forked from hanbt/learn_dl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rbm.py
41 lines (29 loc) · 1.12 KB
/
rbm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
from __future__ import print_function
import numpy as np
def sigmoid(x):
return 1.0 / (1.0 + np.exp(-x))
class RBMLayer(object):
def __init__(self, visible_size, hidden_size):
self.visible_size = visible_size
self.hidden_size = hidden_size
self.W = self.initialize_weights()
self.b = self.initialize_visible_bias()
self.c = self.initialize_hidden_bias()
def initialize_weights(self):
return np.random.normal(scale=0.01,
size=(self.visible_size, self.hidden_size))
def initialize_visible_bias(self):
return np.zeros(self.visible_size)
def initialize_hidden_bias(self):
return np.zeros(self.hidden_size)
# 输入观测变量v, 输出隐变量的值h
def forward(self, v):
return sigmoid(np.dot(v, self.W) + self.c)
# 输入隐变量的值h, 输出观测变量值y
def backward(self, h):
return sigmoid(np.dot(h, self.W.T) + self.b)
# k-step contrastive divergence 训练算法
def contrastive_divergence(self, k, data_set):
pass