-
Notifications
You must be signed in to change notification settings - Fork 5
/
models.py
532 lines (463 loc) · 19.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
#from torch.utils.serialization import load_lua
import torchfile
from torch import autograd
import torchvision
import torch.nn.init as init
import functools
import numpy as np
############################
### Model Architecture ###
############################
# Generator
class TextureLayer(nn.Module):
def __init__(self, channel, reduction=16):
super(TextureLayer, self).__init__()
self.avg_pool = nn.Sequential(
nn.AdaptiveAvgPool2d(9),
ConvBlock2d(channel, channel, 3, 1, 1),
nn.AdaptiveAvgPool2d(1),
)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.ReLU()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
x = y.expand_as(x)
return x
class AutoGenerator(nn.Module):
def __init__(self, opt):
super(AutoGenerator, self).__init__()
self.input_dim = opt['input_dim']
self.output_dim = opt['output_dim']
self.ngf = opt['ngf']
self.norm_layer = nn.BatchNorm2d
self.use_dropout = False
self.n_blocks = opt['n_res']
self.padding_type = opt['pad_type'] #'reflect'
self.padding = opt['padding'] # 0
self.n_downsampling = opt['n_downsampling']
if type(self.norm_layer) == functools.partial:
use_bias = self.norm_layer.func == nn.InstanceNorm2d
else:
use_bias = self.norm_layer == nn.InstanceNorm2d
self.ms = True
self.pono = True
reflection_block = []
reflection_block += [ConvBlock2d(self.input_dim, self.ngf, 5, 1, 2, pad_type='reflect')]
reflection_block += [ConvBlock2d(self.ngf, self.ngf, 3, 1, 1)]
reflection_block += [ConvBlock2d(self.ngf, self.ngf, 3, 1, 1)]
enc_shape = []
dim = self.ngf
for _ in range(self.n_downsampling): # add downsampling layers
enc_shape += [Conv2dBlock(dim, dim * 2, 'conv', use_bias, pono=self.pono)]
dim = dim * 2
### *** enc texture
enc_texture = []
enc_texture += [ConvBlock2d(self.input_dim, self.ngf, 5, 1, 2, pad_type='reflect')]
dim = self.ngf
for _ in range(self.n_downsampling):
enc_texture += [Conv2dBlock(dim, dim * 2, 'conv', use_bias=True, normtype=nn.InstanceNorm2d)]
dim = dim * 2
enc_texture += [TextureLayer(dim, reduction=16)]
### *** dec
pre_dec = []
pre_dec += [ConvBlock2d(dim * 2, dim, 3, 1, 1)]
for _ in range(self.n_blocks): # add ResNet blocks
pre_dec += [ResnetBlock(dim, padding_type=self.padding_type, norm_layer=self.norm_layer, use_dropout=self.use_dropout, use_bias=use_bias)]
dec = []
for _ in range(self.n_downsampling): # add upsampling layers
dec += [Conv2dBlock(dim, dim // 2, 'deconv', use_bias)]
dim = dim // 2
out_block = []
out_block += [ConvBlock2d(dim, dim, 3, 1, 1)]
out_block += [ConvBlock2d(dim, self.output_dim, 5, 1, 2, activation='tanh')]
self.reflection_block = nn.Sequential(*reflection_block)
self.enc_shape = nn.Sequential(*enc_shape)
self.enc_texture = nn.Sequential(*enc_texture)
self.pre_dec = nn.Sequential(*pre_dec)
self.dec = nn.Sequential(*dec)
self.out_block = nn.Sequential(*out_block)
self.pono = PONO(affine=False)
self.ms = MS()
def encode_s(self, x):
x = self.reflection_block(x)
stats = []
for block in self.enc_shape:
x, mean, std = block(x)
stats.append((mean, std))
stats.reverse()
return x, stats
def encode_t(self, x):
texture = self.enc_texture(x)
return texture
def decode(self, shape, texture, new_stats):
x = torch.cat((shape, texture), dim=1)
x = self.pre_dec(x)
i = 0
for block in self.dec:
if isinstance(block, Conv2dBlock):
beta, gamma = new_stats[i]
x = x * gamma + beta
x = block(x)
i += 1
x = self.out_block(x)
return x
def forward(self, x, y):
shape, new_stats = self.encode_s(x)
