-
Notifications
You must be signed in to change notification settings - Fork 0
/
sc_rna_de_pseudobulk.R
610 lines (575 loc) · 23.1 KB
/
sc_rna_de_pseudobulk.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
#!/usr/bin/env Rscript
options(warn=-1)
options("width"=200)
options(error=function(){traceback(3); quit(save="no", status=1, runLast=FALSE)})
suppressMessages(library(dplyr))
suppressMessages(library(Seurat))
suppressMessages(library(Signac))
suppressMessages(library(modules))
suppressMessages(library(argparse))
HERE <- (function() {return (dirname(sub("--file=", "", commandArgs(trailingOnly=FALSE)[grep("--file=", commandArgs(trailingOnly=FALSE))])))})()
suppressMessages(analyses <- modules::use(file.path(HERE, "modules/analyses.R")))
suppressMessages(debug <- modules::use(file.path(HERE, "modules/debug.R")))
suppressMessages(filter <- modules::use(file.path(HERE, "modules/filter.R")))
suppressMessages(graphics <- modules::use(file.path(HERE, "modules/graphics.R")))
suppressMessages(io <- modules::use(file.path(HERE, "modules/io.R")))
suppressMessages(qc <- modules::use(file.path(HERE, "modules/qc.R")))
suppressMessages(prod <- modules::use(file.path(HERE, "modules/prod.R")))
export_raw_plots <- function(seurat_data, args){
DefaultAssay(seurat_data) <- "RNA" # safety measure
Idents(seurat_data) <- "new.ident" # safety measure
for (reduction in c("rnaumap", "atacumap", "wnnumap")) {
if (!(reduction %in% names(seurat_data@reductions))) {next} # skip missing reductions
graphics$dim_plot(
data=seurat_data,
reduction=reduction,
plot_title=paste0(
"Cells UMAP split by ", args$splitby, " column ",
ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
paste("subsetted to", paste(args$subset, collapse=", "), "values from", args$groupby, "column "),
""
),
"(", reduction, " dim. reduction)"
),
legend_title=ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
args$groupby,
args$splitby
),
split_by=args$splitby,
group_by=ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
args$groupby,
args$splitby
),
highlight_group=if(!is.null(args$groupby) && !is.null(args$subset)) args$subset else NULL,
label=ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
TRUE,
FALSE
),
label_color="black",
palette_colors=graphics$D40_COLORS,
theme=args$theme,
rootname=paste(args$output, "umap_rd", reduction, sep="_"),
pdf=args$pdf
)
}
gc(verbose=FALSE)
}
export_processed_plots <- function(seurat_data, de_results, args){
DefaultAssay(seurat_data) <- "RNA" # safety measure
Idents(seurat_data) <- "new.ident" # safety measure
graphics$mds_html_plot(
norm_counts_data=de_results$norm_counts_data,
rootname=paste(args$output, "mds_plot", sep="_")
)
pca_data <- qc$counts_pca(de_results$norm_counts_mat) # adds 'group' column to identify the datasets
graphics$pca_plot(
pca_data=pca_data,
pcs=c(1, 2),
plot_title=paste0(
"Normalized counts PCA subsetted to all DE genes regardless of Padj, PC1 and PC2",
ifelse(
(!is.null(args$batchby)),
paste(", batch corrected by", args$batchby),
""
)
),
legend_title="Dataset",
color_by="group",
palette_colors=graphics$D40_COLORS,
theme=args$theme,
rootname=paste(args$output, "pca_1_2", sep="_"),
pdf=args$pdf
)
graphics$pca_plot(
pca_data=pca_data,
pcs=c(2, 3),
plot_title=paste0(
"Normalized counts PCA subsetted to all DE genes regardless of Padj, PC2 and PC3",
ifelse(
(!is.null(args$batchby)),
paste(", batch corrected by", args$batchby),
""
)
),
legend_title="Dataset",
color_by="group",
palette_colors=graphics$D40_COLORS,
theme=args$theme,
rootname=paste(args$output, "pca_2_3", sep="_"),
pdf=args$pdf
)
genes_to_highlight <- get_genes_to_highlight(de_results, args)
graphics$volcano_plot(
data=de_results$de_genes, # this is not filtered differentially expressed features
x_axis="log2FoldChange",
y_axis="padj",
x_cutoff=0,
y_cutoff=args$padj,
x_label="log2 FC",
y_label="-log10 Padj",
plot_title=paste(
