forked from ocropus-archive/DUP-ocropy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ocropus-nlbin
executable file
·256 lines (216 loc) · 9.32 KB
/
ocropus-nlbin
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
#!/usr/bin/env python
from __future__ import print_function
import argparse
import os
import multiprocessing
import sys
import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage import filters,interpolation,morphology,measurements
from scipy import stats
import ocrolib
parser = argparse.ArgumentParser("""
Image binarization using non-linear processing.
This is a compute-intensive binarization method that works on degraded
and historical book pages.
""")
parser.add_argument('-n','--nocheck',action="store_true",
help="disable error checking on inputs")
parser.add_argument('-t','--threshold',type=float,default=0.5,help='threshold, determines lightness, default: %(default)s')
parser.add_argument('-z','--zoom',type=float,default=0.5,help='zoom for page background estimation, smaller=faster, default: %(default)s')
parser.add_argument('-e','--escale',type=float,default=1.0,help='scale for estimating a mask over the text region, default: %(default)s')
parser.add_argument('-b','--bignore',type=float,default=0.1,help='ignore this much of the border for threshold estimation, default: %(default)s')
parser.add_argument('-p','--perc',type=float,default=80,help='percentage for filters, default: %(default)s')
parser.add_argument('-r','--range',type=int,default=20,help='range for filters, default: %(default)s')
parser.add_argument('-m','--maxskew',type=float,default=2,help='skew angle estimation parameters (degrees), default: %(default)s')
parser.add_argument('-g','--gray',action='store_true',help='force grayscale processing even if image seems binary')
parser.add_argument('--lo',type=float,default=5,help='percentile for black estimation, default: %(default)s')
parser.add_argument('--hi',type=float,default=90,help='percentile for white estimation, default: %(default)s')
parser.add_argument('--skewsteps',type=int,default=8,help='steps for skew angle estimation (per degree), default: %(default)s')
parser.add_argument('--debug',type=float,default=0,help='display intermediate results, default: %(default)s')
parser.add_argument('--show',action='store_true',help='display final result')
parser.add_argument('--rawcopy',action='store_true',help='also copy the raw image')
parser.add_argument('-o','--output',default=None,help="output directory")
parser.add_argument('files',nargs='+')
parser.add_argument('-Q','--parallel',type=int,default=0)
args = parser.parse_args()
args.files = ocrolib.glob_all(args.files)
if len(args.files)<1:
parser.print_help()
sys.exit(0)
def print_info(*objs):
print("INFO: ", *objs, file=sys.stdout)
def print_error(*objs):
print("ERROR: ", *objs, file=sys.stderr)
def check_page(image):
if len(image.shape)==3: return "input image is color image %s"%(image.shape,)
if np.mean(image)<np.median(image): return "image may be inverted"
h,w = image.shape
if h<600: return "image not tall enough for a page image %s"%(image.shape,)
if h>10000: return "image too tall for a page image %s"%(image.shape,)
if w<600: return "image too narrow for a page image %s"%(image.shape,)
if w>10000: return "line too wide for a page image %s"%(image.shape,)
return None
def estimate_skew_angle(image,angles):
estimates = []
for a in angles:
v = np.mean(interpolation.rotate(image,a,order=0,mode='constant'),axis=1)
v = np.var(v)
estimates.append((v,a))
if args.debug>0:
plt.plot([y for x,y in estimates],[x for x,y in estimates])
plt.ginput(1,args.debug)
_,a = max(estimates)
return a
def H(s): return s[0].stop-s[0].start
def W(s): return s[1].stop-s[1].start
def A(s): return W(s)*H(s)
def dshow(image,info):
if args.debug<=0: return
plt.ion()
plt.gray()
plt.imshow(image)
plt.title(info)
plt.ginput(1,args.debug)
def normalize_raw_image(raw):
''' perform image normalization '''
image = raw-np.amin(raw)
if np.amax(image)==np.amin(image):
print_info("# image is empty: %s" % (fname))
return None
image /= np.amax(image)
return image
def estimate_local_whitelevel(image, zoom=0.5, perc=80, range=20, debug=0):
'''flatten it by estimating the local whitelevel
zoom for page background estimation, smaller=faster, default: %(default)s
percentage for filters, default: %(default)s
range for filters, default: %(default)s
'''
m = interpolation.zoom(image,zoom)
