diff --git a/.github/workflows/doc.yml b/.github/workflows/doc.yml index 347b0bb..f653506 100644 --- a/.github/workflows/doc.yml +++ b/.github/workflows/doc.yml @@ -44,6 +44,10 @@ jobs: - name: Build HTML run: make html working-directory: sphinx + env: + # -v: Verbose + # -W: Turn warnings into errors + SPHINXOPTS: "-v -W" # Still upload built documentation as an artifact if not deploying # This is to provide the opportunity to download the built documentation diff --git a/sphinx/about.rst b/sphinx/about.rst index 277f8b4..f075cb6 100644 --- a/sphinx/about.rst +++ b/sphinx/about.rst @@ -1,5 +1,5 @@ About the Battery Interface Ontology -========================== +==================================== The Battery Interface Ontology (BattINFO) is a semantic resource for the terms and relations needed to describe things, processes, and data in the battery domain. It can be used to **generate linked data** for the Semantic Web, **comply with the FAIR data guidelines**, support **interoperaility of data** among different systems, and more! diff --git a/sphinx/conf.py b/sphinx/conf.py index 1a98f28..7d5cdab 100644 --- a/sphinx/conf.py +++ b/sphinx/conf.py @@ -120,6 +120,8 @@ html_theme_options = { # "show_nav_level": 4 + "header_links_before_dropdown": 5, # show 5 links before "More" dropdown + "primary_sidebar_end": [], } # Add any paths that contain custom themes here, relative to this directory. @@ -161,7 +163,14 @@ #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. -#html_sidebars = {} +html_sidebars = { + "**": ["sidebar-nav-bs"], + "about": [], + "battinfo": [], + "contribute": [], + "faq": [], + "getstarted": [], +} # Additional templates that should be rendered to pages, maps page names to # template names. @@ -299,4 +308,10 @@ # MatAttributeDocumenter.add_directive_header = _add_directive_header +suppress_warnings = [ + # Suppress "duplicate label" warnings in `battinfo.rst`. + # These are due to similarly named (prefLabel) concepts in the ontology, + # as the prefLabel is used as the section title. + "autosectionlabel.battinfo", + ] diff --git a/sphinx/contribute.rst b/sphinx/contribute.rst index bce0327..b0b7751 100644 --- a/sphinx/contribute.rst +++ b/sphinx/contribute.rst @@ -24,7 +24,7 @@ We recommend using the `forking workflow `__ to contribute additions/deletions. Fork this repository, clone the fork on your local PC, create your branch based on the existing ``dev`` -branch (e.g. ``dev_john_doe``) and work on the editions in you local +branch (e.g. ``dev_john_doe``) and work on the editions in you local copy. You can edit ontologes in two main ways. One is programmatically, using @@ -32,7 +32,7 @@ for instance `EMMOntoPy `__. The second and more common is using the interface provided by the Protégé software. In case of the latter, `install Protégé `__ and use it to open the -ontology file you wish to edit. Before adding elements, ensure Prot´égé +ontology file you wish to edit. Before adding elements, ensure Protégé is configured to create IRIs in the right format: - Open Protégé @@ -49,5 +49,5 @@ is configured to create IRIs in the right format: request `__. - We will merge the request after assessing it. -.. |Protege config.| image:: doc/img/protege_config_contribute.png +.. |Protege config.| image:: img/protege_config_contribute.png diff --git a/sphinx/example_linked_data_battery_cell_metadata.ipynb b/sphinx/example_linked_data_battery_cell_metadata.ipynb index 0d4389e..d6cbb22 100644 --- a/sphinx/example_linked_data_battery_cell_metadata.ipynb +++ b/sphinx/example_linked_data_battery_cell_metadata.ipynb @@ -1,21 +1,10 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, "cells": [ { "cell_type": "markdown", + "metadata": { + "id": "1wseTQGaB4x9" + }, "source": [ "# Example: Simple Battery Cell Metadata\n", "\n", @@ -30,23 +19,25 @@ "- How to use the ontology to fetch more information from other sources **[Advanced]** \n", "\n", "A live version of this notebook is available on Google Colab [here](https://colab.research.google.com/drive/10F5YRAnO5ubY4Ut3uEjv5rLqvr_GRFC5?usp=sharing)\n" - ], - "metadata": { - "id": "1wseTQGaB4x9" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "jcTVz9-DEh3m" + }, "source": [ "## Describe the powder using ontology terms in JSON-LD format\n", "The JSON-LD data that we will use is:" - ], - "metadata": { - "id": "jcTVz9-DEh3m" - } + ] }, { "cell_type": "code", + "execution_count": 42, + "metadata": { + "id": "gohQKEBrF2QP" + }, + "outputs": [], "source": [ "jsonld = {\n", " \"@context\": \"https://raw.githubusercontent.com/emmo-repo/domain-battery/master/context.json\",\n", @@ -65,77 +56,63 @@ " \"hasMeasurementUnit\": \"emmo:MilliAmpereHour\"\n", " }\n", " }" - ], - "metadata": { - "id": "gohQKEBrF2QP" - }, - "execution_count": 42, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "in30p-x4H91Y" + }, "source": [ "## Parse this description into a graph\n", "Now let's see how a machine would process this data by reading it into a Graph!\n", "\n", - "First, we install and import the python dependencies that we need for this example." - ], + "First, we install and import the python dependencies that we need for this example.\n", + "\n", + "Note, the `pip install` statement is to be run in a shell/terminal." + ] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": { - "id": "in30p-x4H91Y" - } + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "# Install dependencies\n", + "pip install jsonschema rdflib requests matplotlib > /dev/null" + ] }, { "cell_type": "code", + "execution_count": 43, + "metadata": { + "id": "wk4sFl_eA2ML" + }, + "outputs": [], "source": [ - "# Install and import dependencies\n", - "!pip install jsonschema rdflib requests matplotlib > /dev/null\n", - "\n", + "# Import dependencies\n", "import json\n", "import rdflib\n", "import requests\n", - "import sys\n", - "from IPython.display import Image, display\n", - "import matplotlib.pyplot as plt" - ], - "metadata": { - "id": "wk4sFl_eA2ML" - }, - "execution_count": 43, - "outputs": [] + "from IPython.display import Image, display" + ] }, { "cell_type": "markdown", - "source": [ - "We create the graph using a very handy python package called [rdflib](https://rdflib.readthedocs.io/en/stable/), which provides us a way to parse our json-ld data, run some queries using the language [SPARQL](https://en.wikipedia.org/wiki/SPARQL), and serialize the graph in any RDF compatible format (e.g. JSON-LD, Turtle, etc.)." - ], "metadata": { "id": "lotp-0QABV-2" - } + }, + "source": [ + "We create the graph using a very handy python package called [rdflib](https://rdflib.readthedocs.io/en/stable/), which provides us a way to parse our json-ld data, run some queries using the language [SPARQL](https://en.wikipedia.org/wiki/SPARQL), and serialize the graph in any RDF compatible format (e.g. JSON-LD, Turtle, etc.)." + ] }, { "cell_type": "code", - "source": [ - "# Create a new graph\n", - "g = rdflib.Graph()\n", - "\n", - "# Parse our json-ld data into the graph\n", - "g.parse(data=json.dumps(jsonld), format=\"json-ld\")\n", - "\n", - "# Create a SPARQL query to return all the triples in the graph\n", - "query_all = \"\"\"\n", - "SELECT ?subject ?predicate ?object\n", - "WHERE {\n", - " ?subject ?predicate ?object\n", - "}\n", - "\"\"\"\n", - "\n", - "# Execute the SPARQL query\n", - "all_the_things = g.query(query_all)\n", - "\n", - "# Print the results\n", - "for row in all_the_things:\n", - " print(row)\n" - ], + "execution_count": 44, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -143,11 +120,10 @@ "id": "zWibLw6NIrrq", "outputId": "6be74891-73f3-43ff-a4d1-29b6697f8b11" }, - "execution_count": 44, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "(rdflib.term.BNode('N4c3bba051ecb4cb7a8336502c67cf29b'), rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), rdflib.term.URIRef('file:///content/NominalCapacity'))\n", "(rdflib.term.BNode('N4c52ea3012a7451c8194bcd5f42b1679'), rdflib.term.URIRef('https://schema.org/manufacturer'), rdflib.term.URIRef('https://www.wikidata.org/wiki/Q3041255'))\n", @@ -162,10 +138,35 @@ "(rdflib.term.URIRef('https://www.wikidata.org/wiki/Q3041255'), rdflib.term.URIRef('https://schema.org/name'), rdflib.term.Literal('SINTEF'))\n" ] } + ], + "source": [ + "# Create a new graph\n", + "g = rdflib.Graph()\n", + "\n", + "# Parse our json-ld data into the graph\n", + "g.parse(data=json.dumps(jsonld), format=\"json-ld\")\n", + "\n", + "# Create a SPARQL query to return all the triples in the graph\n", + "query_all = \"\"\"\n", + "SELECT ?subject ?predicate ?object\n", + "WHERE {\n", + " ?subject ?predicate ?object\n", + "}\n", + "\"\"\"\n", + "\n", + "# Execute the SPARQL query\n", + "all_the_things = g.query(query_all)\n", + "\n", + "# Print the results\n", + "for row in all_the_things:\n", + " print(row)\n" ] }, { "cell_type": "markdown", + "metadata": { + "id": "C-w1TbxkI4W5" + }, "source": [ "You can see that our human-readable JSON-LD file has been transformed into some nasty looking (but machine-readable!) triples. Let's look at a couple in more detail to understand what's going on.