"Differentially expressed",
ifelse(
(!is.null(args$genes) && length(args$genes) > 0),
"user provided",
paste("top", length(genes_to_highlight))
),
"genes"
),
plot_subtitle=paste0(
args$second, " vs ", args$first, " pseudobulk DE analysis for samples split by ", args$splitby, ". ",
ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
paste("Subsetted to", paste(args$subset, collapse=", "), "values from", args$groupby, "column. "),
""
),
ifelse(
(!is.null(args$batchby)),
paste0("Model batch effect by ", args$batchby, ". "),
""
),
"Displayed Padj threshold equals to ", args$padj
),
caption=paste(nrow(de_results$de_genes), "genes"),
features=genes_to_highlight,
theme=args$theme,
rootname=paste(args$output, "dxpr_vlcn", sep="_"),
pdf=args$pdf
)
if (!is.null(genes_to_highlight) && length(genes_to_highlight) > 0){
for (current_gene in genes_to_highlight) {
graphics$vln_plot(
data=seurat_data,
features=current_gene,
labels=current_gene,
plot_title=paste(
"Log normalized gene expression density per dataset",
ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
paste("subsetted to", paste(args$subset, collapse=", "), "values from", args$groupby, "column"),
""
)
),
legend_title=args$splitby,
log=TRUE,
pt_size=0,
split_by=args$splitby,
combine_guides="collect",
palette_colors=graphics$D40_COLORS,
width=1000,
height=400,
theme=args$theme,
rootname=paste(args$output, "xpr_dnst", current_gene, sep="_"),
pdf=args$pdf
)
for (reduction in c("rnaumap", "atacumap", "wnnumap")) {
if (!(reduction %in% names(seurat_data@reductions))) {next} # skip missing reductions
graphics$feature_plot(
data=seurat_data,
features=current_gene,
labels=current_gene,
reduction=reduction,
plot_title=paste0(
"Log normalized gene expression on cells UMAP per dataset ",
ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
paste("subsetted to", paste(args$subset, collapse=", "), "values from", args$groupby, "column "),
""
),
"(", reduction, " dim. reduction)"
),
label=FALSE,
order=TRUE,
split_by="new.ident",
combine_guides="collect",
theme=args$theme,
rootname=paste(args$output, "xpr_per_cell_rd", reduction, current_gene, sep="_"),
pdf=args$pdf
)
}
}
}
# To make sure we use the same order of samples as in GCT file we want to
# reorder levels of new.ident so they correspond to col_metadata's rownames
[email protected]$new.ident <- factor([email protected]$new.ident, levels=rownames(de_results$col_metadata))
graphics$feature_heatmap(
data=seurat_data,
assay="RNA", # for now we will always use RNA even if SCT may be present
slot="data",
features=rownames(de_results$row_metadata), # to make sure we use the same number and order of genes as in GCT file
show_rownames=TRUE,
scale_to_max=FALSE,
scale="row",
plot_title=paste(
"Normalized gene expression heatmap",
ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
paste("subsetted to", paste(args$subset, collapse=", "), "values from", args$groupby, "column"),
""
)
),
group_by=if(is.null(args$batchby)) c("new.ident", args$splitby) else c("new.ident", args$splitby, args$batchby),
palette_colors=graphics$D40_COLORS,
rootname=paste(args$output, "xpr_htmp", sep="_"),
pdf=args$pdf
)
}
get_genes_to_highlight <- function(de_results, args){
if (!is.null(args$genes) && length(args$genes) > 0){
print("Using user provided genes to highlight regardless of the significance score")
genes_to_highlight <- args$genes[args$genes %in% as.vector(as.character(de_results$de_genes[, "gene"]))]
} else {
print(
paste(
"Identifying top 10 the most DE genes with P adjusted <= ", args$padj
)
)
top_de_genes <- de_results$de_genes %>%
filter(.$padj<=args$padj) %>%
arrange(desc(log2FoldChange)) %>%
filter(row_number() > max(row_number()) - 10 | row_number() <= 10)
genes_to_highlight <- as.vector(as.character(top_de_genes[, "gene"]))
}
print(paste("Genes to highlight", paste(genes_to_highlight, collapse=", ")))
return (genes_to_highlight)
}
