forked from bennoleslie/mpfr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTODO
434 lines (383 loc) · 20.7 KB
/
TODO
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
Contributed by the Arenaire and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
Table of contents:
1. Documentation
2. Installation
3. Changes in existing functions
4. New functions to implement
5. Efficiency
6. Miscellaneous
7. Portability
##############################################################################
1. Documentation
##############################################################################
- add a description of the algorithms used + proof of correctness
##############################################################################
2. Installation
##############################################################################
- if we want to distinguish GMP and MPIR, we can check at configure time
the following symbols which are only defined in MPIR:
#define __MPIR_VERSION 0
#define __MPIR_VERSION_MINOR 9
#define __MPIR_VERSION_PATCHLEVEL 0
There is also a library symbol mpir_version, which should match VERSION, set
by configure, for example 0.9.0.
##############################################################################
3. Changes in existing functions
##############################################################################
- export mpfr_overflow and mpfr_underflow as public functions
- many functions currently taking into account the precision of the *input*
variable to set the initial working precison (acosh, asinh, cosh, ...).
This is nonsense since the "average" working precision should only depend
on the precision of the *output* variable (and maybe on the *value* of
the input in case of cancellation).
-> remove those dependencies from the input precision.
- mpfr_can_round:
change the meaning of the 2nd argument (err). Currently the error is
at most 2^(MPFR_EXP(b)-err), i.e. err is the relative shift wrt the
most significant bit of the approximation. I propose that the error
is now at most 2^err ulps of the approximation, i.e.
2^(MPFR_EXP(b)-MPFR_PREC(b)+err).
- mpfr_set_q first tries to convert the numerator and the denominator
to mpfr_t. But this convertion may fail even if the correctly rounded
result is representable. New way to implement:
Function q = a/b. nq = PREC(q) na = PREC(a) nb = PREC(b)
If na < nb
a <- a*2^(nb-na)
n <- na-nb+ (HIGH(a,nb) >= b)
if (n >= nq)
bb <- b*2^(n-nq)
a = q*bb+r --> q has exactly n bits.
else
aa <- a*2^(nq-n)
aa = q*b+r --> q has exactly n bits.
If RNDN, takes nq+1 bits. (See also the new division function).
##############################################################################
4. New functions to implement
##############################################################################
- implement mpfr_q_sub, mpfr_z_div, mpfr_q_div?
- implement functions for random distributions, see for example
http://websympa.loria.fr/wwsympa/arc/mpfr/2010-01/msg00034.html
(suggested by Charles Karney <[email protected]>, 18 Jan 2010):
* a Bernoulli distribution with prob p/q (exact)
* a general discrete distribution (i with prob w[i]/sum(w[i]) (Walker
algorithm, but make it exact)
* a uniform distribution in (a,b)
* exponential distribution (mean lambda) (von Neumann's method?)
* normal distribution (mean m, s.d. sigma) (ratio method?)
- wanted for Magma [John Cannon <[email protected]>, Tue, 19 Apr 2005]:
HypergeometricU(a,b,s) = 1/gamma(a)*int(exp(-su)*u^(a-1)*(1+u)^(b-a-1),
u=0..infinity)
JacobiThetaNullK
PolylogP, PolylogD, PolylogDold: see http://arxiv.org/abs/math.CA/0702243
and the references herein.
JBessel(n, x) = BesselJ(n+1/2, x)
IncompleteGamma [also wanted by <[email protected]> 4 Feb 2008: Gamma(a,x),
gamma(a,x), P(a,x), Q(a,x); see A&S 6.5, ref. [Smith01] in algorithms.bib]
KBessel, KBessel2 [2nd kind]
JacobiTheta
LogIntegral
ExponentialIntegralE1
E1(z) = int(exp(-t)/t, t=z..infinity), |arg z| < Pi
mpfr_eint1: implement E1(x) for x > 0, and Ei(-x) for x < 0
E1(NaN) = NaN
E1(+Inf) = +0
E1(-Inf) = -Inf
E1(+0) = +Inf
E1(-0) = -Inf
DawsonIntegral
GammaD(x) = Gamma(x+1/2)
- functions defined in the LIA-2 standard
+ minimum and maximum (5.2.2): max, min, max_seq, min_seq, mmax_seq
and mmin_seq (mpfr_min and mpfr_max correspond to mmin and mmax);
+ rounding_rest, floor_rest, ceiling_rest (5.2.4);
+ remr (5.2.5): x - round(x/y) y;
+ error functions from 5.2.7 (if useful in MPFR);
+ power1pm1 (5.3.6.7): (1 + x)^y - 1;
+ logbase (5.3.6.12): \log_x(y);
+ logbase1p1p (5.3.6.13): \log_{1+x}(1+y);
+ rad (5.3.9.1): x - round(x / (2 pi)) 2 pi = remr(x, 2 pi);
+ axis_rad (5.3.9.1) if useful in MPFR;
+ cycle (5.3.10.1): rad(2 pi x / u) u / (2 pi) = remr(x, u);
+ axis_cycle (5.3.10.1) if useful in MPFR;
+ sinu, cosu, tanu, cotu, secu, cscu, cossinu, arcsinu, arccosu,
arctanu, arccotu, arcsecu, arccscu (5.3.10.{2..14}):
sin(x 2 pi / u), etc.;
[from which sinpi(x) = sin(Pi*x), ... are trivial to implement, with u=2.]
