-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPoint_cloud_clustering.m
247 lines (220 loc) · 9.93 KB
/
Point_cloud_clustering.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
% This script is created originally on 13/09/2017,
% Author: Xuesong(Ben) Li <[email protected]>
% University: UNSW
% All rights reserved
% This alogirthm is used to do clustering among point cloud, the metric to
% cluster points is based on the Euclidean distance
%% Reading and showing the 3D point cloud ICP
function [] = mian()
% %------------------------------------------------------------------------
clear; dbstop error; clc; close all;
warning off; %close all;
%% global variable
global h5;
%% Some very important parameters
forward_threshold = 0.6 ; % threshold to segment line per layer according to dept gap
left_threshold = 0.8; % threshold to segment line per layer according to left gap
dist_center_threshold = 1 ; % the threshold to segment the centeral points
threshold_ration = 0.02; %0.02 %threshold = distance*ration
threshold_min_dist = 0.2 ;
longest_distance = 70; % the longest distance we can see
back_threshold = 2 ; % threshold to remove back point
height_threshold = 0.6; % threshold to remove too high points
ground_threshold = -1.0; % threshold to remove ground plane
%% setting up data dir
root_dir = 'H:\Dataset\datasets\kitti\object\'; %% set up your dataset dir, we downloaded the KITTI dataset
data_set = 'training';
cam = 2; % 2 = left color camera
image_dir = fullfile(root_dir,[data_set '\image_' num2str(cam)]);
velo_dir = [root_dir,data_set,'\velodyne\'];
label_dir = fullfile(root_dir,[data_set '\label_' num2str(cam)]);
calib_dir = fullfile(root_dir,[data_set '\calib']);
calib = dir(fullfile(calib_dir,'*.txt')); % calibration files
ima = dir(fullfile(image_dir,'*.png')); % image files
addpath('.\Planes\');
fst_frame =1; nt_frames = length(ima);
addpath('.\Kitti_sdk\');
%% initializing figures
fig = figure(1);
img = imread(sprintf('%s/%06d.png',image_dir,0));
set(fig,'position',[10,560, size(img,2), 1.2*size(img,1)]);
h1.axes = axes('position',[0,0,1, 1]);
h2=[];
h3=[];
h0=visualization('init',image_dir);
sprintf('In the point cloud figure, \n''SPACE'': Next Image \n''-'': Previous Image \n''x'': +1000 \n''y'': -1000 \n''q'': quit')
%% clustering and plotting
for frame = fst_frame: 1: nt_frames
velo =[];
px =[];
%%reading all the data
[velo, px , Pts, ImaRGB] = initialization( image_dir , frame, ima, calib_dir , calib , velo_dir ,...
back_threshold , height_threshold , ground_threshold, longest_distance) ;
sub_1 = px(2:end,1) - px(1:end-1,1);
id_1 = find(sub_1>500);
seg_num = length(id_1);
clearvars PCs PC_layer PC_clusters;
tic;
for i = 2: seg_num
PCs(i-1).data = velo(id_1(i-1)+1:id_1(i),1:3); % saving point cloud coordinates with different matrixs.
PCs(i-1).label = zeros(size(PCs(i-1).data,1),1);
end
%% Labeling all the central points.
[PC_layer clusters]= labeling_weighted_point( PCs , threshold_ration, threshold_min_dist); %the number of clusters should be (clusters -1)
toc;
%% categorize according to different clusters
for jj = 1:clusters
PC_clusters(jj).data = [];
num_layer = size(PC_layer, 2);
for kk = 1:num_layer
ind_3 =[];
ind_3 = find(PC_layer(kk).label == jj);
len_ind = size(ind_3,1);
if len_ind>=1
PC_clusters(jj).data = [PC_clusters(jj).data ; PC_layer(kk).data(ind_3,:)] ;
end
end
end
%% show the color for every clustering.
tic;
data_visulization(PC_clusters , clusters-1, ImaRGB, h1, Pts, h2, h3, velo); %the number of clusters should be (clusters -1)\
%% controlling image change
show_label( image_dir, label_dir, calib_dir, frame, data_set, h0, nt_frames);
toc
pause(0.2) ;
%waitting for response
waitforbuttonpress;
key = get(gcf,'CurrentCharacter');
switch lower(key)
case 'q', break; % quit
case '-', frame = max(frame-1, 0); % previous frame
case 'x', frame = min(frame+1000,nt_frames-1); % +100 frames
case 'y', frame = max(frame-1000,0); % -100 frames
otherwise, frame = min(frame+1, nt_frames-1); % next frame
end
end
end
function data_visulization(PC_clusters , clusters, ImaRGB, h1, Pts, h2, h3, velo)
%% find the color for every clustering.
