-
Notifications
You must be signed in to change notification settings - Fork 0
/
benchbase.py
639 lines (631 loc) · 40.8 KB
/
benchbase.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
"""
:Date: 2023-02-12
:Version: 0.1
:Authors: Patrick K. Erdelt
Perform TPC-C inspired benchmarks based on Benchbase in a Kubernetes cluster.
Optionally monitoring is actived.
User can also choose some parameters like number of warehouses and request some resources.
"""
from bexhoma import *
from dbmsbenchmarker import *
#import experiments
import logging
import urllib3
import logging
import argparse
import time
from timeit import default_timer
import datetime
import math
import types
urllib3.disable_warnings()
logging.basicConfig(level=logging.ERROR)
if __name__ == '__main__':
description = """Perform TPC-C inspired benchmarks based on Benchbase in a Kubernetes cluster.
Optionally monitoring is actived.
User can also choose some parameters like number of warehouses and request some resources.
"""
# argparse
parser = argparse.ArgumentParser(description=description)
parser.add_argument('mode', help='start sut, also load data or also run the TPC-C queries', choices=['run', 'start', 'load'])
parser.add_argument('-aws', '--aws', help='fix components to node groups at AWS', action='store_true', default=False)
parser.add_argument('-dbms','--dbms', help='DBMS to load the data', choices=['PostgreSQL', 'MySQL', 'MariaDB', 'YugabyteDB', 'CockroachDB', 'DatabaseService'], default=[], action='append')
parser.add_argument('-db', '--debug', help='dump debug informations', action='store_true')
parser.add_argument('-sl', '--skip-loading', help='do not ingest, start benchmarking immediately', action='store_true', default=False)
parser.add_argument('-cx', '--context', help='context of Kubernetes (for a multi cluster environment), default is current context', default=None)
parser.add_argument('-e', '--experiment', help='sets experiment code for continuing started experiment', default=None)
#parser.add_argument('-d', '--detached', help='puts most of the experiment workflow inside the cluster', action='store_true')
parser.add_argument('-m', '--monitoring', help='activates monitoring for sut', action='store_true')
parser.add_argument('-mc', '--monitoring-cluster', help='activates monitoring for all nodes of cluster', action='store_true', default=False)
parser.add_argument('-ms', '--max-sut', help='maximum number of parallel DBMS configurations, default is no limit', default=None)
#parser.add_argument('-dt', '--datatransfer', help='activates datatransfer', action='store_true', default=False)
#parser.add_argument('-md', '--monitoring-delay', help='time to wait [s] before execution of the runs of a query', default=10)
#parser.add_argument('-nr', '--num-run', help='number of runs per query', default=1)
parser.add_argument('-nc', '--num-config', help='number of runs per configuration', default=1)
parser.add_argument('-ne', '--num-query-executors', help='comma separated list of number of parallel clients', default="1")
parser.add_argument('-nw', '--num-worker', help='number of workers (for distributed dbms)', default=1)
parser.add_argument('-nlp', '--num-loading-pods', help='total number of loaders per configuration', default="1")
parser.add_argument('-nlt', '--num-loading-threads', help='total number of threads per loading process', default="1")
#parser.add_argument('-nlf', '--num-loading-target-factors', help='comma separated list of factors of 16384 ops as target - default range(1,9)', default="1")
parser.add_argument('-nbp', '--num-benchmarking-pods', help='comma separated list of number of benchmarkers per configuration', default="1")
parser.add_argument('-nbt', '--num-benchmarking-threads', help='total number of threads per benchmarking process', default="1")
parser.add_argument('-nbf', '--num-benchmarking-target-factors', help='comma separated list of factors of 16384 ops as target - default range(1,9)', default="1")
#parser.add_argument('-nvu', '--num-virtual-users', help='comma separated list of number of virtual users for Benchbase benchmarking', default="1")
