-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
386 lines (322 loc) · 16.2 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import argparse
import importlib
import json
import os
import xml.etree.ElementTree as ET
from collections import defaultdict
import chainer
import chainer.functions as F
import chainercv
import matplotlib
from PIL import ImageDraw
from chainer.dataset import concat_examples
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import re
from chainer import configuration
from chainer.backends import cuda
from chainercv.utils import non_maximum_suppression, bbox_iou
from tqdm import tqdm
from xml.dom import minidom
from common.datasets.image_dataset import LabeledImageDataset
from insights.bbox_plotter import BBOXPlotter, get_next_color
from train_sheep_localizer import load_train_paths
from train_utils.datatypes import Size
from train_utils.match_bbox import get_aabb_corners
from train_utils.module_loading import get_class
class Evaluator:
def __init__(self, args):
self.args = args
with open(os.path.join(args.model_dir, args.log_name)) as the_log_file:
log_data = json.load(the_log_file)[0]
self.image_size = log_data['image_size']
self.target_size = log_data['target_size']
# step 1 build network
localizer_class = get_class(*log_data['localizer'], args.model_dir)
self.localizer = localizer_class(self.target_size)
if args.assessor is not None:
discriminator_class = get_class(*log_data['discriminator'], args.model_dir)
self.discriminator = discriminator_class()
self.load_weights(args.assessor, self.discriminator)
else:
self.discriminator = None
if args.gpu is not None:
self.localizer.to_gpu(args.gpu)
if self.discriminator is not None:
self.discriminator.to_gpu(args.gpu)
# step 3 prepare data
# determine whether rgb or black and white images have been used during training
image_mode = log_data.get('image_mode', 'RGB')
if args.eval_gt.endswith('.json'):
args.eval_data = load_train_paths(args.eval_gt, with_label=True)
else:
args.eval_data = args.eval_gt
self.data_loader = LabeledImageDataset(
args.eval_data,
root=os.path.dirname(args.eval_gt),
image_size=self.image_size,
image_mode=image_mode
)
if args.num_samples is not None:
self.data_loader.shrink_dataset(args.num_samples)
self.data_iterator = chainer.iterators.MultiprocessIterator(
self.data_loader,
args.batchsize,
repeat=False,
shuffle=False
)
# step 4 build bbox plotter in order to see eval result
self.bbox_plotter = BBOXPlotter(
self.data_loader.get_example(0)[0],
os.path.join(args.model_dir, 'eval_bboxes'),
self.target_size,
render_extracted_rois=True,
device=args.gpu,
num_rois_to_render=4,
show_visual_backprop_overlay=False,
show_backprop_and_feature_vis=True,
visualization_anchors=[
["visual_backprop_anchors"],
],
)
self.bbox_plotter.xp = self.localizer.xp
# add some fields for accuracy calculation
if self.args.deteval:
self.deteval_xml_tree_root = ET.Element('tagset')
self.num_hits = 0
self.num_objects = 0
self.num_predicted_objects = 0
with cuda.Device(self.args.gpu):
self.bad_ious = self.localizer.xp.array((0,), dtype='f')
self.results_path = os.path.join(self.args.model_dir, 'eval_results.json')
def load_weights(self, snapshot_name, model):
with np.load(os.path.join(self.args.model_dir, snapshot_name)) as f:
chainer.serializers.NpzDeserializer(f).load(model)
def reset(self):
self.num_hits = 0
self.num_objects = 0
self.num_predicted_objects = 0
with cuda.Device(self.args.gpu):
self.bad_ious = self.localizer.xp.array((0,), dtype='f')
self.data_iterator.reset()
def load_module(self, module_file):
module_spec = importlib.util.spec_from_file_location("models.model", module_file)
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
return module
def postprocess_with_nms(self, rois, bboxes, objectness_scores, image_size):
xp = self.localizer.xp
# bring bboxes into correct data format
nms_bboxes = get_aabb_corners(bboxes, image_size)
nms_bboxes = xp.stack([b.data for b in [nms_bboxes[1], nms_bboxes[0], nms_bboxes[3], nms_bboxes[2]]]).transpose(1, 0)
# determine scores
nms_objectness_scores = F.softmax(objectness_scores)
# filter nms bboxes
indices_to_keep = xp.nonzero(F.argmax(nms_objectness_scores, axis=1).data)[0]
# indices_to_keep = xp.arange(len(nms_objectness_scores))
nms_bboxes = nms_bboxes[indices_to_keep]
nms_objectness_scores = nms_objectness_scores[indices_to_keep][:, 1].data
indices = non_maximum_suppression(nms_bboxes, 0.2, score=nms_objectness_scores)
indices = [int(indices_to_keep[int(i)]) for i in indices]