global h5;
numb_colors = 0.2;
color_line = eye(3);
delete(h5);
h5 = figure(2);
for i = 1: clusters
color_bin = de2bi(i, 9);
r_sum = color_bin(1) + color_bin(4) + color_bin(7);
g_sum = color_bin(2) + color_bin(5) + color_bin(8);
b_sum = color_bin(3) + color_bin(6) + color_bin(9);
color_cluster = [ r_sum*numb_colors g_sum*numb_colors b_sum*numb_colors ];
if( size(PC_clusters(i).data,1)>3)
pcshow(PC_clusters(i).data, color_cluster);
hold on;
%%plot the number of label and data
pc_mean = mean(PC_clusters(i).data(:,:));
no_mean = size(PC_clusters(i).data(:,:),1);
text(pc_mean(1),pc_mean(2),pc_mean(3),sprintf('(L:%d, No:%d)',i, no_mean) );
%% plot 3D boxes
x_max = max(PC_clusters(i).data(:,1));
x_min = min(PC_clusters(i).data(:,1));
y_max = max(PC_clusters(i).data(:,2));
y_min = min(PC_clusters(i).data(:,2));
z_max = max(PC_clusters(i).data(:,3));
z_min = min(PC_clusters(i).data(:,3));
xx = [x_min; x_min; x_min; x_min; x_min];
yy = [y_max; y_min; y_min; y_max; y_max];
zz = [z_max; z_max; z_min; z_min; z_max];
plot3(xx, yy, zz,'color',color_cluster);
hold on;
xx(:) = x_max;
plot3(xx, yy, zz,'color',color_cluster);
hold on;
xx = [x_min; x_min; x_max; x_max; x_min];
yy = [y_min; y_min; y_min; y_min; y_min];
zz = [z_max; z_min; z_min; z_max; z_max];
plot3(xx, yy, zz,'color',color_cluster);
hold on;
yy(:) = y_max;
plot3(xx, yy, zz,'color',color_cluster);
hold on;
%% calculate the eigenvalue and eigenvector, plot the normal vector for every point clusters
data_sum = []; AA =[];
data_sum = ( PC_clusters(i).data(:,:) - pc_mean);
AA = cov(data_sum);
[V D]=eig(AA);
len_m = size(V,1);
for i = 1:len_m
norm_ = [pc_mean(1,:); pc_mean(1,:)+ D(i,i)*V(:,i)'];
plot3( norm_(:,1),norm_(:,2),norm_(:,3), 'LineWidth',2.5 , 'Color', color_line(i,:)); %([pc_mean(:)] , [pc_mean(:)+D(i,i)*V(:,i)], 'Color ', [0.3*i 0.3*i 0.3*i ], 'ipLength', 10*unit::mm));
hold on;
end
end
end
title('Clusters') ;
imshow(ImaRGB,'parent',h1.axes)
hold(h1.axes, 'on')
h2 = plot(h1.axes,Pts(:,1),Pts(:,2),'.r');
title(h1.axes,'Point cloud in image') ;
figure(3)
pcshow(velo(:,1:3));
title('Point cloud');
end
function [velo, px, Pts , ImaRGB] = initialization( image_dir , frame, ima, calib_dir, calib , velo_dir ,...
back_threshold , height_threshold , ground_threshold, longest_distance)
fd = fopen( fullfile(image_dir,ima(frame+1).name));
if fd < 1
fprintf('Cound not open RGB image !!!\n'); keyboard
else
ImaRGB = imread( fullfile(image_dir,ima(frame+1).name) );
end
fclose(fd);
T = Fun_open_calib(calib(frame+1).name,calib_dir);
fd = fopen(sprintf('%s%06d.bin',velo_dir,frame),'rb');
if fd < 1
fprintf('No LIDAR files !!!\n');
keyboard
else
velo = fread(fd,[4 inf],'single')';
fclose(fd);
end
% remove all points behind image plane (approximation)
idx = velo(:,1)<back_threshold;
velo(idx,:) = [];
idx=[];
idx = velo(:,1)>longest_distance;
velo(idx,:) = [];
idx=[];
idx = velo(:,3)> height_threshold;
velo(idx,:) = [];
idx=[];
%% find the road plane
idx = velo(:,3)< ground_threshold;
ground_point = velo(idx,1:3);
num_pc = size(ground_point , 1);
rand_no = floor(num_pc/100);
if rand_no<=3 % at least 3 points are needed to estimate a plane
rand_no = num_pc;
end
iter_no = 6;
in_dist_thre = 0.1;
in_no = floor(num_pc*3/10);
[ plane_norm plane_dist] = ransac_plane( ground_point, rand_no, iter_no, in_dist_thre , in_no);
dist_pc2plane = velo(:,1:3)*plane_norm - plane_dist; % the distance of all points to plane
idx=[];
idx = find(dist_pc2plane<in_dist_thre*2);
ground_point = [];
ground_point = velo(idx,:);
velo(idx,:) = [];
% project to image plane (exclude luminance)
px = (T.P2 * T.R0_rect * T.Tr_velo_to_cam * velo')';
px(:,1) = px(:,1)./px(:,3);
px(:,2) = px(:,2)./px(:,3);
% % -----------------------------------------------------------------------
ix = px(:,1)<2; px(ix,:)=[];velo(ix,:) = [];
ix = px(:,1)>(size(ImaRGB,2)-1); px(ix,:)=[];velo(ix,:) = [];
ix = px(:,2)>size(ImaRGB,1); px(ix,:)=[];velo(ix,:) = [];
% % Ordering
Pts = zeros(size(px,1),4);
Pts = sortrows(px,2);
% % segmenting the point cloud into different layers
end