parser.add_argument('-sf', '--scaling-factor', help='scaling factor (SF) = number of warehouses', default=1)
#parser.add_argument('-su', '--scaling-users', help='comma separated list of number of users for loading', default="1")
parser.add_argument('-sd', '--scaling-duration', help='scaling factor = duration in minutes', default=5)
parser.add_argument('-t', '--timeout', help='timeout for a run of a query', default=600)
parser.add_argument('-rr', '--request-ram', help='request ram', default='16Gi')
parser.add_argument('-rc', '--request-cpu', help='request cpus', default='4')
parser.add_argument('-rct', '--request-cpu-type', help='request node having node label cpu=', default='')
parser.add_argument('-rg', '--request-gpu', help='request number of gpus', default=1)
parser.add_argument('-rgt', '--request-gpu-type', help='request node having node label gpu=', default='a100')
parser.add_argument('-rst', '--request-storage-type', help='request persistent storage of certain type', default=None, choices=[None, '', 'local-hdd', 'shared'])
parser.add_argument('-rss', '--request-storage-size', help='request persistent storage of certain size', default='10Gi')
parser.add_argument('-rnn', '--request-node-name', help='request a specific node', default=None)
parser.add_argument('-rnl', '--request-node-loading', help='request a specific node', default=None)
parser.add_argument('-rnb', '--request-node-benchmarking', help='request a specific node', default=None)
parser.add_argument('-tr', '--test-result', help='test if result fulfills some basic requirements', action='store_true', default=False)
#parser.add_argument('-nti', '--num-time', help='time per benchmark in seconds', default="60")
parser.add_argument('-b', '--benchmark', help='type of benchmark', default='tpcc', choices=['tpcc', 'twitter'])
#parser.add_argument('-nt', '--num-target', help='total number of loaders per configuration', default="1024")
#parser.add_argument('-ltf', '--list-target-factors', help='comma separated list of factors of 1024 ops as target - default range(1,9)', default="1,2,3,4,5,6,7,8")
parser.add_argument('-tb', '--target-base', help='ops as target, base for factors - default 1024 = 2**10', default="1024")
# evaluate args
args = parser.parse_args()
if args.debug:
logging.basicConfig(level=logging.DEBUG)
#logging.basicConfig(level=logging.DEBUG)
if args.debug:
logger_bexhoma = logging.getLogger('bexhoma')
logger_bexhoma.setLevel(logging.DEBUG)
logger_loader = logging.getLogger('load_data_asynch')
logger_loader.setLevel(logging.DEBUG)
##############
### set parameters
##############
command_args = vars(args)
##############
### workflow parameters
##############
# start with old experiment?
code = args.experiment
# only create testbed or also run a benchmark?
mode = str(args.mode)
# scaling of data
SF = str(args.scaling_factor)
# timeout of a benchmark
timeout = int(args.timeout)
# how often to repeat experiment?
num_experiment_to_apply = int(args.num_config)
# should results be tested for validity?
test_result = args.test_result
# configure number of clients per config
list_clients = args.num_query_executors.split(",")
if len(list_clients) > 0:
list_clients = [int(x) for x in list_clients if len(x) > 0]
else:
list_clients = []
# do not ingest, start benchmarking immediately
skip_loading = args.skip_loading
# how many workers (for distributed dbms)
num_worker = int(args.num_worker)
##############
### specific to: Benchbase
##############
SD = int(args.scaling_duration)*60
target_base = int(args.target_base)
type_of_benchmark = args.benchmark
##############
### set cluster
##############
aws = args.aws
if aws:
cluster = clusters.aws(context=args.context)
# scale up
node_sizes = {
'auxiliary': 1,
'sut-mid': 1,
'benchmarker': 1
}
#cluster.scale_nodegroups(node_sizes)
else:
cluster = clusters.kubernetes(context=args.context)
cluster_name = cluster.contextdata['clustername']
if args.max_sut is not None:
cluster.max_sut = int(args.max_sut)
# set experiment
if code is None:
code = cluster.code