\n", "\n", @@ -201,13 +202,27 @@ "## Query the graph using SPARQL [Moderate]\n", "\n", "Now, let's write a SPARQL query to get back some specific thing...like what is the name of the manufacturer?" - ], - "metadata": { - "id": "C-w1TbxkI4W5" - } + ] }, { "cell_type": "code", + "execution_count": 45, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6bXHGG4cI-kr", + "outputId": "5c79fa6e-50a4-4fc2-c513-149bd8cd9170" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(rdflib.term.Literal('SINTEF'),)\n" + ] + } + ], "source": [ "query = \"\"\"\n", "PREFIX schema: \n", @@ -225,39 +240,39 @@ "# Print the results\n", "for row in results:\n", " print(row)\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "6bXHGG4cI-kr", - "outputId": "5c79fa6e-50a4-4fc2-c513-149bd8cd9170" - }, - "execution_count": 45, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "(rdflib.term.Literal('SINTEF'),)\n" - ] - } ] }, { "cell_type": "markdown", + "metadata": { + "id": "b7LJC8BubFce" + }, "source": [ "## Fetch additional information from other sources [Advanced]\n", "Ontologies contain a lot of information about the meaning of things, but they don't always contain an exhaustive list of all the properties. Instead, they often point to other sources where that information exists rather than duplicating it. Let's see how you can use the ontology to fetch additional information from other sources.\n", "\n", "First, we parse the ontology into the knowledge graph and retrieve the IRIs for the terms that we are interested in. In this case, we want to retrieve more information about CR2032 from Wikidata, so we query the ontology to find CR2032's Wikidata ID." - ], - "metadata": { - "id": "b7LJC8BubFce" - } + ] }, { "cell_type": "code", + "execution_count": 46, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ntT1Rf_yM6sZ", + "outputId": "7eb1b90f-c97e-4d1e-b311-ca9355501c2e" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Wikidata ID of CR2032: Q5013811\n" + ] + } + ], "source": [ "# Parse the ontology into the knowledge graph\n", "ontology = \"https://raw.githubusercontent.com/emmo-repo/domain-battery/master/inferred_version/battery-inferred.ttl\"\n", @@ -285,36 +300,36 @@ " wikidata_id = row.wikidataId.split('/')[-1]\n", "\n", "print(f\"The Wikidata ID of CR2032: {wikidata_id}\")" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XGXFrNa5dKSr" + }, + "source": [ + "Now that we have the Wikidata ID for CR2032, we can query their SPARQL endpoint to retrieve some property. Let's ask it for the thickness." + ] + }, + { + "cell_type": "code", + "execution_count": 47, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "ntT1Rf_yM6sZ", - "outputId": "7eb1b90f-c97e-4d1e-b311-ca9355501c2e" + "id": "zTBOZAf-dWQQ", + "outputId": "9f9d1c00-d74f-4c76-ceb5-b58b21853c41" }, - "execution_count": 46, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "The Wikidata ID of CR2032: Q5013811\n" + "Wikidata says the thickness of a CR2032 cell is: 20 http://www.wikidata.org/entity/Q174789\n" ] } - ] - }, - { - "cell_type": "markdown", - "source": [ - "Now that we have the Wikidata ID for CR2032, we can query their SPARQL endpoint to retrieve some property. Let's ask it for the thickness." ], - "metadata": { - "id": "XGXFrNa5dKSr" - } - }, - { - "cell_type": "code", "source": [ "# Query the Wikidata knowledge graph for more information about zinc\n", "wikidata_endpoint = \"https://query.wikidata.org/sparql\"\n", @@ -340,57 +355,20 @@ "thickness = data['results']['bindings'][0]['value']['value']\n", "unit = data['results']['bindings'][0]['unit']['value']\n", "print(f\"Wikidata says the thickness of a CR2032 cell is: {thickness} {unit}\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "zTBOZAf-dWQQ", - "outputId": "9f9d1c00-d74f-4c76-ceb5-b58b21853c41" - }, - "execution_count": 47, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Wikidata says the thickness of a CR2032 cell is: 20 http://www.wikidata.org/entity/Q174789\n" - ] - } ] }, { "cell_type": "markdown", - "source": [ - "We can also retrieve more complex data. For example, let's ask Wikidata to show us an image of a CR2032." - ], "metadata": { "id": "-xdSIS6Idy5m" - } + }, + "source": [ + "We can also retrieve more complex data. For example, let's ask Wikidata to show us an image of a CR2032." + ] }, { "cell_type": "code", - "source": [ - "# SPARQL query to get the image of the CR2032 cell (Q758)\n", - "query = \"\"\"\n", - "SELECT ?image WHERE {\n", - " wd:%s wdt:P18 ?image .\n", - "}\n", - "\"\"\" % wikidata_id\n", - "\n", - "# Execute the request\n", - "response = requests.get(wikidata_endpoint, params={'query': query, 'format': 'json'})\n", - "data = response.json()\n", - "\n", - "# Extract and display the image URL\n", - "if data['results']['bindings']:\n", - " image_url = data['results']['bindings'][0]['image']['value']\n", - " print(f\"Image of a CR2032- cell: {image_url}\")\n", - " display(Image(url=image_url, width=300)) # Adjust width and height as needed\n", - "\n", - "else:\n", - " print(\"No image found.\")" - ], + "execution_count": 48, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -399,17 +377,15 @@ "id": "T7bkBY0sNqNY", "outputId": "c9c3bcf4-d278-4acd-a93b-5a7d553d66fd" }, - "execution_count": 48, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Image of a CR2032- cell: http://commons.wikimedia.org/wiki/Special:FilePath/CR2032%20battery%2C%20KTS-2728.jpg\n" ] }, { - "output_type": "display_data", "data": { "text/html": [ "" @@ -418,21 +394,60 @@ "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } + ], + "source": [ + "# SPARQL query to get the image of the CR2032 cell (Q758)\n", + "query = \"\"\"\n", + "SELECT ?image WHERE {\n", + " wd:%s wdt:P18 ?image .\n", + "}\n", + "\"\"\" % wikidata_id\n", + "\n", + "# Execute the request\n", + "response = requests.get(wikidata_endpoint, params={'query': query, 'format': 'json'})\n", + "data = response.json()\n", + "\n", + "# Extract and display the image URL\n", + "if data['results']['bindings']:\n", + " image_url = data['results']['bindings'][0]['image']['value']\n", + " print(f\"Image of a CR2032- cell: {image_url}\")\n", + " display(Image(url=image_url, width=300)) # Adjust width and height as needed\n", + "\n", + "else:\n", + " print(\"No image found.\")" ] }, { "cell_type": "markdown", - "source": [ - "Finally, let's retireve the id for CR2032 in the Google Knowledge Graph and see what it has to say!" - ], "metadata": { "id": "mRcFo-MBDVBW" - } + }, + "source": [ + "Finally, let's retireve the id for CR2032 in the Google Knowledge Graph and see what it has to say!" + ] }, { "cell_type": "code", + "execution_count": 49, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "nAAC5bo8FLD6", + "outputId": "d3543deb-ce22-4d90-f054-6b705c94fb49" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Google Knowledge Graph entry for a CR2032 cell: https://www.google.com/search?kgmid=/g/11bc5qf2g9\n" + ] + } + ], "source": [ "# SPARQL query to get the Google Knowledge Graph ID of the CR2032 cell\n", "query = \"\"\"\n", @@ -454,33 +469,21 @@ "\n", "else:\n", " print(\"None found.