+ arcu (5.3.10.15): arctan2(y,x) u / (2 pi);
+ rad_to_cycle, cycle_to_rad, cycle_to_cycle (5.3.11.{1..3}).
- From GSL, missing special functions (if useful in MPFR):
(cf http://www.gnu.org/software/gsl/manual/gsl-ref.html#Special-Functions)
+ The Airy functions Ai(x) and Bi(x) defined by the integral representations:
* Ai(x) = (1/\pi) \int_0^\infty \cos((1/3) t^3 + xt) dt
* Bi(x) = (1/\pi) \int_0^\infty (e^(-(1/3) t^3) + \sin((1/3) t^3 + xt)) dt
* Derivatives of Airy Functions
+ The Bessel functions for n integer and n fractional:
* Regular Modified Cylindrical Bessel Functions I_n
* Irregular Modified Cylindrical Bessel Functions K_n
* Regular Spherical Bessel Functions j_n: j_0(x) = \sin(x)/x,
j_1(x)= (\sin(x)/x-\cos(x))/x & j_2(x)= ((3/x^2-1)\sin(x)-3\cos(x)/x)/x
Note: the "spherical" Bessel functions are solutions of
x^2 y'' + 2 x y' + [x^2 - n (n+1)] y = 0 and satisfy
j_n(x) = sqrt(Pi/(2x)) J_{n+1/2}(x). They should not be mixed with the
classical Bessel Functions, also noted j0, j1, jn, y0, y1, yn in C99
and mpfr.
Cf http://en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions
*Irregular Spherical Bessel Functions y_n: y_0(x) = -\cos(x)/x,
y_1(x)= -(\cos(x)/x+\sin(x))/x &
y_2(x)= (-3/x^3+1/x)\cos(x)-(3/x^2)\sin(x)
* Regular Modified Spherical Bessel Functions i_n:
i_l(x) = \sqrt{\pi/(2x)} I_{l+1/2}(x)
* Irregular Modified Spherical Bessel Functions:
k_l(x) = \sqrt{\pi/(2x)} K_{l+1/2}(x).
+ Clausen Function:
Cl_2(x) = - \int_0^x dt \log(2 \sin(t/2))
Cl_2(\theta) = \Im Li_2(\exp(i \theta)) (dilogarithm).
+ Dawson Function: \exp(-x^2) \int_0^x dt \exp(t^2).
+ Debye Functions: D_n(x) = n/x^n \int_0^x dt (t^n/(e^t - 1))
+ Elliptic Integrals:
* Definition of Legendre Forms:
F(\phi,k) = \int_0^\phi dt 1/\sqrt((1 - k^2 \sin^2(t)))
E(\phi,k) = \int_0^\phi dt \sqrt((1 - k^2 \sin^2(t)))
P(\phi,k,n) = \int_0^\phi dt 1/((1 + n \sin^2(t))\sqrt(1 - k^2 \sin^2(t)))
* Complete Legendre forms are denoted by
K(k) = F(\pi/2, k)
E(k) = E(\pi/2, k)
* Definition of Carlson Forms
RC(x,y) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1)
RD(x,y,z) = 3/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-3/2)
RF(x,y,z) = 1/2 \int_0^\infty dt (t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2)
RJ(x,y,z,p) = 3/2 \int_0^\infty dt
(t+x)^(-1/2) (t+y)^(-1/2) (t+z)^(-1/2) (t+p)^(-1)
+ Elliptic Functions (Jacobi)
+ N-relative exponential:
exprel_N(x) = N!/x^N (\exp(x) - \sum_{k=0}^{N-1} x^k/k!)
