexer, assembler, scaler, gbtclassifier])
#Split Test and Train Set
(train, test) = churn_data.randomSplit([0.75, 0.25])
#Spark Model Hyper Turning
from pyspark.ml.tuning import CrossValidator
from pyspark.ml.tuning import ParamGridBuilder
from pyspark.ml.evaluation import BinaryClassificationEvaluator
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
#Setting GBT Paramaters From Users
user_gbt_param_numInterSet = [2, 4, 8, 16,32]
user_gbt_param_maxDepthSet = [10, 20, 30]
user_gbt_param_numFolds = 3
#Settings for GBT - Paramaters Grid Search
GBTparamGrid = ParamGridBuilder().addGrid(gbtclassifier.maxIter, user_gbt_param_numInterSet).addGrid(gbtclassifier.maxDepth, user_gbt_param_maxDepthSet).build()
evaluator = BinaryClassificationEvaluator()
multiEvaluator = MulticlassClassificationEvaluator()
#Setting Paramaters for Crossvalidation
gbt_cv = CrossValidator( estimator=GBTpipeline, evaluator=evaluator, estimatorParamMaps=GBTparamGrid, numFolds=user_gbt_param_numFolds)
gbt_cvmodel = gbt_cv.fit(train)
#Evaluating GBT Model Performance
from pyspark.sql.functions import udf
gbt_predictions = gbt_cvmodel.transform(test)
auroc = evaluator.evaluate(gbt_predictions, {evaluator.metricName: "areaUnderROC"})
aupr = evaluator.evaluate(gbt_predictions, {evaluator.metricName: "areaUnderPR"})
"The AUROC is %s and the AUPR is %s" % (auroc, aupr)
f1score = multiEvaluator.evaluate(gbt_predictions, {multiEvaluator.metricName: "f1"})
weightedPrecision = multiEvaluator.evaluate(gbt_predictions, {multiEvaluator.metricName: "weightedPrecision"})
weightedRecall = multiEvaluator.evaluate(gbt_predictions, {multiEvaluator.metricName: "weightedRecall"})
"The F1 score: %s the Weighted Precision: %s the Weighted Recall is %s" % (f1score, weightedPrecision, weightedRecall)
#Select the Best Model GBT After Crossvalidation
gbtmodel = gbt_cvmodel.bestModel
bestBGTModel = gbtmodel.stages[-1]
#Retrieving Paramaters from the Best RF Model
param_BestModel_NumIter = bestBGTModel._java_obj.getMaxIter()
param_BestModel_Depth = bestBGTModel._java_obj.getMaxDepth()
#Feature Importance
impFeatures = gbtmodel.stages[-1].featureImportances
zipFeaturesToImportanceValue = zip(impFeatures, input_cols)
FeautureRankings = set(zipFeaturesToImportanceValue)
sortedFeaturRankings = sorted(FeautureRankings, reverse=True)
"Gradient Boost Tree - Feature Rankings Sorted By Importance Value %s" % (sortedFeaturRankings)
"When summed together, the values equal 1.0"
### Stop Timer
stopTime = time.process_time()
elapsedTime = stopTime-startTime
"Elapsed Process Time: %0.8f" % (elapsedTime)
#Return Paramaters to CDSW User Interface
cdsw.track_metric("auroc", auroc)
cdsw.track_metric("aupr", aupr)
cdsw.track_metric("F1", f1score)
cdsw.track_metric("WeightedPrecision", weightedPrecision)
cdsw.track_metric("weightedRecall", weightedRecall)
cdsw.track_metric("numIter",param_BestModel_NumIter)
cdsw.track_metric("maxDepth",param_BestModel_Depth)
cdsw.track_metric("cvFolds",user_gbt_param_numFolds)
cdsw.track_metric("ProcTime", elapsedTime)
from pyspark.mllib.evaluation import BinaryClassificationMetrics
gbt_labelPredictionSet = gbt_predictions.select('prediction','label').rdd.map(lambda lp: (lp.prediction, lp.label))
gbtmetrics = BinaryClassificationMetrics(gbt_labelPredictionSet)
#Save GBT Model to Disk
gbtmodel.write().overwrite().save("models/spark/gbt")
spark.stop()
## End of File