-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy path08_train-hierarchical-baseline.py
298 lines (255 loc) · 10.1 KB
/
08_train-hierarchical-baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import argparse
import csv
import datetime
import pickle as pk
import h5py
import keras
import numpy as np
import os
import pandas as pd
import pescador
import tensorflow as tf
import time
import oyaml as yaml
import localmodule
from models import create_hierarchical_baseline_model
from keras.metrics import categorical_accuracy, binary_accuracy
from keras.optimizers import Adam
# Define constants.
train_data_dir = localmodule.get_train_data_dir()
train_dataset_name = localmodule.get_train_dataset_name()
valid_data_dir = localmodule.get_valid_data_dir()
valid_dataset_name = localmodule.get_valid_dataset_name()
models_dir = localmodule.get_models_dir()
n_input_hops = 104
n_filters = [24, 48, 48]
kernel_size = [5, 5]
pool_size = [2, 4]
n_hidden_units = 64
# Read command-line arguments.
parser = argparse.ArgumentParser()
parser.add_argument('aug_kind_str')
parser.add_argument('trial_str')
parser.add_argument('--no-partial-labels', action='store_false',
dest='partial_labels')
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument('--base-wd', type=float, default=1e-4)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--epochs', type=int)
parser.add_argument('--align-perturb', action='store_true')
parser.add_argument('--loss-weight-medium', type=float, default=1.0)
parser.add_argument('--loss-weight-coarse', type=float, default=1.0)
parser.add_argument('--tfr', default="pcen")
parser.add_argument('--lr-annealing', action='store_true')
parser.add_argument('--num-cpus', type=int, default=1)
args = parser.parse_args()
aug_kind_str = args.aug_kind_str
trial_str = args.trial_str
partial_labels = args.partial_labels
lr = args.lr
base_wd = args.base_wd
batch_size = args.batch_size
epochs = args.epochs
tfr_str = args.tfr
loss_weight_medium = args.loss_weight_medium
loss_weight_coarse = args.loss_weight_coarse
align_perturb = args.align_perturb
num_cpus = args.num_cpus
lr_annealing = args.lr_annealing
active_streamers = 64
streamer_rate = 1024
steps_per_epoch = int(np.ceil(36.0 * localmodule.get_num_augmentations(aug_kind_str) * streamer_rate / batch_size))
# Iterate over the entire training validation set
valid_batch_size = 512
validation_steps = int(np.ceil(35335 / float(valid_batch_size)))
# Set number of epochs.
if not epochs:
if aug_kind_str == "none":
epochs = 512
else:
epochs = 1024
# Print header.
start_time = int(time.time())
print(str(datetime.datetime.now()) + " Start.")
print("Training hierarchical (coarse-to-fine) convnet on " + train_dataset_name)
print("")
print('h5py version: {:s}'.format(h5py.__version__))
print('keras version: {:s}'.format(keras.__version__))
print('numpy version: {:s}'.format(np.__version__))
print('pandas version: {:s}'.format(pd.__version__))
print('pescador version: {:s}'.format(pescador.__version__))
print('tensorflow version: {:s}'.format(tf.__version__))
print("")
# Define and compile Keras model.
# NB: the original implementation of Justin Salamon in ICASSP 2017 relies on
# glorot_uniform initialization for all layers, and the optimizer is a
# stochastic gradient descent (SGD) with a fixed learning rate of 0.1.
# Instead, we use a he_normal initialization for the layers followed
# by rectified linear units (see He ICCV 2015), and replace the SGD by
# the Adam adaptive stochastic optimizer (see Kingma ICLR 2014).
# Moreover, we disable dropout because we found that it consistently prevented
# the model to train at all.
inputs, outputs \
= create_hierarchical_baseline_model(n_input_hops, n_filters, n_hidden_units, kernel_size, pool_size, base_wd=base_wd)
# Build Pescador streamers corresponding to log-mel-spectrograms in augmented
# training and validation sets.
valid_hdf5_dir = os.path.join(valid_data_dir, tfr_str, "original")
# Create directory for model, unit, and trial.
model_name = "classify-hierarchical-coarsetofine-convnet"
if not aug_kind_str == "none":
model_name = "_".join([model_name, "aug-" + aug_kind_str])
model_dir = os.path.join(models_dir, model_name)
os.makedirs(model_dir, exist_ok=True)
trial_dir = os.path.join(model_dir, trial_str)
os.makedirs(trial_dir, exist_ok=True)
# Define Keras callback for checkpointing model.
network_name = "_".join(
[train_dataset_name, model_name, trial_str, "network"])
network_path = os.path.join(trial_dir, network_name + ".hdf5")
checkpoint = keras.callbacks.ModelCheckpoint(network_path,
monitor="val_loss", verbose=False, save_best_only=True, mode="min")
# Save configuration
params_yaml_path = os.path.join(trial_dir, network_name + "-params.yaml")
with open(params_yaml_path, "w") as yaml_file:
params = vars(args)
params.update({
"n_input_hops": n_input_hops,
"n_filters": n_filters,
"kernel_size": kernel_size,
"pool_size": pool_size,
"n_hidden_units": n_hidden_units,
"active_streamers": active_streamers,
"streamer_rate": streamer_rate,
"steps_per_epoch": steps_per_epoch,
"valid_batch_size": valid_batch_size,
"validation_steps": validation_steps,
})
yaml.dump(params, yaml_file)