+ exponential integral:
E_2(x) := \Re \int_1^\infty dt \exp(-xt)/t^2.
Ei_3(x) = \int_0^x dt \exp(-t^3) for x >= 0.
Ei(x) := - PV(\int_{-x}^\infty dt \exp(-t)/t)
+ Hyperbolic/Trigonometric Integrals
Shi(x) = \int_0^x dt \sinh(t)/t
Chi(x) := Re[ \gamma_E + \log(x) + \int_0^x dt (\cosh[t]-1)/t]
Si(x) = \int_0^x dt \sin(t)/t
Ci(x) = -\int_x^\infty dt \cos(t)/t for x > 0
AtanInt(x) = \int_0^x dt \arctan(t)/t
[ \gamma_E is the Euler constant ]
+ Fermi-Dirac Function:
F_j(x) := (1/r\Gamma(j+1)) \int_0^\infty dt (t^j / (\exp(t-x) + 1))
+ Pochhammer symbol (a)_x := \Gamma(a + x)/\Gamma(a) : see [Smith01] in
algorithms.bib
logarithm of the Pochhammer symbol
+ Gegenbauer Functions
+ Laguerre Functions
+ Eta Function: \eta(s) = (1-2^{1-s}) \zeta(s)
Hurwitz zeta function: \zeta(s,q) = \sum_0^\infty (k+q)^{-s}.
+ Lambert W Functions, W(x) are defined to be solutions of the equation:
W(x) \exp(W(x)) = x.
This function has multiple branches for x < 0 (2 funcs W0(x) and Wm1(x))
+ Trigamma Function psi'(x).
and Polygamma Function: psi^{(m)}(x) for m >= 0, x > 0.
- from gnumeric (www.gnome.org/projects/gnumeric/doc/function-reference.html):
- beta
- betaln
- degrees
- radians
- sqrtpi
- mpfr_inp_raw, mpfr_out_raw (cf mail "Serialization of mpfr_t" from Alexey
and answer from Granlund on mpfr list, May 2007)
- [maybe useful for SAGE] implement companion frac_* functions to the rint_*
functions. For example mpfr_frac_floor(x) = x - floor(x). (The current
mpfr_frac function corresponds to mpfr_rint_trunc.)
- scaled erfc (http://websympa.loria.fr/wwsympa/arc/mpfr/2009-05/msg00054.html)
- asec, acsc, acot, asech, acsch and acoth (mail from Björn Terelius on mpfr
list, 18 June 2009)
##############################################################################
5. Efficiency
##############################################################################
- implement a mpfr_sqrthigh algorithm based on Mulders' algorithm, with a
basecase variant
- use mpn_div_q to speed up mpfr_div. However mpn_div_q, which is new in
GMP 5, is not documented in the GMP manual, thus we are not sure it
guarantees to return the same quotient as mpn_tdiv_qr.
Also mpfr_div uses the remainder computed by mpn_divrem. A workaround would
be to first try with mpn_div_q, and if we cannot (easily) compute the
rounding, then use the current code with mpn_divrem.
- compute exp by using the series for cosh or sinh, which has half the terms
(see Exercise 4.11 from Modern Computer Arithmetic, version 0.3)
The same method can be used for log, using the series for atanh, i.e.,
atanh(x) = 1/2*log((1+x)/(1-x)).
- improve mpfr_gamma (see http://code.google.com/p/fastfunlib/). A possible
idea is to implement a fast algorithm for the argument reconstruction
gamma(x+k). One could also use the series for 1/gamma(x), see for example
http://dlmf.nist.gov/5/7/ or formula (36) from
http://mathworld.wolfram.com/GammaFunction.html
- fix regression with mpfr_mpz_root (from Keith Briggs, 5 July 2006), for
example on 3Ghz P4 with gmp-4.2, x=12.345:
prec=50000 k=2 k=3 k=10 k=100
mpz_root 0.036 0.072 0.476 7.628
mpfr_mpz_root 0.004 0.004 0.036 12.20
See also mail from Carl Witty on mpfr list, 09 Oct 2007.