\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "nAAC5bo8FLD6", - "outputId": "d3543deb-ce22-4d90-f054-6b705c94fb49" - }, - "execution_count": 49, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "The Google Knowledge Graph entry for a CR2032 cell: https://www.google.com/search?kgmid=/g/11bc5qf2g9\n" - ] - } ] + } + ], + "metadata": { + "colab": { + "provenance": [] }, - { - "cell_type": "code", - "source": [], - "metadata": { - "id": "T1qUAeCDVNq3" - }, - "execution_count": 49, - "outputs": [] + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sphinx/example_linked_data_custom_battery_cell_metadata.ipynb b/sphinx/example_linked_data_custom_battery_cell_metadata.ipynb index 7388b3d..e6838fe 100644 --- a/sphinx/example_linked_data_custom_battery_cell_metadata.ipynb +++ b/sphinx/example_linked_data_custom_battery_cell_metadata.ipynb @@ -1,21 +1,10 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, "cells": [ { "cell_type": "markdown", + "metadata": { + "id": "1wseTQGaB4x9" + }, "source": [ "# Example: Custom Battery Cell Metadata\n", "\n", @@ -29,23 +18,25 @@ "- How to use the ontology to fetch more information from other sources **[Advanced]** \n", "\n", "A live version of this notebook is available on Google Colab [here](https://colab.research.google.com/drive/1k3dGZTz4bDeH4JPToqXsN0svCUkswPDN?usp=sharing)\n" - ], - "metadata": { - "id": "1wseTQGaB4x9" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "jcTVz9-DEh3m" + }, "source": [ "## Describe the powder using ontology terms in JSON-LD format\n", "The JSON-LD data that we will use is:" - ], - "metadata": { - "id": "jcTVz9-DEh3m" - } + ] }, { "cell_type": "code", + "execution_count": 48, + "metadata": { + "id": "gohQKEBrF2QP" + }, + "outputs": [], "source": [ "jsonld_LFPGr = {\n", " \"@context\": \"https://raw.githubusercontent.com/emmo-repo/domain-battery/master/context.json\",\n", @@ -112,78 +103,62 @@ " \"hasMeasurementUnit\": \"emmo:Volt\"\n", " }\n", " }" - ], - "metadata": { - "id": "gohQKEBrF2QP" - }, - "execution_count": 48, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "in30p-x4H91Y" + }, "source": [ "## Parse this description into a graph\n", "Now let's see how a machine would process this data by reading it into a Graph!\n", "\n", - "First, we install and import the python dependencies that we need for this example." - ], - "metadata": { - "id": "in30p-x4H91Y" - } + "First, we install and import the python dependencies that we need for this example.\n", + "\n", + "Note, the `pip install` statement is to be run in a shell/terminal." + ] }, { "cell_type": "code", + "execution_count": null, + "metadata": { + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], "source": [ - "# Install and import dependencies\n", - "!pip install jsonschema rdflib requests matplotlib > /dev/null\n", - "\n", - "import json\n", - "import rdflib\n", - "import requests\n", - "import sys\n", - "from IPython.display import Image, display\n", - "import matplotlib.pyplot as plt" - ], + "# Install dependencies\n", + "pip install jsonschema rdflib requests matplotlib > /dev/null" + ] + }, + { + "cell_type": "code", + "execution_count": 49, "metadata": { "id": "wk4sFl_eA2ML" }, - "execution_count": 49, - "outputs": [] + "outputs": [], + "source": [ + "# Import dependencies\n", + "import json\n", + "import rdflib\n", + "import requests" + ] }, { "cell_type": "markdown", - "source": [ - "We create the graph using a very handy python package called [rdflib](https://rdflib.readthedocs.io/en/stable/), which provides us a way to parse our json-ld data, run some queries using the language [SPARQL](https://en.wikipedia.org/wiki/SPARQL), and serialize the graph in any RDF compatible format (e.g. JSON-LD, Turtle, etc.)." - ], "metadata": { "id": "lotp-0QABV-2" - } + }, + "source": [ + "We create the graph using a very handy python package called [rdflib](https://rdflib.readthedocs.io/en/stable/), which provides us a way to parse our json-ld data, run some queries using the language [SPARQL](https://en.wikipedia.org/wiki/SPARQL), and serialize the graph in any RDF compatible format (e.g. JSON-LD, Turtle, etc.)." + ] }, { "cell_type": "code", - "source": [ - "# Create a new graph\n", - "g = rdflib.Graph()\n", - "\n", - "# Parse our json-ld data into the graph\n", - "g.parse(data=json.dumps(jsonld_LFPGr), format=\"json-ld\")\n", - "g.parse(data=json.dumps(jsonld_LNOGr), format=\"json-ld\")\n", - "\n", - "# Create a SPARQL query to return all the triples in the graph\n", - "query_all = \"\"\"\n", - "SELECT ?subject ?predicate ?object\n", - "WHERE {\n", - " ?subject ?predicate ?object\n", - "}\n", - "\"\"\"\n", - "\n", - "# Execute the SPARQL query\n", - "all_the_things = g.query(query_all)\n", - "\n", - "# Print the results\n", - "for row in all_the_things:\n", - " print(row)\n" - ], + "execution_count": 50, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -191,11 +166,10 @@ "id": "zWibLw6NIrrq", "outputId": "785ba3d8-9dbc-4b89-df62-931c96bb8216" }, - "execution_count": 50, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "(rdflib.term.BNode('N1fa58317b5c04a40bdc836b0e29a051d'), rdflib.term.URIRef('https://schema.org/name'), rdflib.term.Literal('My LFP-Graphite R2032 Coin Cell'))\n", "(rdflib.term.BNode('Na8888f67843f40fa8bc9efe32a39bd02'), rdflib.term.URIRef('http://emmo.info/electrochemistry#electrochemistry_860aa941_5ff9_4452_8a16_7856fad07bee'), rdflib.term.BNode('N1fe8535096ed436e92cc736bb203262f'))\n", @@ -240,23 +214,63 @@ "(rdflib.term.BNode('N1fa58317b5c04a40bdc836b0e29a051d'), rdflib.term.URIRef('http://emmo.info/electrochemistry#electrochemistry_5d299271_3f68_494f_ab96_3db9acdd3138'), rdflib.term.BNode('N318dda34a11b4390946ce22a6278c83c'))\n" ] } + ], + "source": [ + "# Create a new graph\n", + "g = rdflib.Graph()\n", + "\n", + "# Parse our json-ld data into the graph\n", + "g.parse(data=json.dumps(jsonld_LFPGr), format=\"json-ld\")\n", + "g.parse(data=json.dumps(jsonld_LNOGr), format=\"json-ld\")\n", + "\n", + "# Create a SPARQL query to return all the triples in the graph\n", + "query_all = \"\"\"\n", + "SELECT ?subject ?predicate ?object\n", + "WHERE {\n", + " ?subject ?predicate ?object\n", + "}\n", + "\"\"\"\n", + "\n", + "# Execute the SPARQL query\n", + "all_the_things = g.query(query_all)\n", + "\n", + "# Print the results\n", + "for row in all_the_things:\n", + " print(row)\n" ] }, { "cell_type": "markdown", + "metadata": { + "id": "C-w1TbxkI4W5" + }, "source": [ "You can see that our human-readable JSON-LD file has been transformed into some nasty looking (but machine-readable!) triples.\n", "\n", "## Query the Graph to select instances with certain properties [Advanced]\n", "\n", "Now, let's write a SPARQL query to return the names of cells that have a nominal voltage greater than 3.5 V?" - ], - "metadata": { - "id": "C-w1TbxkI4W5" - } + ] }, { "cell_type": "code", + "execution_count": 51, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6bXHGG4cI-kr", + "outputId": "d74c6a2b-9dc7-4c7f-b5b2-7db4643f310d" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(rdflib.term.Literal('My LNO-Graphite R2032 Coin Cell'),)\n" + ] + } + ], "source": [ "# Fetch the context\n", "context_url = 'https://raw.githubusercontent.com/emmo-repo/domain-battery/master/context.json'\n", @@ -295,38 +309,38 @@ "# Print the results\n", "for row in results:\n", " print(row)\n" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b7LJC8BubFce" + }, + "source": [ + "## Fetch additional information from other sources [Advanced]\n", + "\n", + "Ontologies contain a lot of information about the meaning of things, but they don't always contain an exhaustive list of all the properties. Instead, they often point to other sources where that information exists rather than duplicating it. Let's see how you can use the ontology to fetch additional information from other sources." + ] + }, + { + "cell_type": "code", + "execution_count": 52, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "6bXHGG4cI-kr", - "outputId": "d74c6a2b-9dc7-4c7f-b5b2-7db4643f310d" + "id": "ntT1Rf_yM6sZ", + "outputId": "8945b2dc-8573-4d8e-e1b7-a0d2709569e5" }, - "execution_count": 51, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "(rdflib.term.Literal('My LNO-Graphite R2032 Coin Cell'),)\n" + "The PubChem ID of Lithiun Nickel Oxide is: Q81988484\n" ] } - ] - }, - { - "cell_type": "markdown", - "source": [ - "## Fetch additional information from other sources [Advanced]\n", - "\n", - "Ontologies contain a lot of information about the meaning of things, but they don't always contain an exhaustive list of all the properties. Instead, they often point to other sources where that information exists rather than duplicating it. Let's see how you can use the ontology to fetch additional information from other sources." ], - "metadata": { - "id": "b7LJC8BubFce" - } - }, - { - "cell_type": "code", "source": [ "# Parse the ontology into the knowledge graph\n", "ontology = \"https://raw.githubusercontent.com/emmo-repo/domain-electrochemistry/master/electrochemistry-inferred.ttl\"\n", @@ -354,36 +368,36 @@ " wikidata_id = row.wikidataId.split('/')[-1]\n", "\n", "print(f\"The PubChem ID of Lithiun Nickel Oxide is: {wikidata_id}\")" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mRcFo-MBDVBW" + }, + "source": [ + "Finally, let's retireve more information about Lithium Nickel Oxide from Wikidata and PubChem" + ] + }, + { + "cell_type": "code", + "execution_count": 53, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "ntT1Rf_yM6sZ", - "outputId": "8945b2dc-8573-4d8e-e1b7-a0d2709569e5" + "id": "nAAC5bo8FLD6", + "outputId": "7bc59e2f-2892-4163-c1fa-d129b96f3433" }, - "execution_count": 52, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "The PubChem ID of Lithiun Nickel Oxide is: Q81988484\n" + "The PubChem ID for a LithiumNickelOxide cell: 138395181\n" ] } - ] - }, - { - "cell_type": "markdown", - "source": [ - "Finally, let's retireve more information about Lithium Nickel Oxide from Wikidata and PubChem" ], - "metadata": { - "id": "mRcFo-MBDVBW" - } - }, - { - "cell_type": "code", "source": [ "# Query the Wikidata knowledge graph for more information\n", "wikidata_endpoint = \"https://query.wikidata.org/sparql\"\n", @@ -406,57 +420,22 @@ "\n", "else:\n", " print(\"None found.\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "nAAC5bo8FLD6", - "outputId": "7bc59e2f-2892-4163-c1fa-d129b96f3433" - }, - "execution_count": 53, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "The PubChem ID for a LithiumNickelOxide cell: 138395181\n" - ] - } ] }, { "cell_type": "code", - "source": [ - "def get_pubchem_compound_data(cid):\n", - " base_url = \"https://pubchem.ncbi.nlm.nih.gov/rest/pug\"\n", - " compound_url = f\"{base_url}/compound/cid/{cid}/JSON\"\n", - " response = requests.get(compound_url)\n", - " if response.status_code == 200:\n", - " return response.json()\n", - " else:\n", - " return None\n", - "\n", - "# Fetch data for the compound with CID 138395181\n", - "compound_data = get_pubchem_compound_data(PubChemId)\n", - "if compound_data:\n", - " pretty_json = json.dumps(compound_data, indent=4) # Pretty-print the JSON data\n", - " print(pretty_json)\n", - "else:\n", - " print(\"Data not found or error in API request.\")" - ], + "execution_count": 54, "metadata": { - "id": "T1qUAeCDVNq3", "colab": { "base_uri": "https://localhost:8080/" }, + "id": "T1qUAeCDVNq3", "outputId": "9fabdf0b-adda-4d94-e85c-067efea39029" }, - "execution_count": 54, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "{\n", " \"PC_Compounds\": [\n", @@ -844,7 +823,39 @@ "}\n" ] } + ], + "source": [ + "def get_pubchem_compound_data(cid):\n", + " base_url = \"https://pubchem.ncbi.nlm.nih.gov/rest/pug\"\n", + " compound_url = f\"{base_url}/compound/cid/{cid}/JSON\"\n", + " response = requests.get(compound_url)\n", + " if response.status_code == 200:\n", + " return response.json()\n", + " else:\n", + " return None\n", + "\n", + "# Fetch data for the compound with CID 138395181\n", + "compound_data = get_pubchem_compound_data(PubChemId)\n", + "if compound_data:\n", + " pretty_json = json.dumps(compound_data, indent=4) # Pretty-print the JSON data\n", + " print(pretty_json)\n", + "else:\n", + " print(\"Data not found or error in API request.\")" ] } - ] -} \ No newline at end of file + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sphinx/example_linked_data_timeseries_battery_data.ipynb b/sphinx/example_linked_data_timeseries_battery_data.ipynb index 1711df4..fe3a312 100644 --- a/sphinx/example_linked_data_timeseries_battery_data.ipynb +++ b/sphinx/example_linked_data_timeseries_battery_data.ipynb @@ -1,21 +1,10 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, "cells": [ { "cell_type": "markdown", + "metadata": { + "id": "1wseTQGaB4x9" + }, "source": [ "# Example: Timeseries Battery Data\n", "\n", @@ -27,43 +16,58 @@ "- How machines convert JSON-LD into triples \n", "- How to process tabular data using its ontology metadata **[Advanced]** \n", "\n", - "A live version of this notebook is available on Google Colab [here](https://colab.research.google.com/drive/1i-z6m6MEtQw_MG0Ypn37i0jfySYwize3?usp=sharing)\n" - ], + "A live version of this notebook is available on Google Colab [here](https://colab.research.google.com/drive/1i-z6m6MEtQw_MG0Ypn37i0jfySYwize3?usp=sharing)\n", + "\n", + "Note, the `pip install` statement is to be run in a shell/terminal." + ] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": { - "id": "1wseTQGaB4x9" - } + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "# Import dependencies\n", + "pip install jsonschema rdflib requests matplotlib > /dev/null" + ] }, { "cell_type": "code", + "execution_count": 64, + "metadata": { + "id": "GoMrOFoalJ4L" + }, + "outputs": [], "source": [ - "# Install and import dependencies\n", - "!pip install jsonschema rdflib requests matplotlib > /dev/null\n", - "\n", + "# Import dependencies\n", "import json\n", "import rdflib\n", "import requests\n", - "import sys\n", "import pandas as pd\n", "import matplotlib.pyplot as plt" - ], - "metadata": { - "id": "GoMrOFoalJ4L" - }, - "execution_count": 64, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "jcTVz9-DEh3m" + }, "source": [ "## Describe the csv file using ontology terms in JSON-LD format\n", "The JSON-LD data that we will use is:" - ], - "metadata": { - "id": "jcTVz9-DEh3m" - } + ] }, { "cell_type": "code", + "execution_count": 65, + "metadata": { + "id": "gohQKEBrF2QP" + }, + "outputs": [], "source": [ "metadata = {\n", " \"@context\": \"https://raw.githubusercontent.com/emmo-repo/domain-battery/master/context.json\",\n", @@ -110,56 +114,30 @@ " \"csvw:aboutUrl\": \"#time-{time}\"\n", " }\n", " }" - ], - "metadata": { - "id": "gohQKEBrF2QP" - }, - "execution_count": 65, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "in30p-x4H91Y" + }, "source": [ "## Parse this description into a graph\n", "Now let's see how a machine would process this data by reading it into a Graph!\n" - ], - "metadata": { - "id": "in30p-x4H91Y" - } + ] }, { "cell_type": "markdown", - "source": [ - "We create the graph using a very handy python package called [rdflib](https://rdflib.readthedocs.io/en/stable/), which provides us a way to parse our json-ld data, run some queries using the language [SPARQL](https://en.wikipedia.org/wiki/SPARQL), and serialize the graph in any RDF compatible format (e.g. JSON-LD, Turtle, etc.)." - ], "metadata": { "id": "lotp-0QABV-2" - } + }, + "source": [ + "We create the graph using a very handy python package called [rdflib](https://rdflib.readthedocs.io/en/stable/), which provides us a way to parse our json-ld data, run some queries using the language [SPARQL](https://en.wikipedia.org/wiki/SPARQL), and serialize the graph in any RDF compatible format (e.g. JSON-LD, Turtle, etc.)