-
Notifications
You must be signed in to change notification settings - Fork 5
/
makeFigures_FigureS3.m
38 lines (25 loc) · 1.3 KB
/
makeFigures_FigureS3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
%% Intrinsic dimensionality for T7, one-side cues task
fnameStruct_T7 = mind_makeFnameStruct('Edward','T7', 'none');
load("C:\Neuroscience\imaging\FINAL\fitPowerLaw_Data\outputFitPowerLaw_T7.mat");
% Or run this
% outputFitPowerLaw_T7 = mind_fitPowerLaw_FunctionSLIM(fnameStruct_T7, 'T7', 1, 4);
load("C:\Neuroscience\imaging\FINAL\fitPowerLaw_Data\outputFitPowerLaw_Towers.mat")
ranksumDim = ranksum(outputFitPowerLaw.exponents_l, outputFitPowerLaw_T7.exponents_l)
sourceData_S3b_1 = outputFitPowerLaw.exponents_l';
sourceData_S3b_2 = outputFitPowerLaw_T7.exponents_l';
figure;
nieh_barSEM(outputFitPowerLaw.exponents_l, outputFitPowerLaw_T7.exponents_l);
ylabel('Dimension Estimate')
xticklabels({'Towers', 'T7'});
title(['ranksum is: ' num2str(ranksumDim)]);
hold on;
scatter(ones(1,7),outputFitPowerLaw.exponents_l,'.')
scatter(ones(1,4)*2,outputFitPowerLaw_T7.exponents_l,'.')
set(gca, 'box', 'off')
%% For the choice-specific sequences
load("C:\Neuroscience\imaging\FINAL\getSkaggs_Data\metamouse_Y_T7.mat");
% Or run this
% metamouse_Y_T7 = generateMetamouseT7([5 2], 'noLog', 1, 'keepTrials', 100, ...
% fnameStruct_T7, 2, {'Position'}, {[0:10:300]}, {'Evidence', 'Position'}, ...
% {[], []}, 'towers', 'all', 'both', 1);
plot_metamouse_seqplot(metamouse_Y_T7);