You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I installed pyav, ffmpeg on jupyter notebook. python 3.8, pytorch 1.11
when I ran this cell,
if name == 'main':
train(EPOCH)
the results are below:
current lr [0.003]
AssertionError Traceback (most recent call last)
Input In [31], in <cell line: 1>()
1 if name == 'main':
----> 2 train(EPOCH)
Input In [29], in train(epoch)
6 model.train()
8 print('current lr', scheduler.get_last_lr())
----> 9 for index, data in enumerate(trainset_loader):
10 video_clips, label = data
12 video_clips = video_clips.to(device)
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py:530, in _BaseDataLoaderIter.next(self)
528 if self._sampler_iter is None:
529 self._reset()
--> 530 data = self._next_data()
531 self._num_yielded += 1
532 if self._dataset_kind == _DatasetKind.Iterable and
533 self._IterableDataset_len_called is not None and
534 self._num_yielded > self._IterableDataset_len_called:
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py:570, in _SingleProcessDataLoaderIter._next_data(self)
568 def _next_data(self):
569 index = self._next_index() # may raise StopIteration
--> 570 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
571 if self._pin_memory:
572 data = _utils.pin_memory.pin_memory(data)
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\utils\data_utils\fetch.py:49, in _MapDatasetFetcher.fetch(self, possibly_batched_index)
47 def fetch(self, possibly_batched_index):
48 if self.auto_collation:
---> 49 data = [self.dataset[idx] for idx in possibly_batched_index]
50 else:
51 data = self.dataset[possibly_batched_index]
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\utils\data_utils\fetch.py:49, in (.0)
47 def fetch(self, possibly_batched_index):
48 if self.auto_collation:
---> 49 data = [self.dataset[idx] for idx in possibly_batched_index]
50 else:
51 data = self.dataset[possibly_batched_index]
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torchvision\datasets\ucf101.py:120, in UCF101.getitem(self, idx)
119 def getitem(self, idx: int) -> Tuple[Tensor, Tensor, int]:
--> 120 video, audio, info, video_idx = self.video_clips.get_clip(idx)
121 label = self.samples[self.indices[video_idx]][1]
123 if self.transform is not None:
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torchvision\datasets\video_utils.py:367, in VideoClips.get_clip(self, idx)
365 video = video[resampling_idx]
366 info["video_fps"] = self.frame_rate
--> 367 assert len(video) == self.num_frames, f"{video.shape} x {self.num_frames}"
368 return video, audio, info, video_idx
AssertionError: torch.Size([17, 240, 320, 3]) x 16
I don't know what the problem is.
I'm a beginner in deep learning.
Please help me.
Thank you.
The text was updated successfully, but these errors were encountered:
I installed pyav, ffmpeg on jupyter notebook. python 3.8, pytorch 1.11
when I ran this cell,
if name == 'main':
train(EPOCH)
the results are below:
current lr [0.003]
AssertionError Traceback (most recent call last)
Input In [31], in <cell line: 1>()
1 if name == 'main':
----> 2 train(EPOCH)
Input In [29], in train(epoch)
6 model.train()
8 print('current lr', scheduler.get_last_lr())
----> 9 for index, data in enumerate(trainset_loader):
10 video_clips, label = data
12 video_clips = video_clips.to(device)
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py:530, in _BaseDataLoaderIter.next(self)
528 if self._sampler_iter is None:
529 self._reset()
--> 530 data = self._next_data()
531 self._num_yielded += 1
532 if self._dataset_kind == _DatasetKind.Iterable and
533 self._IterableDataset_len_called is not None and
534 self._num_yielded > self._IterableDataset_len_called:
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\utils\data\dataloader.py:570, in _SingleProcessDataLoaderIter._next_data(self)
568 def _next_data(self):
569 index = self._next_index() # may raise StopIteration
--> 570 data = self._dataset_fetcher.fetch(index) # may raise StopIteration
571 if self._pin_memory:
572 data = _utils.pin_memory.pin_memory(data)
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\utils\data_utils\fetch.py:49, in _MapDatasetFetcher.fetch(self, possibly_batched_index)
47 def fetch(self, possibly_batched_index):
48 if self.auto_collation:
---> 49 data = [self.dataset[idx] for idx in possibly_batched_index]
50 else:
51 data = self.dataset[possibly_batched_index]
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torch\utils\data_utils\fetch.py:49, in (.0)
47 def fetch(self, possibly_batched_index):
48 if self.auto_collation:
---> 49 data = [self.dataset[idx] for idx in possibly_batched_index]
50 else:
51 data = self.dataset[possibly_batched_index]
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torchvision\datasets\ucf101.py:120, in UCF101.getitem(self, idx)
119 def getitem(self, idx: int) -> Tuple[Tensor, Tensor, int]:
--> 120 video, audio, info, video_idx = self.video_clips.get_clip(idx)
121 label = self.samples[self.indices[video_idx]][1]
123 if self.transform is not None:
File C:\ProgramData\Anaconda3\envs\pytorch\lib\site-packages\torchvision\datasets\video_utils.py:367, in VideoClips.get_clip(self, idx)
365 video = video[resampling_idx]
366 info["video_fps"] = self.frame_rate
--> 367 assert len(video) == self.num_frames, f"{video.shape} x {self.num_frames}"
368 return video, audio, info, video_idx
AssertionError: torch.Size([17, 240, 320, 3]) x 16
I don't know what the problem is.
I'm a beginner in deep learning.
Please help me.
Thank you.
The text was updated successfully, but these errors were encountered: