-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarkdown.Rmd
781 lines (663 loc) · 41.6 KB
/
markdown.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
---
title: "Characterizing the spatial distribution of annual particulate matter across California"
author: "Bruno Raimbault - [email protected]"
date: May 14, 2020
output:
html_document:
toc: TRUE
toc_float: true
---
<span style="color: red;">THIS R MARKDOWN DOCUMENT HAS BEEN PRODUCED IN THE FRAME OF THE MAS OF SPATIAL ANALYSIS FOR PUBLIC HEALTH AT JHU.</span>
The unique purpose of this document is to permit reproducing the analysis. Code should be streamlined and commented for clarity.
# A. Setup
```{r set_wd, echo=FALSE}
#Set working directory:
knitr::opts_knit$set(root.dir = 'C:/Users/raimb/Work/JHU_2020T04_IA/Designed/Project_1_PM-Cal/')
```
## Data sources
Selected Projection for project: NAD_1983_California_Teale_Albers (WKID: 3310 Authority: EPSG)
| File name | Source | Overview | URL |
|-----------|--------|----------|-----|
|california_landcover | USGS | Land cover (especially developed land) | [URL](https://www.mrlc.gov/data?f%5B0%5D=category%3Aland%20cover) |
|california_dem | ESRI | Digital elevation model | [URL](http://hub.arcgis.com/datasets/IVT::california-dem) |
|california_wildfires | CalFire | Fire location and surfaces burnt | [URL](https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/) |
|california_coastline | Natural Earth | Coastline | [URL](https://www.fire.ca.gov/incidents/2016/) |
|acs_poverty | US Census Bureau | Population in poverty | [URL](https://data.census.gov/cedsci/table?g=0100000US.04000&tid=ACSST5Y2016.S1701&q=S1701) |
|acs_characteristics | US Census Bureau | Population characteristics | [URL](https://data.census.gov/cedsci/table?g=0100000US.04000&tid=ACSDT5Y2016.S0601) |
|acs_population | US Census Bureau | Population | [URL](https://data.census.gov/cedsci/table?g=0100000US.04000&tid=ACSDT5Y2016.B0103) |
|area_counties | US Census Bureau | County polygons | [URL](https://www.census.gov/cgi-bin/geo/shapefiles/index.php) |
|area_censusTracts | US Census Bureau | Census tract polygons | [URL](https://www.census.gov/cgi-bin/geo/shapefiles/index.php) |
|point_pm25 | EPA | PM2.5 monitors | [URL](https://aqs.epa.gov/aqsweb/airdata/download_files.html#Annual) |
The pre-processed files as well as the source code to run this analysis can be downloaded at: https://github.com/BRaimbault/2020-JHU-IA
## Dependencies
Loading libraries:
```{r libraries_mandatory, message=FALSE}
{library(rgdal); library(geoR); library(ggplot2); library(dplyr); library(splancs); library(summarytools); library(grid);}
```
```{r libraries_optional, eval=FALSE, include=FALSE}
#Optional libraries (to verify, not loaded for now):
#library(maptools); library(PBSmapping); #library(gstat); #library(splines); #library(rgeos);
```
```{r set_function, echo=FALSE}
footnote <- function(footnoteText=format(Sys.time(), "%d %b %Y"), size= .7, color= grey(.5))
{ pushViewport(viewport())
grid.text(label= footnoteText , x = unit(1,"npc") - unit(2, "mm"), y= unit(2, "mm"), just=c("right", "bottom"), gp=gpar(cex= size, col=color))
popViewport()
}
```
# B. Data loading
## State boundaries
Loading California state boundaries shapefile:
```{r data_state, results='hide', fig.align='center'}
shp_california <- readOGR("Projected/area_state_single.shp");
plot(shp_california)
title("Data loading: Californa State boundaries")
footnote('Figure 1')
```
## Monitors data
Loading PM2.5 monitors shapefile:
```{r data_monitors_load, results='hide', fig.align='center'}
shp_monitors <- readOGR("Monitors/point_pm25_final.shp")
plot(shp_california)
points(shp_monitors,col='red')
title("Data loading: Monitors location")
footnote('Figure 2')
```
Convert shapefile to dataframe and to geodata:
```{r data_monitors_convert}
frm_monitors <- data.frame(
easting=shp_monitors@data$POINT_X, # Coordinates
northing=shp_monitors@data$POINT_Y, # Coordinates
pm25=shp_monitors@data$meanPM, # PM2.5 concentration
p_elev=shp_monitors@data$ELEV, # Elevation in m
p_coast=shp_monitors@data$DISTCOAST, # Distance form the coast in m
p_wfire=shp_monitors@data$WILDFIRE_p, # % of the county burned due to wildfires
lc_100=as.character(shp_monitors@data$RS_LC_100), # Landcover majoritarian category in 100mx100m areas
lc_1000=as.character(shp_monitors@data$RS_LC_1000), # Landcover majoritarian category in 1000mx1000m areas
c_popden=shp_monitors@data$COU_POPDEN, # From county level: Population density
c_poppov=shp_monitors@data$COU_POPPOV, # From county level: % of population in poverty
c_popblack=shp_monitors@data$COU_POPBLA, # From county level: % of population black or african american
c_pophisp=shp_monitors@data$COU_POPHIS, # From county level: % of popylation of hispanic or latino origins
t_popden=shp_monitors@data$TRA_POPDEN, # From census tract level: Population density
t_poppov=shp_monitors@data$TRA_POPPOV, # From census tract level: % of population in poverty
t_popblack=shp_monitors@data$TRA_POPBLA, # From census tract level: % of population black or african american
t_pophisp=shp_monitors@data$TRA_POPHIS # From census tract level: % of popylation of hispanic or latino origin
)
geo_monitors_pm25 <- as.geodata(frm_monitors,coords.col = 1:2, covar.col=4:16)
```
Check for duplicate monitor locations:
```{r data_monitors_duplicates}
dup.coords(geo_monitors_pm25)
```
Summary table:
```{r data_monitors_summary_pre, echo=FALSE}
isFALSE <- function(x) { identical(x,FALSE) }
```
```{r data_monitors_summary, results='asis'}
st_css()
print(dfSummary(frm_monitors, plain.ascii = FALSE, graph.magnif = 0.85), max.distinct.values = 5, max.string.width=15, method = "render")
```
```{js, echo=FALSE}
$( "h3:contains('Data Frame Summary')" ).remove();
$( "p:contains('Generated by')" ).html("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 3</p>");
```
## Predictions data
Loading prediction grid shapefile:
```{r data_predictions_load, results='hide', fig.align='center'}
shp_predictions <- readOGR("Point_Grid/point_grid_final.shp")
plot(shp_california)
points(shp_predictions,pch='.',col='blue')
title("Data loading: Predictors location")
footnote('Figure 4')
```
Convert shapefile to dataframe:
```{r data_predictions_convert_frm}
frm_predictions <- data.frame(
easting=shp_predictions@data$POINT_X, # Coordinates
northing=shp_predictions@data$POINT_Y, # Coordinates
p_elev=as.numeric(as.character(shp_predictions@data$ELEV)), # Elevation in m
p_coast=shp_predictions@data$DISTCOAST, # Distance form the coast in m
lc_1000=as.character(shp_predictions@data$RS_LC_1000), # Landcover majoritarian category in 1000mx1000m areas
c_popden=shp_predictions@data$COU_POPDEN, # From county level: Population density
c_poppov=shp_predictions@data$COU_POPPOV, # From county level: % of population in poverty
c_popblack=shp_predictions@data$COU_POPBLA, # From county level: % of population black or african american
c_pophisp=shp_predictions@data$COU_POPHIS # From county level: % of popylation of hispanic or latino origin
)
```
Filter locations where elevation is not available:
```{r data_predictions_filter, results='hide'}
frm_predictions_filtered <- frm_predictions[frm_predictions$p_elev != '-9999',]
```
Convert dataframe to geodata:
```{r data_predictions_convert_geo}
geo_predictions <- as.geodata(frm_predictions_filtered,coords.col = 1:2, covar.col=3:9)
```
Check for duplicate prediction locations:
```{r data_predictions_duplicates}
dup.coords(geo_predictions)
```
Summary table on a sample of 9,999 values:
```{r data_predictions_summary_pre, echo=FALSE}
isFALSE <- function(x) { identical(x,FALSE) }
```
```{r data_predictions_summary, results='asis', warning=FALSE, error=FALSE}
st_css()
frm_predictions_sample <- frm_predictions_filtered[sample(nrow(frm_predictions_filtered), 999), ]
print(dfSummary(frm_predictions_sample, plain.ascii = FALSE, graph.magnif = 0.85), max.distinct.values = 5, max.string.width=15, method = "render")
```
```{js, echo=FALSE}
$( "h3:contains('Data Frame Summary')" ).remove();
$( "p:contains('Generated by')" ).html("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 5</p>");
```
# C. Exploratory analysis
## Large-scale variations
Ploting monitors values:
```{r data_monitors_plot, results='hide', fig.align='center'}
area_california <- shp_california@polygons[[1]]@Polygons[[1]]@coords
colors <- c(rgb(252,146,114,maxColorValue=255),rgb(251,106,74,maxColorValue=255),rgb(222,45,38,maxColorValue=255),rgb(165,15,21,maxColorValue=255))
par(oma=c(0,0,2,0))
plot(geo_monitors_pm25, borders=area_california, lowess = TRUE,qt.col = colors)
mtext("PM2.5 Monitors", outer=TRUE, cex=1.2, line=1)
footnote('Figure 6')
```
```{r eval=FALSE, include=FALSE}
# Option 2
# plot(frm_monitors)
# Option 3
# points(geo_monitors_pm25, pt.divide="quartiles", borders=area_california)
```
```{r, eval=FALSE, include=FALSE}
## Plot predictions
## .............................................................................................
# /!\ Resource-intensive
# plot(frm_predictions_filtered)
# plot(geo_predictions_elev)
# plot(geo_predictions_dens)
# plot(geo_predictions_pove)
```
## Short-scale variations
Estimate the semivariogram form the PM2.5 monitors data and then adjust a model:
```{r ok_variogram, results='hide', fig.align='center'}
# Estimate semivariogram from data
var_monitors_pm25.dot <- variog(geo_monitors_pm25)
names(var_monitors_pm25.dot)
max <- var_monitors_pm25.dot$max.dist
var_monitors_pm25.dot<-variog(geo_monitors_pm25,max.dist=max/2) #restricting to half the actual maximum distance
plot(var_monitors_pm25.dot,xlab="Distance (meters)",ylab="Semivariogram",pty="m", pch=16, ylim=c(0,11))
title("Semivariogram of PM2.5 Data\n(restricted < 1/2 max distance)")
footnote('Figure 7')
```
# D. Modelling
## Ordinary Kriging (OK)
### Ordinary Kriging - Semivariogram adjustments (WLS & MLE)
Adjust a model to the semivariogram form the PM2.5 monitors data:
```{r ok_variogram_adj, results='hide', fig.align='center'}
plot(var_monitors_pm25.dot,xlab="Distance (meters)",ylab="Semivariogram",pty="m", pch=16, ylim=c(0,11))
title("Semivariogram of PM2.5 Data\n(restricted < 1/2 max distance)")
footnote('Figure 8')
# Adjust semivariogram model
model<-"exponential" #"exponential" #"spherical" #"gaussian"
rangs <- c() #c(0.7e+05,0.8e+05,0.9e+05) #c(1.0e+05,1.1e+05,1.2e+05,1.3e+05,1.4e+05,1.5e+05)
sills <- c() #c(5,10,15) #c(9.0,9.5,10,10.5,11)
nugs <- c() #c(0,1,2) #c(0,0.2,0.4,0.6,0.8,1)
df.MLE<-data.frame(9999,9999,9999,9999,9999)
names(df.MLE)<-c("rang","sill","nug","AIC","BIC")
for (rang in rangs) { for (sill in sills) { for (nug in nugs) {
psill<-sill-nug
var_monitors_pm25.fit.MLE<-likfit(geo_monitors_pm25,ini.cov.pars=c(psill,rang),nugget=nug)
temp <- data.frame(rang,sill,nug,var_monitors_pm25.fit.MLE$AIC,var_monitors_pm25.fit.MLE$BIC)
names(temp)<-c("rang","sill","nug","AIC","BIC")
df.MLE <- rbind(df.MLE, temp)
}}}
model<-"exponential" #"exponential" #"spherical" #"gaussian"
rangs <- c() #c(0.7e+05,0.8e+05,0.9e+05) #c(1.0e+05,1.1e+05,1.2e+05,1.3e+05,1.4e+05,1.5e+05)
sills <- c() #c(5,10,15) #c(9.0,9.5,10,10.5,11)
nugs <- c() #c(0,1,2) #c(0,0.2,0.4,0.6,0.8,1)
df.WLS<-data.frame(9999,9999,9999,9999)
names(df.WLS)<-c("rang","sill","nug","value")
for (rang in rangs) { for (sill in sills) { for (nug in nugs) {
psill<-sill-nug
var_monitors_pm25.fit.WLS<-variofit(var_monitors_pm25.dot,ini.cov.pars=c(psill,rang),cov.model=model,nugget=nug)
temp <- data.frame(rang,sill,nug,var_monitors_pm25.fit.WLS$value)
names(temp)<-c("rang","sill","nug","value")
df.WLS <- rbind(df.WLS, temp)
}}}
model<-"exponential" #"exponential" #"spherical" #"gaussian"
rang.MLE <- 0.8e+05 #c(1.0e+05,1.1e+05,1.2e+05,1.3e+05,1.4e+05,1.5e+05)
sill.MLE <- 10 #c(9.0,9.5,10,10.5,11)
nug.MLE <- 0 #c(0,0.2,0.4,0.6,0.8,1)
psill.MLE<-sill.MLE-nug.MLE
var_monitors_pm25.fit.MLE<-likfit(geo_monitors_pm25,ini.cov.pars=c(psill.MLE,rang.MLE),nugget=nug.MLE)
rang.WLS <- 0.8e+05 #c(1.0e+05,1.1e+05,1.2e+05,1.3e+05,1.4e+05,1.5e+05)
sill.WLS <- 10 #c(9.0,9.5,10,10.5,11)
nug.WLS <- 0 #c(0,0.2,0.4,0.6,0.8,1)
psill.WLS<-sill.WLS-nug.WLS
var_monitors_pm25.fit.WLS<-variofit(var_monitors_pm25.dot,ini.cov.pars=c(psill.WLS,rang.WLS),cov.model=model,nugget=nug.WLS)
lines(var_monitors_pm25.fit.MLE,col="blue",lty=2)
lines(var_monitors_pm25.fit.WLS,col="red",lty=4)
legend(4.5e5,3,legend=c("MLE","WLS"),lty=2:4, col=c("blue","red"))
```
We tested a number of starting parameters to fit the variogram model and ended up with the value:
* model: "exponential"
* start values: rang: 0.8e+05 - sill: 10.0 - nug: 0.0
* values adjusted by MLE: rang: 0.8000e+05 - sill: 8.5138 - nug: 0.3328
* values adjusted by WLS: rang: 0.7861e+05 - sill: 9.3534 - nug: 0.0000
The MLE adjustement is more heavily affected by the values at larger distance (>500km) than the WLS adjustment.
