-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
125 lines (101 loc) · 3.62 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
import torch
import numpy as np
import argparse
import os
import os.path as osp
import sys
import time
import json
from mmcv import Config
from dataset import build_data_loader
from models import build_model
from models.utils import fuse_module
from utils import ResultFormat, AverageMeter,addutil
def report_speed(outputs, speed_meters):
total_time = 0
print(outputs.keys())
for key in outputs:
if 'time' in key:
total_time += outputs[key]
speed_meters[key].update(outputs[key])
print('%s: %.4f' % (key, speed_meters[key].avg))
speed_meters['total_time'].update(total_time)
print('FPS: %.1f' % (1.0 / speed_meters['total_time'].avg))
def test(test_loader, model, cfg):
model.eval()
rf = ResultFormat(cfg.data.test.type, cfg.test_cfg.result_path)
if cfg.report_speed:
speed_meters = dict(
backbone_time=AverageMeter(500),
neck_time=AverageMeter(500),
det_head_time=AverageMeter(500),
det_pa_time=AverageMeter(500),
rec_time=AverageMeter(500),
total_time=AverageMeter(500)
)
for idx, data in enumerate(test_loader):
print('Testing %d/%d' % (idx, len(test_loader)))
image=addutil.loadImage(test_loader.dataset.img_paths[idx])
sys.stdout.flush()
# prepare input
data['imgs'] = data['imgs'].cuda()
data.update(dict(
cfg=cfg
))
# forward
with torch.no_grad():
outputs = model(**data)
#print(outputs)
if cfg.report_speed:
report_speed(outputs, speed_meters)
# save result
image_name, _ = osp.splitext(osp.basename(test_loader.dataset.img_paths[idx]))
rf.write_result(image_name, image[:,:,::-1],outputs)######修改,增加image[:,:,::-1]
def main(args):
cfg = Config.fromfile(args.config)
#print(cfg.data.test)#{'type': 'PAN_CTW', 'split': 'test', 'short_size': 640, 'read_type': 'cv2'}
for d in [cfg, cfg.data.test]:
d.update(dict(
report_speed=args.report_speed
))
print(json.dumps(cfg._cfg_dict, indent=4))
sys.stdout.flush()
# data loader
data_loader = build_data_loader(cfg.data.test)
#print(len(data_loader))#3000
test_loader = torch.utils.data.DataLoader(
data_loader,
batch_size=1,
shuffle=False,
#num_workers=2,
num_workers=0
)
# model
model = build_model(cfg.model)
model = model.cuda()
if args.checkpoint is not None:
if os.path.isfile(args.checkpoint):
print("Loading model and optimizer from checkpoint '{}'".format(args.checkpoint))
sys.stdout.flush()
checkpoint = torch.load(args.checkpoint)
d = dict()
for key, value in checkpoint['state_dict'].items():
tmp = key[7:]
d[tmp] = value
model.load_state_dict(d)
else:
print("No checkpoint found at '{}'".format(args.resume))
raise
# fuse conv and bn
model = fuse_module(model)
# test
test(test_loader, model, cfg)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
parser.add_argument('config', help='config file path')
parser.add_argument('checkpoint', nargs='?', type=str, default=None)
parser.add_argument('--report_speed', action='store_true')
args = parser.parse_args()
main(args)