-
Notifications
You must be signed in to change notification settings - Fork 0
/
TrillRack.cpp
1087 lines (1019 loc) · 28.5 KB
/
TrillRack.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include <TrillRackApplication_bsp.h>
#include "TrillRackInterface.h"
#include "GlissModes.h"
#include "GlissProtocol.h"
#include "preset.h"
#include <libraries/Trill/Trill.h> // include this above NeoPixel or "HEX" gets screwed up
#include <libraries/Trill/CentroidDetection.h> // include this above NeoPixel or "HEX" gets screwed up
#include "LedSliders.h"
#include <cmath>
#include <assert.h>
#include <atomic>
#include "../../common_stuff/verificationBlock.h"
#include "../../common_stuff/sysex.h"
#include "../../common_stuff/i2cExternal.h"
constexpr std::array<float,CalibrationData::kNumPoints> CalibrationData::points;
extern std::array<rgb_t, 2> gBalancedLfoColors;
extern bool performanceMode_setup(double);
extern void performanceMode_render(BelaContext*, FrameData*);
extern void menu_render(BelaContext*, FrameData*);
extern float getGnd();
extern bool modeAlt_setup();
extern void triggerInToClock(BelaContext* context);
extern int gMtrClkTrigger;
extern LedSliders ledSliders;
extern LedSliders ledSlidersAlt;
extern ButtonView menuBtn;
extern ButtonView performanceBtn;
extern void ledSlidersFixedButtonsProcess(LedSliders& sl, std::vector<bool>& states, std::vector<size_t>& onsets, std::vector<size_t>& offsets, bool onlyUpdateStates);
std::array<float,kNumOutChannels> gManualAnOut;
// #define LOG_OUTPUT
#define STM32_NEOPIXEL
// #define PRINT_CPU_TIME
// Gliss revs:
// 1: no logo, exposed copper, non-inverting I/O, only used internally
// 2: logo, exposed copper, inverting I/O, first beta testing
// 3: logo, transparent solder mask, inverting I/O, rc1
#define GLISS_HW_REV 3
//#define TRILL_BAR // whether to use an external Trill Bar
#if GLISS_HW_REV >= 2
TrillRackInterface tri(0, 0, 1, __builtin_ctz(SW0_Pin), __builtin_ctz(SW_LED_A_Pin), __builtin_ctz(SW_LED_B_Pin));
#else
TrillRackInterface tri(0, 0, 1, __builtin_ctz(SW0_Pin), __builtin_ctz(SW_LED_Pin), 6 /* dummy */);
#endif
NeoPixelT<kNumLeds> np;
Trill trill;
std::vector<unsigned int> padsToOrderMap = {
#if GLISS_HW_REV >= 2
29,
28,
27,
26,
25,
24,
23,
22,
21,
17,
18,
19,
20,
12,
10,
9,
3,
4,
5,
6,
7,
8,
11,
13,
14,
15,
#else
#ifdef OLD
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
28,
27,
26,
25,
15,
17,
18,
19,
20,
24,
#else // OLD
29,
28,
27,
26,
25,
24,
23,
22,
21,
17,
18,
19,
14,
13,
11,
3,
4,
5,
6,
8,
7,
9,
10,
12,
15,
16,
#endif // OLD
#endif
};
CentroidDetectionScaled globalSlider;
int gAlt = 0;
#ifdef STM32_NEOPIXEL
static Stm32NeoPixelT<uint32_t, kNumLeds> snp(&neoPixelHtim, neoPixelHtim_TIM_CHANNEL_x, 0.66 * neoPixelHtim_COUNTER_PERIOD, 0.33 * neoPixelHtim_COUNTER_PERIOD);
#endif // STM32_NEOPIXEL
#ifdef STM32_NEOPIXEL
extern "C" {
void tr_snpDone(void);
};
void tr_snpDone()
{
snp.done();
}
#endif // STM32_NEOPIXEL
#ifdef PRINT_CPU_TIME
// https://community.st.com/t5/stm32-mcus-products/how-do-you-measure-the-execution-cpu-cycles-for-a-section-of/td-p/213709
//****************************************************************************
volatile unsigned int *DWT_CYCCNT = (volatile unsigned int *)0xE0001004;
volatile unsigned int *DWT_CONTROL = (volatile unsigned int *)0xE0001000;
volatile unsigned int *DWT_LAR = (volatile unsigned int *)0xE0001FB0;
volatile unsigned int *SCB_DHCSR = (volatile unsigned int *)0xE000EDF0;
volatile unsigned int *SCB_DEMCR = (volatile unsigned int *)0xE000EDFC;
volatile unsigned int *ITM_TER = (volatile unsigned int *)0xE0000E00;
volatile unsigned int *ITM_TCR = (volatile unsigned int *)0xE0000E80;
static int Debug_ITMDebug = 0;
void EnableTiming(void)
{
if ((*SCB_DHCSR & 1) && (*ITM_TER & 1)) // Enabled?
Debug_ITMDebug = 1;
*SCB_DEMCR |= 0x01000000;
*DWT_LAR = 0xC5ACCE55; // enable access
*DWT_CYCCNT = 0; // reset the counter
*DWT_CONTROL |= 1 ; // enable the counter
}
#endif // PRINT_CPU_TIME
int tr_setup()
{
printf("stringId: %s\n\r", kVerificationBlock.stringId);
#ifdef PRINT_CPU_TIME
EnableTiming();
#endif // PRINT_CPU_TIME
#ifdef TRILL_BAR
padsToOrderMap.resize(kNumPads);
for(size_t n = 0; n < padsToOrderMap.size(); ++n)
padsToOrderMap[n] = n;
#endif // TRILL_BAR
// find unused pads and mark them as such,
// then shift channel numbers accordingly
uint32_t channelMask = 0;
for(auto p : padsToOrderMap)
channelMask |= 1 << p;
assert(kNumPads == padsToOrderMap.size());
assert(kNumPads == __builtin_popcount(channelMask));
for(auto& p : padsToOrderMap)
{
assert(channelMask & (1 << p));
unsigned int end = p;
for(unsigned int n = 0; n < end; ++n)
if(!(channelMask & (1 << n))) // decrement once for every skipped channel
p--;
}
globalSlider.setup(padsToOrderMap, 5, 1);
#ifdef STM32_NEOPIXEL
np.setSnp(&snp);
#endif // STM32_NEOPIXEL
np.show();
#ifdef TRILL_BAR
Trill::Device device = Trill::BAR;
uint8_t startAddr = 0x20;
const uint8_t kExpectedAddr = 0x20;
#else
Trill::Device device = Trill::FLEX;
uint8_t startAddr = 0x48;
const uint8_t kExpectedAddr = 0x4c;
#endif
// to speed up things, try the expected address and if it fails try the full range
uint8_t foundAddress = 0;
if(!trill.setup(1, device, kExpectedAddr))
{
foundAddress = kExpectedAddr;
} else {
for(uint8_t addr = startAddr; addr <= startAddr + 8; ++addr)
{
if(!trill.setup(1, device, addr))
{
foundAddress = addr;
break;
}
}
}
if(!foundAddress)
return false;
if(trill.firmwareVersion() < 3)
{
printf("Incompatible Trill firwmware version: %d, should be >= %d\n\r", trill.firmwareVersion(), 3);
return false;
}
trill.printDetails();
if(trill.setMode(Trill::DIFF))
return false;
int prescaler;
#ifdef TRILL_BAR
prescaler = 2;
#elif GLISS_HW_REV >= 3
prescaler = 3;
#else
prescaler = 5;
#endif
if(trill.setChannelMask(channelMask))
return false;;
if(trill.setScanSettings(0, 12))
return false;
if(trill.setPrescaler(prescaler))
return false;
if(trill.setNoiseThreshold(0.06))
return false;
if(trill.updateBaseline())
return false;
if(trill.setScanTrigger(Trill::kScanTriggerI2c))
return false;
if(trill.setEventMode(Trill::kEventModeAlways)) // ... and set PSOC_EVENT pin when ready
return false;
if(trill.readStatusByte() < 0) // ensure that future reads via DMA have the correct offset
return false;
modeAlt_setup();
PresetInitOptions_t presetType;
#ifdef TEST_MODE
presetType = kPresetInit_LoadDefault;
#else // TEST_MODE
presetType = kPresetInit_LoadLatest;
#endif // TEST_MODE
int ret = presetInit(presetType, 2000, HAL_GetTick);
printf("presetInit() loaded %d\n\r", ret);
return foundAddress;
}
extern "C" void processMidiMessage(void);
#ifdef PRINT_CPU_TIME
static volatile unsigned int minTime = -1;
static volatile unsigned int maxTime = 0;
static volatile uint32_t cpuReportsCount = 0;
static size_t samplesPerBlock;
static float sampleRate;
float cpuPercentage(unsigned int val)
{
return 100 * val / float(170000000) / (samplesPerBlock / sampleRate);
}
#endif // PRINT_CPU_TIME
void tr_mainLoop()
{
#ifndef TEST_MODE
#ifdef PRINT_CPU_TIME
static uint32_t lastPrinted = 0;
if(lastPrinted != cpuReportsCount)
{
lastPrinted = cpuReportsCount;
printf("%7.4f%% %7.4f%%\n\r", cpuPercentage(minTime), cpuPercentage(maxTime));
minTime = 0;
maxTime = 0;
}
#endif
if(!gAlt)
{
int ret = presetCheckSave();
if(ret >= 0)
printf("presetCheckSave: %d\n\r", ret);
}
processMidiMessage();
i2cProcessIncomingFromMainThread();
gp_outgoing(kSysexUsb, sysexSend);
gp_outgoing(kSysexI2c, sysexSend);
#endif // TEST_MODE
}
void tr_clearLeds()
{
#ifdef STM32_NEOPIXEL
np.setSnp(&snp);
#endif // STM32_NEOPIXEL
np.clear();
np.show();
}
static int gShouldScan = 1;
void tr_requestScan(int val)
{
gShouldScan = val;
}
int tr_scanRequested()
{
return gShouldScan;
}
static int gShouldUpdateLeds = 1;
void tr_requestUpdateLeds(int val)
{
gShouldUpdateLeds = val;
}
int tr_ledsUpdateRequested()
{
return gShouldUpdateLeds;
}
constexpr uint32_t kInvalidFrameId = -1;
static std::atomic_uint32_t trillFrameId { kInvalidFrameId };
void tr_newData(const uint8_t* newData, size_t len)
{
static uint32_t pastStatusByte = newData[0];
// only process new data if they belong to a new frame
if(pastStatusByte != newData[0])
{
pastStatusByte = newData[0];
// mark data as invalid
trillFrameId.store(kInvalidFrameId);
// operate on it
trill.newData(newData, len, true);
// mark data as valid again
uint32_t frameId = trill.getFrameIdUnwrapped();
trillFrameId.store(frameId);
if((gDebugFlags & 0x1) || ((gDebugFlags & 0x2) && (0 == (frameId % 5))))
{
const uint8_t* p = newData + 1; // skip status byte
for(size_t n = 1; n < len; n += 2)
{
uint16_t val = (*p++) << 8;
val |= *p++;
printf("%d ", val);
}
printf("\n\r");
}
}
}
void tr_process(BelaContext* ptr)
{
tri.process(ptr);
}
IoRange gInRange = {
.min = 0,
.max = 1,
.range = kCvRangePositive10,
.enabled = true,
};
IoRange gOutRangeTop = {
.min = 0,
.max = 1,
.range = kCvRangePositive10,
.enabled = true,
};
IoRange gOutRangeBottom = {
.min = 0,
.max = 1,
.range = kCvRangePositive10,
.enabled = true,
};
static inline void getRangeMinMax(bool input, size_t channel, float& min, float& max)
{
const IoRange& ioRange = input ? gInRange : (0 == channel) ? gOutRangeTop : gOutRangeBottom;
ioRange.getMinMax(min, max);
}
static float processRawThroughCalibration(const CalibrationData& cal, bool input, float raw)
{
float value = 1;
for(size_t n = 1; n < cal.points.size(); ++n)
{
// linear interpolation between the two nearest calibration points
if(raw <= cal.points[n])
{
if(input)
value = map(raw, cal.values[n - 1], cal.values[n], cal.points[n - 1], cal.points[n]);
else