##############
### prepare and configure experiment
##############
experiment = experiments.benchbase(cluster=cluster, SF=SF, timeout=timeout, code=code, num_experiment_to_apply=num_experiment_to_apply)
experiment.prometheus_interval = "10s"
experiment.prometheus_timeout = "10s"
# remove running dbms
#experiment.clean()
experiment.prepare_testbed(command_args)
num_loading_pods = experiment.get_parameter_as_list('num_loading_pods')
num_loading_threads = experiment.get_parameter_as_list('num_loading_threads')
num_benchmarking_pods = experiment.get_parameter_as_list('num_benchmarking_pods')
num_benchmarking_threads = experiment.get_parameter_as_list('num_benchmarking_threads')
num_benchmarking_target_factors = experiment.get_parameter_as_list('num_benchmarking_target_factors')
# set node groups for components
if aws:
# set node labes for components
experiment.set_nodes(
sut = 'sut',
loading = 'sut',
monitoring = 'auxiliary',
benchmarking = 'sut',
)
# add labels about the use case
experiment.set_additional_labels(
usecase="benchbase_tpcc",
warehouses=SF,
#users_loading=scaling_users,
#users_benchmarking=str(num_virtual_users),
)
##############
### add configs of dbms to be tested
##############
for loading_threads in [1]: # always maximum
for loading_pods in [1]: # always only 1 pod
for factor_loading in [1]: # always maximum
loading_target = target_base*factor_loading#4*4096*t
loading_threads_per_pod = int(loading_threads/loading_pods)
loading_target_per_pod = int(loading_target/loading_pods)
if ("PostgreSQL" in args.dbms or len(args.dbms) == 0):
# PostgreSQL
name_format = 'PostgreSQL-{threads}-{pods}-{target}'
config = configurations.benchbase(experiment=experiment, docker='PostgreSQL', configuration=name_format.format(threads=loading_threads, pods=loading_pods, target=loading_target), alias='DBMS A')
config.set_storage(
storageConfiguration = 'postgresql'
)
config.set_loading_parameters(
PARALLEL = str(loading_pods), # =1
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'postgres',
BEXHOMA_DATABASE = 'postgres',
#BENCHBASE_TARGET = int(target),
BENCHBASE_TERMINALS = loading_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
)
config.set_loading(parallel=loading_pods, num_pods=loading_pods)
executor_list = []
for factor_benchmarking in num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'postgres',
BEXHOMA_DATABASE = 'postgres',
BENCHBASE_TARGET = benchmarking_target_per_pod,
BENCHBASE_TERMINALS = benchmarking_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
)
#print(executor_list)
config.add_benchmark_list(executor_list)
if ("MySQL" in args.dbms or len(args.dbms) == 0):
# MySQL
name_format = 'MySQL-{threads}-{pods}-{target}'
config = configurations.benchbase(experiment=experiment, docker='MySQL', configuration=name_format.format(threads=loading_threads, pods=loading_pods, target=loading_target), alias='DBMS A')
config.set_storage(
storageConfiguration = 'mysql'
)
config.set_loading_parameters(
PARALLEL = str(loading_pods), # =1
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'mysql',
BEXHOMA_DATABASE = 'benchbase',
#BENCHBASE_TARGET = int(target),
BENCHBASE_TERMINALS = loading_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
BEXHOMA_USER = "root",
BEXHOMA_PASSWORD = "root",
)
config.set_loading(parallel=loading_pods, num_pods=loading_pods)
executor_list = []
for factor_benchmarking in num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'mysql',
BEXHOMA_DATABASE = 'benchbase',
BENCHBASE_TARGET = benchmarking_target_per_pod,
BENCHBASE_TERMINALS = benchmarking_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
)
#print(executor_list)
config.add_benchmark_list(executor_list)
if ("MariaDB" in args.dbms or len(args.dbms) == 0):
# MariaDB
name_format = 'MariaDB-{threads}-{pods}-{target}'
config = configurations.benchbase(experiment=experiment, docker='MariaDB', configuration=name_format.format(threads=loading_threads, pods=loading_pods, target=loading_target), alias='DBMS A')
config.set_storage(
storageConfiguration = 'mariadb'
)
config.set_loading_parameters(
PARALLEL = str(loading_pods), # =1
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'mariadb',
BEXHOMA_DATABASE = 'benchbase',
#BENCHBASE_TARGET = int(target),
BENCHBASE_TERMINALS = loading_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
BEXHOMA_USER = "root",
BEXHOMA_PASSWORD = "root",
)
config.set_loading(parallel=loading_pods, num_pods=loading_pods)
executor_list = []
for factor_benchmarking in num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'mariadb',
BEXHOMA_DATABASE = 'benchbase',
BENCHBASE_TARGET = benchmarking_target_per_pod,
BENCHBASE_TERMINALS = benchmarking_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
)
#print(executor_list)
config.add_benchmark_list(executor_list)
if ("YugabyteDB" in args.dbms):# or len(args.dbms) == 0): # not included per default
# YugabyteDB
name_format = 'YugabyteDB-{threads}-{pods}-{target}'
config = configurations.benchbase(experiment=experiment, docker='YugabyteDB', configuration=name_format.format(threads=loading_threads, pods=loading_pods, target=loading_target), alias='DBMS D')
config.set_storage(
storageConfiguration = 'yugabytedb'
)
if skip_loading:
config.loading_deactivated = True
config.sut_service_name = "yb-tserver-service" # fix service name of SUT, because it is not managed by bexhoma
config.sut_container_name = '' # fix container name of SUT
def get_worker_pods(self):
"""
Returns a list of all pod names of workers for the current SUT.
Default is component name is 'worker' for a bexhoma managed DBMS.
This is used for example to find the pods of the workers in order to get the host infos (CPU, RAM, node name, ...).
YugabyteDB: This is yb-tserver-0, -1 etc.
:return: list of endpoints
"""
pods_worker = ['yb-tserver-0', 'yb-tserver-1', 'yb-tserver-2']
#pods_worker = self.experiment.cluster.get_pods(app='', component='', configuration='yb-tserver', experiment='')
#print("****************", pods_worker)
return pods_worker
config.get_worker_pods = types.MethodType(get_worker_pods, config)
def create_monitoring(self, app='', component='monitoring', experiment='', configuration=''):
"""
Generate a name for the monitoring component.
This is used in a pattern for promql.
Basically this is `{app}-{component}-{configuration}-{experiment}-{client}`.
For YugabyteDB, the service of the SUT to be monitored is named like 'yb-tserver-'.
:param app: app the component belongs to
:param component: Component, for example sut or monitoring
:param experiment: Unique identifier of the experiment
:param configuration: Name of the dbms configuration
"""
if component == 'sut':
name = 'yb-tserver-'
else:
name = self.generate_component_name(app=app, component=component, experiment=experiment, configuration=configuration)
self.logger.debug("yugabytedb.create_monitoring({})".format(name))
return name
config.create_monitoring = types.MethodType(create_monitoring, config)
def get_worker_endpoints(self):
"""
Returns all endpoints of a headless service that monitors nodes of a distributed DBMS.
These are IPs of cAdvisor instances.
The endpoint list is to be filled in a config of an instance of Prometheus.
By default, the workers can be found by the name of their component (worker-0 etc).
This is neccessary, when we have sidecar containers attached to workers of a distributed dbms.
:return: list of endpoints
"""
endpoints = []
#name_worker = self.generate_component_name(component='worker', configuration=self.configuration, experiment=self.code)
pods_worker = self.get_worker_pods()
for pod in pods_worker:
#endpoint = '{worker}.{service_sut}'.format(worker=pod, service_sut=name_worker)
endpoint = '{worker}'.format(worker=pod)
endpoints.append(endpoint)
print('Worker Endpoint: {endpoint}'.format(endpoint = endpoint))
self.logger.debug("yugabytedb.get_worker_endpoints({})".format(endpoints))
return endpoints
config.get_worker_endpoints = types.MethodType(get_worker_endpoints, config)
def set_metric_of_config(self, metric, host, gpuid):
"""
Returns a promql query.
Parameters in this query are substituted, so that prometheus finds the correct metric.
Example: In 'sum(irate(container_cpu_usage_seconds_total{{container_label_io_kubernetes_pod_name=~"(.*){configuration}-{experiment}(.*)", container_label_io_kubernetes_pod_name=~"(.*){configuration}-{experiment}(.*)", container_label_io_kubernetes_container_name="dbms"}}[1m]))'
configuration and experiment are placeholders and will be replaced by concrete values.
YugabyteDB: We do not have a SUT that is specific to the experiment or configuration. The pod names follow a pattern like yb-tserver and there is no container name.
:param metric: Parametrized promql query
:param host: Name of the host the metrics should be collected from
:param gpuid: GPU that the metrics should watch
:return: promql query without parameters
"""
metric = metric.replace(', container="dbms"', '')
metric = metric.replace(', container_label_io_kubernetes_container_name="dbms"', '')
return metric.format(host=host, gpuid=gpuid, configuration='yb-tserver', experiment='')
config.set_metric_of_config = types.MethodType(set_metric_of_config, config)
config.set_loading_parameters(
PARALLEL = str(loading_pods), # =1
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'postgres',
BEXHOMA_DATABASE = 'yugabyte',
#BENCHBASE_TARGET = int(target),
BENCHBASE_TERMINALS = loading_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
BEXHOMA_USER = "yugabyte",
BEXHOMA_PASSWORD = "",
BEXHOMA_PORT = 5433,
)
config.set_loading(parallel=loading_pods, num_pods=loading_pods)
executor_list = []
for factor_benchmarking in num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'postgres',
BEXHOMA_DATABASE = 'yugabyte',
BENCHBASE_TARGET = benchmarking_target_per_pod,
BENCHBASE_TERMINALS = benchmarking_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
BEXHOMA_USER = "yugabyte",
BEXHOMA_PASSWORD = "",
BEXHOMA_PORT = 5433,
)
#print(executor_list)
config.add_benchmark_list(executor_list)
cluster.max_sut = 1 # can only run 1 in same cluster because of fixed service
if ("CockroachDB" in args.dbms):# or len(args.dbms) == 0): # not included per default
# CockroachDB
name_format = 'CockroachDB-{threads}-{pods}-{target}'
config = configurations.benchbase(experiment=experiment, docker='CockroachDB', configuration=name_format.format(threads=loading_threads, pods=loading_pods, target=loading_target), alias='DBMS D', worker=num_worker)
if skip_loading:
config.loading_deactivated = True
config.set_loading_parameters(
PARALLEL = str(loading_pods), # =1
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'cockroachdb',
BEXHOMA_DATABASE = 'defaultdb',
#BENCHBASE_TARGET = int(target),
BENCHBASE_TERMINALS = loading_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
BEXHOMA_USER = "root",
BEXHOMA_PASSWORD = "",
)
config.set_loading(parallel=loading_pods, num_pods=loading_pods)
executor_list = []
for factor_benchmarking in num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'cockroachdb',
BEXHOMA_DATABASE = 'defaultdb',
BENCHBASE_TARGET = benchmarking_target_per_pod,
BENCHBASE_TERMINALS = benchmarking_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
BEXHOMA_USER = "root",
BEXHOMA_PASSWORD = "",
)
#print(executor_list)
config.add_benchmark_list(executor_list)
#cluster.max_sut = 1 # can only run 1 in same cluster because of fixed service
if ("DatabaseService" in args.dbms):# or len(args.dbms) == 0): # not included per default
# DatabaseService
name_format = 'DatabaseService-{threads}-{pods}-{target}'
config = configurations.benchbase(experiment=experiment, docker='DatabaseService', configuration=name_format.format(threads=loading_threads, pods=loading_pods, target=loading_target), alias='DatabaseService')
config.monitoring_sut = False # cannot be monitored since outside of K8s
if skip_loading:
config.loading_deactivated = True
config.set_loading_parameters(
PARALLEL = str(loading_pods), # =1
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'postgres',