texture = self.encode_t(y)
out = self.decode(shape, texture, new_stats)
return out
# WDiscriminator
class Discriminator(nn.Module):
def __init__(self, opt):
super(Discriminator, self).__init__()
self.num_layer = opt['num_layer']
self.input_dim = opt['input_dim']
self.ndf = opt['ndf']
self.kernel_size = opt['kernel_size']
self.stride = opt['stride']
self.padding = opt['padding']
self.gan_type = opt['gan_type']
#######
norm_layer=nn.BatchNorm2d
if type(norm_layer) == functools.partial: # no need to use bias as BatchNorm2d has affine parameters
use_bias = norm_layer.func != nn.BatchNorm2d
else:
use_bias = norm_layer != nn.BatchNorm2d
sequence = [nn.Conv2d(self.input_dim, self.ndf, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding), nn.LeakyReLU(0.2, True)]
nf_mult = 1
nf_mult_prev = 1
for n in range(1, self.num_layer): # gradually increase the number of filters
nf_mult_prev = nf_mult
nf_mult = min(2 ** n, 8)
sequence += [
nn.Conv2d(self.ndf * nf_mult_prev, self.ndf * nf_mult, kernel_size=self.kernel_size, stride=self.stride, padding=self.padding, bias=use_bias),
norm_layer(self.ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
nf_mult_prev = nf_mult
nf_mult = min(2 ** self.num_layer, 8)
sequence += [
nn.Conv2d(self.ndf * nf_mult_prev, self.ndf * nf_mult, kernel_size=self.kernel_size, stride=1, padding=self.padding, bias=use_bias),
norm_layer(self.ndf * nf_mult),
nn.LeakyReLU(0.2, True)
]
sequence += [nn.Conv2d(self.ndf * nf_mult, 1, kernel_size=self.kernel_size, stride=1, padding=self.padding)] # output 1 channel prediction map
self.net = nn.Sequential(*sequence)
def calc_gen_loss(self, input):
# calculate the loss to train G
out = self.forward(input)
if self.gan_type == 'lsgan':
loss = torch.mean((out - 1) ** 2)
elif self.gan_type == 'nsgan':
all1 = torch.ones_like(out.data).cuda()
all1.requires_grad = False
loss = torch.mean(F.binary_cross_entropy(F.sigmoid(out), all1))
else:
assert 0, "Unsupported GAN type: {}".format(self.gan_type)
return loss
def calc_dis_loss(self, input_fake, input_real):
out_fake = self.forward(input_fake)
out_real = self.forward(input_real)
# Adversarial loss
if self.gan_type == 'lsgan':
loss_adv = torch.mean((out_fake - 0) ** 2) + torch.mean((out_real - 1) ** 2)
loss_adv = loss_adv * 0.5
elif self.gan_type == 'nsgan':
all0 = torch.zeros_like(out_fake.data).cuda()
all1 = torch.ones_like(out_real.data).cuda()
all0.requires_grad = False
all1.requires_grad = False
loss_adv = torch.mean(F.binary_cross_entropy(F.sigmoid(out_fake), all0) +
F.binary_cross_entropy(F.sigmoid(out_real), all1))
loss_adv = loss_adv * 0.5
else:
assert 0, "Unsupported GAN type: {}".format(self.gan_type)
return loss_adv
def calc_gradient_penalty(self, input_real):
gradient_penalty = 0
input_real = input_real.requires_grad_(True)
out = self.forward(input_real)
out = out.mean(3).mean(2) # average across all patch discriminators
gradients = autograd.grad(outputs=out, inputs=input_real, grad_outputs=torch.ones(out.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True)
for gradient in gradients: # for gradient w.r.t. each input
if gradient is not None:
gradient = gradient.view(gradient.size(0), -1)
gradient_penalty += (gradient.norm(2, dim=1) ** 2).mean()
return gradient_penalty
def forward(self, x):
x = self.net(x)
return x
#########################
### Model Functions
##########################
def weights_init(init_method='gaussian'):
def weights_init_method(m):
classname = m.__class__.__name__
# if classname.find('Conv2d') != -1:
# m.weight.data.normal_(0.0, 0.02)
if (classname.find('Conv') == 0 or classname.find('Linear') == 0) and hasattr(m, 'weight'):
