-
Notifications
You must be signed in to change notification settings - Fork 0
/
hammerdb.py
387 lines (383 loc) · 21.4 KB
/
hammerdb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
"""
:Date: 2023-02-12
:Version: 0.1
:Authors: Patrick K. Erdelt
Perform TPC-C inspired benchmarks based on HammerDB in a Kubernetes cluster.
Optionally monitoring is actived.
User can also choose some parameters like number of warehouses and request some resources.
"""
from bexhoma import *
from dbmsbenchmarker import *
#import experiments
import logging
import urllib3
import logging
import argparse
import time
from timeit import default_timer
import datetime
import math
urllib3.disable_warnings()
logging.basicConfig(level=logging.ERROR)
if __name__ == '__main__':
description = """Perform TPC-C inspired benchmarks in a Kubernetes cluster.
Optionally monitoring is actived.
User can also choose some parameters like number of warehouses and request some resources.
"""
# argparse
parser = argparse.ArgumentParser(description=description)
parser.add_argument('mode', help='start sut, also load data or also run the TPC-C queries', choices=['run', 'start', 'load', 'summary'])
parser.add_argument('-aws', '--aws', help='fix components to node groups at AWS', action='store_true', default=False)
parser.add_argument('-dbms','--dbms', help='DBMS to load the data', choices=['PostgreSQL', 'MySQL', 'MariaDB'], default=[], action='append')
parser.add_argument('-db', '--debug', help='dump debug informations', action='store_true')
parser.add_argument('-sl', '--skip-loading', help='do not ingest, start benchmarking immediately', action='store_true', default=False)
parser.add_argument('-cx', '--context', help='context of Kubernetes (for a multi cluster environment), default is current context', default=None)
parser.add_argument('-e', '--experiment', help='sets experiment code for continuing started experiment', default=None)
#parser.add_argument('-d', '--detached', help='puts most of the experiment workflow inside the cluster', action='store_true')
parser.add_argument('-m', '--monitoring', help='activates monitoring for sut', action='store_true')
parser.add_argument('-mc', '--monitoring-cluster', help='activates monitoring for all nodes of cluster', action='store_true', default=False)
parser.add_argument('-ms', '--max-sut', help='maximum number of parallel DBMS configurations, default is no limit', default=None)
parser.add_argument('-dt', '--datatransfer', help='activates datatransfer', action='store_true', default=False)
#parser.add_argument('-md', '--monitoring-delay', help='time to wait [s] before execution of the runs of a query', default=10)
parser.add_argument('-nr', '--num-run', help='number of runs per query', default=1)
parser.add_argument('-nc', '--num-config', help='number of runs per configuration', default=1)
parser.add_argument('-ne', '--num-query-executors', help='comma separated list of number of parallel clients', default="1")
parser.add_argument('-nlp', '--num-loading-pods', help='total number of loaders per configuration', default="1")
parser.add_argument('-nlt', '--num-loading-threads', help='total number of threads per loading process', default="1")
#parser.add_argument('-nlf', '--num-loading-target-factors', help='comma separated list of factors of 16384 ops as target - default range(1,9)', default="1")
parser.add_argument('-nbp', '--num-benchmarking-pods', help='comma separated list of number of benchmarkers per configuration', default="1")
parser.add_argument('-nbt', '--num-benchmarking-threads', help='total number of threads per benchmarking process', default="1")
#parser.add_argument('-nbf', '--num-benchmarking-target-factors', help='comma separated list of factors of 16384 ops as target - default range(1,9)', default="1")
#parser.add_argument('-nvu', '--num-virtual-users', help='space separated list of number of virtual users for HammerDB', default="1")
parser.add_argument('-nrt', '--num-rampup-time', help='Rampup time in minutes', default=2)
#parser.add_argument('-nbp', '--num-benchmarking-pods', help='comma separated list of number of benchmarkers per configuration', default="1")
parser.add_argument('-sf', '--scaling-factor', help='scaling factor (SF) = number of warehouses', default=1)
#parser.add_argument('-su', '--scaling-users', help='comma separated list of number of users for loading', default="1")
parser.add_argument('-sd', '--scaling-duration', help='scaling factor = duration in minutes', default=5)
parser.add_argument('-t', '--timeout', help='timeout for a run of a query', default=180)
parser.add_argument('-rr', '--request-ram', help='request ram', default='16Gi')
parser.add_argument('-rc', '--request-cpu', help='request cpus', default='4')
parser.add_argument('-rct', '--request-cpu-type', help='request node having node label cpu=', default='')
parser.add_argument('-rg', '--request-gpu', help='request number of gpus', default=1)
parser.add_argument('-rgt', '--request-gpu-type', help='request node having node label gpu=', default='a100')
parser.add_argument('-rst', '--request-storage-type', help='request persistent storage of certain type', default=None, choices=[None, '', 'local-hdd', 'shared'])
parser.add_argument('-rss', '--request-storage-size', help='request persistent storage of certain size', default='10Gi')
parser.add_argument('-rnn', '--request-node-name', help='request a specific node', default=None)
parser.add_argument('-rnl', '--request-node-loading', help='request a specific node', default=None)
parser.add_argument('-rnb', '--request-node-benchmarking', help='request a specific node', default=None)
parser.add_argument('-tr', '--test-result', help='test if result fulfills some basic requirements', action='store_true', default=False)
# evaluate args
args = parser.parse_args()
if args.debug:
logging.basicConfig(level=logging.DEBUG)
#logging.basicConfig(level=logging.DEBUG)
if args.debug:
logger_bexhoma = logging.getLogger('bexhoma')
logger_bexhoma.setLevel(logging.DEBUG)
logger_loader = logging.getLogger('load_data_asynch')
logger_loader.setLevel(logging.DEBUG)
##############
### set parameters
##############
command_args = vars(args)