value = map(raw, cal.points[n - 1], cal.points[n], cal.values[n - 1], cal.values[n]);
break;
}
}
return value;
}
static float reverseProcessRawThroughCalibration(const CalibrationData& cal, bool input, float cooked)
{
return processRawThroughCalibration(cal, !input, cooked);
}
static float rescaleInput(const CalibrationData& inCal, float value)
{
float min;
float max;
value = processRawThroughCalibration(inCal, true, value);
getRangeMinMax(true, 0, min, max);
return mapAndConstrain(value, min, max, 0, 1);
}
static float finalise(float value)
{
#if GLISS_HW_REV >= 2
// inverting output
return 1.f - value;
#else
return value;
#endif
}
template <typename T>
class SmootherT
{
T past = 0;
public:
SmootherT() {};
SmootherT(T val) : past(val) {}
T process(T in, T alpha)
{
T out = past * alpha + in * (T(1) - alpha);
past = out;
return out;
}
void set(T val)
{
past = val;
}
T get()
{
return past;
}
};
class Smoother
{
SmootherT<double> db;
SmootherT<float> fl;
bool doub = false;
public:
Smoother() {};
void setDoublePrecision(bool doub)
{
this->doub = doub;
}
float process(float in, float alpha)
{
if(doub)
return db.process(in, alpha);
else
return fl.process(in, alpha);
}
void set(float val)
{
db.set(val);
fl.set(val);
}
float get()
{
if(doub)
return db.get();
else
return fl.get();
}
};
#ifdef LOG_OUTPUT
static float doLog(float value)
{
static std::array<float,1000> logTable;
static bool inited = false;
if(!inited)
{
inited = true;
// let's handle log sliders the way Pd does
float min = 1;
float max = 101;
for(size_t n = 0; n < logTable.size(); ++n) {
logTable[n] = (min * exp(log(max/min) * (n / float(logTable.size() - 1))) - 1) / (max - min);
}
}
value = constrain(value, 0, 1);
size_t prevIdx = std::min(logTable.size() - 1, size_t(value * (logTable.size() - 1)));
float prev = logTable[prevIdx];
float next = logTable[std::min(prevIdx + 1, logTable.size() - 1)];
return linearInterpolation(fmodf(value, 1), prev, next);
}
#endif // LOG_OUTPUT
static float rescaleOutput(bool ignoreRange, size_t channel, const CalibrationData& cal, float value)
{
float gnd = cal.values[1];
if(kNoOutput == value)
return gnd;
float min = 0;
float top = 1;
if(!ignoreRange)
getRangeMinMax(false, channel, min, top);
// the input can be negative: out of the specified range but possibly still within the capabilities of the module
#ifdef LOG_OUTPUT
value = doLog(value);
#endif // LOG_OUTPUT
value = map(value, 0, 1, min, top);
value = processRawThroughCalibration(cal, false, value);
// we only constrain at the end: can't write outside full scale
value = constrain(value, 0, 1);
return value;
}
static float reverseRescaleOutput(bool ignoreRange, size_t channel, const CalibrationData& cal, float value)
{
float min = 0;
float top = 1;
if(!ignoreRange)
getRangeMinMax(false, channel, min, top);
// in the reverse order as rescaleOutput()
value = reverseProcessRawThroughCalibration(cal, false, value);
value = mapAndConstrain(value, min, top, 0, 1); // swapped args 1,2 and 3,4
return value;
}
static void analogWriteJacks(BelaContext* context, unsigned int frame, unsigned int channel, float value)
{
// swap output channels if needed
unsigned int c = uio.outputsSwapped() ? !channel : channel;
analogWriteOnce(context, frame, c, value);
}
static void renderMenuEnter(unsigned int n)
{
menu_setup(n);
gAlt = 1;
tri.buttonLedSet(TrillRackInterface::kSolid, TrillRackInterface::kG, 1, 100);
}
static std::array<float,kNumOutChannels> outDiffs {};
static std::array<float,kNumOutChannels> pastOutReverseMapped {};
void tr_render(BelaContext* context)
{
#ifdef PRINT_CPU_TIME
auto cpuCyclesStart = *DWT_CYCCNT;
samplesPerBlock = context->analogFrames;
sampleRate = context->analogSampleRate;
#endif // PRINT_CPU_TIME
gp_processIncoming();
static uint32_t pastFrameId = kInvalidFrameId;
uint32_t frameId = trillFrameId.load();
bool newFrame = false;
if(frameId != kInvalidFrameId && frameId != pastFrameId)
{
newFrame = true;
pastFrameId = frameId;
}
#if 0 // count average frames of capacitive data
static uint32_t firstFrameId = frameId;
static uint32_t count = 0;
if(newFrame)
{
static uint32_t lastCount = 0;
if(lastCount && count - lastCount != 5)
printf("WRONG COUNT: %lu\n", count - lastCount);
lastCount = count;
if(count > 1000) {
float mean = (frameId - firstFrameId) / double(count);
printf(" %.4f\n\r", mean);
count = 0;
lastCount = 0;
firstFrameId = frameId;
}
}
count++;
#endif
FrameData frameData = {
.id = pastFrameId,
.isNew = newFrame,
};
#ifdef STM32
static std::array<uint32_t, 2> pastTicks;
static size_t pastTicksIdx = 0;
static size_t backoff = 0;
// ensure that we are not taking up all CPU
// i.e.: check that systick had a chance to run recently
if(backoff)
backoff--;
if(backoff)
return;
uint32_t tick = HAL_GetTick();
bool different = false;
for(auto& t : pastTicks) {
if(tick != t) {
different = true;
break;
}
}
pastTicks[pastTicksIdx] = tick;
static_assert(!((pastTicks.size() - 1) & pastTicks.size())); // ensure it's a power of 2 so that the next line works
pastTicksIdx = (pastTicksIdx + 1) & (pastTicks.size() - 1);
if(pastTicks.size() == pastTicksIdx)
pastTicksIdx &= pastTicks.size() - 1;
if(!different){
if(!(0x3 & gDebugFlags))
printf("C");
backoff = 2;
return;
}
#endif // STM32
np.clear(); // clear display before we start writing to it
triggerInToClock(context);
float min = kSliderBottomMargin;
float max = 1.f - kSliderTopMargin;
if(gAlt && 5 == ledSlidersAlt.sliders.size())
{
// tweak to get more accurate mapping of the menu selectors to the LEDs
max = uio.touchStripSwapped() ? 1 : max;
min = uio.menuSwapped() ? 0.1 : min;
}
if(uio.touchStripSwapped())
std::swap(min, max);
globalSlider.setUsableRange(min, max);
const CalibrationData& inCal = getCalibrationInput();
// rescale analog inputs according to range
// TODO: don't do it if we are using this input for trig instead.