." + ] }, { "cell_type": "code", - "source": [ - "# Create a new graph\n", - "g = rdflib.Graph()\n", - "\n", - "# Parse our json-ld data into the graph\n", - "g.parse(data=json.dumps(metadata), format=\"json-ld\")\n", - "\n", - "# Create a SPARQL query to return all the triples in the graph\n", - "query_all = \"\"\"\n", - "SELECT ?subject ?predicate ?object\n", - "WHERE {\n", - " ?subject ?predicate ?object\n", - "}\n", - "\"\"\"\n", - "\n", - "# Execute the SPARQL query\n", - "all_the_things = g.query(query_all)\n", - "\n", - "# Print the results\n", - "for row in all_the_things:\n", - " print(row)\n" - ], + "execution_count": 66, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -167,11 +145,10 @@ "id": "zWibLw6NIrrq", "outputId": "99b89cbb-cd31-4020-ed18-e91f4ad322a6" }, - "execution_count": 66, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "(rdflib.term.BNode('Ne0e29b515ec84d53800f1108468b85fc'), rdflib.term.URIRef('http://www.w3.org/ns/csvw#name'), rdflib.term.Literal('time'))\n", "(rdflib.term.BNode('Nd0887b1b0a7741c588e7c70dc5b3f56b'), rdflib.term.URIRef('http://www.w3.org/ns/csvw#datatype'), rdflib.term.Literal('number'))\n", @@ -211,23 +188,62 @@ "(rdflib.term.BNode('Ncc179b393bc14fdeae7d2a34157c3cd2'), rdflib.term.URIRef('http://www.w3.org/ns/csvw#columns'), rdflib.term.BNode('Nd0887b1b0a7741c588e7c70dc5b3f56b'))\n" ] } + ], + "source": [ + "# Create a new graph\n", + "g = rdflib.Graph()\n", + "\n", + "# Parse our json-ld data into the graph\n", + "g.parse(data=json.dumps(metadata), format=\"json-ld\")\n", + "\n", + "# Create a SPARQL query to return all the triples in the graph\n", + "query_all = \"\"\"\n", + "SELECT ?subject ?predicate ?object\n", + "WHERE {\n", + " ?subject ?predicate ?object\n", + "}\n", + "\"\"\"\n", + "\n", + "# Execute the SPARQL query\n", + "all_the_things = g.query(query_all)\n", + "\n", + "# Print the results\n", + "for row in all_the_things:\n", + " print(row)\n" ] }, { "cell_type": "markdown", + "metadata": { + "id": "C-w1TbxkI4W5" + }, "source": [ "You can see that our human-readable JSON-LD file has been transformed into some nasty looking (but machine-readable!) triples.\n", "\n", "## Query the Graph to select instances with certain properties [Advanced]\n", "\n", "Now, let's write a SPARQL query to first get the location where the raw data is stored..." - ], - "metadata": { - "id": "C-w1TbxkI4W5" - } + ] }, { "cell_type": "code", + "execution_count": 67, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "bzvQgeS0mTTS", + "outputId": "5de79de6-916e-4f97-ffe9-1e51189d3d2b" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "https://raw.githubusercontent.com/BIG-MAP/BattINFO/master/sphinx/assets/data/discharge_timeseries.csv\n" + ] + } + ], "source": [ "# Create a SPARQL query to return url of the raw data\n", "query = \"\"\"\n", @@ -245,42 +261,20 @@ "for row in results:\n", " csv_url = str(row[0]) # Convert the Literal to a string\n", " print(csv_url)\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "bzvQgeS0mTTS", - "outputId": "5de79de6-916e-4f97-ffe9-1e51189d3d2b" - }, - "execution_count": 67, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "https://raw.githubusercontent.com/BIG-MAP/BattINFO/master/sphinx/assets/data/discharge_timeseries.csv\n" - ] - } ] }, { "cell_type": "markdown", - "source": [ - "Now we will read it into a pandas dataframe." - ], "metadata": { "id": "d4-xrCS0vHsy" - } + }, + "source": [ + "Now we will read it into a pandas dataframe." + ] }, { "cell_type": "code", - "source": [ - "# Read the CSV file into a pandas DataFrame\n", - "# You may need to adjust this based on the specifics of your CSV file\n", - "df = pd.read_csv(csv_url)\n", - "print(df.head(10))" - ], + "execution_count": 68, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -288,11 +282,10 @@ "id": "JK-mhTMqnUp-", "outputId": "d2144690-5f28-41b6-c4ec-e079c6178774" }, - "execution_count": 68, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ " Time / s Voltage / V Current / A\n", "0 0.00000 4.200000 0.0\n", @@ -307,19 +300,46 @@ "9 215.15625 4.027523 2.0\n" ] } + ], + "source": [ + "# Read the CSV file into a pandas DataFrame\n", + "# You may need to adjust this based on the specifics of your CSV file\n", + "df = pd.read_csv(csv_url)\n", + "print(df.head(10))" ] }, { "cell_type": "markdown", - "source": [ - "Finally, we can query the metadata in the Graph to check if certain quantities are present (using ontology terms for Time and CellVoltage) and if so, plot them together..." - ], "metadata": { "id": "sXV4KcIcvK_4" - } + }, + "source": [ + "Finally, we can query the metadata in the Graph to check if certain quantities are present (using ontology terms for Time and CellVoltage) and if so, plot them together..." + ] }, { "cell_type": "code", + "execution_count": 69, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 564 + }, + "id": "YgHzwFzwn1TB", + "outputId": "b5436c51-7d2a-441d-88ff-763bc550198b" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAIjCAYAAAA0vUuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoX0lEQVR4nO3dd3hUZf7+8XvSe+8QCJAQelcgSFFQEASxIosi9lVc5aduYXd1Latg/VrWvivo7iJ2bCgLSBWU3iF0QkklvSeT8/sjZGQEJgkkOZPk/bquuWTOOXPmM5Oj5uZ5ns+xGIZhCAAAAABwTi5mFwAAAAAAzo7gBAAAAAC1IDgBAAAAQC0ITgAAAABQC4ITAAAAANSC4AQAAAAAtSA4AQAAAEAtCE4AAAAAUAuCEwAAAADUguAEAGgQhw8flsVi0dy5c80updlavny5LBaLli9fbnYpAIBfITgBQCs0YcIE+fj4qKCg4JzHTJkyRR4eHjp58uR5v8/ChQv1+OOPn/frW4Jp06bJYrHU+pg2bZrZpQIAHHAzuwAAQNObMmWKvv76a33xxReaOnXqGfuLi4v15ZdfasyYMQoNDT3v91m4cKFef/31Vh2e7rnnHo0aNcr2/NChQ3rsscd09913a+jQobbtnTp10sCBA1VSUiIPDw8zSgUAOEBwAoBWaMKECfL399e8efPOGpy+/PJLFRUVacqUKSZU17IMHjxYgwcPtj3fsGGDHnvsMQ0ePFg333zzGcd7eXk1ZXkAgDpiqh4AtELe3t669tprtXTpUmVkZJyxf968efL399eECRMkSQcPHtQNN9ygkJAQ+fj4aNCgQfr2228dvse0adP0+uuvS5LdlLQaL7zwgpKSkhQaGipvb2/1799fn3766RnnKSkp0QMPPKCwsDBbTcePH5fFYjljJOv48eO6/fbbFRkZKU9PT3Xv3l3vvfderd9Hjx49dOmll56xvaqqSm3atNH1119v2zZ//nz1799f/v7+CggIUM+ePfXKK6/U+h51cbY1TiNGjFCPHj20bds2DR8+XD4+PoqPj7d9VytWrNDAgQPl7e2txMRELVmy5Izznu/3AgD4BcEJAFqpKVOmqLKyUh9//LHd9uzsbC1atEjXXHONvL29lZ6erqSkJC1atEj33Xefnn76aZWWlmrChAn64osvznn+e+65R5dffrkk6d///rftUeOVV15R37599eSTT+qZZ56Rm5ubbrjhhjMC2bRp0/Taa69p7NixevbZZ+Xt7a1x48ad8X7p6ekaNGiQlixZovvvv1+vvPKK4uPjdccdd+jll192+F1MmjRJK1euVFpamt321atX68SJE7rpppskSYsXL9bkyZMVHBysZ599VrNnz9aIESP0448/Ojz/hcrJydFVV12lgQMH6rnnnpOnp6duuukmffTRR7rppps0duxYzZ49W0VFRbr++uvt1q5dyPcCADiNAQBolSorK43o6Ghj8ODBdtvfeustQ5KxaNEiwzAMY8aMGYYkY9WqVbZjCgoKjA4dOhhxcXGG1Wo1DMMwDh06ZEgy5syZYztu+vTpxrn+V1NcXGz3vLy83OjRo4dx2WWX2bZt3LjRkGTMmDHD7thp06YZkoy//e1vtm133HGHER0dbWRlZdkde9NNNxmBgYFnvN/pkpOTDUnGa6+9Zrf9vvvuM/z8/GyvffDBB42AgACjsrLynOeqzfr168/4nmosW7bMkGQsW7bMtm348OGGJGPevHm2bXv27DEkGS4uLsZPP/1k275o0aIzzn0h3wsA4BeMOAFAK+Xq6qqbbrpJa9eu1eHDh23b582bp8jISI0cOVJSdYOHiy++WJdccontGD8/P9199906fPiwdu3adV7v7+3tbftzTk6O8vLyNHToUG3atMm2/fvvv5ck3XfffXav/d3vfmf33DAMffbZZxo/frwMw1BWVpbtMXr0aOXl5dmd99c6d+6sPn366KOPPrJts1qt+vTTTzV+/HhbrUFBQSoqKtLixYvP6zOfLz8/P9uolyQlJiYqKChIXbt21cCBA23ba/588OBBSRf+vQAAfkFwAoBWrKb5w7x58yRJx44d06pVq3TTTTfJ1dVVknTkyBElJiae8dquXbva9p+Pb775RoMGDZKXl5dCQkIUHh6uN998U3l5ebZjjhw5IhcXF3Xo0MHutfHx8XbPMzMzlZubq3feeUfh4eF2j9tuu02SzrqW63STJk3Sjz/+qOPHj0uqXm+UkZGhSZMm2Y6577771LlzZ1155ZVq27atbr/9dlu4a0xt27a1Wx8mSYGBgYqNjT1jm1QdRKWG+V4AANXoqgcArVj//v3VpUsXffjhh/rzn/+sDz/8UIZhNHo3vVWrVmnChAkaNmyY3njjDUVHR8vd3V1z5syxhbj6qKqqkiTdfPPNuvXWW896TK9evRyeY9KkSZo5c6Y++eQTzZgxQx9//LECAwM1ZswY2zERERHasmWLFi1apO+++07fffed5syZo6lTp+r999+vd911VRNi67rdMAxJDfO9AACqEZwAoJWbMmWKHn30UW3btk3z5s1TQkKCLrroItv+9u3bKzk5+YzX7dmzx7b/XH49SlLjs88+k5eXlxYtWiRPT0/b9jlz5tgd1759e1VVVenQoUNKSEiwbd+/f7/dceHh4fL395fVarW7Z1J9dOjQQRdffLE++ugj3X///fr88881ceJEu/okycPDQ+PHj9f48eNVVVWl++67T2+//bYeffTRM0bCzNYQ3wsAoBpT9QCglasZXXrssce0ZcuWM0abxo4dq3Xr1mnt2rW2bUVFRXrnnXcUFxenbt26nfPcvr6+kqTc3Fy77a6urrJYLLJarbZthw8f1oIFC+yOGz16tCTpjTfesNv+2muvnXG+6667Tp999pl27NhxRh2ZmZnnrPF0kyZN0k8//aT33ntPWVlZdtP0JOnkyZN2z11cXGwjNmVlZXV6j6bUUN8LAIARJwBo9Tp06KCkpCR9+eWXknRGcPrTn/6kDz/8UFdeeaUeeOABhYSE6P3339ehQ4f02WefycXl3H8H179/f0nSAw88oNGjR9saUowbN04vvfSSxowZo9/85jfKyMjQ66+/rvj4eG3bts3u9dddd51efvllnTx5UoMGDdKKFSu0d+9eSfYjWrNnz9ayZcs0cOBA3XXXXerWrZuys7O1adMmLVmyRNnZ2bV+FzfeeKMeeeQRPfLIIwoJCTljlObOO+9Udna2LrvsMrVt21ZHjhzRa6+9pj59+tjWfDmbhvheAACMOAEA9EtYuvjii8+YbhYZGak1a9bo8ssv12uvvaaZM2fKw8NDX3/9ta655hqH57322mv1u9/9Tt9//71uueUWTZ48WZJ02WWX6V//+pfS0tI0Y8YMffjhh3r22WfPer4PPvhA06dP17fffqs//vGPKi8vt3W/8/Lysqtz3bp1uu222/T555/b7lmUnZ2tZ599tk7fQ9u2bZWUlKSCggJde+21cnd3t9t/8803y8vLS2+88Ybuu+8+vf/++5o0aZK+++47hwHSTA3xvQAAJItRs4IUAIBmYsuWLerbt6/+85//NHojCwAAJEacAABOrqSk5IxtL7/8slxcXDRs2DATKgIAtEascQIAOLXnnntOGzdu1KWXXio3NzdbG/C77777jPsYAQDQWJiqBwBwaosXL9YTTzyhXbt2qbCwUO3atdMtt9yiv/zlL3Jz4+//AABNg+AEAAAAALVgjRMAAAAA1ILgBAAAAAC1aHWTw6uqqnTixAn5+/vb3TgRAAAAQOtiGIYKCgoUExNT6/34Wl1wOnHiBF2YAAAAANgcPXpUbdu2dXhMqwtO/v7+kqq/nICAAJOrAQAAAGCW/Px8xcbG2jKCI60uONVMzwsICCA4AQAAAKjTEh6aQwAAAABALQhOAAAAAFALghMAAAAA1KLVrXECAACAOQzDUGVlpaxWq9mloJVwdXWVm5tbg9yGiOAEAACARldeXq7U1FQVFxebXQpaGR8fH0VHR8vDw+OCzkNwAgAAQKOqqqrSoUOH5OrqqpiYGHl4eDTICADgiGEYKi8vV2Zmpg4dOqSEhIRab3LrCMEJAAAAjaq8vFxVVVWKjY2Vj4+P2eWgFfH29pa7u7uOHDmi8vJyeXl5nfe5aA4BAACAJnEhf9sPnK+Guu64egEAAACgFgQnAAAAAKgFwQkAAABoJHFxcXr55ZfNLsMpLF++XBaLRbm5uWaXcl4ITgAAAMCvjB8/XmPGjDnrvlWrVslisWjbtm31Pq/FYtGCBQsusDrnM23aNFkslnM+4uLilJSUpNTUVAUGBppd7nkhOAEAAAC/cscdd2jx4sU6duzYGfvmzJmjAQMGqFevXiZU5pxeeeUVpaam2h5S9fdU83z9+vXy8PBQVFRUs21FT3ACAABAkzIMQ8XllaY8DMOoU41XXXWVwsPDNXfuXLvthYWF+uSTT3THHXdIkj777DN1795dnp6eiouL04svvnjOc8bFxUmSrrnmGtsojCQdOHBAV199tSIjI+Xn56eLLrpIS5YssXttamqqxo0bJ29vb3Xo0EHz5s07Yxpgbm6u7rzzToWHhysgIECXXXaZtm7des56kpKS9Mc//tFuW2Zmptzd3bVy5UpJ0htvvKGEhAR5eXkpMjJS119//VnPFRgYqKioKNtDkoKCgmzPw8PDz5iqN3fuXAUFBembb75RYmKifHx8dP3116u4uFjvv/++4uLiFBwcrAceeEBWq9X2XmVlZXrkkUfUpk0b+fr6auDAgVq+fPk5P2dD4T5OAAAAaFIlFVZ1e2yRKe+968nR8vGo/VdgNzc3TZ06VXPnztVf/vIX2yjJJ598IqvVqsmTJ2vjxo268cYb9fjjj2vSpElas2aN7rvvPoWGhmratGlnnHP9+vWKiIjQnDlzNGbMGLm6ukqqDmNjx47V008/LU9PT33wwQcaP368kpOT1a5dO0nS1KlTlZWVpeXLl8vd3V0PPfSQMjIy7M5/ww03yNvbW999950CAwP19ttva+TIkdq7d69CQkLOqGfKlCl67rnnNHv2bNvn++ijjxQTE6OhQ4dqw4YNeuCBB/Tvf/9bSUlJys7O1qpVq+r1fdemuLhYr776qubPn6+CggJde+21uuaaaxQUFKSFCxfq4MGDuu666zRkyBBNmjRJknT//fdr165dmj9/vmJiYvTFF19ozJgx2r59uxISEhq0vtMRnAAAAICzuP322/X8889rxYoVGjFihKTq6WfXXXedAgMD9dJLL2nkyJF69NFHJUmdO3fWrl279Pzzz581OIWHh0v6ZSSmRu/evdW7d2/b86eeekpffPGFvvrqK91///3as2ePlixZovXr12vAgAGSpH/+8592IWH16tVat26dMjIy5OnpKUl64YUXtGDBAn366ae6++67z6jnxhtv1IwZM7R69WoNHTpUkjRv3jxNnjxZFotFKSkp8vX11VVXXSV/f3+1b99effv2vYBv9EwVFRV688031alTJ0nS9ddfr3//+99KT0+Xn5+funXrpksvvVTLli3TpEmTlJKSojlz5iglJUUxMTGSpEceeUTff/+95syZo2eeeaZB6zsdwclEm1NylJZXqm4xAWof6mt2OQAAAE3C291Vu54cbdp711WXLl2UlJSk9957TyNGjND+/fu1atUqPfnkk5Kk3bt36+qrr7Z7zZAhQ/Tyyy/LarXaRpRqU1hYqMcff1zffvutUlNTVVlZqZKSEqWkpEiSkpOT5ebmpn79+tleEx8fr+DgYNvzrVu3qrCwUKGhoXbnLikp0YEDB876vuHh4briiiv03//+V0OHDtWhQ4e0du1avf3225Kkyy+/XO3bt1fHjh01ZswYjRkzRtdcc418fHzq9LnqwsfHxxaaJCkyMlJxcXHy8/Oz21YzurZ9+3ZZrVZ17tzZ7jxlZWVnfPaGRnAy0burDmrh9jQ9eXV3TR1McAIAAK2DxWKp03Q5Z3DHHXfod7/7nV5//XXNmTNHnTp10vDhwxv0PR555BEtXrxYL7zwguLj4+Xt7a3rr79e5eXldT5HYWGhoqOjz7rWJygo6JyvmzJlih544AG99tprmjdvnnr27KmePXtKkvz9/bVp0yYtX75c//vf//TYY4/p8ccf1/r16x2esz7c3d3tnlsslrNuq6qqklT9OV1dXbVx48YzgunpYasx0BzCRDVzSauq6rZIEQAAAE3rxhtvlIuLi+bNm6cPPvhAt99+u+13uK5du+rHH3+0O/7HH39U586dzzna5O7ubtfooOY106ZN0zXXXKOePXsqKipKhw8ftu1PTExUZWWlNm/ebNu2f/9+5eTk2J7369dPaWlpcnNzU3x8vN0jLCzsnJ/v6quvVmlpqb7//nvNmzdPU6ZMsdvv5uamUaNG6bnnntO2bdt0+PBh/fDDD46/tEbUt29fWa1WZWRknPE5T5/+2BgITiZyOfUvnZXcBAAA4JT8/Pw0adIkzZw5U6mpqXZrlx5++GEtXbpUTz31lPbu3av3339f//jHP/TII4+c83xxcXFaunSp0tLSbMEnISFBn3/+ubZs2aKtW7fqN7/5jW2ERaqeMjhq1CjdfffdWrdunTZv3qy7775b3t7ethA3atQoDR48WBMnTtT//vc/HT58WGvWrNFf/vIXbdiw4Zz1+Pr6auLEiXr00Ue1e/duTZ482bbvm2++0auvvqotW7boyJEj+uCDD1RVVaXExMTz/TovWOfOnTVlyhRNnTpVn3/+uQ4dOqR169Zp1qxZ+vbbbxv1vQlOJnI91cK+rm0xAQAA0PTuuOMO5eTkaPTo0baGBFL1KM/HH3+s+fPnq0ePHnrsscf05JNPnrUxRI0XX3xRixcvVmxsrK3RwksvvaTg4GAlJSVp/PjxGj16tN16Jkn64IMPFBkZqWHDhumaa67RXXfdJX9/f3l5eUmqnsm0cOFCDRs2TLfddps6d+6sm266SUeOHFFkZKTDzzdlyhRt3bpVQ4cOtXXxk6qn+H3++ee67LLL1LVrV7311lv68MMP1b179/p+hQ1qzpw5mjp1qh5++GElJiZq4sSJWr9+vV3tjcFitLLf2vPz8xUYGKi8vDwFBASYWstDH23R55uP689ju+juYZ1qfwEAAEAzVFpaqkOHDqlDhw62X/RxYY4dO6bY2FgtWbJEI0eONLscp+bo+qtPNmgeq/JaKNsap1YVXQEAAFBfP/zwgwoLC9WzZ0+lpqbqD3/4g+Li4jRs2DCzS2s1CE4mcjk1Va+qdQ36AQAAoJ4qKir05z//WQcPHpS/v7+SkpL03//+94wOdGg8BCcT1TSHIDcBAADAkdGjR2v0aHPufYVqNIcwkcupb5925AAAAIBzIziZiDVOAACgNWllPcngJBrquiM4mahmjZOV/4gAAIAWrGYdTnFxscmVoDWque4udD0Ya5xM9MsaJ4ITAABouVxdXRUUFKSMjAxJko+Pj23mDdBYDMNQcXGxMjIyFBQUJFdX1ws6H8HJRC62qXoEJwAA0LJFRUVJki08AU0lKCjIdv1dCIKTiVxY4wQAAFoJi8Wi6OhoRUREqKKiwuxy0Eq4u7tf8EhTDYKTibiPEwAAaG1cXV0b7BdZoCnRHMJELi7cxwkAAABoDghOJqpZE8l9nAAAAADnRnAyUc0aJ9qRAwAAAM6N4GSimjVO5CYAAADAuRGcTEQ7cgAAAKB5IDiZyNOt+usvKK00uRIAAAAAjhCcTNQtJkCStP5wtgxGnQAAAACnRXAy0aCOofJ0c9GxnBLtPJFvdjkAAAAAzoHgZCIfDzdd3i1SkjR3zWFziwEAAABwTgQnk91xSQdJ0ldbTuhAZqHJ1QAAAAA4G4KTyfq2C9awzuEqt1bp4Y+3qtJaZXZJAAAAAH6F4OQEZl/bU/5ebtpyNFev/bDf7HIAAAAA/ArByQnEBHnr8fHdJUmvLN2n2d/tUVUVXfYAAAAAZ0FwchLX9mujhy/vLEl6a8UBPfjRFpVVWk2uCgAAAIBEcHIaFotFvxuZoBdv6C03F4u+3npCt/xznY5mF5tdGgAAANDqEZyczHX92+r92y+Wv6eb1h3O1sgXV+iZhbuVV1xhdmkAAABAq0VwckJD4sP0xfQhuiQ+TOXWKr2z8qCGv7BMry7dxwgUAAAAYAKLYRitqgtBfn6+AgMDlZeXp4CAALPLccgwDC3fm6lnvt2tfRm/3ONpUMcQTezTRkPiwxQb4mNihQAAAEDzVZ9sQHBqBiqtVfp62wl9suGY1h48qdN/Ym2CvHVxhxD1bBOohEg/xUf4KSrASxaLxbyCAQAAgGaA4ORAcwxOpzueW6IFm49rye50bT+Wp8qztC338XBVVKCXogO9FBngpRAfDwV4uyvQ210B3m4K8Kr5s7v8PN3k5+UmXw83uboQtgAAANB6NMvgNHv2bM2cOVMPPvigXn755XMe98knn+jRRx/V4cOHlZCQoGeffVZjx46t8/s09+B0uuLySm06kqt1h7OVnJavfRmFOnKyWNbzvAeUr4erfE8FKf/TApWfV3XYCvX1UKifp0L9POz+7O/pxggXAAAAmp36ZAO3JqrJofXr1+vtt99Wr169HB63Zs0aTZ48WbNmzdJVV12lefPmaeLEidq0aZN69OjRRNU6Dx8PN12SEKZLEsJs28orq3Qsp1hp+aVKzy9VWl6ZcovLlV9aofySSuWVVCi/tEJ5JdWPwtJK26hVUblVReVWZRSU1asOTzcXtQ32VttgH8WGVP+zbbC3YoN91D7UR0E+Hg36uQEAAICmZvqIU2Fhofr166c33nhDf//739WnT59zjjhNmjRJRUVF+uabb2zbBg0apD59+uitt96q0/u1pBGnhmAYhsoqq1RYVqmiskoVlFba/lx46nlRWaVySyqUXViuk0XlOllUppOF5couKldhWWWt7xHh76nEKH91jvRXYqS/Okf5KyHCT76eTpHbAQAA0Eo1qxGn6dOna9y4cRo1apT+/ve/Ozx27dq1euihh+y2jR49WgsWLDjna8rKylRW9ssISn5+/gXV29JYLBZ5ubvKy91VYX6e9X59aYVV6fmlOpZTomM5xTqafeqfOSU6ml2sjIIy22PVviy717YP9VHvtkHqExukPu2C1C06QF7urg310QAAAIAGY2pwmj9/vjZt2qT169fX6fi0tDRFRkbabYuMjFRaWto5XzNr1iw98cQTF1Qnzs3L3VXtQ33VPtT3rPsLyyq1L71Ae9MLlJxWWP3P9AJlFpTpyMliHTlZrK+2npAkubta1DU6QH1ig9SvXbAGdgxRdKB3U34cAAAA4KxMC05Hjx7Vgw8+qMWLF8vLy6vR3mfmzJl2o1T5+fmKjY1ttPeDPT9PN/VtF6y+7YLttmcXlWvH8TxtOZpre2QXlWvbsTxtO5anD9YekVQ9KjWwQ4gGdQzVwI6hahNEkAIAAEDTMy04bdy4URkZGerXr59tm9Vq1cqVK/WPf/xDZWVlcnW1n7YVFRWl9PR0u23p6emKioo65/t4enrK07P+U9DQuEJ8PTSsc7iGdQ6XVL3W6lhOiTYfzdWWlFxtOJKtHcfzbKNSH284JkmKDfHW4I6hGpoQrkviwxTsS+MJAAAAND7TmkMUFBToyJEjdttuu+02denSRX/84x/P2iVv0qRJKi4u1tdff23blpSUpF69etEcogXKL63QxsM5+unQSf10sDpInd5q3WKRerUN0rCEMA3rHK6+sUFyc3UxsWIAAAA0J83yPk6SNGLECLuuelOnTlWbNm00a9YsSdXtyIcPH67Zs2dr3Lhxmj9/vp555pl6tSMnODVfhWWV2nA4Wz/uz9LKvVlKTi+w2+/v6aak+NDqkayEcMWG+JhUKQAAAJqDZtVVz5GUlBS5uPwygpCUlKR58+bpr3/9q/785z8rISFBCxYsaJX3cGqN/DzdNCIxQiMSI/SXcVJaXqlW7svUqn1ZWr0vUznFFVq0M12LdlZP5+wQ5qvhncN1aZcIDewQQsc+AAAAnDenGnFqCow4tUzWKkM7judp5d5MrdyXqU0puXbT+rzcXTSkU5hGJIZrRGIEo1EAAABovlP1mgLBqXUoKK3Qj/tPasXeDC3bk6m0/FK7/fERfhpxajTqorgQebixNgoAAKC1ITg5QHBqfQzD0J60Ai1PztSy5AxtPJJjNxrl6+GqIfFhurRLhEYkhnPvKAAAgFaC4OQAwQl5JRVavS9Ly5MztCw5U1mFZXb7u0T5n1pLFa7+7YPlTqc+AACAFong5ADBCaerqjK0KzVfy/ZkaPneTG1OydFpg1Hy93TT0M5h1UGqc7giAhrvZs0AAABoWgQnBwhOcCSnqFwr92VqeXKmVuzNVHZRud3+7jEBujQxQpd2CVef2GC5ulhMqhQAAAAXiuDkAMEJdWWtMrT9eF71aFRyhrYdz9Pp/7YE+bhraEK4Lk0M1/DO4Qr18zSvWAAAANQbwckBghPOV1ZhmVbuzdSy5Eyt3JupvJIK2z6LRerVNsjWqa9Xm0C5MBoFAADg1AhODhCc0BAqrVXaeixXy/ZUd+rbeSLfbn+or4eGdw7X8MRwDUsIV7Cvh0mVAgAA4FwITg4QnNAYMvJLtXxvppYnZ2jV3iwVlFXa9rlYpL7tgnXpqZvvdosOYDQKAADACRCcHCA4obFVWKu08UiOlidXB6k9aQV2+8P9PW1T+i5JCFOAl7tJlQIAALRuBCcHCE5oaidyS2whavX+LBWXW237XF0s6t8+WMM7h2toQpi6xwTSqQ8AAKCJEJwcIDjBTGWVVm04nGO7b9T+jEK7/cE+7hoSH6ZhCeG6JCFMMUHeJlUKAADQ8hGcHCA4wZkczS7W8r2ZWr0vU2v2n7RbGyVJ8RF+uiQ+TMM6h2lgh1D5erqZVCkAAEDLQ3BygOAEZ1XTqW/l3iyt2pepLUdzVXXav53urtXT+oYmVHfq6x5DkwkAAIALQXBygOCE5iKvpEJrD2Rp5b4srdybqWM5JXb7Q3w9NCQ+TEMTqh/RgUzrAwAAqA+CkwMEJzRHhmHoyMlirdqXqZX7srT2wEkV/mpaX0KEn4YmhGto5zAN7BAiHw+m9QEAADhCcHKA4ISWoMJapS1Hc7Vqb3WQ2nbMflqfh6uLBsRVT+sbmhDGvaMAAADOguDkAMEJLVFucbnWHDhZPSK1N0vHc+2n9YXaTesLV1Sgl0mVAgAAOA+CkwMEJ7R0hmHoUFaRVu/P0sq9WVp7IEtFp907SpI6R/rZRqMGdgiVt4erSdUCAACYh+DkAMEJrU2FtUqbU3Jt66O2HcuV8atpfRd1sJ/WZ7EwrQ8AALR8BCcHCE5o7XKKTp/Wl6kTeaV2+6MCvHRpl3Bd1iVSQ+JDaTIBAABaLIKTAwQn4BeGYehgVpGtycTaAydVUvHLtD4PNxcN7hiqkV0jdGlihGJDfEysFgAAoGERnBwgOAHnVlph1U8HT2rZngwt3ZNxxr2jOkf66dIuERrZJVL92gXJzdXFpEoBAAAuHMHJAYITUDeGYWh/RqGW7snQD3sytPFIjqyn9TwP9nHX5d0iNbp7lIbEh8nLnQYTAACgeSE4OUBwAs5PXnGFVuzL1A+707V8b6Zyiyts+3w9XHVplwiN7h6lS7tEyM+TdVEAAMD5EZwcIDgBF67SWqV1h7O1aEeaFu1MV1r+Lw0mPNxcdEl8mMZ0j9KobpEK8fUwsVIAAIBzIzg5QHACGlZVlaFtx/P0/Y40LdqZpkNZRbZ9LhZpYIdQje8do7E9oxTkQ4gCAADOg+DkAMEJaDyGYWhfRqEtRO08kW/b5+5q0fDO4RrfO0aXd4ukzTkAADAdwckBghPQdI5mF+vb7an6cssJ7U79JUR5u7vq8m6RmtA7RsM6h8vDje58AACg6RGcHCA4AebYl16gr7ae0JdbTiglu9i2PdDbXWN7RmlC7zYa2CFELi4WE6sEAACtCcHJAYITYC7DMLT1WJ6+3HJc32xLVWZBmW1fdKCXJvSJ0TV926hLFP9+AgCAxkVwcoDgBDgPa5Whnw6e1FdbTmjhjlQVlFba9nWJ8tfEvm10dZ8YRQd6m1glAABoqQhODhCcAOdUWmHV8uQMfbH5uJbtyVS5tUqSZLFIgzqE6pq+bTSmZ5QCvNxNrhQAALQUBCcHCE6A88srrtDCHan6YvNxrTuUbdvu4eaiUV0jNLFPG41IjKCpBAAAuCAEJwcITkDzciynWF9uOaEFm49rX0ahbXuQj7vG9ozWNX3bqH+7YJpKAACAeiM4OUBwAponwzC0KzVfCzYf15dbTijjV00lxvSI0tie0YQoAABQZwQnBwhOQPNnrTK09sBJfbH5uBbtTFNh2S9NJSL8PTWmR5Su7BGtizuEyJUQBQAAzoHg5ADBCWhZSiusWrUvS99tT9Xi3el2nfnC/Dx0Rfcoje0RrUEdQ+TmypooAADwC4KTAwQnoOUqq7Rqzf6TWrg9Vf/bla68kgrbvmAfd43qGqnLu0XqkoQw+Xi4mVgpAABwBgQnBwhOQOtQYa3S2gMn9d2OVC3ama7sonLbPk83F10SH6ZR3SI1skuEIgK8TKwUAACYheDkAMEJaH0qrVVadyhb/9uVrsW70nU8t8Ruf+/YIF3eNUKjukUqMdJfFgvrogAAaA0ITg4QnIDWzTAMJacXaMmudC3enaGtR3Pt9rcN9taorpEa1TVSF3cI4V5RAAC0YAQnBwhOAE6XkV+qpXsytGRXulbvz1JZZZVtn7+nm4YnhuvybpEa0TlCgT7uJlYKAAAaGsHJAYITgHMpKbdq9f4sLdmVrqV70pVV+Mu6KFcXiy6OC9GobpG6vGuk2oX6mFgpAABoCAQnBwhOAOqiqsrQlmO5WrIrXUt2p2tveqHd/sRIf13erbpLX882gdx0FwCAZojg5ADBCcD5OHKySEt2Z2jxrjStP5wja9Uv/+mMDPDUyFOtzgd3DJWXu6uJlQIAgLoiODlAcAJwoXKLy7UsOUOLd6VrRXKmisqttn2+Hq4a1rl6XdRlXSIU5ONhYqUAAMARgpMDBCcADams0qq1B05q8akpfen5ZbZ9ri4WDWgfrMu7ReqKblGsiwIAwMkQnBwgOAFoLIZhaPvxPC0+db+oPWkFdvs7R/qdWhcVpV6siwIAwHQEJwcITgCaytHsYluIWnc4225dVIR/9bqoK7pFanAn1kUBAGAGgpMDBCcAZsgrrrCti1qenGG3LsrHw1XDEsI16tS6qBBf1kUBANAUCE4OEJwAmK2s0qqfDmZr8a40LdmVobT8Uts+F4vUv32wRp3q0tcx3M/ESgEAaNkITg4QnAA4E8MwtON4vhbvTteSXenalZpvt79juK8u7xqpUd0i1a9dsFxZFwUAQIMhODlAcALgzI7nlmjp7up1UT8dPKkK6y//iQ7x9dCliRG6vFuEhiaEy9fTzcRKAQBo/ghODhCcADQXBaUVWrk3S0t2p+uHPRnKK6mw7fNwc9GQTqEa1S1SI7tEKirQy8RKAQBonghODhCcADRHFdYqbTicoyWnRqNSsovt9vdqG6hRXSM1qmukukb7y2JhSh8AALUhODlAcALQ3BmGof0ZhbZ1UZuP5ur0/5K3CfLWqK4RGtElQoM70uocAIBzITg5QHAC0NJkFpRp2Z4MLd6drlX7MlVaUWXb5+nmokEdQzUiMVwjEiPUIczXxEoBAHAuBCcHCE4AWrLSCqt+3J+lJbsztCI5QyfySu32x4X6aERihIYnhjMaBQBo9QhODhCcALQWhmFoX0ahlu3J0PLkTG04km3Xpa9mNGpY53ANTQhTQoQfa6MAAK0KwckBghOA1qqwrFI/7s/S8uTMs45GRfh76pL4MA2JD9MlCWGKDKBTHwCgZSM4OUBwAoBfRqOWJ2do1b4srTuUrbLKKrtjEiL8NCQ+TEMTwjSwY6j8uG8UAKCFITg5QHACgDOVVli16UiOVu/P0o/7s7TteJ5dpz43F4t6xwZpcMdQDeoYqn7tg+TjQZACADRvBCcHCE4AULvc4nKtPXDSFqQOn7S/b1RNkBrUMUQDO4Sqf/tg+TIiBQBoZghODhCcAKD+jmYXa82BLP18MFs/HTx5xvooNxeLerYN1KBTI1L92wcztQ8A4PQITg4QnADgwhiGoWM5JVp78KQtSB3PLbE7xsUidY0O0ID2wRoQF6IBccGKDvQ2qWIAAM6O4OQAwQkAGt7R7GL9dPCkfj5UHaSO5ZSccUybIG8NiDsVpNoHq3Okv1xdaH8OADAPwckBghMANL60vFJtOJKtDYdztOFItnadyFfVr/5v4+/lpn7tgnVRXLD6tw9Rn9ggeXtwQ14AQNMhODlAcAKApldYVqktKblafzhbG4/kaHNKjorKrXbHuLlY1D0mQP3aB6t/+2D1axesmCCm9wEAGg/ByQGCEwCYr9JapT1pBdpwOFvrj+Row+FspeeXnXFcdKBXdZBqF6x+7YPVLTpAHm4uJlQMAGiJCE4OEJwAwPnUNJzYlJKjTUdytDElR7tTC2T91fw+TzcX9W4bpH7tg9WvXfU/w/w8TaoaANDcEZwcIDgBQPNQXF6prUfztCklRxuP5GhTSo5yiyvOOC4u1OdUkKqe4kfTCQBAXRGcHCA4AUDzZBiGDmYVVYeoU0Fqb3rhGcf5ebqpb7sg9T0VpPrEBinQ292EigEAzo7g5ADBCQBajrziCm0+WhOkcs/adMJikRIi/GwNJ/q3D1aHMF9ZLIxKAUBrR3BygOAEAC2XtcpQclqBNqbkaPOptVJHThafcVywj7v6nWo40b99sHq3pRU6ALRGBCcHCE4A0LpkFpRVN5041Xhi67E8lVdW2R3j6mJRt+iA6lGpU40n2gR5MyoFAC0cwckBghMAtG7llVXaeSJPm1JytelI9Q16z9YKPTLA0za9r1/7YHWPCZCnG6NSANCSEJwcIDgBAE5nGIZO5JVWt0E/1XRi54n8M1qhe7i5qFebQPVvH6y+7YLVr32QIvy9TKoaANAQCE4OEJwAALUpKbdq27Fcbay5r9SRHOWcpRV6uxAfDWgfrEEdQzWoY6hiQ5jeBwDNCcHJAYITAKC+DMPQ4ZPF2lgzKnUkR3szCvTr/4O2CfLWwI4hGtQxVIM7hio2xMecggEAdUJwcoDgBABoCPmlFdqckqv1h7L108GT2nI0V5W/mt7XJsj71GhUiAZ3ClXbYIIUADgTgpMDBCcAQGMoLq/UxiM5+ungSf10MFtbzxKk4kJ9NDQhXEMTwjS4U6j8vbgxLwCYieDkAMEJANAUispOD1IntfVYnl3DCVcXi/q1C9Il8eEa2jlMvdoEys3VxcSKAaD1ITg5QHACAJihoLRCPx3M1qp9mVq9L0sHs4rs9gd4uWlIfJiGJoRrWOcwpvUBQBNoNsHpzTff1JtvvqnDhw9Lkrp3767HHntMV1555VmPnzt3rm677Ta7bZ6eniotLa3zexKcAADO4Gh2sVbvz7IFqfzSSrv9XaL8NbJrhC7rEqk+sUFydaFbHwA0tPpkA7cmqums2rZtq9mzZyshIUGGYej999/X1Vdfrc2bN6t79+5nfU1AQICSk5Ntz2n7CgBojmJDfDT54naafHE7WasMbTuWq9X7srRyX6Y2HsnRnrQC7Ukr0OvLDijU10OXdonQqK4RuiQhXH6epv7vGwBaJaebqhcSEqLnn39ed9xxxxn75s6dqxkzZig3N/e8z8+IEwDA2eUWl2t5cqaW7E7Xir2ZKjhtNMrD1UUDO4ZoVNdIXdYlgpbnAHABms2I0+msVqs++eQTFRUVafDgwec8rrCwUO3bt1dVVZX69eunZ5555pyjU5JUVlamsrIy2/P8/PwGrRsAgIYW5OOhiX3baGLfNqqwVmn94Wwt3Z2hpbvTdfhksVbty9KqfVn621c71aNNgK7sEa0re0SpY7if2aUDQItl+ojT9u3bNXjwYJWWlsrPz0/z5s3T2LFjz3rs2rVrtW/fPvXq1Ut5eXl64YUXtHLlSu3cuVNt27Y962sef/xxPfHEE2dsZ8QJANDcGIahA5lF+mFPupbsztCGw9k6veN5YqS/ruwZpbE9o5UQ4cd0dgCoRbNpDiFJ5eXlSklJUV5enj799FP985//1IoVK9StW7daX1tRUaGuXbtq8uTJeuqpp856zNlGnGJjYwlOAIBm72RhmRbvStfCHWlasz/L7r5RHcN9NbZHtK7sGaVu0QGEKAA4i2YVnH5t1KhR6tSpk95+++06HX/DDTfIzc1NH374YZ2OZ40TAKAlyiuu0OLd6fp+R6pW7s1SubXKtq9diI/G9ozWVb2i1T2GEAUANZrlGqcaVVVVdiNEjlitVm3fvv2cU/sAAGgtAn3cdX3/trq+f1sVlFbohz0ZWrg9VcuTM5WSXay3VhzQWysOKC7UR+N6ReuqXjHqEuVPiAKAOjI1OM2cOVNXXnml2rVrp4KCAs2bN0/Lly/XokWLJElTp05VmzZtNGvWLEnSk08+qUGDBik+Pl65ubl6/vnndeTIEd15551mfgwAAJyKv5e7ru7TRlf3aaOiskotS64OUUt3Z+jwyWK9vuyAXl92QJ3CfTWuV4zG94pWQqS/2WUDgFMzNThlZGRo6tSpSk1NVWBgoHr16qVFixbp8ssvlySlpKTIxcXFdnxOTo7uuusupaWlKTg4WP3799eaNWvqtB4KAIDWyNfTTVf1itFVvWJUVFapJbvT9e22VC3fm6kDmUV6dek+vbp0nxIj/U+NREXTnQ8AzsLp1jg1NtY4AQAgFZRWaMnudH2zNVUr92WqwvrLrwNdowN01akQ1T7U18QqAaBxNevmEI2N4AQAgL284gr9b1eavtmWqh9/1Z2vZ5tAXdUrWmN7RnOzXQAtDsHJAYITAADnllNUrkU7q0PUmgNZdveJ6hMbZAtRMUHe5hUJAA2E4OQAwQkAgLrJKizT9zvS9M22E/r5ULZO/41hQPtgjesVrXE9oxUR4GVekQBwAQhODhCcAACov4yCUn23PU3fbkvV+iO/hCiLRbo4LkRX9YrWmB7RCvf3NLdQAKgHgpMDBCcAAC5MWl6pvt2eqm+3ndCmlFzbdheLNLhTqMb1jNGYHlEK8fUwr0gAqAOCkwMEJwAAGs6xnGJ9t716Ot/WY3m27a4uFiV1CtX4XjG6onukgnwIUQCcD8HJAYITAACNI+Vksb7dnqpvtp3QzhP5tu1uLhZd3CFEo7pGalTXSLULpTsfAOdAcHKA4AQAQOM7lFWkb7ed0DfbUrUnrcBuX2Kkv0Z2jdCobpHq0zZILi4Wk6oE0NoRnBwgOAEA0LQOZRVp6e50LdmdrvWHc2Q9rcd5mJ+HLusSoVFdI3VJQph8PNxMrBRAa0NwcoDgBACAeXKLy7U8OVNLdqdrRXKmCsoqbfs83VyU1ClUl3aJ0KWJEdxwF0CjIzg5QHACAMA5lFdWad2hbC05NRp1LKfEbn+ncF9dmhihS7tEaEBcsDzdXE2qFEBLRXBygOAEAIDzMQxDyekFWrYnU8uSM7TxiP2UPl8PVw2JD9OIxAiNSAxXTJC3idUCaCkITg4QnAAAcH55JRVavS9Ly5IztDw5U1mFZXb7u0T5a0RihC5NDFe/9sFyd3UxqVIAzRnByQGCEwAAzUtVlaFdqflatidDy5IztPlork7/7cXfy03DEsI1IjFcwxPDFeHvZV6xAJoVgpMDBCcAAJq37KJyrdqXqWV7MrRib6Zyiivs9vdsE6hLE8M1okuEercNkivtzgGcA8HJAYITAAAth7XK0NZjuVq+J0PLkjO1/Xie3f5gH3cN7xyuS7tEaFhCuIJ9PUyqFIAzIjg5QHACAKDlyigo1YrkTC1PztTKfZkqKP2l3bmLReoTG2Tr1NctOoCb7wKtHMHJAYITAACtQ4W1SpuO5GhZcqaWJ2doT1qB3f5wf09d0S1S43vH6OK4EEIU0AoRnBwgOAEA0DqdyC3Rir3Va6NW789ScbnVti8ywFNX9YrR+N4x6t02UBYLIQpoDQhODhCcAABAWaVVPx3M1rfbTui7HWl2U/piQ7w1vleMru3XVvERfiZWCaCxEZwcIDgBAIDTlVVatXJvlr7eekKLd6WrpOKXkaiL4oJ100XtNLZntLw9XE2sEkBjIDg5QHACAADnUlxeqR/2ZGjB5uNalpwpa1X1r0kBXm6afHE7TU2KU5sgb5OrBNBQCE4OEJwAAEBdpOeX6tONxzR/fYqOZpdIklxdLBrTI0q/HdZJPdsGmlwhgAtFcHKA4AQAAOqjqsrQsuQM/Wv1Ia05cNK2/bIuEXpwZIJ6xwaZVxyAC0JwcoDgBAAAztfu1Hy9s/KgvtxyXKdm8emyLhH605Vd1DnS39ziANQbwckBghMAALhQBzML9Y9l+/XllhOyVhlydbHoNxe30/+7vLNCfD3MLg9AHRGcHCA4AQCAhnIoq0izv9utRTvTJUn+Xm76w+hETRnYnhvqAs0AwckBghMAAGhoaw5k6e/f7Nau1HxJ0sUdQvTsdb3UIczX5MoAOFKfbODSRDUBAAC0WEmdwvT17y7R4+O7ycfDVesOZWvMyyv17sqDqqpqVX9HDbRYBCcAAIAG4Opi0bQhHbRoxjANiQ9VWWWVnl64W7e/v17ZReVmlwfgAhGcAAAAGlBsiI/+c8dAPX1ND3m6uWh5cqbGvbpKGw5nm10agAtAcAIAAGhgFotFUwa214LpQ9QxzFepeaWa9M5PmvvjIbNLA3CeCE4AAACNpGt0gL763SWa0DtG1ipDj3+9S49/tVNW1j0BzQ7BCQAAoBH5ebrplZv66E9XdpEkzV1zWHd/sEFFZZUmVwagPuocnAYMGKC33npL+fn5jVkPAABAi2OxWPTb4Z30xpR+8nRz0dI9Gbrx7bXKKiwzuzQAdVTn4NS7d2/94Q9/UHR0tG655RYtX768EcsCAABoecb2jNaHdw9SqK+Hdp7I103v/KT0/FKzywJQB3UOTv/617+Ulpam119/XUePHtXIkSMVHx+vZ555RsePH2/MGgEAAFqMfu2C9clvBys60Ev7Mwp149trdSyn2OyyANSiXmucfHx8NG3aNC1fvlx79+7VTTfdpLfffltxcXEaN26cPv/888aqEwAAoMXoGO6nj+8ZrNgQbx05WaxJb/+kIyeLzC4LgAMWwzAuqK2LYRj67LPPdM899yg3N1dWq7WhamsU+fn5CgwMVF5engICAswuBwAAtGKpeSWa8u7POphVpDZB3vr4t4PVJsjb7LKAVqM+2eCCuuotX75c06ZN07Rp02S1WnXXXXddyOkAAABalehAb310z2B1DPfV8dwSTXn3J2Ww5glwSvUOTseOHdPf//53xcfH67LLLtPhw4f1xhtvKDU1VW+99VZj1AgAANBihft76r93DlTbYG8dPlmsm//1s7KLys0uC8Cv1Dk4ffzxxxozZow6dOigN998UzfeeKP27t2rFStWaOrUqfL2ZlgZAADgfEQHemvenYMUFeClvemFmvrezyrkPk+AU6lzcLr55pvl7e2tL774QkePHtUzzzyj+Pj4xqwNAACg1WgX6qP/3DlQob4e2nE8X/f+Z6MqrFVmlwXglDo3h8jIyFBERERj19PoaA4BAACc2bZjuZr09k8qqbDqun5t9cINvWSxWMwuC2iRGqU5REsITQAAAM6uV9sgvTGln1xdLPps0zG9tHiv2SUB0AV21QMAAEDDu7RLhJ65pock6bUf9uu/Px8xuSIABCcAAAAnNOmidnpwZIIk6dEFO7R0d7rJFQGtW52D08GDBxuzDgAAAPzKjFEJunFAW1UZ0v3zNmvL0VyzSwJarToHp169