# print m.__class__.__name__
if init_method == 'gaussian':
init.normal_(m.weight.data, 0.0, 0.02)
elif init_method == 'xavier':
init.xavier_normal_(m.weight.data)
elif init_method == 'kaiming':
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif init_method == 'orthogonal':
init.orthogonal_(m.weight.data)
elif init_method == 'default':
pass
else:
assert 0, "Unsupported initialization: {}".format(init_method)
if hasattr(m, 'bias') and m.bias is not None:
init.constant_(m.bias.data, 0.0)
return weights_init_method
def compute_recon_loss(input, target):
# criterion = nn.MSELoss()
# return torch.sqrt(criterion(input, target))
return torch.mean(torch.abs(input - target))
def scale_function(x, scale_factor):
main_function = nn.Upsample(scale_factor=scale_factor)
x = main_function(x)
return x
# VGG architecter, used for the perceptual loss using a pretrained VGG network
class VGG19(torch.nn.Module):
def __init__(self, requires_grad=False):
super().__init__()
vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
class VGGLoss(nn.Module):
def __init__(self):
super(VGGLoss, self).__init__()
self.vgg = VGG19().cuda()
self.criterion = nn.L1Loss()
self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0]
def forward(self, x, y):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
for i in range(len(x_vgg)):
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
return loss
#########################
### Model Components
##########################
class ConvBlock2d(nn.Sequential):
def __init__(self, input_dim, output_dim, kernel_size, stride, padding=0, norm='None', activation='ReLU', pad_type='zero', use_bias='True'):
super(ConvBlock2d, self).__init__()
self.use_bias = use_bias
# padding initialization
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, "Unsupported padding type: {}".format(pad_type)
# convolution setup
self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride, bias=self.use_bias)
# normalization initialization
normalization_dim = output_dim
if norm == 'bn':
self.norm = nn.BatchNorm2d(normalization_dim)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(normalization_dim)
elif norm == 'ln':
self.norm = nn.LayerNorm(normalization_dim)
elif norm == 'None':
self.norm = None
else:
assert 0, "Unsupported Normalization: {}".format(norm)
# activation initialization
if activation == 'ReLU':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lReLU':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, "Unsupported activateion: {}".format(activation)
def forward(self, input):
x = self.conv(self.pad(input))
if self.norm:
x = self.norm(x)
if self.activation:
x = self.activation(x)
return x
class PONO(nn.Module):
def __init__(self, input_size=None, return_stats=False, affine=True, eps=1e-5):
super(PONO, self).__init__()
self.return_stats = return_stats
self.input_size = input_size
self.eps = eps
self.affine = affine
if affine:
self.beta = nn.Parameter(torch.zeros(1, 1, *input_size))
self.gamma = nn.Parameter(torch.ones(1, 1, *input_size))
else:
self.beta, self.gamma = None, None
def forward(self, x):
mean = x.mean(dim=1, keepdim=True)
std = (x.var(dim=1, keepdim=True) + self.eps).sqrt()
x = (x - mean) / std
if self.affine:
x = x * self.gamma + self.beta
return x, mean, std
class MS(nn.Module):
def __init__(self, beta=None, gamma=None):
super(MS, self).__init__()
self.gamma, self.beta = gamma, beta
def forward(self, x, beta=None, gamma=None):
beta = self.beta if beta is None else beta
gamma = self.gamma if gamma is None else gamma
if gamma is not None:
x.mul_(gamma)
if beta is not None:
x.add_(beta)
return x
class Conv2dBlock(nn.Module):
def __init__(self, inputdim, outputdim, operation, use_bias=True, use_relu=True, relu=True, ms=False, pono=False, norm=True, front=False, normtype=nn.BatchNorm2d, kerneltype=3):
super(Conv2dBlock, self).__init__()
self.use_bias = use_bias
self.front = front
# initialize normalization
self.use_relu = use_relu
self.norm = norm
self.norm_flag = norm
if operation == 'conv':
if kerneltype == 3:
self.conv = nn.Conv2d(inputdim, outputdim, kernel_size=3, stride=2, padding=1, bias=use_bias)
elif kerneltype == 5:
self.conv = nn.Conv2d(inputdim, outputdim, kernel_size=5, stride=2, padding=2, bias=use_bias)
if normtype==nn.GroupNorm:
self.norm = normtype(32, outputdim)
else:
self.norm = normtype(outputdim)
elif operation == 'deconv':
if kerneltype == 3:
self.conv = nn.ConvTranspose2d(inputdim, outputdim, kernel_size=3, stride=2,
padding=1, output_padding=1, bias=use_bias)
elif kerneltype == 5:
self.conv = nn.ConvTranspose2d(inputdim, outputdim, kernel_size=5, stride=2,
padding=2, output_padding=1, bias=use_bias)
if normtype==nn.GroupNorm:
self.norm = normtype(16, outputdim)
else:
self.norm = normtype(outputdim)
elif operation == 'stat_convs':
if kerneltype == 3:
self.conv = nn.Conv2d(inputdim, outputdim, 3, 1, 1)
elif kerneltype == 5:
self.conv = nn.Conv2d(inputdim, outputdim, 5, 1, 2)
if normtype==nn.GroupNorm:
self.norm = normtype(32, outputdim)
else:
self.norm = normtype(outputdim)
# initialize activation
self.activation = nn.ReLU(inplace=relu)
# PONO-MS:
self.pono = PONO(affine=False) if pono else None
self.ms = MS() if ms else None
def forward(self, x, beta=None, gamma=None):
x = self.conv(x)
mean, std = None, None
if self.pono:
x, mean, std = self.pono(x)
if self.norm and self.norm_flag:
x = self.norm(x)
if self.ms:
x = self.ms(x, beta, gamma)
if self.use_relu and self.activation:
x = self.activation(x)
if mean is None:
return x
else:
return x, mean, std
class ResnetBlock(nn.Module):
"""Define a Resnet block"""
def __init__(self, dim, padding_type, norm_layer, use_dropout, use_bias):
"""Initialize the Resnet block
A resnet block is a conv block with skip connections
We construct a conv block with build_conv_block function,
and implement skip connections in <forward> function.
Original Resnet paper: https://arxiv.org/pdf/1512.03385.pdf
"""
super(ResnetBlock, self).__init__()
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout, use_bias)
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout, use_bias):
"""Construct a convolutional block.
Parameters:
dim (int) -- the number of channels in the conv layer.
padding_type (str) -- the name of padding layer: reflect | replicate | zero
norm_layer -- normalization layer
use_dropout (bool) -- if use dropout layers.
use_bias (bool) -- if the conv layer uses bias or not
Returns a conv block (with a conv layer, a normalization layer, and a non-linearity layer (ReLU))
"""
conv_block = []
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim), nn.ReLU(True)]
if use_dropout:
conv_block += [nn.Dropout(0.5)]
p = 0
if padding_type == 'reflect':
conv_block += [nn.ReflectionPad2d(1)]
elif padding_type == 'replicate':
conv_block += [nn.ReplicationPad2d(1)]
elif padding_type == 'zero':
p = 1
else:
raise NotImplementedError('padding [%s] is not implemented' % padding_type)
conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p, bias=use_bias), norm_layer(dim)]
return nn.Sequential(*conv_block)
def forward(self, x):
"""Forward function (with skip connections)"""
out = x + self.conv_block(x) # add skip connections
return out