## Universal Kriging (UK)
### Universal Kriging - Linear Models
#### Covariates selection:
Models generation:
```{r, results='hide', fig.align='center', message=FALSE}
linear_model_lc1000 <-lm(pm25~lc_1000,data=frm_monitors)
linear_model_lc100 <-lm(pm25~lc_100,data=frm_monitors)
linear_model_lvlcounty <-lm(pm25~c_popden+c_poppov+c_popblack+c_pophisp,data=frm_monitors)
linear_model_lvltract <-lm(pm25~t_popden+t_poppov+t_popblack+t_pophisp,data=frm_monitors)
linear_model_p_wfire <-lm(pm25~p_wfire,data=frm_monitors)
linear_model_p_coast <-lm(pm25~p_coast,data=frm_monitors)
```
Landcover resolution: 1,000m2 vs 100m2
::: {#model_lc_coefs}
```{r model_lc_coefs, message=FALSE, warning=FALSE}
{library(jtools); library(huxtable);}
model_names <- c("Model LC 1,000m2", "Model LC 100m2")
stats <- c(N = "nobs", R2 = "r.squared", AIC = "AIC", BIC = "BIC")
export_summs(linear_model_lc1000,linear_model_lc100, error_format = "[{conf.low}, {conf.high}]", model.names = model_names, statistics = stats)
```
:::
```{js echo=FALSE}
$("#model_lc_coefs").first().children().next().before('<center style="font-size:1em;font-weight:bold;">Landcover 1,000m2 vs 100m2</center><br>')
$("#model_lc_coefs").append("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 9</p>");
```
Administrative level for population data (density, poverty, black, hispanic): County level vs Census Tract level
::: {#model_lvl_coefs}
```{r model_lvl_coefs, message=FALSE, warning=FALSE}
{library(jtools); library(huxtable);}
model_names <- c("Model lvl County", "Model lvl CTract")
export_summs(linear_model_lvlcounty,linear_model_lvltract, error_format = "[{conf.low}, {conf.high}]", model.names = model_names, statistics = stats)
```
:::
```{js echo=FALSE}
$("#model_lvl_coefs").first().children().next().before('<center style="font-size:1em;font-weight:bold;">Level County vs Census Tract</center><br>')
$("#model_lvl_coefs").append("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 10</p>");
```
Wildfire and Coast Distance covariates
::: {#model_p_coefs}
```{r model_p_coefs, message=FALSE, warning=FALSE}
{library(jtools); library(huxtable);}
model_names <- c("Wildfire", "Coast Distance")
export_summs(linear_model_p_wfire,linear_model_p_coast, error_format = "[{conf.low}, {conf.high}]", model.names = model_names, statistics = stats)
```
:::
```{js echo=FALSE}
$("#model_p_coefs").first().children().next().before('<center style="font-size:1em;font-weight:bold;">Wildfire and Coast Distance covariates</center><br>')
$("#model_p_coefs").append("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 11</p>");
```
#### Main models selection:
Models generation:
```{r, results='hide', fig.align='center', message=FALSE}
linear_model_1 <-lm(pm25~p_elev+p_coast+p_wfire+lc_1000+c_popden+c_poppov+c_popblack+c_pophisp,data=frm_monitors)
linear_model_2 <-lm(pm25~p_elev+p_coast+lc_1000+c_popden+c_poppov,data=frm_monitors)
linear_model_3 <-lm(pm25~p_elev+p_coast+lc_1000+c_popblack+c_pophisp,data=frm_monitors)
```
Visualization of coefficients and confidence intervals:
::: {#model_12_coefs}
```{r model_12_coefs, message=FALSE, warning=FALSE}
{library(jtools); library(huxtable);}
model_names <- c("Model 1 (All)", "Model 2 (Pop Poverty)", "Model 3 (Pop Characteristics)")
export_summs(linear_model_1,linear_model_2,linear_model_3, error_format = "[{conf.low}, {conf.high}]", model.names = model_names, statistics = stats)
```
:::
```{js echo=FALSE}
$("#model_12_coefs").first().children().next().before('<center style="font-size:1em;font-weight:bold;">Preselected models</center><br>')
$("#model_12_coefs").append("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 12</p>");
```
::: {#model123_coefs_plot}
```{r model123_coefs_plot, fig.show="hold", out.width="50%", message=FALSE}
model_names <- c("Model 1", "Model 2", "Model 3")
plot_coefs(linear_model_1,linear_model_2,linear_model_3, model.names = model_names, inner_ci_level = .9)
#, coefs = c("Elevation"="elevation", "Landcover"="landcover", "Density"="density", "Poverty"="poverty", "Black Pop"="popblack", "Dist to Coast"="coast")
grid.text(label= 'Non-scaled' , x = unit(0.5,"npc"), y= unit(1, "npc"), just=c("center", "top"), gp=gpar(cex= 1.2, col='black'))
plot_summs(linear_model_1,linear_model_2,linear_model_3,model.names = model_names, scale = TRUE, inner_ci_level = .9)
grid.text(label= 'Scaled' , x = unit(0.5,"npc"), y= unit(1, "npc"), just=c("center", "top"), gp=gpar(cex= 1.2, col='black'))
```
:::
```{js echo=FALSE}
$("#model123_coefs_plot").first().children().next().before('<center style="font-size:1em;font-weight:bold;">Models Comparison: Coefficients and Confidence Intervals</center><br>');