get_args <- function(){
parser <- ArgumentParser(
description="Single-cell Pseudobulk Differential Expression Analysis Between Datasets"
)
parser$add_argument(
"--query",
help=paste(
"Path to the RDS file to load Seurat object from. This file should include genes",
"expression information stored in the RNA assay. Additionally, 'rnaumap', and/or",
"'atacumap', and/or 'wnnumap' dimensionality reductions should be present."
),
type="character", required="True"
)
parser$add_argument(
"--metadata",
help=paste(
"Path to the TSV/CSV file to optionally extend Seurat object metadata with",
"categorical values using samples identities. First column - 'library_id'",
"should correspond to all unique values from the 'new.ident' column of the",
"loaded Seurat object. If any of the provided in this file columns are already",
"present in the Seurat object metadata, they will be overwritten. Default: no",
"extra metadata is added"
),
type="character"
)
parser$add_argument(
"--splitby",
help=paste(
"Column from the Seurat object metadata to split datasets into two groups",
"to run --second vs --first pseudobulk DE analysis, i.e., calculate log2FC.",
"May be one of the columns from the extra metadata added with --metadata",
"parameter. Provided value should group the datasets, not cells, therefore",
"do not use a column with clustering results."
),
type="character", required="True"
)
parser$add_argument(
"--first",
help=paste(
"Value from the Seurat object metadata column set with --splitby to define the",
"first group of datasets for pseudobulk DE analysis."
),
type="character", required="True"
)
parser$add_argument(
"--second",
help=paste(
"Value from the Seurat object metadata column set with --splitby to define the",
"second group of datasets for pseudobulk DE analysis."
),
type="character", required="True"
)
parser$add_argument(
"--batchby",
help=paste(
"Column from the Seurat object metadata to group datasets into batches. It will be used",
"as a factor variable to model batch effect when running pseudobulk DE analysis (makes",
"design formula look like ~splitby+batchby). May be one of the columns from the extra",
"metadata added with --metadata parameter. Provided value should batch the datasets, not",
"cells, therefore do not use a column with clustering results. Default: do not model",
"batch effect."
),
type="character"
)
parser$add_argument(
"--groupby",
help=paste(
"Column from the Seurat object metadata to group cells for optional subsetting",
"when combined with --subset parameter. May be one of the columns from the extra",
"metadata added with --metadata parameter. Ignored if --subset is not set. Provided",
"value defines the groups of cells, therefore any metadata column, including the",
"clustering results, may be used. Default: do not subset, run pseudobulk DE analysis",
"for all cells jointly"
),
type="character"
)
parser$add_argument(
"--subset",
help=paste(
"Value(s) from the column set with --groupby parameter to subset cells",
"before running pseudobulk DE analysis. If multiple values are provided",
"run analysis jointly for selected groups of cells. Ignored if --groupby",
"is not set. Default: do not subset, run pseudobulk DE analysis for all",
"cells jointly"
),
type="character", nargs="*"
)
parser$add_argument(
"--lrt",
help=paste(
"Use LRT instead of the pair-wise Wald test. If --batchby is not provided",
"use ~1 as a reduced formula, otherwise ~batchby. Default: use Wald test"
),
action="store_true"
)
parser$add_argument(
"--padj",
help=paste(
"In the exploratory visualization part of the analysis output only features",
"with adjusted P-value not bigger than this value. Default: 0.05"
),
type="double", default=0.05
)
parser$add_argument(
"--genes",
help=paste(
"Genes of interest to label on the generated plots. Default: top 10 genes",
"with the highest and the lowest log2FC expression values."
