-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathLoadUCF101Data.py
175 lines (124 loc) · 5.45 KB
/
LoadUCF101Data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
import torch
import numpy as np
import os
from PIL import Image
TRAIN_BATCH_SIZE = 128
TEST_BATCH_SIZE = 128
SAMPLE_FRAME_NUM = 10
classInd = []
with open('classInd.txt', 'r') as f:
all_Class_and_Ind = f.readlines()
for line in all_Class_and_Ind:
idx = line[:-1].split(' ')[0]
className = line[:-1].split(' ')[1]
classInd.append(className)
TrainVideoNameList = []
with open('trainlist01.txt', 'r') as f:
all_Class_and_Ind = f.readlines()
for line in all_Class_and_Ind:
video_name = line[:-1].split('.')[0]
video_name = video_name.split('/')[1]
TrainVideoNameList.append(video_name)
TestVideoNameList = []
with open('testlist01.txt', 'r') as f:
all_Class_and_Ind = f.readlines()
for line in all_Class_and_Ind:
video_name = line[:-1].split('.')[0]
video_name = video_name.split('/')[1]
TestVideoNameList.append(video_name)
class UCF101Data(Dataset): # define a class named MNIST
# read all pictures' filename
def __init__(self, RBG_root, OpticalFlow_root, isTrain, transform=None):
# root: Dataset's filepath
# classInd: dictionary (1 -> ApplyEyeMakeup)
self.filenames = []
self.transform = transform
for i in range(0, 101):
OpticalFlow_class_path = OpticalFlow_root + '/' + classInd[i]
RGB_class_path = RBG_root + '/' + classInd[i]
# only load train/test data using TrainVideoNameList/TestVideoNameList
if isTrain:
TrainOrTest_VideoNameList = list(set(os.listdir(OpticalFlow_class_path)).intersection(set(TrainVideoNameList)))
else:
TrainOrTest_VideoNameList = list(set(os.listdir(OpticalFlow_class_path)).intersection(set(TestVideoNameList)))
for video_dir in os.listdir(OpticalFlow_class_path):
if video_dir in TrainOrTest_VideoNameList:
single_OpticalFlow_video_path = OpticalFlow_class_path + '/' + video_dir
signel_RGB_video_path = RGB_class_path + '/' + video_dir
# load Optical Flow data
frame_list = os.listdir(single_OpticalFlow_video_path)
frame_list.sort(key=lambda x:int(x.split("_")[-2]))
# generate a random frame idx (Notes: it must start from x)
ran_frame_idx = np.random.randint(0, len(frame_list) - SAMPLE_FRAME_NUM * 2 + 1)
while ran_frame_idx % 2 != 0:
ran_frame_idx = np.random.randint(0, len(frame_list) - SAMPLE_FRAME_NUM * 2 + 1)
stacked_OpticalFlow_image_path = []
for j in range(ran_frame_idx, ran_frame_idx + SAMPLE_FRAME_NUM * 2):
OpticalFlow_image_path = single_OpticalFlow_video_path + '/' + frame_list[j]
stacked_OpticalFlow_image_path.append(OpticalFlow_image_path)
# load RGB data
RGB_image_path = str()
for image_fileName in os.listdir(signel_RGB_video_path):
RGB_image_path = signel_RGB_video_path + '/' + image_fileName
# (RGB_image_path, stacked_OpticalFlow_image_path, label)
self.filenames.append((RGB_image_path, stacked_OpticalFlow_image_path, i))
self.len = len(self.filenames)
# Get a sample from the dataset & Return an image and it's label
def __getitem__(self, index):
RGB_image_path, stacked_OpticalFlow_image_path, label = self.filenames[index]
# open the optical flow image
stacked_OpticalFlow_image = torch.empty(SAMPLE_FRAME_NUM * 2, 224, 224)
idx = 0
for i in stacked_OpticalFlow_image_path:
OpticalFlow_image = Image.open(i)
# May use transform function to transform samples
if self.transform is not None:
OpticalFlow_image = self.transform(OpticalFlow_image)
stacked_OpticalFlow_image[idx, :, :] = OpticalFlow_image[0, :, :]
idx += 1
# open the RGB image
RGB_image = Image.open(RGB_image_path)
# May use transform function to transform samples
if self.transform is not None:
RGB_image = self.transform(RGB_image)
return RGB_image, stacked_OpticalFlow_image, label
# get the length of dataset
def __len__(self):
return self.len
# define the transformation
# PIL images -> torch tensors [0, 1]
transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(224),
transforms.ToTensor(),
])
# load the UCF101 training dataset
trainset = UCF101Data(
RBG_root='data/RGB',
OpticalFlow_root='data/OpticalFlow',
isTrain=True,
transform=transform
)
# divide the dataset into batches
trainset_loader = DataLoader(
trainset,
batch_size=TRAIN_BATCH_SIZE,
shuffle=True,
num_workers=0
)
# load the UCF101 testing dataset
testset = UCF101Data(
RBG_root='data/RGB',
OpticalFlow_root='data/OpticalFlow',
isTrain=False,
transform=transform
)
# divide the dataset into batches
testset_loader = DataLoader(
testset,
batch_size=TEST_BATCH_SIZE,
shuffle=False,
num_workers=0
)