m = filters.percentile_filter(m,perc,size=(range,2))
m = filters.percentile_filter(m,perc,size=(2,range))
m = interpolation.zoom(m,1.0/zoom)
if debug>0:
plt.clf()
plt.imshow(m,vmin=0,vmax=1)
plt.ginput(1,debug)
w,h = np.minimum(np.array(image.shape),np.array(m.shape))
flat = np.clip(image[:w,:h]-m[:w,:h]+1,0,1)
if debug>0:
plt.clf()
plt.imshow(flat,vmin=0,vmax=1)
plt.ginput(1,debug)
return flat
def estimate_skew(flat, bignore=0.1, maxskew=2, skewsteps=8):
''' estimate skew angle and rotate'''
d0,d1 = flat.shape
o0,o1 = int(bignore*d0),int(bignore*d1) # border ignore
flat = np.amax(flat)-flat
flat -= np.amin(flat)
est = flat[o0:d0-o0,o1:d1-o1]
ma = maxskew
ms = int(2*maxskew*skewsteps)
# print(linspace(-ma,ma,ms+1))
angle = estimate_skew_angle(est,np.linspace(-ma,ma,ms+1))
flat = interpolation.rotate(flat,angle,mode='constant',reshape=0)
flat = np.amax(flat)-flat
return flat, angle
def estimate_thresholds(flat, bignore=0.1, escale=1.0, lo=5, hi=90, debug=0):
'''# estimate low and high thresholds
ignore this much of the border for threshold estimation, default: %(default)s
scale for estimating a mask over the text region, default: %(default)s
lo percentile for black estimation, default: %(default)s
hi percentile for white estimation, default: %(default)s
'''
d0,d1 = flat.shape
o0,o1 = int(bignore*d0),int(bignore*d1)
est = flat[o0:d0-o0,o1:d1-o1]
if escale>0:
# by default, we use only regions that contain
# significant variance; this makes the percentile
# based low and high estimates more reliable
e = escale
v = est-filters.gaussian_filter(est,e*20.0)
v = filters.gaussian_filter(v**2,e*20.0)**0.5
v = (v>0.3*np.amax(v))
v = morphology.binary_dilation(v,structure=np.ones((int(e*50),1)))
v = morphology.binary_dilation(v,structure=np.ones((1,int(e*50))))
if debug>0:
plt.imshow(v)
plt.ginput(1,debug)
est = est[v]
lo = stats.scoreatpercentile(est.ravel(),lo)
hi = stats.scoreatpercentile(est.ravel(),hi)
return lo, hi
def process1(job):
fname,i = job
print_info("# %s" % (fname))
if args.parallel<2: print_info("=== %s %-3d" % (fname, i))
raw = ocrolib.read_image_gray(fname)
dshow(raw,"input")
# perform image normalization
image = normalize_raw_image(raw)
if not args.nocheck:
check = check_page(np.amax(image)-image)
if check is not None:
print_error(fname+"SKIPPED"+check+"(use -n to disable this check)")
return
# check whether the image is already effectively binarized
if args.gray:
extreme = 0
else:
extreme = (np.sum(image<0.05)+np.sum(image>0.95))*1.0/np.prod(image.shape)
if extreme>0.95:
comment = "no-normalization"
flat = image
else:
comment = ""
# if not, we need to flatten it by estimating the local whitelevel
if args.parallel<2: print_info("flattening")
flat = estimate_local_whitelevel(image, args.zoom, args.perc, args.range, args.debug)
# estimate skew angle and rotate
if args.maxskew>0:
if args.parallel<2: print_info("estimating skew angle")
flat, angle = estimate_skew(flat, args.bignore, args.maxskew, args.skewsteps)
else:
angle = 0
# estimate low and high thresholds
if args.parallel<2: print_info("estimating thresholds")
lo, hi = estimate_thresholds(flat, args.bignore, args.escale, args.lo, args.hi, args.debug)
# rescale the image to get the gray scale image
if args.parallel<2: print_info("rescaling")
flat -= lo
flat /= (hi-lo)
flat = np.clip(flat,0,1)
if args.debug>0:
plt.imshow(flat,vmin=0,vmax=1)
plt.ginput(1,args.debug)
bin = 1*(flat>args.threshold)
# output the normalized grayscale and the thresholded images
print_info("%s lo-hi (%.2f %.2f) angle %4.1f %s" % (fname, lo, hi, angle, comment))
if args.parallel<2: print_info("writing")
if args.debug>0 or args.show:
plt.clf()
plt.gray()
plt.imshow(bin)
plt.ginput(1,max(0.1,args.debug))
if args.output:
if args.rawcopy: ocrolib.write_image_gray(args.output+"/%04d.raw.png"%i,raw)
ocrolib.write_image_binary(args.output+"/%04d.bin.png"%i,bin)
ocrolib.write_image_gray(args.output+"/%04d.nrm.png"%i,flat)
else:
base,_ = ocrolib.allsplitext(fname)
ocrolib.write_image_binary(base+".bin.png",bin)
ocrolib.write_image_gray(base+".nrm.png",flat)
if args.debug>0 or args.show>0: args.parallel = 0
if args.output:
if not os.path.exists(args.output):
os.mkdir(args.output)
if args.parallel<2:
for i,f in enumerate(args.files):
process1((f,i+1))
else:
pool = multiprocessing.Pool(processes=args.parallel)
jobs = []
for i,f in enumerate(args.files): jobs += [(f,i+1)]
result = pool.map(process1,jobs)