##############
### workflow parameters
##############
# start with old experiment?
code = args.experiment
# only create testbed or also run a benchmark?
mode = str(args.mode)
# scaling of data
SF = str(args.scaling_factor)
# timeout of a benchmark
timeout = int(args.timeout)
# how often to repeat experiment?
num_experiment_to_apply = int(args.num_config)
# should results be tested for validity?
test_result = args.test_result
# configure number of clients per config
list_clients = args.num_query_executors.split(",")
if len(list_clients) > 0:
list_clients = [int(x) for x in list_clients if len(x) > 0]
else:
list_clients = []
# do not ingest, start benchmarking immediately
skip_loading = args.skip_loading
##############
### specific to: Benchbase
##############
SD = str(args.scaling_duration)
num_rampup = args.num_rampup_time
##############
### set cluster
##############
aws = args.aws
if aws:
cluster = clusters.aws(context=args.context)
# scale up
node_sizes = {
'auxiliary': 1,
'sut-mid': 1,
'benchmarker': 1
}
#cluster.scale_nodegroups(node_sizes)
else:
cluster = clusters.kubernetes(context=args.context)
cluster_name = cluster.contextdata['clustername']
if args.max_sut is not None:
cluster.max_sut = int(args.max_sut)
# set experiment
if code is None:
code = cluster.code
##############
### prepare and configure experiment
##############
experiment = experiments.tpcc(cluster=cluster, SF=SF, timeout=timeout, code=code, num_experiment_to_apply=num_experiment_to_apply)
experiment.prometheus_interval = "10s"
experiment.prometheus_timeout = "10s"
# remove running dbms
#experiment.clean()
experiment.prepare_testbed(command_args)
num_loading_pods = experiment.get_parameter_as_list('num_loading_pods')
num_loading_threads = experiment.get_parameter_as_list('num_loading_threads')
num_benchmarking_pods = experiment.get_parameter_as_list('num_benchmarking_pods')
num_benchmarking_threads = experiment.get_parameter_as_list('num_benchmarking_threads')
# set node groups for components
if aws:
# set node labes for components
experiment.set_nodes(
sut = 'sut',
loading = 'sut',
monitoring = 'auxiliary',
benchmarking = 'sut',
)
# add labels about the use case
experiment.set_additional_labels(
usecase="hammerdb_tpcc",
experiment_design="4",
warehouses=SF,
#users_loading=scaling_users,
#users_benchmarking=str(num_virtual_users),
)
##############
### add configs of dbms to be tested
##############
for loading_threads in num_loading_threads:#[8]:#[64]:
for loading_pods in [1]:#num_loading_pods:#[1,2]:#[1,8]:#range(2,5):
loading_threads_per_pod = int(loading_threads/loading_pods)
if ("PostgreSQL" in args.dbms or len(args.dbms) == 0):
# PostgreSQL
name_format = 'PostgreSQL-{cluster}-{users}-{pods}'
config_name = name_format.format(cluster=cluster_name, users=loading_threads_per_pod, pods=loading_pods)
config = configurations.hammerdb(experiment=experiment, docker='PostgreSQL', configuration=config_name, dialect='PostgreSQL', alias='DBMS D')
config.set_storage(
storageConfiguration = 'postgresql'
)
config.set_loading_parameters(
PARALLEL = 1,
SF = SF,
HAMMERDB_DURATION = str(SD),
HAMMERDB_RAMPUP = str(num_rampup),
HAMMERDB_TYPE = "postgresql",
HAMMERDB_VUSERS = loading_threads_per_pod,
)
config.set_loading(parallel=1, num_pods=1)
executor_list = []
for factor_benchmarking in [1]:#num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = 1#target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BEXHOMA_SYNCH_LOAD = 1,
HAMMERDB_DURATION = str(SD),
HAMMERDB_RAMPUP = str(num_rampup),
HAMMERDB_TYPE = "postgresql",
HAMMERDB_VUSERS = benchmarking_threads_per_pod,
)
#print(executor_list)
config.add_benchmark_list(executor_list)
if ("MySQL" in args.dbms or len(args.dbms) == 0):
# MySQL
name_format = 'MySQL-{cluster}-{users}-{pods}'
config_name = name_format.format(cluster=cluster_name, users=loading_threads_per_pod, pods=loading_pods)
config = configurations.hammerdb(experiment=experiment, docker='MySQL', configuration=config_name, dialect='MySQL', alias='DBMS D')
config.set_storage(
storageConfiguration = 'mysql'
)
#config.num_loading = 1
config.set_loading_parameters(