$("#model123_coefs_plot").append("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 13</p>");
```
Additional elements of model evaluation ([more information](https://data.library.virginia.edu/diagnostic-plots/)):
::: {#model2_analysis}
```{r, fig.show="hold", out.width="50%", message=FALSE}
#plot(linear_model_2)
```
:::
```{js eval=FALSE, include=FALSE}
$("#model2_analysis").first().children().next().before('<center style="font-size:1em;font-weight:bold;">Model 2: Additional Analysis</center><br>');
$("#model2_analysis").append("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 14</p>");
```
::: {#model3_analysis}
```{r fig.show="hold", message=FALSE, out.width="50%"}
#plot(linear_model_3)
```
:::
```{js eval=FALSE, include=FALSE}
$("#model3_analysis").first().children().next().before('<center style="font-size:1em;font-weight:bold;">Model 3: Additional Analysis</center><br>');
$("#model3_analysis").append("<p style='text-align:right;color:gray;font-size:0.85em;'>Figure 15</p>");
```
### Universal Kriging - Residuals
```{r message=FALSE}
#Store and convert residuals to geodata:
resid_2<-linear_model_2$residuals
geo_monitors_resid_2<-as.geodata(cbind(geo_monitors_pm25$coords,resid_2))
resid_3<-linear_model_3$residuals
geo_monitors_resid_3<-as.geodata(cbind(geo_monitors_pm25$coords,resid_3))
```
```{r message=FALSE, warning=FALSE, results='hide'}
# Estimate semivariograms from data
var_monitors_resid_2.dot <- variog(geo_monitors_resid_2)
max_2 <- var_monitors_resid_2.dot$max.dist
var_monitors_resid_2.dot<-variog(geo_monitors_resid_2,max.dist=max_2/2) #restricting to half the actual maximum distance
var_monitors_resid_3.dot <- variog(geo_monitors_resid_3)
max_3 <- var_monitors_resid_3.dot$max.dist
var_monitors_resid_3.dot<-variog(geo_monitors_resid_3,max.dist=max_3/2) #restricting to half the actual maximum distance
```
```{r fig.align='center'}
# Plot semivariogram of residuals
plot(var_monitors_resid_2.dot,xlab="Distance (meters)",ylab="Semivariogram",pty="m", pch=4, ylim=c(0,11), col = 'blue')
points(var_monitors_resid_3.dot$u,var_monitors_resid_3.dot$v, pch=1, ylim=c(0,11), col = 'red')
# Original semivariogram for reference
points(var_monitors_pm25.dot$u,var_monitors_pm25.dot$v,xlab="Distance (meters)",ylab="Semivariogram",pty="m", pch=16, ylim=c(0,11), col = 'black')
title("Residual semivariograms for PM2.5 Models 2 & 3\n(restricted < 1/2 max distance)")
footnote('Figure 16')
legend(3.85e5,3,legend=c("PM2.5 data","Model2 residuals","Model3 residuals"), pch=c(16,4,1), col=c("black","blue","red"))
```
```{r eval=FALSE, fig.align='center', message=FALSE, include=FALSE, results='hide'}
#Preliminary visualisation of residuals:
colors <- c(rgb(253,174,107,maxColorValue=255),rgb(253,141,60,maxColorValue=255),rgb(230,85,13,maxColorValue=255),rgb(166,54,3,maxColorValue=255))
par(oma=c(0,0,2,0))
plot(geo_monitors_resid_2, borders=area_california, lowess = TRUE,qt.col = colors)
mtext("PM2.5 Monitors Residuals - Model 2", outer=TRUE, cex=1.2, line=1)
footnote('Figure 17')
```
```{r eval=FALSE, fig.align='center', message=FALSE, include=FALSE, results='hide'}
#Preliminary visualisation of residuals:
colors <- c(rgb(253,174,107,maxColorValue=255),rgb(253,141,60,maxColorValue=255),rgb(230,85,13,maxColorValue=255),rgb(166,54,3,maxColorValue=255))
par(oma=c(0,0,2,0))
plot(geo_monitors_resid_3, borders=area_california, lowess = TRUE,qt.col = colors)
mtext("PM2.5 Monitors Residuals - Model 3", outer=TRUE, cex=1.2, line=1)
footnote('Figure 18')
```
### Universal Kriging - Semivariogram adjustments (WLS & MLE)
WLS - Estimate the semivariogram form the PM2.5 monitors results and then adjust a model:
```{r, results='hide', fig.align='center', message=FALSE}
plot(var_monitors_resid_2.dot,xlab="Distance (meters)",ylab="Semivariogram",pty="m", pch=4, ylim=c(0,11), col = 'blue')
title("Residual semivariograms for PM2.5 Models 2 & 3 - WLS\n(restricted < 1/2 max distance)")
footnote('Figure 17')
# Adjust semivariogram models
rang <-6e+04; sill<- 5; nug <-4; psill<-sill-nug
model<-"exponential" #"exponential" #"spherical" #"gaussian"
var_monitors_resid_2.fit.WLS<-variofit(var_monitors_resid_2.dot,ini.cov.pars=c(psill,rang),cov.model=model,nugget=nug,weights="cressie")
lines(var_monitors_resid_2.fit.WLS, col = 'blue', lty = 2)
rang <-6e+04; sill<- 5; nug <-4; psill<-sill-nug
model<-"exponential" #"exponential" #"spherical" #"gaussian"
var_monitors_resid_3.fit.WLS<-variofit(var_monitors_resid_3.dot,ini.cov.pars=c(psill,rang),cov.model=model,nugget=nug)
points(var_monitors_resid_3.dot$u,var_monitors_resid_3.dot$v, pch=1, ylim=c(0,11), col = 'red')
lines(var_monitors_resid_3.fit.WLS, col = 'red', lty = 4)
# Original semivariogram for reference
points(var_monitors_pm25.dot$u,var_monitors_pm25.dot$v,xlab="Distance (meters)",ylab="Semivariogram",pty="m", pch=16, ylim=c(0,11), col = 'black')
lines(var_monitors_pm25.fit.WLS, col = 'black')
legend(3.85e5,3,legend=c("PM2.5 data","Model2 residuals","Model3 residuals"),lty="1":"2":"4", col=c("black","blue","red"))
```
MLE adjustments:
```{r fig.align='center', message=FALSE, warning=FALSE, results='hide'}
rang <-6e+04; sill<- 5; nug <-4; psill<-sill-nug
model<-"exponential" #"exponential" #"spherical" #"gaussian"
var_monitors_2.fit.MLE<-likfit(geo_monitors_pm25,ini.cov.pars=c(psill,rang),nugget=nug,trend=trend.spatial(~p_elev+p_coast+lc_1000+c_popden+c_poppov,geo_monitors_pm25))
var_monitors_3.fit.MLE<-likfit(geo_monitors_pm25,ini.cov.pars=c(psill,rang),nugget=nug,trend=trend.spatial(~p_elev+p_coast+lc_1000+c_popblack+c_pophisp,geo_monitors_pm25))
plot(var_monitors_pm25.dot$u,var_monitors_pm25.dot$v,xlab="Distance (meters)",ylab="Semivariogram",pty="m", pch=16, ylim=c(0,11), col = 'black')
footnote('Figure 18')
points(var_monitors_resid_2.dot$u,var_monitors_resid_2.dot$v, pch=4, ylim=c(0,11), col = 'blue')
lines(var_monitors_2.fit.MLE, col = 'blue', lty=2)
points(var_monitors_resid_3.dot$u,var_monitors_resid_3.dot$v, pch=1, ylim=c(0,11), col = 'red')
lines(var_monitors_3.fit.MLE, col = 'red', lty=4)
lines(var_monitors_pm25.fit.MLE, col = 'black')
title("Residual semivariograms for PM2.5 Models 2 & 3 - MLE\n(restricted < 1/2 max distance)")
legend(3.85e5,3,legend=c("PM2.5 data","Model2 residuals","Model3 residuals"),lty="1":"2":"4", col=c("black","blue","red"))
```
## Models performance comparison
::: {#model_perf}
```{r include=FALSE}
# Cross validations
xvalid.ok.wls<-xvalid(geo_monitors_pm25,model=var_monitors_pm25.fit.WLS)
xvalid.ok.mle<-xvalid(geo_monitors_pm25,model=var_monitors_pm25.fit.MLE)
xvalid.uk.m2.wls<-xvalid(geo_monitors_pm25,model=var_monitors_resid_2.fit.WLS)
xvalid.uk.m3.wls<-xvalid(geo_monitors_pm25,model=var_monitors_resid_3.fit.WLS)
xvalid.uk.m2.mle<-xvalid(geo_monitors_pm25,model=var_monitors_2.fit.MLE)
xvalid.uk.m3.mle<-xvalid(geo_monitors_pm25,model=var_monitors_3.fit.MLE)
# Calculate the RMSE for each approach
CV.ok.wls<-sqrt(mean(xvalid.ok.wls$error^2))
CV.ok.mle<-sqrt(mean(xvalid.ok.mle$error^2))
CV.uk.m2.wls<-sqrt(mean(xvalid.uk.m2.wls$error^2))
CV.uk.m3.wls<-sqrt(mean(xvalid.uk.m3.wls$error^2))
CV.uk.m2.mle<-sqrt(mean(xvalid.uk.m2.mle$error^2))
CV.uk.m3.mle<-sqrt(mean(xvalid.uk.m3.mle$error^2))
```
```{r}
# Output all the RMSE values and compare them
RMSE <- data.frame(c("OK.WLS", "OK.MLE", "UK.Model2.WLS", "UK.Model2.MLE", "UK.Model3.WLS", "UK.Model3.MLE"),
c(CV.ok.wls, CV.ok.mle, CV.uk.m2.wls, CV.uk.m2.mle, CV.uk.m3.wls, CV.uk.m3.mle))
names(RMSE) <- c("Model", "RMSE")
RMSE
gls2<-cbind(Estimate=round(var_monitors_2.fit.MLE$beta, digits=3), SE = round(sqrt(diag(var_monitors_2.fit.MLE$beta.var)), digits=3), CI=
paste("[",round(var_monitors_2.fit.MLE$beta-1.96*sqrt(diag(var_monitors_2.fit.MLE$beta.var)), digits=3),";",round(var_monitors_2.fit.MLE$beta+1.96*sqrt(diag(var_monitors_2.fit.MLE$beta.var)), digits=3),"]"))
row.names(gls2)<-c("Intercept","p_elev","p_coast","lc_1000_1","lc_1000_2","c_popden","c_poppov")
gls2
gls3<-cbind(Estimate=round(var_monitors_3.fit.MLE$beta, digits=3), SE = round(sqrt(diag(var_monitors_3.fit.MLE$beta.var)), digits=3), CI=
paste("[",round(var_monitors_3.fit.MLE$beta-1.96*sqrt(diag(var_monitors_3.fit.MLE$beta.var)), digits=3),";",round(var_monitors_3.fit.MLE$beta+1.96*sqrt(diag(var_monitors_3.fit.MLE$beta.var)), digits=3),"]"))
row.names(gls3)<-c("Intercept","p_elev","p_coast","lc_1000_1","lc_1000_2","c_popblack","c_pophisp")
gls3
```
:::
## PM(2.5) Predictions
### Preparation
Find out the maximum and minium extents of our data to create a grid of locations to predict at
```{r ok_grid, results='hide', warning=FALSE}
x_min <- min(area_california[,1])
x_max <- max(area_california[,1])
y_min <- min(area_california[,2])
y_max <- max(area_california[,2])
b_grid1<-expand.grid(easting=seq(x_min-1000,x_max+1000,len=100),northing=seq(y_min-10000,y_max+1000,len=100))
b_grid2<-pip(b_grid1,area_california)
frm_predictions_grid<- as.data.frame(b_grid2)
```
Plot to make sure that the layers all overlay nicely:
```{r ok_check1, results='hide', fig.align='center'}
plot(shp_california)
points(frm_predictions_grid, col="blue", pch='.')
