forked from nftport/face-x-ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
flickr_download.py
411 lines (347 loc) · 20.5 KB
/
flickr_download.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# This work is licensed under the Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# To view a copy of this license, visit
# http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to
# Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
"""Download Flickr-Faces-HQ (FFHQ) dataset to current working directory."""
import os
import sys
import requests
import html
import hashlib
import PIL.Image
import PIL.ImageFile
import numpy as np
import scipy.ndimage
import threading
import queue
import time
import json
import uuid
import glob
import argparse
import itertools
import shutil
from collections import OrderedDict, defaultdict
PIL.ImageFile.LOAD_TRUNCATED_IMAGES = True # avoid "Decompressed Data Too Large" error
#----------------------------------------------------------------------------
json_spec = dict(file_url='https://drive.google.com/uc?id=16N0RV4fHI6joBuKbQAoG34V_cQk7vxSA', file_path='ffhq-dataset-v2.json', file_size=267793842, file_md5='425ae20f06a4da1d4dc0f46d40ba5fd6')
tfrecords_specs = [
dict(file_url='https://drive.google.com/uc?id=1LnhoytWihRRJ7CfhLQ76F8YxwxRDlZN3', file_path='tfrecords/ffhq/ffhq-r02.tfrecords', file_size=6860000, file_md5='63e062160f1ef9079d4f51206a95ba39'),
dict(file_url='https://drive.google.com/uc?id=1LWeKZGZ_x2rNlTenqsaTk8s7Cpadzjbh', file_path='tfrecords/ffhq/ffhq-r03.tfrecords', file_size=17290000, file_md5='54fb32a11ebaf1b86807cc0446dd4ec5'),
dict(file_url='https://drive.google.com/uc?id=1Lr7Tiufr1Za85HQ18yg3XnJXstiI2BAC', file_path='tfrecords/ffhq/ffhq-r04.tfrecords', file_size=57610000, file_md5='7164cc5531f6828bf9c578bdc3320e49'),
dict(file_url='https://drive.google.com/uc?id=1LnyiayZ-XJFtatxGFgYePcs9bdxuIJO_', file_path='tfrecords/ffhq/ffhq-r05.tfrecords', file_size=218890000, file_md5='050cc7e5fd07a1508eaa2558dafbd9ed'),
dict(file_url='https://drive.google.com/uc?id=1Lt6UP201zHnpH8zLNcKyCIkbC-aMb5V_', file_path='tfrecords/ffhq/ffhq-r06.tfrecords', file_size=864010000, file_md5='90bedc9cc07007cd66615b2b1255aab8'),
dict(file_url='https://drive.google.com/uc?id=1LwOP25fJ4xN56YpNCKJZM-3mSMauTxeb', file_path='tfrecords/ffhq/ffhq-r07.tfrecords', file_size=3444980000, file_md5='bff839e0dda771732495541b1aff7047'),
dict(file_url='https://drive.google.com/uc?id=1LxxgVBHWgyN8jzf8bQssgVOrTLE8Gv2v', file_path='tfrecords/ffhq/ffhq-r08.tfrecords', file_size=13766900000, file_md5='74de4f07dc7bfb07c0ad4471fdac5e67'),
dict(file_url='https://drive.google.com/uc?id=1M-ulhD5h-J7sqSy5Y1njUY_80LPcrv3V', file_path='tfrecords/ffhq/ffhq-r09.tfrecords', file_size=55054580000, file_md5='05355aa457a4bd72709f74a81841b46d'),
dict(file_url='https://drive.google.com/uc?id=1M11BIdIpFCiapUqV658biPlaXsTRvYfM', file_path='tfrecords/ffhq/ffhq-r10.tfrecords', file_size=220205650000, file_md5='bf43cab9609ab2a27892fb6c2415c11b'),
]
license_specs = {
'json': dict(file_url='https://drive.google.com/uc?id=1SHafCugkpMZzYhbgOz0zCuYiy-hb9lYX', file_path='LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
'images': dict(file_url='https://drive.google.com/uc?id=1sP2qz8TzLkzG2gjwAa4chtdB31THska4', file_path='images1024x1024/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
'thumbs': dict(file_url='https://drive.google.com/uc?id=1iaL1S381LS10VVtqu-b2WfF9TiY75Kmj', file_path='thumbnails128x128/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
'wilds': dict(file_url='https://drive.google.com/uc?id=1rsfFOEQvkd6_Z547qhpq5LhDl2McJEzw', file_path='in-the-wild-images/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
'tfrecords': dict(file_url='https://drive.google.com/uc?id=1SYUmqKdLoTYq-kqsnPsniLScMhspvl5v', file_path='tfrecords/ffhq/LICENSE.txt', file_size=1610, file_md5='724f3831aaecd61a84fe98500079abc2'),
}
#----------------------------------------------------------------------------
def download_file(session, file_spec, stats, chunk_size=128, num_attempts=10):
file_path = file_spec['file_path']
file_url = file_spec['file_url']
file_dir = os.path.dirname(file_path)
tmp_path = file_path + '.tmp.' + uuid.uuid4().hex
if file_dir:
os.makedirs(file_dir, exist_ok=True)
for attempts_left in reversed(range(num_attempts)):
data_size = 0
try:
# Download.
data_md5 = hashlib.md5()
with session.get(file_url, stream=True) as res:
res.raise_for_status()
with open(tmp_path, 'wb') as f:
for chunk in res.iter_content(chunk_size=chunk_size<<10):
f.write(chunk)
data_size += len(chunk)
data_md5.update(chunk)
with stats['lock']:
stats['bytes_done'] += len(chunk)
# Validate.
if 'file_size' in file_spec and data_size != file_spec['file_size']:
raise IOError('Incorrect file size', file_path)
if 'file_md5' in file_spec and data_md5.hexdigest() != file_spec['file_md5']:
raise IOError('Incorrect file MD5', file_path)
if 'pixel_size' in file_spec or 'pixel_md5' in file_spec:
with PIL.Image.open(tmp_path) as image:
if 'pixel_size' in file_spec and list(image.size) != file_spec['pixel_size']:
raise IOError('Incorrect pixel size', file_path)
if 'pixel_md5' in file_spec and hashlib.md5(np.array(image)).hexdigest() != file_spec['pixel_md5']:
raise IOError('Incorrect pixel MD5', file_path)
break
except:
with stats['lock']:
stats['bytes_done'] -= data_size
# Handle known failure cases.
if data_size > 0 and data_size < 8192:
with open(tmp_path, 'rb') as f:
data = f.read()
data_str = data.decode('utf-8')
# Google Drive virus checker nag.
links = [html.unescape(link) for link in data_str.split('"') if 'export=download' in link]
if len(links) == 1:
if attempts_left:
file_url = requests.compat.urljoin(file_url, links[0])
continue
# Google Drive quota exceeded.
if 'Google Drive - Quota exceeded' in data_str:
if not attempts_left:
raise IOError("Google Drive download quota exceeded -- please try again later")
# Last attempt => raise error.
if not attempts_left:
raise
# Rename temp file to the correct name.
os.replace(tmp_path, file_path) # atomic
with stats['lock']:
stats['files_done'] += 1
# Attempt to clean up any leftover temps.
for filename in glob.glob(file_path + '.tmp.*'):
try:
os.remove(filename)
except:
pass
#----------------------------------------------------------------------------
def choose_bytes_unit(num_bytes):
b = int(np.rint(num_bytes))
if b < (100 << 0): return 'B', (1 << 0)
if b < (100 << 10): return 'kB', (1 << 10)
if b < (100 << 20): return 'MB', (1 << 20)
if b < (100 << 30): return 'GB', (1 << 30)
return 'TB', (1 << 40)
#----------------------------------------------------------------------------
def format_time(seconds):
s = int(np.rint(seconds))
if s < 60: return '%ds' % s
if s < 60 * 60: return '%dm %02ds' % (s // 60, s % 60)
if s < 24 * 60 * 60: return '%dh %02dm' % (s // (60 * 60), (s // 60) % 60)
if s < 100 * 24 * 60 * 60: return '%dd %02dh' % (s // (24 * 60 * 60), (s // (60 * 60)) % 24)
return '>100d'
#----------------------------------------------------------------------------
def download_files(file_specs, num_threads=32, status_delay=0.2, timing_window=50, **download_kwargs):
# Determine which files to download.
done_specs = {spec['file_path']: spec for spec in file_specs if os.path.isfile(spec['file_path'])}
missing_specs = [spec for spec in file_specs if spec['file_path'] not in done_specs]
files_total = len(file_specs)
bytes_total = sum(spec['file_size'] for spec in file_specs)
stats = dict(files_done=len(done_specs), bytes_done=sum(spec['file_size'] for spec in done_specs.values()), lock=threading.Lock())
if len(done_specs) == files_total:
print('All files already downloaded -- skipping.')