PARALLEL = 1,
SF = SF,
HAMMERDB_DURATION = str(SD),
HAMMERDB_RAMPUP = str(num_rampup),
HAMMERDB_TYPE = "mysql",
HAMMERDB_VUSERS = loading_threads_per_pod,
HAMMERDB_MYSQL_ENGINE = 'innodb',#'BLACKHOLE',#'memory',
USER = "root",
PASSWORD = "root",
)
config.set_loading(parallel=1, num_pods=1)
executor_list = []
for factor_benchmarking in [1]:#num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = 1#target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BEXHOMA_SYNCH_LOAD = 1,
HAMMERDB_DURATION = str(SD),
HAMMERDB_RAMPUP = str(num_rampup),
HAMMERDB_TYPE = "mysql",
HAMMERDB_MYSQL_ENGINE = 'innodb',#'BLACKHOLE',#'memory',
USER = "root",
PASSWORD = "root",
HAMMERDB_VUSERS = benchmarking_threads_per_pod,
)
#print(executor_list)
config.add_benchmark_list(executor_list)
if ("MariaDB" in args.dbms or len(args.dbms) == 0):
# MariaDB
name_format = 'MariaDB-{cluster}-{users}-{pods}'
config_name = name_format.format(cluster=cluster_name, users=loading_threads_per_pod, pods=loading_pods)
config = configurations.hammerdb(experiment=experiment, docker='MariaDB', configuration=config_name, dialect='MariaDB', alias='DBMS D')
config.set_storage(
storageConfiguration = 'mariadb'
)
#config.num_loading = 1
config.set_loading_parameters(
PARALLEL = 1,
SF = SF,
HAMMERDB_DURATION = str(SD),
HAMMERDB_RAMPUP = str(num_rampup),
HAMMERDB_TYPE = "mariadb",
HAMMERDB_VUSERS = loading_threads_per_pod,
HAMMERDB_MYSQL_ENGINE = 'innodb',#'BLACKHOLE',#'memory',
USER = "root",
PASSWORD = "root",
)
config.set_loading(parallel=1, num_pods=1)
executor_list = []
for factor_benchmarking in [1]:#num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = 1#target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BEXHOMA_SYNCH_LOAD = 1,
HAMMERDB_DURATION = str(SD),
HAMMERDB_RAMPUP = str(num_rampup),
HAMMERDB_TYPE = "mariadb",
HAMMERDB_MYSQL_ENGINE = 'innodb',#'BLACKHOLE',#'memory',
USER = "root",
PASSWORD = "root",
HAMMERDB_VUSERS = benchmarking_threads_per_pod,
)
#print(executor_list)
config.add_benchmark_list(executor_list)
##############
### wait for necessary nodegroups to have planned size
##############
if aws:
#cluster.wait_for_nodegroups(node_sizes)
pass
##############
### branch for workflows
##############
if args.mode == 'start':
experiment.start_sut()
elif args.mode == 'load':
# start all DBMS
experiment.start_sut()
# configure number of clients per config = 0
list_clients = []
# total time of experiment
experiment.add_benchmark_list(list_clients)
start = default_timer()
start_datetime = str(datetime.datetime.now())
# run workflow
experiment.work_benchmark_list()
# total time of experiment
end = default_timer()
end_datetime = str(datetime.datetime.now())
duration_experiment = end - start
elif args.mode == 'summary':
experiment.show_summary()
else:
# configure number of clients per config
#list_clients = args.num_query_executors.split(",")
#if len(list_clients) > 0:
# list_clients = [int(x) for x in list_clients]
#experiment.add_benchmark_list(list_clients)
# total time of experiment
start = default_timer()
start_datetime = str(datetime.datetime.now())
#print("Experiment starts at {} ({})".format(start_datetime, start))
print("{:30s}: has code {}".format("Experiment",experiment.code))
print("{:30s}: starts at {} ({})".format("Experiment",start_datetime, start))
print("{:30s}: {}".format("Experiment",experiment.workload['info']))
# run workflow
experiment.work_benchmark_list()
# total time of experiment
end = default_timer()
end_datetime = str(datetime.datetime.now())
duration_experiment = end - start
print("Experiment ends at {} ({}): {}s total".format(end_datetime, end, duration_experiment))
experiment.workload['duration'] = math.ceil(duration_experiment)
##################
experiment.evaluate_results()
experiment.store_workflow_results()
experiment.stop_benchmarker()
experiment.stop_sut()
#experiment.zip() # OOM? exit code 137
if test_result:
test_result_code = experiment.test_results()
if test_result_code == 0:
print("Test successful!")
cluster.restart_dashboard()
#cluster.stop_dashboard()
#cluster.start_dashboard()
experiment.show_summary()
exit()