BEXHOMA_DATABASE = 'postgres',
BEXHOMA_HOST = 'bexhoma-service.perdelt.svc.cluster.local',
#BENCHBASE_TARGET = int(target),
BENCHBASE_TERMINALS = loading_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
)
config.set_loading(parallel=loading_pods, num_pods=loading_pods)
executor_list = []
for factor_benchmarking in num_benchmarking_target_factors:#range(1, 9):#range(1, 2):#range(1, 15):
benchmarking_target = target_base*factor_benchmarking#4*4096*t
for benchmarking_threads in num_benchmarking_threads:
for benchmarking_pods in num_benchmarking_pods:#[1,2]:#[1,8]:#range(2,5):
for num_executor in list_clients:
benchmarking_pods_scaled = num_executor*benchmarking_pods
benchmarking_threads_per_pod = int(benchmarking_threads/benchmarking_pods)
benchmarking_target_per_pod = int(benchmarking_target/benchmarking_pods)
"""
print("benchmarking_target", benchmarking_target)
print("benchmarking_pods", benchmarking_pods)
print("benchmarking_pods_scaled", benchmarking_pods_scaled)
print("benchmarking_threads", benchmarking_threads)
print("benchmarking_threads_per_pod", benchmarking_threads_per_pod)
print("benchmarking_target_per_pod", benchmarking_target_per_pod)
"""
executor_list.append(benchmarking_pods_scaled)
config.add_benchmarking_parameters(
PARALLEL = str(benchmarking_pods_scaled),
SF = SF,
BENCHBASE_BENCH = type_of_benchmark,#'tpcc',
BENCHBASE_PROFILE = 'postgres',
BEXHOMA_DATABASE = 'postgres',
BEXHOMA_HOST = 'bexhoma-service.perdelt.svc.cluster.local',
BENCHBASE_TARGET = benchmarking_target_per_pod,
BENCHBASE_TERMINALS = benchmarking_threads_per_pod,
BENCHBASE_TIME = SD,
BENCHBASE_ISOLATION = "TRANSACTION_READ_COMMITTED",
)
#print(executor_list)
config.add_benchmark_list(executor_list)
#cluster.max_sut = 1 # can only run 1 in same cluster because of fixed service
##############
### wait for necessary nodegroups to have planned size
##############
if aws:
#cluster.wait_for_nodegroups(node_sizes)
pass
##############
### branch for workflows
##############
if args.mode == 'start':
experiment.start_sut()
elif args.mode == 'load':
# start all DBMS
experiment.start_sut()
# configure number of clients per config = 0
list_clients = []
# total time of experiment
#experiment.add_benchmark_list(list_clients)
start = default_timer()
start_datetime = str(datetime.datetime.now())
# run workflow
experiment.work_benchmark_list()
# total time of experiment
end = default_timer()
end_datetime = str(datetime.datetime.now())
duration_experiment = end - start
elif args.mode == 'summary':
experiment.show_summary()
else:
# configure number of clients per config
#list_clients = args.num_query_executors.split(",")
#if len(list_clients) > 0:
# list_clients = [int(x) for x in list_clients]
#experiment.add_benchmark_list(list_clients)
# total time of experiment
start = default_timer()
start_datetime = str(datetime.datetime.now())
#print("Experiment starts at {} ({})".format(start_datetime, start))
print("{:30s}: has code {}".format("Experiment",experiment.code))
print("{:30s}: starts at {} ({})".format("Experiment",start_datetime, start))
print("{:30s}: {}".format("Experiment",experiment.workload['info']))
# run workflow
experiment.work_benchmark_list()
# total time of experiment
end = default_timer()
end_datetime = str(datetime.datetime.now())
duration_experiment = end - start
print("Experiment ends at {} ({}): {}s total".format(end_datetime, end, duration_experiment))
experiment.workload['duration'] = math.ceil(duration_experiment)
##################
experiment.evaluate_results()
experiment.store_workflow_results()
experiment.stop_benchmarker()
experiment.stop_sut()
#experiment.zip() # OOM? exit code 137
if test_result:
test_result_code = experiment.test_results()
if test_result_code == 0:
print("Test successful!")
cluster.restart_dashboard()
#cluster.stop_dashboard()
#cluster.start_dashboard()
experiment.show_summary()
exit()