// TODO: don't do it if we are only using one or 0 frames
for(size_t idx = 0; idx < context->analogFrames * context->analogInChannels; ++idx)
context->analogIn[idx] = rescaleInput(inCal, context->analogIn[idx]);
static_assert(inCal.points[1] == CalibrationData::kGnd); // we assume points[1] represents gnd
extern size_t msToNumBlocks(BelaContext* context, float ms);
static const uint32_t kDoubleClickTime = msToNumBlocks(context, 300);
static const uint32_t kTripleClickTime = msToNumBlocks(context, 700);
static uint32_t timeNow = 0;
static uint32_t lastOnsetTime = 0;
static uint32_t lastLastOnsetTime = 0;
static ButtonView btn; // reflects reality
static bool wasPressed = !tri.digitalRead(0);
static uint32_t doubleClickPressId = -1;
static uint32_t tripleClickPressId = -1;
btn = {false, false, false, false, false, false, false, false, btn.pressId, btn.pressDuration};
bool isPressed = !tri.digitalRead(0);
btn.enabled = true;
btn.offset = wasPressed && !isPressed;
btn.onset = isPressed && !wasPressed;
if(btn.onset)
{
btn.pressId++;
if(ButtonView::kPressIdInvalid == btn.pressId) // reserved value
btn.pressId = 0;
btn.pressDuration = 0;
if(timeNow - lastLastOnsetTime < kTripleClickTime)
{
btn.tripleClick = true;
tripleClickPressId = btn.pressId;
}
else if(timeNow - lastOnsetTime < kDoubleClickTime)
{
btn.doubleClick = true;
doubleClickPressId = btn.pressId;
}
lastLastOnsetTime = lastOnsetTime;
lastOnsetTime = timeNow;
}
if(btn.offset)
{
if(btn.pressId == tripleClickPressId)
btn.tripleClickOffset = true;
else if(btn.pressId == doubleClickPressId)
btn.doubleClickOffset = true;
}
btn.pressed = isPressed;
if(btn.pressed)
btn.pressDuration += isPressed;
else
btn.pressDuration = 0;
wasPressed = isPressed;
timeNow++;
static bool hadTouch = false;
if(newFrame)
globalSlider.process(trill.rawData.data());
size_t numTouches = globalSlider.getNumTouches();
static enum {
kMenuChangeDisabled = 0,
kMenuPre,
} menuState = kMenuChangeDisabled;
static constexpr size_t kTouchesForMenuLock = 4;
static size_t maxTouchesThisMenuPre = 0;
if(btn.pressed)
{
static constexpr size_t kTouchesForFactoryTest = 5;
static constexpr std::array<size_t, 3> touchesForMenu = {
2, // kTouchesForLocalSettings
3, // kTouchesForGlobalSettings
kTouchesForFactoryTest,
};
// keep tracking of max touches to avoid entering the wrong mode when releasing
if(numTouches && !hadTouch) {// we start touching
menuState = kMenuPre;
maxTouchesThisMenuPre = 0;
}
if(!numTouches) // we no longer touch
menuState = kMenuChangeDisabled;
if(kMenuPre == menuState && (!gModeWantsMenuDelay || timeNow - lastOnsetTime > msToNumBlocks(context, 500)))
{
if(numTouches > maxTouchesThisMenuPre && !menu_isLocked())
{
// we have a new touch
for(ssize_t n = touchesForMenu.size() - 1; n >= 0; --n)
{
if(touchesForMenu[n] == numTouches)
{
renderMenuEnter(n);
break;
}
}
}
static size_t pastTouches = 0;
static uint64_t touchesLastChanged = 0;
if(numTouches != pastTouches)
{
touchesLastChanged = context->audioFramesElapsed;
}
pastTouches = numTouches;
// some additional special cases are handled here:
if(menu_isLocked())
{
if(kTouchesForMenuLock == numTouches && context->audioFramesElapsed > touchesLastChanged + 4 * context->analogSampleRate)
{
menu_setLocked(false);
renderMenuEnter(0);
}
} else if(kTouchesForFactoryTest == numTouches)
{
if(context->audioFramesElapsed > touchesLastChanged + 10 * context->analogSampleRate)
{
menu_setup(touchesForMenu.size());
menuState = kMenuChangeDisabled;
gAlt = 0;
menu_exit();
}
}
maxTouchesThisMenuPre = std::max(maxTouchesThisMenuPre, numTouches);
}
} else
menuState = kMenuChangeDisabled; // shouldn't be needed, but, you know ...