),
type="character", nargs="*"
)
parser$add_argument(
"--exclude",
help=paste(
"Regex pattern to identify and exclude non-coding RNA genes from the pseudobulk",
"DE analysis (not case-sensitive). If any of such genes were provided in the --genes",
"parameter, they will be excluded from there as well.",
"Default: use all genes"
),
type="character"
)
parser$add_argument(
"--norm",
help=paste(
"Read counts normalization for the exploratory visualization part of the analysis.",
"Use 'vst' for medium-to-large datasets (n > 30) and 'rlog' for small datasets",
"(n < 30), when there is a wide range of sequencing depth across samples.",
"Default: rlog"
),
type="character", default="rlog",
choices=c("vst", "rlog")
)
parser$add_argument(
"--remove",
help=paste(
"Remove batch effect when generating normalized read counts for the exploratory",
"visualization part of the analysis. Ignored if --batchby is not provided.",
"Default: do not remove batch effect from normalized read counts."
),
action="store_true"
)
parser$add_argument(
"--cluster",
help=paste(
"Hopach clustering method to be run on normalized read counts for the",
"exploratory visualization part of the analysis. Default: do not run",
"clustering"
),
type="character",
choices=c("row", "column", "both")
)
parser$add_argument(
"--rowdist",
help=paste(
"Distance metric for HOPACH row clustering. Ignored if --cluster is set",
"to column or not provided. Default: cosangle"
),
type="character", default="cosangle",
choices=c("cosangle", "abscosangle", "euclid", "abseuclid", "cor", "abscor")
)
parser$add_argument(
"--columndist",
help=paste(
"Distance metric for HOPACH column clustering. Ignored if --cluster is set",
"to row or not provided. Default: euclid"
),
type="character", default="euclid",
choices=c("cosangle", "abscosangle", "euclid", "abseuclid", "cor", "abscor")
)
parser$add_argument(
"--center",
help=paste(
"Apply mean centering for gene expression prior to running",
"clustering by row. Ignored if --cluster is set to column or",
"not provided. Default: do not centered"
),
action="store_true"
)
parser$add_argument(
"--pdf",
help="Export plots in PDF. Default: false",
action="store_true"
)
parser$add_argument(
"--verbose",
help="Print debug information. Default: false",
action="store_true"
)
parser$add_argument(
"--output",
help="Output prefix. Default: ./sc",
type="character", default="./sc"
)
parser$add_argument(
"--theme",
help=paste(
"Color theme for all generated plots.",
"Default: classic"
),
type="character", default="classic",
choices=c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void")
)
parser$add_argument(
"--cpus",
help="Number of cores/cpus to use. Default: 1",
type="integer", default=1
)
parser$add_argument(
"--memory",
help=paste(
"Maximum memory in GB allowed to be shared between the workers",
"when using multiple --cpus.",
"Default: 32"
),
type="integer", default=32
)
args <- parser$parse_args(commandArgs(trailingOnly = TRUE))
return (args)
}
args <- get_args()
print("Input parameters")
print(args)
print(
paste(
"Setting parallelization to", args$cpus, "cores, and", args$memory,
"GB of memory allowed to be shared between the processes"
)
)
prod$parallel(args)
print(paste("Loading Seurat data from", args$query))
seurat_data <- readRDS(args$query)
if (!any(c("rnaumap", "atacumap", "wnnumap") %in% names(seurat_data@reductions))){
print(
paste(
"Loaded Seurat object includes neither of the required reductions:",
"'rnaumap', and/or 'atacumap', and/or 'wnnumap'.",
"Exiting."