return
# Launch worker threads.
spec_queue = queue.Queue()
exception_queue = queue.Queue()
for spec in missing_specs:
spec_queue.put(spec)
thread_kwargs = dict(spec_queue=spec_queue, exception_queue=exception_queue, stats=stats, download_kwargs=download_kwargs)
for _thread_idx in range(min(num_threads, len(missing_specs))):
threading.Thread(target=_download_thread, kwargs=thread_kwargs, daemon=True).start()
# Monitor status until done.
bytes_unit, bytes_div = choose_bytes_unit(bytes_total)
spinner = '/-\\|'
timing = []
while True:
with stats['lock']:
files_done = stats['files_done']
bytes_done = stats['bytes_done']
spinner = spinner[1:] + spinner[:1]
timing = timing[max(len(timing) - timing_window + 1, 0):] + [(time.time(), bytes_done)]
bandwidth = max((timing[-1][1] - timing[0][1]) / max(timing[-1][0] - timing[0][0], 1e-8), 0)
bandwidth_unit, bandwidth_div = choose_bytes_unit(bandwidth)
eta = format_time((bytes_total - bytes_done) / max(bandwidth, 1))
print('\r%s %6.2f%% done %d/%d files %-13s %-10s ETA: %-7s ' % (
spinner[0],
bytes_done / bytes_total * 100,
files_done, files_total,
'%.2f/%.2f %s' % (bytes_done / bytes_div, bytes_total / bytes_div, bytes_unit),
'%.2f %s/s' % (bandwidth / bandwidth_div, bandwidth_unit),
'done' if bytes_total == bytes_done else '...' if len(timing) < timing_window or bandwidth == 0 else eta,
), end='', flush=True)
if files_done == files_total:
print()
break
try:
exc_info = exception_queue.get(timeout=status_delay)
raise exc_info[1].with_traceback(exc_info[2])
except queue.Empty:
pass
def _download_thread(spec_queue, exception_queue, stats, download_kwargs):
with requests.Session() as session:
while not spec_queue.empty():
spec = spec_queue.get()
try:
download_file(session, spec, stats, **download_kwargs)
except:
exception_queue.put(sys.exc_info())
#----------------------------------------------------------------------------
def print_statistics(json_data):
categories = defaultdict(int)
licenses = defaultdict(int)
countries = defaultdict(int)
for item in json_data.values():
categories[item['category']] += 1
licenses[item['metadata']['license']] += 1
country = item['metadata']['country']
countries[country if country else '<Unknown>'] += 1
for name in [name for name, num in countries.items() if num / len(json_data) < 1e-3]:
countries['<Other>'] += countries.pop(name)
rows = [[]] * 2
rows += [['Category', 'Images', '% of all']]
rows += [['---'] * 3]
for name, num in sorted(categories.items(), key=lambda x: -x[1]):
rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data))]]
rows += [[]] * 2
rows += [['License', 'Images', '% of all']]
rows += [['---'] * 3]
for name, num in sorted(licenses.items(), key=lambda x: -x[1]):
rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data))]]
rows += [[]] * 2
rows += [['Country', 'Images', '% of all', '% of known']]
rows += [['---'] * 4]
for name, num in sorted(countries.items(), key=lambda x: -x[1] if x[0] != '<Other>' else 0):
rows += [[name, '%d' % num, '%.2f' % (100.0 * num / len(json_data)),
'%.2f' % (0 if name == '<Unknown>' else 100.0 * num / (len(json_data) - countries['<Unknown>']))]]
rows += [[]] * 2
widths = [max(len(cell) for cell in column if cell is not None) for column in itertools.zip_longest(*rows)]
for row in rows:
print(" ".join(cell + " " * (width - len(cell)) for cell, width in zip(row, widths)))
#----------------------------------------------------------------------------
def recreate_aligned_images(json_data, dst_dir='realign1024x1024', output_size=1024, transform_size=4096, enable_padding=True):
print('Recreating aligned images...')
