-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.py
70 lines (58 loc) · 2.39 KB
/
analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
from tqdm import tqdm
import time
import re
from audio import convert_audio
from transcribers.cmu_sphinx import CMUSphinx
from transcribers.librispeech import Librispeech
from transcribers.silero import Silero
from transcribers.vosk import Vosk
from transcribers.wav2vec2 import Wav2Vec2
from transcribers.wav2vec2_commonvoice import Wav2Vec2CommonVoice
from transcribers.whisper import Whisper
DATASET_PATH = "test-clean"
MODELS = {
"cmu_spinx": CMUSphinx(),
"librispeech": Librispeech(),
"silero": Silero(),
"vosk": Vosk(),
"wav2vec2_commonvoice": Wav2Vec2CommonVoice(),
"wav2vec2": Wav2Vec2(),
"whisper": Whisper(),
}
assert os.path.isdir(DATASET_PATH), "Missing test dataset. Download test-clean from http://www.openslr.org/12"
def extract_dataset():
clips = {}
for folder in os.listdir(DATASET_PATH):
for subfolder in os.listdir(os.path.join(DATASET_PATH, folder)):
path = os.path.join(DATASET_PATH, folder, subfolder)
with open(os.path.join(path, f"{folder}-{subfolder}.trans.txt")) as f:
text_file = [l for l in f.read().split("\n") if l]
for line in text_file:
filename, text = line.split(" ", 1)
output_path = os.path.join(path, f"{filename}.wav")
if not os.path.isfile(output_path):
original_path = os.path.join(path, f"{filename}.flac")
convert_audio(original_path, output_path)
clips[output_path] = text.lower()
return clips
def similarity(actual, predicted):
actual_words = actual.split(" ")
predicted_words = predicted.split(" ")
score = sum([1 if word in actual_words else -1 for word in predicted_words])
return score / len(actual_words)
print("Loading dataset...")
clips = extract_dataset()
scores = {name: [] for name in MODELS}
durations = {name: [] for name in MODELS}
for name, model in MODELS.items():
print(name)
scores = []
durations = []
for filepath, text in tqdm(clips.items()):
start = time.time()
prediciton = re.sub(r"[^a-zA-Z0-9 ]", "", model.transcribe(filepath).lower())
duration = time.time() - start
scores.append(similarity(text, prediciton))
durations.append(duration)
print(name, "Score:", sum(scores) / len(scores), "Avg duration (single):", sum(durations) / len(durations))