points(shp_monitors, col = 'red', pch=1)
title("Layers check 1")
footnote('Figure 20')
```
```{r ok_check2, results='hide', fig.align='center'}
plot(shp_california)
points(frm_predictions_filtered, col="blue", pch='.')
points(shp_monitors, col = 'red', pch=1)
title("Layers check 2")
footnote('Figure 21')
```
### Ordniary Kriging perdictions
Predict values for WLS-adjusted model:
```{r ok_predict_WLS, results='hide', fig.align='center'}
predictions.OK.WLS<-krige.conv(geo_monitors_pm25,locations=frm_predictions_grid,krige=krige.control(obj.model=var_monitors_pm25.fit.WLS))
```
Predict values for MLE-adjusted models:
```{r ok_predict_MLE, results='hide', fig.align='center'}
predictions.OK.MLE<-krige.conv(geo_monitors_pm25,locations=frm_predictions_grid,krige=krige.control(obj.model=var_monitors_pm25.fit.MLE))
```
### Universal Kriging predictions
Grid for prediction:
```{r}
n_min <- min(frm_predictions_filtered$northing)
e_min <- min(frm_predictions_filtered$easting)
temp <- frm_predictions_filtered %>% filter((((northing - n_min + 5000)/10000)%%1==0 ))
frm_predictions_reduced <- temp %>% filter(((easting - e_min + 5000)/10000)%%1==0 |((easting - 4898.9343)/10000)%%1==0)
grid <- data.frame(frm_predictions_reduced$easting,frm_predictions_reduced$northing)
names(grid) <- c("easting","northing")
```
Predict values for WLS-adjusted models:
```{r, results='hide', fig.align='center', message=FALSE}
predictions.UK.M2.WLS<-krige.conv(geo_monitors_pm25,locations=grid, krige=krige.control(obj.model=var_monitors_resid_2.fit.WLS, trend.d=trend.spatial(~p_elev+p_coast+lc_1000+c_popden+c_poppov,geo_monitors_pm25), trend.l=trend.spatial(~p_elev+p_coast+lc_1000+c_popden+c_poppov,geo_monitors_pm25)))
predictions.UK.M3.WLS<-krige.conv(geo_monitors_pm25,locations=grid, krige=krige.control(obj.model=var_monitors_resid_3.fit.WLS, trend.d=trend.spatial(~p_elev+p_coast+lc_1000+c_popblack+c_pophisp,geo_monitors_pm25), trend.l=trend.spatial(~p_elev+p_coast+lc_1000+c_popblack+c_pophisp,geo_monitors_pm25)))
```
Predict values for MLE-adjusted models:
```{r}
krige.M2 <- krige.control(obj.model=var_monitors_2.fit.MLE,
trend.d = trend.spatial(~p_elev+p_coast+lc_1000+c_popden+c_poppov, geo_monitors_pm25),
trend.l = trend.spatial(~p_elev+p_coast+lc_1000+c_popden+c_poppov, frm_predictions_reduced)
)
krige.M3 <- krige.control(obj.model=var_monitors_3.fit.MLE,
trend.d = trend.spatial(~p_elev+p_coast+lc_1000+c_popblack+c_pophisp, geo_monitors_pm25),
trend.l = trend.spatial(~p_elev+p_coast+lc_1000+c_popblack+c_pophisp, frm_predictions_reduced)
)
predictions.UK.M2.MLE<-krige.conv(geo_monitors_pm25,locations=grid, krige=krige.M2)
predictions.UK.M3.MLE<-krige.conv(geo_monitors_pm25,locations=grid, krige=krige.M3)
```
### WLS-adjusted models visualizations
Visualize the Universal Kriging and compare with Ordinary Kriging - WLS adjustments
```{r, results='hide', message=FALSE, fig.show="hold", out.width="50%"}
# OK - WLS - Predictions
ggplot(frm_predictions_grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=predictions.OK.WLS$predict)) + # fill the grid with the predictions.OK$predict values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="red", limits=c(3,16)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Ordinary Kriged Predictions - WLS') + labs(fill = "PM2.5\n(μg/m3)") + # add a title
theme(plot.title = element_text(hjust = 0.5))
footnote('Figure 20')
# OK - WLS - Erros
ggplot(frm_predictions_grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=sqrt(predictions.OK.WLS$krige.var))) + # fill the grid with the krige.ok$krige.var values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="orange", limits=c(0,3.5)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Ordinary Kriged Standard Errors - WLS') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "SE")
footnote('Figure 21')
# UK - Model2 - WLS - Predictions
ggplot(grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=predictions.UK.M2.WLS$predict)) + # fill the grid with the predictions.UK.M2$predict values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="red", limits=c(3,16)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Universally Kriged Predictions - Model 2 - WLS') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "PM2.5\n(μg/m3)") # centres the title
footnote('Figure 22')
# UK - Model2 - WLS - Erros
ggplot(grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=sqrt(predictions.UK.M2.WLS$krige.var))) + # fill the grid with the krige.ok$krige.var values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="orange", limits=c(0,3.5)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Universally Kriged Standard Errors - Model 2 - WLS') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "SE") # centres the title
footnote('Figure 23')
# UK - Model3 - WLS - Predictions
ggplot(grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=predictions.UK.M3.WLS$predict)) + # fill the grid with the predictions.UK.M3$predict values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="red", limits=c(3,16)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Universally Kriged Predictions - Model 3 - WLS') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "PM2.5\n(μg/m3)") # centres the title
footnote('Figure 24')
# UK - Model3 - WLS - Erros
ggplot(grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=sqrt(predictions.UK.M3.WLS$krige.var))) + # fill the grid with the krige.ok$krige.var values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="orange", limits=c(0,3.5)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Universally Kriged Standard Errors - Model 3 - WLS') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "SE") # centres the title
footnote('Figure 25')
```
### MLE-adjusted models visualizations
Visualize the Universal Kriging and compare with Ordinary Kriging - MLE adjustments
```{r, results='hide', message=FALSE, fig.show="hold", out.width="50%"}
# OK - MLE - Predictions
ggplot(frm_predictions_grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=predictions.OK.MLE$predict)) + # fill the grid with the predictions.OK$predict values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="red", limits=c(1,18)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Ordinary Kriged Predictions - MLE') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "PM2.5\n(μg/m3)")
footnote('Figure 26')
# OK - MLE - Erros
ggplot(frm_predictions_grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=sqrt(predictions.OK.MLE$krige.var))) + # fill the grid with the krige.ok$krige.var values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="orange", limits=c(0,3.5)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Ordinary Kriged Standard Errors - MLE') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "SE")
footnote('Figure 27')
# UK - Model2 - MLE - Predictions
ggplot(grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=predictions.UK.M2.MLE$predict)) + # fill the grid with the predictions.UK.M2$predict values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="red", limits=c(1,18)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Universally Kriged Predictions - Model 2 - MLE') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "PM2.5\n(μg/m3)") # centres the title
footnote('Figure 28')
# UK - Model2 - MLE - Erros
ggplot(grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=sqrt(predictions.UK.M2.MLE$krige.var))) + # fill the grid with the krige.ok$krige.var values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="orange", limits=c(0,3.5)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Universally Kriged Standard Errors - Model 2 - MLE') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "SE") # centres the title
footnote('Figure 29')
# UK - Model3 - MLE - Predictions
ggplot(grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=predictions.UK.M3.MLE$predict)) + # fill the grid with the predictions.UK.M3$predict values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="red", limits=c(1,18)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Universally Kriged Predictions - Model 3 - MLE') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "PM2.5\n(μg/m3)") # centres the title
footnote('Figure 30')
# UK - Model3 - MLE - Erros
ggplot(grid, aes(x=easting, y=northing)) + # signify that you are predicting for the entire grid
geom_tile(aes(fill=sqrt(predictions.UK.M3.MLE$krige.var))) + # fill the grid with the krige.ok$krige.var values
coord_equal() + # indicate that the X and Y coordinates you are plotting are on the same scale
scale_fill_gradient(low = "white", high="orange", limits=c(0,3.5)) + # set the color scale to range from red to yellow
geom_point(data = shp_monitors@data, aes(x = POINT_X, y = POINT_Y), pch=1) + # add the PM2.5 Monitor locations to the plot
geom_polygon(data = fortify(shp_california), aes(x = shp_california@polygons[[1]]@Polygons[[1]]@coords[,1], y = shp_california@polygons[[1]]@Polygons[[1]]@coords[,2], group = group), fill = NA, colour = 'black') + # add the states
ggtitle('Universally Kriged Standard Errors - Model 3 - MLE') + # add a title
theme(plot.title = element_text(hjust = 0.5)) + labs(fill = "SE") # centres the title
footnote('Figure 31')
output<- cbind(grid, predictions.UK.M2.MLE$predict, sqrt(predictions.UK.M2.MLE$krige.var))
write.csv(output, 'output.csv')
```
### Export results
```{r}
output<- cbind(frm_predictions_grid, predictions.OK.MLE$predict, sqrt(predictions.OK.MLE$krige.var))
write.csv(output, 'output_OK.csv')
output<- cbind(grid, predictions.UK.M2.MLE$predict, sqrt(predictions.UK.M2.MLE$krige.var))
write.csv(output, 'output_UK_M2.csv')
output<- cbind(grid, predictions.UK.M3.MLE$predict, sqrt(predictions.UK.M3.MLE$krige.var))
write.csv(output, 'output_UK_M3.csv')
```