)
)
quit(save="no", status=1, runLast=FALSE)
}
if (!("RNA" %in% names(seurat_data@assays))){
print(
paste(
"Loaded Seurat object doesn't include required RNA assay.",
"Exiting."
)
)
quit(save="no", status=1, runLast=FALSE)
}
print("Setting default assay to RNA")
DefaultAssay(seurat_data) <- "RNA"
print("Normalizing counts")
seurat_data <- NormalizeData(seurat_data, verbose=FALSE)
debug$print_info(seurat_data, args)
excluded_genes <- c()
if (!is.null(args$exclude)){
excluded_genes <- grep(
args$exclude,
as.vector(as.character(rownames(seurat_data))), # with RNA assay set as default the rownames should be genes
value=TRUE,
ignore.case=TRUE
)
print(
paste(
"Based on the pattern", args$exclude, "the following genes will",
"be excluded from the pseudobulk DE analysis:",
paste(excluded_genes, collapse=", ")
)
)
}
if (!is.null(args$genes) && length(args$genes) > 0){
print(
paste(
"Adjusting genes of interest to include only those genes that are",
"present in the loaded Seurat object and have not been excluded."
)
)
args$genes <- unique(args$genes)
args$genes <- args$genes[args$genes %in% as.vector(as.character(rownames(seurat_data)))] # with RNA assay set as default the rownames should be genes
args$genes <- args$genes[!(args$genes %in% excluded_genes)] # excluded_genes can be empty list
print(args$genes)
}
if (!is.null(args$metadata)){
print("Extending Seurat object with the extra metadata fields")
seurat_data <- io$extend_metadata(
seurat_data=seurat_data,
location=args$metadata,
seurat_ref_column="new.ident",
meta_ref_column="library_id"
)
debug$print_info(seurat_data, args)
}
export_raw_plots(seurat_data, args)
print("Filtering Seurat object to include only selected groups of cells")
seurat_data <- filter$apply_metadata_filters(seurat_data, args$splitby, c(args$first, args$second))
if(!is.null(args$groupby) && !is.null(args$subset)){
seurat_data <- filter$apply_metadata_filters(seurat_data, args$groupby, args$subset)
}
debug$print_info(seurat_data, args)
print(
paste(
"Running", args$second, "vs", args$first, "differential expression",
"analysis for pseudobulk RNA-Seq samples split by", args$splitby,
ifelse(
(!is.null(args$groupby) && !is.null(args$subset)),
paste("subsetted to", paste(args$subset, collapse=", "), "values from", args$groupby, "column."),
""
),
ifelse(
(!is.null(args$batchby)),
paste("Model batch effect by", args$batchby, "column."),
""
)
)
)
de_results <- analyses$rna_de_analyze(seurat_data, args, excluded_genes)
print(head(de_results$de_genes))
export_processed_plots(seurat_data, de_results, args)
print("Exporting differentially expressed genes")
io$export_data(
de_results$de_genes, # not filtered na-removed differentially expressed genes
paste(args$output, "_de_genes.tsv", sep="")
)
print("Exporting normalized read counts to GCT format")
io$export_gct(
counts_mat=de_results$norm_counts_mat,
row_metadata=de_results$row_metadata, # includes genes as row names
col_metadata=de_results$col_metadata, # includes samples as row names
location=paste(args$output, "_norm_read_counts.gct", sep="")
)
print("Exporting CLS phenotype data")
io$export_cls(
categories=de_results$col_metadata[, args$splitby], # to have the same samples order as in GCT file
paste(args$output, "_phenotypes.cls", sep="")
)