return rois[indices], bboxes[indices], objectness_scores[indices]
def add_image_to_deteval_xml(self, image_name, image_size, bboxes):
image_node = ET.SubElement(self.deteval_xml_tree_root, 'image')
image_name_element = ET.SubElement(image_node, 'imageName')
image_name_element.text = f"{image_name}.png"
rectangle_list = ET.SubElement(image_node, 'taggedRectangles')
bboxes = get_aabb_corners(bboxes, image_size)
bboxes = self.localizer.xp.stack([b.data for b in bboxes]).transpose(1, 0)
x_all = bboxes[:, 0]
y_all = bboxes[:, 1]
width_all = bboxes[:, 2] - bboxes[:, 0]
height_all = bboxes[:, 3] - bboxes[:, 1]
for x, y, width, height in zip(x_all, y_all, width_all, height_all):
ET.SubElement(rectangle_list, 'taggedRectangle', attrib={
"x": str(x),
"y": str(y),
"width": str(width),
"height": str(height),
})
def calc_accuracy(self, predicted_bboxes, gt_bboxes, image_size):
xp = self.localizer.xp
self.num_objects += len(gt_bboxes)
self.num_predicted_objects += len(predicted_bboxes)
if len(predicted_bboxes) == 0:
return
predicted_bboxes = get_aabb_corners(predicted_bboxes, image_size)
predicted_bboxes = xp.stack(
[b.data for b in predicted_bboxes]
).transpose(1, 0)
all_ious = []
for gt_bbox in gt_bboxes:
gt_bbox = xp.tile(gt_bbox, (len(predicted_bboxes), 1))
ious = bbox_iou(gt_bbox, predicted_bboxes)
all_ious.append(ious)
# a predicted bbox is correct, iff its iou with the groundtruth bbox is higher than the given threshold
good_bboxes = xp.where((ious[0] >= self.args.iou_threshold))
if len(good_bboxes[0]) == 0:
self.bad_ious = xp.concatenate((self.bad_ious, ious[0, ious[0].nonzero()[0]]), axis=0)
continue
self.num_hits += 1
return all_ious
def evaluate(self, snapshot_name=''):
current_device = cuda.get_device_from_id(self.args.gpu)
predictions = []
gt_data = []
with current_device:
for i, batch in enumerate(tqdm(self.data_iterator, total=len(self.data_loader) // self.args.batchsize)):
image, gt_bboxes, gt_labels = batch[0]
gt_data.append((gt_bboxes, gt_labels))
image_size = Size._make(image.shape[-2:])
if self.args.gpu is not None:
image = cuda.to_gpu(image, current_device)
with cuda.Device(self.args.gpu):
with configuration.using_config('train', False):
rois, bboxes = self.localizer(image.copy()[None, ...])[:2]
if self.discriminator is not None:
class_predictions = self.discriminator(rois)
else:
class_predictions = None
if len(rois.shape) > 4:
rois = self.localizer.xp.reshape(rois.data, (-1,) + rois.shape[2:])
else:
rois = rois.data
if len(bboxes.shape) > 4:
bboxes = self.localizer.xp.reshape(bboxes.data, (-1,) + bboxes.shape[2:])
else:
bboxes = bboxes.data
predictions.append((cuda.to_cpu(F.stack(get_aabb_corners(bboxes, image_size), axis=1).data),))
backprop_visualizations = self.bbox_plotter.get_backprop_visualization(self.localizer)
ious = self.calc_accuracy(bboxes.copy(), gt_bboxes, image_size)
if self.args.save_predictions:
self.save_rois(gt_bboxes, backprop_visualizations, bboxes, class_predictions, i, image, rois, ious)
if self.args.deteval:
self.add_image_to_deteval_xml(i, image_size, bboxes.copy())
if self.args.deteval:
rough_xml_string = ET.tostring(self.deteval_xml_tree_root, encoding='utf-8')
pretty_xml = minidom.parseString(rough_xml_string).toprettyxml(encoding='utf-8').decode('utf-8')
with open(os.path.join(self.args.model_dir, 'deteval.xml'), 'w') as destination:
destination.write(pretty_xml)
self.save_eval_results(snapshot_name, predictions, gt_data)
def save_rois(self, gt_bboxes, backprop_visualizations, bboxes, class_predictions, index, image, rois, ious):
dest_image = self.bbox_plotter.render_rois(
rois,
bboxes.copy(),
index,
image,
backprop_vis=backprop_visualizations,
)
if class_predictions is not None:
dest_image = self.bbox_plotter.render_discriminator_result(
dest_image,
self.bbox_plotter.array_to_image(image.copy()),
self.bbox_plotter.get_discriminator_output_function(class_predictions)
)
if self.args.render_gt:
draw = ImageDraw.Draw(dest_image)
for i, (gt_bbox, iou) in enumerate(zip(gt_bboxes, ious), start=1):
corners = [
(gt_bbox[1], gt_bbox[0]), # top-left
(gt_bbox[3], gt_bbox[0]), # top-right
(gt_bbox[3], gt_bbox[2]), # bottom-right
(gt_bbox[1], gt_bbox[2]), # bottom-left
]
self.bbox_plotter.draw_bbox("red", corners, draw)
iou = format(float(np.max(cuda.to_cpu(iou)[0])), '.3')
dest_image = self.bbox_plotter.render_text(dest_image, self.bbox_plotter.array_to_image(image.copy()), iou, i)
self.bbox_plotter.save_image(dest_image, index)
def save_eval_results(self, snapshot_name, predictions, gt_data):
if self.args.save_predictions:
# we are not doing a real evaluation, we want to have a look at predictions
return
# calculate map for our detection
predicted_bboxes = concat_examples(predictions)[0]
pred_scores = np.ones((len(predicted_bboxes), 1))
pred_labels = np.zeros_like(pred_scores)
gt_bboxes, gt_labels = concat_examples(gt_data)
result = chainercv.evaluations.eval_detection_voc(
predicted_bboxes,
pred_labels,
pred_scores,
gt_bboxes,
gt_labels
)
recall = self.num_hits / self.num_objects
precision = self.num_hits / self.num_predicted_objects
if precision + recall != 0:
h_mean = 2 * (precision * recall) / (precision + recall)
else:
h_mean = 0.0
if os.path.exists(self.results_path):
with open(self.results_path) as eval_file:
json_data = json.load(eval_file)
else:
json_data = []
json_data.append({
"ap": result["map"],
"recall": recall,
"precision": precision,
"h_mean": h_mean,
"bad_iou_mean": float(self.bad_ious.mean()),
"snapshot_name": snapshot_name,
})
with open(self.results_path, 'w') as eval_file:
json.dump(json_data, eval_file, indent=4)
def plot_eval_results(data, model_dir):
values_per_key = defaultdict(list)
for element in data:
for key, value in element.items():
values_per_key[key] += [value]
for (key, value), color in zip(values_per_key.items(), get_next_color()):
if key == 'snapshot_name':
continue
plt.plot(value, label=key)
plt.legend()
plt.savefig(os.path.join(model_dir, "plot.png"))
# get max ap epoch
best_epoch = np.argmax(np.array(values_per_key['ap']))
print(f"best ap: {max(values_per_key['ap'])}")
print(f"best epoch: {best_epoch}")
print(f"Best Snapshot: {values_per_key['snapshot_name'][best_epoch]}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="evaluates trained localizer")
parser.add_argument("eval_gt", help="path to gt file with all images to test")
parser.add_argument("model_dir", help="path to directory containing train results")
parser.add_argument("snapshot_prefix", help="prefix of snapshots to evaluate")
parser.add_argument("--log-name", default="log", help="name of the log file [default: log]")
parser.add_argument("--gpu", "-g", type=int, help="gpu to use [default: use cpu]")
parser.add_argument("--num-samples", "-n", type=int, help="max number of samples to test [default: test all]")
parser.add_argument("--batchsize", "-b", type=int, default=1, help="number of images to evaluate at once [default: 1]")
parser.add_argument("--use-nms", action='store_true', default=False, help="post process prediction with NMS")
parser.add_argument("--iou-threshold", type=float, default=0.5, help="iou threshold indicating if a predicted bbox is correct, based on its iou with gt [default: 0.7]")
parser.add_argument("--save-predictions", action='store_true', default=False, help="use bbox plotter to store the predicted bboxes for every test sample")
parser.add_argument("--deteval", action='store_true', default=False, help="produce an xml file that can be used together with the deteval tool")
parser.add_argument("--assessor", help="name of discriminator to use")
parser.add_argument("--render-gt", action='store_true', default=False, help="render gt bbox into resulting image (should be used in conjunction with `save-predictions`")
parser.add_argument("--force-reset", action='store_true', default=False, help="force a reset of eval results file")
args = parser.parse_args()
evaluator = Evaluator(args)
if os.path.exists(evaluator.results_path) and not args.save_predictions:
if args.force_reset:
os.unlink(evaluator.results_path)
evaluated_snapshots = []
else:
# we already evaluated some snapshots, so we do not need to do that again
with open(evaluator.results_path) as already_evaluated_model_results:
json_data = json.load(already_evaluated_model_results)
evaluated_snapshots = [item['snapshot_name'] for item in json_data]
else:
evaluated_snapshots = []
snapshots = list(sorted(filter(lambda x: x not in evaluated_snapshots and args.snapshot_prefix in x, os.listdir(args.model_dir)), key=lambda x: int(getattr(re.search(r"(\d+).npz", x), 'group', lambda: 0)(1))))
for snapshot in tqdm(snapshots):
try:
evaluator.load_weights(snapshot, evaluator.localizer)
evaluator.reset()
evaluator.evaluate(snapshot)
except Exception as e:
print(f"Exception: {e} at snapshot: {snapshot}")
if os.path.exists(evaluator.results_path):
with open(evaluator.results_path) as evaluated_model_results:
json_data = json.load(evaluated_model_results)
plot_eval_results(json_data, args.model_dir)