-
Notifications
You must be signed in to change notification settings - Fork 3
/
IPJF.py
86 lines (69 loc) · 3.71 KB
/
IPJF.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pack_padded_sequence
from src.Preprocess.profile_word2vec import EMBED_DIM
class IPJF(torch.nn.Module):
def __init__(self, word_embeddings,):
super(IPJF, self).__init__()
# embedding_matrix = [[0...0], [...], ...[]]
self.Word_Embeds = torch.nn.Embedding.from_pretrained(word_embeddings, padding_idx=0)
self.Word_Embeds.weight.requires_grad = False
self.Expect_ConvNet = torch.nn.Sequential(
# in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,...
torch.nn.Conv1d(in_channels=EMBED_DIM, out_channels=EMBED_DIM, kernel_size=5),
# BatchNorm1d只处理第二个维度
# torch.nn.BatchNorm1d(EMBED_DIM),
torch.nn.ReLU(inplace=True),
torch.nn.MaxPool1d(kernel_size=3),
# in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,...
# torch.nn.Conv1d(in_channels=EMBED_DIM, out_channels=EMBED_DIM, kernel_size=5),
# # BatchNorm1d只处理第二个维度
# torch.nn.BatchNorm1d(EMBED_DIM),
# torch.nn.ReLU(inplace=True),
# torch.nn.MaxPool1d(kernel_size=50)
)
self.Job_ConvNet = torch.nn.Sequential(
# in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,...
torch.nn.Conv1d(in_channels=EMBED_DIM, out_channels=EMBED_DIM, kernel_size=5),
# BatchNorm1d只处理第二个维度
# torch.nn.BatchNorm1d(EMBED_DIM),
torch.nn.ReLU(inplace=True),
torch.nn.MaxPool1d(kernel_size=2),
# in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,...
# torch.nn.Conv1d(in_channels=EMBED_DIM, out_channels=EMBED_DIM, kernel_size=3),
# # BatchNorm1d只处理第二个维度
# torch.nn.BatchNorm1d(EMBED_DIM),
# torch.nn.ReLU(inplace=True),
# torch.nn.MaxPool1d(kernel_size=50)
)
# match mlp
self.Match_MLP = torch.nn.Sequential(
torch.nn.Linear(2 * EMBED_DIM, EMBED_DIM),
torch.nn.Tanh(),
torch.nn.Linear(EMBED_DIM, 1),
torch.nn.Sigmoid()
)
# [batch_size *2, MAX_PROFILELEN, MAX_TERMLEN] = (40, 15, 50)
# term: padding same, word: padding 0
# expects_sample, jobs_sample are in same format
def forward(self, expects, jobs):
# word level:
# [batch_size, MAX_PROFILELEN, MAX_TERMLEN] (40, 15, 50) ->
# [batch_size, MAX_PROFILELEN * MAX_TERMLEN](40 * 15, 50)
shape = expects.shape
expects_, jobs_ = expects.view([shape[0], -1]), jobs.view([shape[0], -1])
# embeddings: [batch_size, MAX_PROFILELEN * MAX_TERMLEN, EMBED_DIM]
expects_wordembed = self.Word_Embeds(expects_).float()
jobs_wordembed = self.Word_Embeds(jobs_).float()
# permute for conv1d
# embeddings: [batch_size, EMBED_DIM, MAX_PROFILELEN * MAX_TERMLEN]
expects_wordembed_ = expects_wordembed.permute(0, 2, 1)
jobs_wordembed_ = jobs_wordembed.permute(0, 2, 1)
# [batch_size, EMBED_DIM, x]
expect_convs_out = self.Expect_ConvNet(expects_wordembed_)
job_convs_out = self.Job_ConvNet(jobs_wordembed_)
# [batch_size, EMBED_DIM, x] -> [batch_size, EMBED_DIM, 1]
expect_len, job_len = expect_convs_out.shape[-1], job_convs_out.shape[-1]
expect_final_out = torch.nn.AvgPool1d(kernel_size=expect_len)(expect_convs_out).squeeze(-1)
job_final_out = torch.nn.MaxPool1d(kernel_size=job_len)(job_convs_out).squeeze(-1)
return self.Match_MLP(torch.cat([expect_final_out, job_final_out], dim=-1)).squeeze(-1)