hadTouch = numTouches > 0;
bool menuActive = (1 == gAlt);
// multiplexer part 1
const static ButtonView disBtn = {0};
menuBtn = menuActive ? btn : disBtn;
ledSlidersAlt.enableTouch(menuActive);
ledSlidersAlt.enableLeds(menuActive);
if(menuActive)
{
// has to run before multiplexer part 2 so
// that any slider that gets recreated because of menu action
// doesn't lose its enables. TODO: fix this better
menu_render(context, &frameData); // this will set gAlt back to 0 when exiting menu
}
static unsigned int showLock = 0;
static bool menuExitWaitingButtonRelease = false;
static bool menuExitWaitingTouchRelease = false;
static unsigned int menuExitTouchHoldButtonPresses = 0;
static int oldAlt = gAlt;
if(1 == oldAlt && 0 == gAlt)
{
// we just got out of menu mode. We may have done so by pressing the button (with or without a touch)
// or by releasing a touch (in which case we won't have any touches here)
// If button was pressed and/or touch was active when exiting from menu,
// we should wait for each to be released before they get re-enabled for performance
if(btn.pressed)
menuExitWaitingButtonRelease = true;
if(globalSlider.getNumTouches())
menuExitWaitingTouchRelease = true;
menuExitTouchHoldButtonPresses = 0;
// also reset the button's state machine
lastOnsetTime = 0;
lastLastOnsetTime = 0;
} else { // else ensures we don't run this uselessly in the same block where they were set
if(menuExitWaitingButtonRelease) {
if(!btn.pressed && !btn.offset)
menuExitWaitingButtonRelease = false;
}
if(menuExitWaitingTouchRelease) {
if(btn.onset)
{
menuExitTouchHoldButtonPresses++;
if(kTouchesForMenuLock == maxTouchesThisMenuPre)
{
if(3 == menuExitTouchHoldButtonPresses)
{
menu_setLocked(true);
showLock = 400;
}
}
}
if(!globalSlider.getNumTouches())
menuExitWaitingTouchRelease = false;
}
}
oldAlt = gAlt;
if(showLock)
{
showLock--;
for(size_t n = np.getNumPixels() * 0.25f; n < np.getNumPixels() * 0.75f; ++n)
np.setPixelColor(n, {100, 0, 0});
}
// multiplexer part 2
bool performanceActive = (0 == gAlt) && !menuActive && kMenuChangeDisabled == menuState && !showLock;
performanceBtn = (performanceActive && !menuExitWaitingButtonRelease) ? btn : disBtn;
bool forceAllowPerformanceInteraction = !menuActive && gModeWantsInteractionPreMenu;
gInPreMenu = (!menuActive && !performanceActive);
ledSliders.enableTouch((performanceActive && !menuExitWaitingTouchRelease) || forceAllowPerformanceInteraction);
ledSliders.enableLeds(performanceActive || forceAllowPerformanceInteraction);
static double setupMs;
static bool setupDone = false;
static int lastMode = -1;
if(lastMode != gNewMode) {
setupMs = tri.getTimeMs();
printf("new mode: %d to %d\n\r", lastMode, gNewMode);
lastMode = gNewMode;
setupDone = false;
}
if(!setupDone) {
setupDone = performanceMode_setup(tri.getTimeMs() - setupMs);
}
if(setupDone)
{
if(newFrame)
ledSliders.process(globalSlider);
performanceMode_render(context, &frameData);
} else {
// zero the outputs
gManualAnOut[0] = gManualAnOut[1] = 0;
for(size_t n = 0; n < context->analogFrames; ++n)
{
for(size_t c = 0; c < context->analogOutChannels; ++c)
analogWriteJacks(context, n, c, 0);
}
}
if(uio.touchStripSwapped())
np.reverse();
// actually display the updated LEDs
// this may have been written by alt, mode_setups or mode_renders, whatever last wrote it is whatever we display
// TODO: clear separation of concerns: at any time make it clear who can write to each pixel.
