forked from kohler/masstree-beta
-
Notifications
You must be signed in to change notification settings - Fork 0
/
kpermuter.hh
329 lines (303 loc) · 10.6 KB
/
kpermuter.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/* Masstree
* Eddie Kohler, Yandong Mao, Robert Morris
* Copyright (c) 2012-2014 President and Fellows of Harvard College
* Copyright (c) 2012-2014 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, subject to the conditions
* listed in the Masstree LICENSE file. These conditions include: you must
* preserve this copyright notice, and you cannot mention the copyright
* holders in advertising related to the Software without their permission.
* The Software is provided WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED. This
* notice is a summary of the Masstree LICENSE file; the license in that file
* is legally binding.
*/
#ifndef KPERMUTER_HH
#define KPERMUTER_HH
#include "string.hh"
class identity_kpermuter {
int size_;
public:
identity_kpermuter(int size)
: size_(size) {
}
int size() const {
return size_;
}
int operator[](int i) const {
return i;
}
bool operator==(const identity_kpermuter&) const {
return true;
}
bool operator!=(const identity_kpermuter&) const {
return false;
}
};
template <int C> struct sized_kpermuter_info {};
template <> struct sized_kpermuter_info<0> {
typedef uint16_t storage_type;
typedef unsigned value_type;
enum { initial_value = 0x0120U, full_value = 0x2100U };
};
template <> struct sized_kpermuter_info<1> {
typedef uint32_t storage_type;
typedef unsigned value_type;
enum { initial_value = 0x01234560U, full_value = 0x65432100U };
};
template <> struct sized_kpermuter_info<2> {
typedef uint64_t storage_type;
typedef uint64_t value_type;
enum { initial_value = (uint64_t) 0x0123456789ABCDE0ULL,
full_value = (uint64_t) 0xEDCBA98765432100ULL };
};
template <int W> class kpermuter {
public:
typedef sized_kpermuter_info<(W > 3) + (W > 7) + (W > 15)> info;
typedef typename info::storage_type storage_type;
typedef typename info::value_type value_type;
enum { max_width = (int) (sizeof(storage_type) * 2 - 1) };
enum { size_bits = 4 };
/** @brief Construct an uninitialized permuter. */
kpermuter() {
}
/** @brief Construct a permuter with value @a x. */
kpermuter(value_type x)
: x_(x) {
}
/** @brief Return an empty permuter with size 0.
Elements will be allocated in order 0, 1, ..., @a width - 1. */
static inline value_type make_empty() {
value_type p = (value_type) info::initial_value >> ((max_width - W) << 2);
return p & ~(value_type) 15;
}
/** @brief Return a permuter with size @a n.
The returned permutation has size() @a n. For 0 <= i < @a n,
(*this)[i] == i. Elements n through @a width - 1 are free, and will be
allocated in that order. */
static inline value_type make_sorted(int n) {
value_type mask = (n == W ? (value_type) 0 : (value_type) 16 << (n << 2)) - 1;
return (make_empty() << (n << 2))
| ((value_type) info::full_value & mask)
| n;
}
/** @brief Return the permuter's size. */
int size() const {
return x_ & 15;
}
static int width() {
return W;
}
/** @brief Return the permuter's element @a i.
@pre 0 <= i < width */
int operator[](int i) const {
return (x_ >> ((i << 2) + 4)) & 15;
}
int back() const {
return (*this)[W - 1];
}
value_type value() const {
return x_;
}
value_type value_from(int i) const {
return x_ >> ((i + 1) << 2);
}
void set_size(int n) {
x_ = (x_ & ~(value_type) 15) | n;
}
/** @brief Allocate a new element and insert it at position @a i.
@pre 0 <= @a i < @a width
@pre size() < @a width
@return The newly allocated element.
Consider the following code:
<code>
kpermuter<...> p = ..., q = p;
int x = q.insert_from_back(i);
</code>
The modified permuter, q, has the following properties.
<ul>
<li>q.size() == p.size() + 1</li>
<li>Given j with 0 <= j < i, q[j] == p[j] && q[j] != x</li>
<li>Given j with j == i, q[j] == x</li>
<li>Given j with i < j < q.size(), q[j] == p[j-1] && q[j] != x</li>
</ul> */
int insert_from_back(int i) {
int value = back();
// increment size, leave lower slots unchanged
x_ = ((x_ + 1) & (((value_type) 16 << (i << 2)) - 1))
// insert slot
| ((value_type) value << ((i << 2) + 4))
// shift up unchanged higher entries & empty slots
| ((x_ << 4) & ~(((value_type) 256 << (i << 2)) - 1));
return value;
}
/** @brief Insert an unallocated element from position @a si at position @a di.
@pre 0 <= @a di < @a width
@pre size() < @a width
@pre size() <= @a si
@return The newly allocated element. */
void insert_selected(int di, int si) {
int value = (*this)[si];
value_type mask = ((value_type) 256 << (si << 2)) - 1;
// increment size, leave lower slots unchanged
x_ = ((x_ + 1) & (((value_type) 16 << (di << 2)) - 1))
// insert slot
| ((value_type) value << ((di << 2) + 4))
// shift up unchanged higher entries & empty slots
| ((x_ << 4) & mask & ~(((value_type) 256 << (di << 2)) - 1))
// leave uppermost slots alone
| (x_ & ~mask);
}
/** @brief Remove the element at position @a i.