- implement Mulders algorithm for squaring and division
- for sparse input (say x=1 with 2 bits), mpfr_exp is not faster than for
full precision when precision <= MPFR_EXP_THRESHOLD. The reason is
that argument reduction kills sparsity. Maybe avoid argument reduction
for sparse input?
- speed up const_euler for large precision [for x=1.1, prec=16610, it takes
75% of the total time of eint(x)!]
- speed up mpfr_atan for large arguments (to speed up mpc_log)
[from Mark Watkins on Fri, 18 Mar 2005]
Also mpfr_atan(x) seems slower (by a factor of 2) for x near from 1.
Example on a Athlon for 10^5 bits: x=1.1 takes 3s, whereas 2.1 takes 1.8s.
The current implementation does not give monotonous timing for the following:
mpfr_random (x); for (i = 0; i < k; i++) mpfr_atan (y, x, MPFR_RNDN);
for precision 300 and k=1000, we get 1070ms, and 500ms only for p=400!
- improve mpfr_sin on values like ~pi (do not compute sin from cos, because
of the cancellation). For instance, reduce the input modulo pi/2 in
[-pi/4,pi/4], and define auxiliary functions for which the argument is
assumed to be already reduced (so that the sin function can avoid
unnecessary computations by calling the auxiliary cos function instead of
the full cos function). This will require a native code for sin, for
example using the reduction sin(3x)=3sin(x)-4sin(x)^3.
See http://websympa.loria.fr/wwsympa/arc/mpfr/2007-08/msg00001.html and
the following messages.
- improve generic.c to work for number of terms <> 2^k
- rewrite mpfr_greater_p... as native code.
- mpf_t uses a scheme where the number of limbs actually present can
be less than the selected precision, thereby allowing low precision
values (for instance small integers) to be stored and manipulated in
an mpf_t efficiently.
Perhaps mpfr should get something similar, especially if looking to
replace mpf with mpfr, though it'd be a major change. Alternately
perhaps those mpfr routines like mpfr_mul where optimizations are
possible through stripping low zero bits or limbs could check for
that (this would be less efficient but easier).
- try the idea of the paper "Reduced Cancellation in the Evaluation of Entire
Functions and Applications to the Error Function" by W. Gawronski, J. Mueller
and M. Reinhard, to be published in SIAM Journal on Numerical Analysis: to
avoid cancellation in say erfc(x) for x large, they compute the Taylor
expansion of erfc(x)*exp(x^2/2) instead (which has less cancellation),
and then divide by exp(x^2/2) (which is simpler to compute).
- replace the *_THRESHOLD macros by global (TLS) variables that can be
changed at run time (via a function, like other variables)? One benefit
is that users could use a single MPFR binary on several machines (e.g.,
a library provided by binary packages or shared via NFS) with different
thresholds. On the default values, this would be a bit less efficient
than the current code, but this isn't probably noticeable (this should
be tested). Something like:
long *mpfr_tune_get(void) to get the current values (the first value
is the size of the array).
int mpfr_tune_set(long *array) to set the tune values.
int mpfr_tune_run(long level) to find the best values (the support
for this feature is optional, this can also be done with an
external function).
- better distinguish different processors (for example Opteron and Core 2)
and use corresponding default tuning parameters (as in GMP). This could be
done in configure.ac to avoid hacking config.guess, for example define
MPFR_HAVE_CORE2.
Note (VL): the effect on cross-compilation (that can be a processor
with the same architecture, e.g. compilation on a Core 2 for an
Opteron) is not clear. The choice should be consistent with the
build target (e.g. -march or -mtune value with gcc).
Also choose better default values. For instance, the default value of
MPFR_MUL_THRESHOLD is 40, while the best values that have been found
are between 11 and 19 for 32 bits and between 4 and 10 for 64 bits!
- during the Many Digits competition, we noticed that (our implantation of)
Mulders short product was slower than a full product for large sizes.
This should be precisely analyzed and fixed if needed.