if(tr_ledsUpdateRequested())
{
static float brightness = 0.2f;
static bool justStarted = true;
if(justStarted)
{
// at startup, fade in brightness if it is not the default
float alpha = 0.0005;
brightness = brightness * (1.f - alpha) + gBrightness * alpha;
if(std::abs(brightness - gBrightness) < 0.01) // close enough, stop smoothing
justStarted = false;
} else {
brightness = gBrightness;
}
np.scaleBy(brightness);
np.show();
}
// tri.buttonLedWrite(gMtrClkTriggerLED);
// write analog outputs
const CalibrationData& outCal = getCalibrationOutput();
assert(kNumOutChannels == context->analogOutChannels);
std::array<bool,kNumOutChannels> smoothed {};
std::array<bool,kNumOutChannels> block {};
for(size_t c = 0; c < kNumOutChannels; ++c)
{
smoothed[c] = (gOutMode[c] == kOutModeManualBlock) || (gOutMode[c] == kOutModeManualSampleSmoothed || (gOutMode[c] == kOutModeManualBlockCustomSmoothed));
block[c] = (gOutMode[c] == kOutModeManualBlock) || (gOutMode[c] == kOutModeManualBlockCustomSmoothed);
}
std::array<float,kNumOutChannels> rangeGnd;
for(size_t n = 0; n < kNumOutChannels; ++n)
{
float gnd = (0 == n ? gOutRangeTop : gOutRangeBottom).getGnd();
rangeGnd[n] = gnd; // we do not constrain, so this could be negative if gnd is out of the range
}
static std::array<Smoother,kNumOutChannels> smoothers {};
for(size_t c = 0; c < kNumOutChannels; ++c)
{
// double precision is expensive so we use it only if we are expecting
// alphas very close to 1
smoothers[c].setDoublePrecision(kOutModeManualBlockCustomSmoothed == gOutMode[c]);
}
for(unsigned int n = 0; n < context->analogFrames; ++n)
{
for(unsigned int channel = 0; channel < kNumOutChannels; ++channel)
{
float start;
if(block[channel])
start = gManualAnOut[channel];
else // analogOut has already been written. Rescale in-place
start = context->analogOut[n * kNumOutChannels + channel];
if(kOutModeManualBlockCustomSmoothed == gOutMode[channel])
{
if(kNoOutput == start) // pretend we have some actual data: go to 0V
start = rangeGnd[channel];
}
static auto pastSmoothed = smoothed;
static std::array<bool,kNumOutChannels> pastStartWasNoOutput{true, true};
float rescaled = rescaleOutput(false, channel, outCal, start);
if(smoothed[channel] && !pastSmoothed[channel])
{
// if we haven't processed the channel for some time, reset the filter
smoothers[channel].set(rescaled);
pastStartWasNoOutput[channel] = true;
}
pastSmoothed[channel] = smoothed[channel];
float alpha;
bool startIsNoOutput = (start == kNoOutput);
if(smoothed[channel])
{
if(startIsNoOutput || pastStartWasNoOutput[channel])
alpha = 0;
else
alpha = gOutMode[channel] == kOutModeManualBlockCustomSmoothed ? gCustomSmoothedAlpha[channel] : kAlphaDefault;
} else
alpha = 0;
pastStartWasNoOutput[channel] = startIsNoOutput;
float out = smoothers[channel].process(rescaled, alpha);
analogWriteOnce(context, n, channel, out);
outDiffs[channel] = out - rescaled;
}
}
// Store the past smoothed output after reverse-applying the voltage range.
// This may be used by some modes that need it for visualisation purposes.
for(size_t c = 0; c < kNumOutChannels; ++c)
{
pastOutReverseMapped[c] = reverseRescaleOutput(false, c, outCal, smoothers[c].get());
}
// we do the loop again to swap channels if needed
// this can be incorporated in the above loop
// but it needs a lot of care not to overwrite the other channel
// note: if the two channels have a different gOutMode, this may swap some stale data
// that will be overwritten below
// TODO: consolidate these three loops. Try to incorporate this above, or just use it on