@pre 0 <= @a i < @a size()
@pre size() < @a width
Consider the following code:
<code>
kpermuter<...> p = ..., q = p;
q.remove(i);
</code>
The modified permuter, q, has the following properties.
<ul>
<li>q.size() == p.size() - 1</li>
<li>Given j with 0 <= j < i, q[j] == p[j]</li>
<li>Given j with i <= j < q.size(), q[j] == p[j+1]</li>
<li>q[q.size()] == p[i]</li>
</ul> */
void remove(int i) {
if (int(x_ & 15) == i + 1) {
--x_;
} else {
int rot_amount = ((x_ & 15) - i - 1) << 2;
value_type rot_mask =
(((value_type) 16 << rot_amount) - 1) << ((i + 1) << 2);
// decrement size, leave lower slots unchanged
x_ = ((x_ - 1) & ~rot_mask)
// shift higher entries down
| (((x_ & rot_mask) >> 4) & rot_mask)
// shift value up
| (((x_ & rot_mask) << rot_amount) & rot_mask);
}
}
/** @brief Remove the element at position @a i to the back.
@pre 0 <= @a i < @a size()
@pre size() < @a width
Consider the following code:
<code>
kpermuter<...> p = ..., q = p;
q.remove_to_back(i);
</code>
The modified permuter, q, has the following properties.
<ul>
<li>q.size() == p.size() - 1</li>
<li>Given j with 0 <= j < i, q[j] == p[j]</li>
<li>Given j with i <= j < @a width - 1, q[j] == p[j+1]</li>
<li>q.back() == p[i]</li>
</ul> */
void remove_to_back(int i) {
value_type mask = ~(((value_type) 16 << (i << 2)) - 1);
// clear unused slots
value_type x = x_ & (((value_type) 16 << (W << 2)) - 1);
// decrement size, leave lower slots unchanged
x_ = ((x - 1) & ~mask)
// shift higher entries down
| ((x >> 4) & mask)
// shift removed element up
| ((x & mask) << ((W - i - 1) << 2));
}
/** @brief Rotate the permuter's elements between @a i and size().
@pre 0 <= @a i <= @a j <= size()
Consider the following code:
<code>
kpermuter<...> p = ..., q = p;
q.rotate(i, j);
</code>
The modified permuter, q, has the following properties.
<ul>
<li>q.size() == p.size()</li>
<li>Given k with 0 <= k < i, q[k] == p[k]</li>
<li>Given k with i <= k < q.size(), q[k] == p[i + (k - i + j - i) mod (size() - i)]</li>
</ul> */
void rotate(int i, int j) {
value_type mask = (i == W ? (value_type) 0 : (value_type) 16 << (i << 2)) - 1;
// clear unused slots
value_type x = x_ & (((value_type) 16 << (W << 2)) - 1);
x_ = (x & mask)
| ((x >> ((j - i) << 2)) & ~mask)
| ((x & ~mask) << ((W - j) << 2));
}
/** @brief Exchange the elements at positions @a i and @a j. */
void exchange(int i, int j) {
value_type diff = ((x_ >> (i << 2)) ^ (x_ >> (j << 2))) & 240;
x_ ^= (diff << (i << 2)) | (diff << (j << 2));
}
/** @brief Exchange positions of values @a x and @a y. */
void exchange_values(int x, int y) {
value_type diff = 0, p = x_;
for (int i = 0; i < W; ++i, diff <<= 4, p <<= 4) {
int v = (p >> (W << 2)) & 15;
diff ^= -((v == x) | (v == y)) & (x ^ y);
}
x_ ^= diff;
}
lcdf::String unparse() const;
bool operator==(const kpermuter<W>& x) const {
return x_ == x.x_;
}
bool operator!=(const kpermuter<W>& x) const {
return !(*this == x);
}
static inline int size(value_type p) {
return p & 15;
}
private:
value_type x_;
};
template <int W>
lcdf::String kpermuter<W>::unparse() const
{
char buf[max_width + 3], *s = buf;
value_type p(x_);
value_type seen(0);
int n = p & 15;
p >>= 4;
for (int i = 0; true; ++i) {
if (i == n) {
*s++ = ':';
}
if (i == W) {
break;
}
if ((p & 15) < 10) {
*s++ = '0' + (p & 15);
} else {
*s++ = 'a' + (p & 15) - 10;
}
seen |= 1 << (p & 15);
p >>= 4;
}
if (seen != (1 << W) - 1) {
*s++ = '?';
*s++ = '!';
}
return lcdf::String(buf, s);
}
template <typename T> struct has_permuter_type {
template <typename C> static char test(typename C::permuter_type *);
template <typename> static int test(...);
static constexpr bool value = sizeof(test<T>(0)) == 1;
};
template <typename T, bool HP = has_permuter_type<T>::value> struct key_permuter {};
template <typename T> struct key_permuter<T, true> {
typedef typename T::permuter_type type;
static type permutation(const T& n) {
return n.permutation();
}
};
template <typename T> struct key_permuter<T, false> {
typedef identity_kpermuter type;
static type permutation(const T& n) {
return identity_kpermuter(n.size());
}
};
#endif