if dst_dir:
os.makedirs(dst_dir, exist_ok=True)
shutil.copyfile('LICENSE.txt', os.path.join(dst_dir, 'LICENSE.txt'))
for item_idx, item in enumerate(json_data.values()):
print('\r%d / %d ... ' % (item_idx, len(json_data)), end='', flush=True)
# Parse landmarks.
# pylint: disable=unused-variable
lm = np.array(item['in_the_wild']['face_landmarks'])
lm_chin = lm[0 : 17] # left-right
lm_eyebrow_left = lm[17 : 22] # left-right
lm_eyebrow_right = lm[22 : 27] # left-right
lm_nose = lm[27 : 31] # top-down
lm_nostrils = lm[31 : 36] # top-down
lm_eye_left = lm[36 : 42] # left-clockwise
lm_eye_right = lm[42 : 48] # left-clockwise
lm_mouth_outer = lm[48 : 60] # left-clockwise
lm_mouth_inner = lm[60 : 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
qsize = np.hypot(*x) * 2
# Load in-the-wild image.
src_file = item['in_the_wild']['file_path']
if not os.path.isfile(src_file):
print('\nCannot find source image. Please run "--wilds" before "--align".')
return
img = PIL.Image.open(src_file)
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1]))
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
# Save aligned image.
dst_subdir = os.path.join(dst_dir, '%05d' % (item_idx - item_idx % 1000))
os.makedirs(dst_subdir, exist_ok=True)
img.save(os.path.join(dst_subdir, '%05d.png' % item_idx))
# All done.
print('\r%d / %d ... done' % (len(json_data), len(json_data)))
#----------------------------------------------------------------------------
def run(tasks, **download_kwargs):
if not os.path.isfile(json_spec['file_path']) or not os.path.isfile('LICENSE.txt'):
print('Downloading JSON metadata...')
download_files([json_spec, license_specs['json']], **download_kwargs)
print('Parsing JSON metadata...')
with open(json_spec['file_path'], 'rb') as f:
json_data = json.load(f, object_pairs_hook=OrderedDict)
if 'stats' in tasks:
print_statistics(json_data)
specs = []
if 'images' in tasks:
specs += [item['image'] for item in json_data.values()] + [license_specs['images']]
if 'thumbs' in tasks:
specs += [item['thumbnail'] for item in json_data.values()] + [license_specs['thumbs']]
if 'wilds' in tasks:
specs += [item['in_the_wild'] for item in json_data.values()] + [license_specs['wilds']]
if 'tfrecords' in tasks:
specs += tfrecords_specs + [license_specs['tfrecords']]
if len(specs):
print('Downloading %d files...' % len(specs))
np.random.shuffle(specs) # to make the workload more homogeneous
download_files(specs, **download_kwargs)
if 'align' in tasks:
recreate_aligned_images(json_data)
#----------------------------------------------------------------------------
def run_cmdline(argv):
parser = argparse.ArgumentParser(prog=argv[0], description='Download Flickr-Face-HQ (FFHQ) dataset to current working directory.')
parser.add_argument('-j', '--json', help='download metadata as JSON (254 MB)', dest='tasks', action='append_const', const='json')
parser.add_argument('-s', '--stats', help='print statistics about the dataset', dest='tasks', action='append_const', const='stats')
parser.add_argument('-i', '--images', help='download 1024x1024 images as PNG (89.1 GB)', dest='tasks', action='append_const', const='images')
parser.add_argument('-t', '--thumbs', help='download 128x128 thumbnails as PNG (1.95 GB)', dest='tasks', action='append_const', const='thumbs')
parser.add_argument('-w', '--wilds', help='download in-the-wild images as PNG (955 GB)', dest='tasks', action='append_const', const='wilds')
parser.add_argument('-r', '--tfrecords', help='download multi-resolution TFRecords (273 GB)', dest='tasks', action='append_const', const='tfrecords')
parser.add_argument('-a', '--align', help='recreate 1024x1024 images from in-the-wild images', dest='tasks', action='append_const', const='align')
parser.add_argument('--num_threads', help='number of concurrent download threads (default: 32)', type=int, default=32, metavar='NUM')
parser.add_argument('--status_delay', help='time between download status prints (default: 0.2)', type=float, default=0.2, metavar='SEC')
parser.add_argument('--timing_window', help='samples for estimating download eta (default: 50)', type=int, default=50, metavar='LEN')
parser.add_argument('--chunk_size', help='chunk size for each download thread (default: 128)', type=int, default=128, metavar='KB')
parser.add_argument('--num_attempts', help='number of download attempts per file (default: 10)', type=int, default=10, metavar='NUM')
args = parser.parse_args()
if not args.tasks:
print('No tasks specified. Please see "-h" for help.')
exit(1)
run(**vars(args))
#----------------------------------------------------------------------------
if __name__ == "__main__":
run_cmdline(sys.argv)
#----------------------------------------------------------------------------