-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpseudocode.matanpl
230 lines (137 loc) · 6.9 KB
/
pseudocode.matanpl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# -*- coding: utf-8 -*-
import random
########################
# DATABASES
userDb = {{tokenBalance, reputationBalance}_networkIndex, {contributionIndex}_ownContributions, {evaluationIndex}_ownEvaluations, firstContributionTimestamp}_userIndex
networkDb = {{tokenBalance, reputationBalance}_networkIndex, {contributionIndex}_ownContributions, {evaluationIndex}_ownEvaluations, {userIndex}_ownUsers, NetworkInceptionTimestamp}_networkIndex
contributionDb = {contributorId, totalVotedRep, weightedMedian, weightedAverage, tokensPaid, contributionTimestamp}_contributionIndex
evaluationDb = {{evaluatorId, evaluatedValue, {evaluatorReputation}_networkIndex, evaluationTimestamp}_evaluationIndex}}_contributionIndex
# NEW NEW NEW in contributionDb we added a new prop 'tokensPaid' which is the number of tokens paid to the contributor. Equivalent to the "last maximal weightedMedian"
#######################
# qrate CONSTANTS
CONTRIBUTION_FEE=1
REPUTATION_FRACTION_STAKE = 0.01
# New user starts with 150 tokens and reputation
# searching costs 1 token
# submitting a tag costs 10 tokens
# reward for a successful tag is 20 tokens
# submitting a link costs X tokens
# reward for a successful tag is X tokens
# endorsing / deendorsing / adding a tag costs 5 reputation
# initial number of tokens in network
#########################
# API IN-CALLS for the PROTOCOL SERVICE and their internal flow
# in qrate only: contributionFee == CONTRIBUTION_FEE && reputationStake == REPUTATION_FRACTION_STAKE * contributorReputation
protocol.contribute(contributorId, evaluatedValue, contributionFee, reputationStake)
-> contributionIndex = newContribution(contributorId, contributionFee)
-> escrowFee(networkId, contributorId, contributionFee)
-> newEvaluation(contributionIndex, contributorId, evaluatedValue, reputationStake) # still implicitly calling updateReputationBalance internally (but with 0 deltaReputation)
-> if (first contribution of user) newNetwork(contributorId, sparseArray[{{1,{contributorId}}])
# in qrate only: reputationStake == REPUTATION_FRACTION_STAKE * evaluatorReputation
protocol.evaluate(contributionIndex, evaluatorId, evaluatedValue, reputationStake)
-> newEvaluation(contributionIndex, evaluatorId, evaluatedValue, reputationStake)
# API FETCH (DBs reads)
#userObject = fetchUserReputation(userIndex)
#userObject.reputationBalance
fetchUsersReputation
fetchUser(userId)
# API PRINT (DBs creates)
newAgent
newNetwork(founderId, {initialReputation}_userIndex)
# API UPDATE (DBs updates)
updateTokenBalance({{deltaTokens}_userIndex}_networkIndex)
-> updateTokenBalanceInUserDb
-> updateTokenBalanceInNetworkDb
updateReputationBalance({{deltaReputation}_userIndex}_networkIndex)
-> updateReputationBalanceInUserDb
-> updateReputationBalanceInNetworkDb
updateTokenBalanceInUserDb
updateTokenBalanceInNetworkDb
updateReputationBalanceInUserDb
updateReputationBalanceInNetworkDb
# INTERNAL FUNCTIONS ==> CALCULATOR
newContribution(contributorId, contributionFee)
-> newRowInContributionDb(contributorId, totalVotedRep=0, weightedMedian=0, weightedAverage=0, tokensPaid=0, contributionTimestamp=now)
-> updateTokenBalance({{0-contributionFee}_contributorId}_0)
newEvaluation(contributionIndex, evaluatorId, evaluatedValue, reputationStake)
-> newRowInEvaluationDb(contributionIndex, evaluatorId, evaluatedValue, {evaluatorReputation}_networkIndex, evaluationTimestamp=now)
{ ... run over all networks that the evaluatorId has reputation in ... and over all users that have reputation in those networks ...
-> lastUserReputation(networkId, evaluatorId) = fetch from userDb
-> lastTotalVotedReputation(networkId) = fetch evaluations from evaluation db and sum all reputation voted so far (per network)
-> newTotalVotedReputation = same as above but including current voting reputation as well
-> lastTotalAlignedReputation = fetch evaluations from evaluation db and sum all reputations that voted the same as user, so far (per network)
-> newTotalAlignedReputation = the same as above but including current voting reputation as well
-> newUserReputation(lastUserReputation, lastTotalVotedReputation, newTotalVotedReputation, lastTotalAlignedReputation, newTotalAlignedReputation)
-> updateReputationBalance (... with newUserReputation ... for all users ...)
}
newUserReputation = reputationEvolution(lastUserReputation, lastTotalVotedReputation, newTotalVotedReputation, lastTotalAlignedReputation, newTotalAlignedReputation) {
result = (1 - REPUTATION_FRACTION_STAKE)*(userReputationThen) + (REPUTATION_FRACTION_STAKE*userReputationThen*totalAlignedReputationNow*totalVotedReputationThen)/(totalAlignedReputationThen*totalVotedReputationNow)
return result;
}
# COMPOSITES (of Monadic functions from different categories)
# move tokenFee from user to escrow
# escrow has hardcoded userId 0
# networkId is hardcoded 0 (the tokens of which (only for now) to be used for fee payment)
escrowFee(networkId, userId, tokenFee)
-> updateTokenBalance
##############################
#######################################################################################################################
# THE END OF THE CODE
########################################################################################################################
# SIMULATION
N_ACTIONS=10
P_NEW_CONTRIB = 0.1
P_NEW_AGENT = 0.1
# start with one agent with reputation=1 in one network
# one network with reputation=0 in itself
# and an ordered (still empty) list of all events —contrib's & eval's, structured as
# {event_id, tokenFee, evaluation, creator_id, {rep_stake list in all networks}}
user_db = [[1]]
network_db = [[0]]
contribution_db = [...]
evaluation_db = [...]
for i in xrange(N_ACTIONS):
r = random.random()
if r < P_NEW_CONTRIB:
new_contribution()
elif r < P_NEW_CONTRIB + P_NEW_AGENT:
new_agent()
else:
new_evaluation()
print 2+2
#########################
# FUNCTIONS
# choose a random integer between 0 and 10^8
def rand():
return random.randint(0, 100000000)
def new_contribution():
print '== new contribution =='
agentid = random.randint(0, len(agents_db)-1)
print 'agentid:', agentid
agent = agents_db[agentid]
print 'agents_db:', agents_db
print 'agent:', agent
agent = [(1-REP_TO_STAKE)*r for r in agent]
print 'agent after stake:', agent
contribution = (agentid, [(REP_TO_STAKE)*r for r in agent])
print 'contribution:', contribution
events_db.append(contribution)
print 'events_db', events_db
def new_evaluation():
print '== new evaluation =='
if len(events_db) == 0:
return
r = random.randint(0, len(events_db)-1)
print 'r', r
contrib = events_db[r]
print 'contrib', contrib
agentid = random.randint(0, len(agents_db)-1)
print 'agentid', agentid
agent = agents_db[agentid]
print 'agent', agent
agent = [(1-REP_TO_STAKE)*r for r in agent]
print 'agent after stake', agent
contrib[CONTRIB_REP]
print 'contrib', contrib[CONTRIB_REP]
def new_agent():
print '== new agent created =='