# Define custom callback for saving history.
history_name = "_".join(
[train_dataset_name, model_name, trial_str, "history"])
history_path = os.path.join(trial_dir, history_name + ".csv")
with open(history_path, 'w') as csv_file:
csv_writer = csv.writer(csv_file)
header = [
"Epoch", "Local time",
"Training loss",
"Training coarse accuracy (%)",
"Training medium accuracy (%)",
"Training fine accuracy (%)",
"Validation loss",
"Validation coarse accuracy (%)",
"Validation medium accuracy (%)",
"Validation fine accuracy (%)",
]
csv_writer.writerow(header)
def write_row(history_path, epoch, logs):
with open(history_path, 'a') as csv_file:
csv_writer = csv.writer(csv_file)
row = [
str(epoch).zfill(3),
str(datetime.datetime.now()),
"{:.16f}".format(logs.get('loss')),
"{:.3f}".format(100*logs.get('y_coarse_binary_accuracy')).rjust(7),
"{:.3f}".format(100*logs.get('y_medium_categorical_accuracy')).rjust(7),
"{:.3f}".format(100*logs.get('y_fine_categorical_accuracy')).rjust(7),
"{:.16f}".format(logs.get('val_loss')),
"{:.3f}".format(100*logs.get('val_y_coarse_binary_accuracy')).rjust(7),
"{:.3f}".format(100*logs.get('val_y_medium_categorical_accuracy')).rjust(7),
"{:.3f}".format(100*logs.get('val_y_fine_categorical_accuracy')).rjust(7)
]
csv_writer.writerow(row)
history_callback = keras.callbacks.LambdaCallback(
on_epoch_end=lambda epoch, logs: write_row(history_path, epoch, logs))
callbacks = [checkpoint, history_callback]
if lr_annealing:
reduce_lr = keras.callbacks.ReduceLROnPlateau()
callbacks.append(reduce_lr)
losses = {
"y_coarse": 'binary_crossentropy',
"y_medium": 'categorical_crossentropy',
"y_fine": 'categorical_crossentropy',
}
metrics = {
"y_coarse": [binary_accuracy],
"y_medium": [categorical_accuracy],
"y_fine": [categorical_accuracy]
}
loss_weights = {
"y_coarse": loss_weight_coarse,
"y_medium": loss_weight_medium,
"y_fine": 1.0
}
print("Loading validation data.")
# Load validation data once to save on IO costs
validation_data = localmodule.get_validation_data(
valid_hdf5_dir, n_input_hops, valid_batch_size, validation_steps,
tfr_str=tfr_str, structured=True, label_inputs=False)
print("Performing rejection sampling for initialization.")
# Rejection sampling for best initialization.
n_inits = 10
for init_id in range(n_inits):
model = keras.models.Model(inputs=inputs, outputs=outputs)
model.compile(loss=losses, loss_weights=loss_weights,
optimizer=Adam(lr), metrics=metrics)
training_streamer = localmodule.multiplex_tfr(
train_data_dir, n_input_hops, batch_size, mode="train",
aug_kind_str=aug_kind_str, tfr_str=tfr_str, partial_labels=partial_labels,
label_inputs=False, structured=True,
active_streamers=active_streamers, streamer_rate=streamer_rate,
num_cpus=num_cpus, align_perturb=align_perturb)
history = model.fit_generator(
training_streamer,
steps_per_epoch = steps_per_epoch,
epochs = 4,
verbose = False,
callbacks = callbacks,
workers=0,
validation_data=validation_data,
use_multiprocessing=True,
max_queue_size=100)
history_df = pd.read_csv(history_path)
val_acc = 100 * list(history_df["Validation coarse accuracy (%)"])[-1]
if val_acc > 20.0:
break
# Export network architecture as YAML file.
yaml_path = os.path.join(trial_dir, network_name + ".yaml")
with open(yaml_path, "w") as yaml_file:
yaml_string = model.to_yaml()
yaml_file.write(yaml_string)
# Print model summary.
model.summary()
print("Starting training.")
# Train model.
history = model.fit_generator(
training_streamer,
steps_per_epoch = steps_per_epoch,
epochs = epochs,
verbose = False,
callbacks = [checkpoint, history_callback],
workers=0,
validation_data=validation_data,
use_multiprocessing=True,
max_queue_size=100)
# Save some results for error analysis
results_path = os.path.join(trial_dir, network_name + "-results.pkl")
results = {
'train': localmodule.get_results_output(model, training_streamer, 64, structured=True),
'valid': localmodule.get_results_output(model, validation_data, 64, structured=True)
}
with open(results_path, 'wb') as f:
pk.dump(results, f)
# Print history.
history_df = pd.DataFrame(history.history)
print(history_df.to_string())
print("")
# Print elapsed time.
print(str(datetime.datetime.now()) + " Finish.")
elapsed_time = time.time() - int(start_time)
elapsed_hours = int(elapsed_time / (60 * 60))
elapsed_minutes = int((elapsed_time % (60 * 60)) / 60)
elapsed_seconds = elapsed_time % 60.
elapsed_str = "{:>02}:{:>02}:{:>05.2f}".format(elapsed_hours,
elapsed_minutes,
elapsed_seconds)
print("Total elapsed time: " + elapsed_str + ".")