##############################################################################
6. Miscellaneous
##############################################################################
- [suggested by Tobias Burnus <burnus(at)net-b.de> and
Asher Langton <langton(at)gcc.gnu.org>, Wed, 01 Aug 2007]
support quiet and signaling NaNs in mpfr:
* functions to set/test a quiet/signaling NaN: mpfr_set_snan, mpfr_snan_p,
mpfr_set_qnan, mpfr_qnan_p
* correctly convert to/from double (if encoding of s/qNaN is fixed in 754R)
- check again coverage: on 2007-07-27, Patrick Pelissier reports that the
following files are not tested at 100%: add1.c, atan.c, atan2.c,
cache.c, cmp2.c, const_catalan.c, const_euler.c, const_log2.c, cos.c,
gen_inverse.h, div_ui.c, eint.c, exp3.c, exp_2.c, expm1.c, fma.c, fms.c,
lngamma.c, gamma.c, get_d.c, get_f.c, get_ld.c, get_str.c, get_z.c,
inp_str.c, jn.c, jyn_asympt.c, lngamma.c, mpfr-gmp.c, mul.c, mul_ui.c,
mulders.c, out_str.c, pow.c, print_raw.c, rint.c, root.c, round_near_x.c,
round_raw_generic.c, set_d.c, set_ld.c, set_q.c, set_uj.c, set_z.c, sin.c,
sin_cos.c, sinh.c, sqr.c, stack_interface.c, sub1.c, sub1sp.c, subnormal.c,
uceil_exp2.c, uceil_log2.c, ui_pow_ui.c, urandomb.c, yn.c, zeta.c, zeta_ui.c.
- check the constants mpfr_set_emin (-16382-63) and mpfr_set_emax (16383) in
get_ld.c and the other constants, and provide a testcase for large and
small numbers.
- from Kevin Ryde <[email protected]>:
Also for pi.c, a pre-calculated compiled-in pi to a few thousand
digits would be good value I think. After all, say 10000 bits using
1250 bytes would still be small compared to the code size!
Store pi in round to zero mode (to recover other modes).
- add a new rounding mode: round to nearest, with ties away from zero
(this is roundTiesToAway in 754-2008, could be used by mpfr_round)
- add a new roundind mode: round to odd. If the result is not exactly
representable, then round to the odd mantissa. This rounding
has the nice property that for k > 1, if:
y = round(x, p+k, TO_ODD)
z = round(y, p, TO_NEAREST_EVEN), then
z = round(x, p, TO_NEAREST_EVEN)
so it avoids the double-rounding problem.
- add tests of the ternary value for constants
- When doing Extensive Check (--enable-assert=full), since all the
functions use a similar use of MACROS (ZivLoop, ROUND_P), it should
be possible to do such a scheme:
For the first call to ROUND_P when we can round.
Mark it as such and save the approximated rounding value in
a temporary variable.
Then after, if the mark is set, check if:
- we still can round.
- The rounded value is the same.
It should be a complement to tgeneric tests.
- in div.c, try to find a case for which cy != 0 after the line
cy = mpn_sub_1 (sp + k, sp + k, qsize, cy);
(which should be added to the tests), e.g. by having {vp, k} = 0, or
prove that this cannot happen.
- add a configure test for --enable-logging to ignore the option if
it cannot be supported. Modify the "configure --help" description
to say "on systems that support it".
- add generic bad cases for functions that don't have an inverse
function that is implemented (use a single Newton iteration).
- add bad cases for the internal error bound (by using a dichotomy
between a bad case for the correct rounding and some input value
with fewer Ziv iterations?).
- add an option to use a 32-bit exponent type (int) on LP64 machines,
mainly for developers, in order to be able to test the case where the
extended exponent range is the same as the default exponent range, on
such platforms.
Tests can be done with the exp-int branch (added on 2010-12-17, and
many tests fail at this time).
- test underflow/overflow detection of various functions (in particular
mpfr_exp) in reduced exponent ranges, including ranges that do not
contain 0.
- add an internal macro that does the equivalent of the following?
MPFR_IS_ZERO(x) || MPFR_GET_EXP(x) <= value
- check whether __gmpfr_emin and __gmpfr_emax could be replaced by
a constant (see README.dev). Also check the use of MPFR_EMIN_MIN
and MPFR_EMAX_MAX.
##############################################################################
7. Portability
##############################################################################
- add a web page with results of builds on different architectures
- support the decimal64 function without requiring --with-gmp-build
- [Kevin about texp.c long strings]
For strings longer than c99 guarantees, it might be cleaner to
introduce a "tests_strdupcat" or something to concatenate literal
strings into newly allocated memory. I thought I'd done that in a
couple of places already. Arrays of chars are not much fun.
- use http://gcc.gnu.org/viewcvs/trunk/config/stdint.m4 for mpfr-gmp.h