eqlHjx7685//rJ9//rkxawIAAIAki8Wip6/pqeGdw1VSYdXtc9frcFaR2WUBrVKdg1NWVpZmzZqljIwMXX311YqOjtZdd92lr7/+WqWl3OEaAACgMbi7uuiNKf3Us02gsovKdeucdTpZWGZ2WUCrU+d25KczDENr167VV199pa+++kopKSkaNWqUJkyYoPHjxys8PLwxam0QtCMHAADNUWZBma5980cdzS5R33ZB+vCuQfJydzW7LKBZa5R25KezWCxKSkrS7NmztWvXLm3evFlDhw7V3Llz1bZtW73++uvnVTgAAADOLtzfU3Nvu1iB3u7anJKrB+dvlrWq3n//DeA8ndeIkyMnT55Udna2EhISGvK0DYYRJwAA0JytO5Stm//5s8qtVbp9SAc9Nr6b2SUBzVajjzg5Ehoa6rShCQAAoLm7uEOIXryxtyTpvR8P6b3Vh0yuCGgduI8TAABAMzO+d4z+dGUXSdJT3+7S9zvSTK4IaPkITgAAAM3QPcM66uZB7WQY0oPzN2tTSo7ZJQEtGsEJAACgGbJYLHp8fHdd1iVCZZVVuvP9DTpykns8AY3lvIJTbm6u/vnPf2rmzJnKzs6WJG3atEnHjx9v0OIAAABwbm6uLnptcl/bPZ6mzVmv7KJys8sCWqR6B6dt27apc+fOevbZZ/XCCy8oNzdXkvT5559r5syZDV0fAAAAHPD1dNO/pg1QmyBvHcoq0l0fbFBphdXssoAWp97B6aGHHtK0adO0b98+eXl52baPHTtWK1eubNDiAAAAULsIfy+9f/tFCvBy08YjOXro4y2q4h5PQIOqd3Bav3697rnnnjO2t2nTRmlpdHQBAAAwQ3yEv96ZOkAeri5auD1Ns77bbXZJQItS7+Dk6emp/Pz8M7bv3btX4eHhDVIUAAAA6m9Qx1A9f0MvSdK7qw5p7o/c4wloKPUOThMmTNCTTz6piooKSdUdXVJSUvTHP/5R1113XYMXCAAAgLq7uk8b/X50oiTpiW+4xxPQUOodnF588UUVFhYqIiJCJSUlGj58uOLj4+Xv76+nn366MWoEAABAPdw3opOmDPzlHk8bj2SbXRLQ7FkMwzivlYOrV6/Wtm3bVFhYqH79+mnUqFENXVujyM/PV2BgoPLy8hQQEGB2OQAAAI2i0lql3/5no5bszlCQj7s+uzdJncL9zC4LcCr1yQbnHZyaK4ITAABoLYrLKzX53Z+19WiuYkO89fm9QxTu72l2WYDTaNTg9Oqrr579RBaLvLy8FB8fr2HDhsnV1bU+p20yBCcAANCaZBWW6bo31+jIyWL1bBOo+XcPkq+nm9llAU6hUYNThw4dlJmZqeLiYgUHB0uScnJy5OPjIz8/P2VkZKhjx45atmyZYmNjz/9TNBKCEwAAaG0OZxXp2jfXKLuoXJcmhuvdqQPk5lrvpe5Ai1OfbFDvf2OeeeYZXXTRRdq3b59OnjypkydPau/evRo4cKBeeeUVpaSkKCoqSv/v//2/8/4AAAAAaDhxYb76160D5OXuomXJmfrrgh1qZas1gAtW7xGnTp066bPPPlOfPn3stm/evFnXXXedDh48qDVr1ui6665TampqQ9baIBhxAgAArdXiXem6598bVGVIj1zRWfdflmB2SYCpGnXEKTU1VZWVlWdsr6ysVFpa9X0CYmJiVFBQUN9TAwAAoBFd3i1ST0zoLkl64X979e025/tLbsBZ1Ts4XXrppbrnnnu0efNm27bNmzfr3nvv1WWXXSZJ2r59uzp06NBwVQIAAKBB3DI4TrcPqf497aGPt2jL0VxzCwKaiXoHp3/9618KCQlR//795enpKU9PTw0YMEAhISH617/+JUny8/PTiy++2ODFAgAA4ML9ZVxXXdYlQmWVVbrz/Q06nltidkmA0zvv+zjt2bNHe/fulSQlJiYqMTGxQQtrLKxxAgAAkArLKnX9m2u0J61AXaL89fl9SfLxoE05WhdugOsAwQkAAKDa8dwSXf2P1coqLNf43jF69aY+slgsZpcFNJn6ZIPz+muFY8eO6auvvlJKSorKy8vt9r300kvnc0oAAAA0sTZB3npjSn/95t2f9PXWE+rdNlB3Du1odlmAU6p3cFq6dKkmTJigjh07as+ePerRo4cOHz4swzDUr1+/xqgRAAAAjeTiDiH667iuevzrXZr13R51iwlQUqcws8sCnE69m0PMnDlTjzzyiLZv3y4vLy999tlnOnr0qIYPH64bbrihMWoEAABAI7o1KU7X9m0ja5Wh++dtplkEcBb1Dk67d+/W1KlTJUlubm4qKSmRn5+fnnzyST377LMNXiAAAAAal8Vi0TPX9lS36ABlF5VrxvzNsla1qmXwQK3qHZx8fX1t65qio6N14MAB276srKyGqwwAAABNxsvdVW/d3F9+nm5afzhH//hhv9klAU6l3sFp0KBBWr16tSRp7Nixevjhh/X000/r9ttv16BBgxq8QAAAADSNdqE+empid0nSK0v3asPhbJMrApxHvYPTSy+9pIEDB0qSnnjiCY0cOVIfffSR4uLibDfABQAAQPN0Td+2uqZvG1UZ0oPztyi/tMLskgCnwH2cAAAAYKegtELjXl2tlOxiTegdo1cn9zW7JKBR1Ccb1HvEqWPHjjp58uQZ23Nzc9WxI33/AQAAmjt/L3e9clMfubpY9NXWE/rfzjSzSwJMV+/gdPjwYVmt1jO2l5WV6fjx4w1SFAAAAMzVt12w7h5W/Zfij325UwVM2UMrV+fg9NVXX+mrr76SJC1atMj2/KuvvtIXX3yhp556SnFxcfV68zfffFO9evVSQECAAgICNHjwYH333XcOX/PJJ5+oS5cu8vLyUs+ePbVw4cJ6vScAAADq5sGRCYoL9VFafqme+z7Z7HIAU9V5jZOLS3XGslgs+vVL3N3dFRcXpxdffFFXXXVVnd/866+/lqurqxISEmQYht5//309//zz2rx5s7p3737G8WvWrNGwYcM0a9YsXXXVVZo3b56effZZbdq0ST169KjTe7LGCQAAoO7WHMjSb979WZL06W8Ha0BciMkVAQ2nPtmg3s0hOnTooPXr1yssLOyCijyXkJAQPf/887rjjjvO2Ddp0iQVFRXpm2++sW0bNGiQ+vTpo7feeqtO5yc4AQAA1M8fPt2qjzccU6dwXy18cKg83VzNLgloEI3aHOLQoUONEpqsVqvmz5+voqIiDR48+KzHrF27VqNGjbLbNnr0aK1du/ac5y0rK1N+fr7dAwAAAHX357FdFebnqQOZRfrnqkNmlwOYwq0uB7366qt1PuEDDzxQrwK2b9+uwYMHq7S0VH5+fvriiy/UrVu3sx6blpamyMhIu22RkZFKSzt3p5dZs2bpiSeeqFdNAAAA+EWQj4f+Oq6rZny0RW8s268bB8Qq3N/T7LKAJlWn4PR///d/dTqZxWKpd3BKTEzUli1blJeXp08//VS33nqrVqxYcc7wVF8zZ87UQw89ZHuen5+v2NjYBjk3AABAazGhd4ze+/GQth3L0ytL9+rvE3uaXRLQpOoUnA4darwhWQ8PD8XHx0uS+vfvr/Xr1+uVV17R22+/fcaxUVFRSk9Pt9uWnp6uqKioc57f09NTnp78jQgAAMCFcHGx6M9ju+qmd37Sh+uOalpSnOIj/M0uC2gy9V7jdDrDMM7osHehqqqqVFZWdtZ9gwcP1tKlS+22LV68+JxrogAAANBwBnUM1eXdImWtMjT7uz1mlwM0qfMKTh988IF69uwpb29veXt7q1evXvr3v/9d7/PMnDlTK1eu1OHDh7V9+3bNnDlTy5cv15QpUyRJU6dO1cyZM23HP/jgg/r+++/14osvas+ePXr88ce1YcMG3X///efzMQAAAFBPf7qyi1xdLFqyO0NrDmSZXQ7QZOodnF566SXde++9Gjt2rD7++GN9/PHHGjNmjH7729/WeS1UjYyMDE2dOlWJiYkaOXKk1q9fr0WLFunyyy+XJKWkpCg1NdV2fFJSkubNm6d33nlHvXv31qeffqoFCxbU+R5OAAAAuDCdwv00ZWA7SdKshXsafPYR4KzO6z5OTzzxhKZOnWq3/f3339fjjz/eqOuhGgL3cQIAALgwJwvLNPS5ZSout2rObRfp0sQIs0sCzkuj3scpNTVVSUlJZ2xPSkqyGx0CAABAyxTq56nfXFw96vTmsgMmVwM0jXoHp/j4eH388cdnbP/oo4+UkJDQIEUBAADAud05tKM8XF207nC21h/ONrscoNHVqR356Z544glNmjRJK1eu1JAhQyRJP/74o5YuXXrWQAUAAICWJyrQS9f1b6MP1x3VG8v2a85tF5tdEtCo6jzitGPHDknSddddp59//llhYWFasGCBFixYoLCwMK1bt07XXHNNoxUKAAAA53LPsE5ysUjLkjO180Se2eUAjarOzSFcXFx00UUX6c4779RNN90kf//mecMzmkMAAAA0nN99uFlfbz2hq3pF6x+/6Wd2OUC9NEpziBUrVqh79+56+OGHFR0drWnTpmnVqlUXXCwAAACar3uHd5IkLdyeqkNZRSZXAzSeOgenoUOH6r333lNqaqpee+01HTp0SMOHD1fnzp317LPPKi0trTHrBAAAgBPqFhOgSxPDVWVIH6w9bHY5QKOpd1c9X19f3XbbbVqxYoX27t2rG264Qa+//rratWunCRMmNEaNAAAAcGK3JsVJkj7beEylFVZziwEaSb2D0+ni4+P15z//WX/961/l7++vb7/9tqHqAgAAQDMxLCFcbYK8lV9aqW+3cV9PtEznHZxWrlypadOmKSoqSr///e917bXX6scff2zI2gAAANAMuLhYNPniWEnSh+tSTK4GaBz1Ck4nTpzQM888o86dO2vEiBHav3+/Xn31VZ04cULvvvuuBg0a1Fh1AgAAwIndOCBWri4WbTiSo73pBWaXAzS4OgenK6+8Uu3bt9drr72ma665Rrt379bq1at12223ydfXtzFrBAAAgJOLCPDSqK4RkqR5PzPqhJanzsHJ3d1dn376qY4dO6Znn31WiYmJjVkXAAAAmpnfDGwvSfp8E00i0PK41fXAr776qjHrAAAAQDM3ND5MbYO9dSynRN9uS9V1/duaXRLQYC6oqx4AAABQo7pJRDtJ0jyaRKCFITgBAACgwdzQv61cLNLGIzk6ml1sdjlAgyE4AQAAoMFEBHhpYIdQSdLC7dzTCS0HwQkAAAANalyvaEkEJ7QsBCcAAAA0qDE9ouRikbYey2O6HloMghMAAAAaVJifpwZ1rJ6u9y2jTmghCE4AAABocDXT9b7dRnBCy0BwAgAAQIMb0716ut7243k6crLI7HKAC0ZwAgAAQIML9fNUUqcwSUzXQ8tAcAIAAECjYLoeWhKCEwAAABrF6O5RcnWxaOeJfB3KYroemjeCEwAAABpFiK+HkjpVd9dbtDPN5GqAC0NwAgAAQKMZ2SVCkrRyb6bJlQAXhuAEAACARjOsc7gkacPhHBWVVZpcDXD+CE4AAABoNB3CfNU22Fvl1ir9dPCk2eUA543gBAAAgEZjsVg0/NSoE9P10JwRnAAAANCoaqbrrSA4oRkjOAEAAKBRJXUKlZuLRYdPFivlZLHZ5QDnheAEAACARuXv5a5+7YMlSSv2MeqE5ongBAAAgEZXs85pRTLBCc0TwQkAAACNriY4rT2QpfLKKpOrAeqP4AQAAIBG1y06QKG+Hioqt2rjkRyzywHqjeAEAACARufiYrF111vJOic0QwQnAAAANIlhncMkcT8nNE8EJwAAADSJIfHVwWlXar7ySipMrgaoH4ITAAAAmkSEv5fah/rIMKTNKaxzQvNCcAIAAECT6X/qfk40iEBzQ3ACAABAkxnQPkSStOEwwQnNC8EJAAAATWZAXPWI05ajuaqwcj8nNB8EJwAAADSZ+HA/BXi5qaTCql0n8s0uB6gzghMAAACajIuLxbbOaQPrnNCMEJwAAADQpAbEVa9z2ngk2+RKgLojOAEAAKBJDagZcTqcI8MwTK4GqBuCEwAAAJpU79ggubtalFFQpmM5JWaXA9QJwQkAAABNysvdVd1jAiVJG5iuh2aC4AQAAIAmd/p0PaA5IDgBAACgydXcz4nghOaC4AQAAIAm1799dWe9vRkFyiupMLkaoHYEJwAAADS5cH9PxYX6yDCkTSmMOsH5EZwAAABgin7tqqfrbTuaZ3IlQO0ITgAAADBFt5gASdLOEwQnOD+CEwAAAExR05J8V2q+yZUAtSM4AQAAwBQ1I07HckqUV0yDCDg3ghMAAABMEejtrrbB3pKknalM14NzIzgBAADANN1PjTrtOsF0PTg3ghMAAABMU7POaSfBCU6O4AQAAADTdKezHpoJghMAAABMUzPidCCzSKUVVpOrAc6N4AQAAADTRAZ4KtTXQ9YqQ3vSCswuBzgnghMAAABMY7FYbG3JaRABZ0ZwAgAAgKl+aRDBOic4L4ITAAAATPVLgwhGnOC8CE4AAAAwVU1w2pOWL2uVYXI1wNkRnAAAAGCquFBf+Xi4qrSiSgczC80uBzgrghMAAABM5eJiUddopuvBuRGcAAAAYDpuhAtnR3ACAACA6WgQAWdHcAIAAIDpukVXtyTnJrhwVgQnAAAAmK5ThK8kKbuoXDlF5SZXA5yJ4AQAAADT+Xi4qU2QtyTpAJ314IQITgAAAHAKHcOrR50ITnBGBCcAAAA4hfgIP0nSgcwikysBzkRwAgAAgFPoFH4qOGUw4gTnQ3ACAACAU6gJTvuZqgcnRHACAACAU6jprHc0u1ilFVaTqwHsEZwAAADgFML9POXv5aYqQzpystjscgA7BCcAAAA4BYvFclqDCKbrwbkQnAAAAOA0aBABZ0VwAgAAgNOgQQScFcEJAAAATqMTN8GFkzI1OM2aNUsXXXSR/P39FRERoYkTJyo5Odnha+bOnSuLxWL38PLyaqKKAQAA0Jg61axxyihSVZVhcjXAL0wNTitWrND06dP1008/afHixaqoqNAVV1yhoiLHd4sOCAhQamqq7XHkyJEmqhgAAACNqV2Ij9xcLCqpsCotv9TscgAbNzPf/Pvvv7d7PnfuXEVERGjjxo0aNmzYOV9nsVgUFRXV2OUBAACgibm7uiguzFf7Mwq1P6NQMUHeZpcESHKyNU55eXmSpJCQEIfHFRYWqn379oqNjdXVV1+tnTt3nvPYsrIy5efn2z0AAADgvFjnBGfkNMGpqqpKM2bM0JAhQ9SjR49zHpeYmKj33ntPX375pf7zn/+oqqpKSUlJOnbs2FmPnzVrlgIDA22P2NjYxvoIAAAAaAC2luQEJzgRi2EYTrHq7t5779V3332n1atXq23btnV+XUVFhbp27arJkyfrqaeeOmN/WVmZysrKbM/z8/MVGxurvLw8BQQENEjtAAAAaDifbTymhz/ZqsEdQ/Xh3YPMLgctWH5+vgIDA+uUDUxd41Tj/vvv1zfffKOVK1fWKzRJkru7u/r27av9+/efdb+np6c8PT0bokwAAAA0AVtnPUac4ERMnapnGIbuv/9+ffHFF/rhhx/UoUOHep/DarVq+/btio6OboQKAQAA0NRq1jhlFJQpv7TC5GqAaqYGp+nTp+s///mP5s2bJ39/f6WlpSktLU0lJSW2Y6ZOnaqZM2fanj/55JP63//+p4MHD2rTpk26+eabdeTIEd15551mfAQAAAA0MH8vd0UGVM8YOpDBqBOcg6nB6c0331ReXp5GjBih6Oho2+Ojjz6yHZOSkqLU1FTb85ycHN11113q2rWrxo4dq/z8fK1Zs0bdunUz4yMAAACgEXQMq5mu5/j+nkBTMXWNU136Uixfvtzu+f/93//p//7v/xqpIgAAADiD9qE+WnvwpI5mF5tdCiDJidqRAwAAADViQ3wkSUdzCE5wDgQnAAAAOJ22wd6SpGPZJbUcCTQNghMAAACcDiNOcDYEJwAAADid2ODq4JSWX6qySqvJ1QAEJwAAADihMD8Pebu7yjCkE7mlZpcDEJwAAADgfCwWi22dE5314AwITgAAAHBKrHOCMyE4AQAAwCnF2kac6KwH8xGcAAAA4JQYcYIzITgBAADAKbU91VnvGGuc4AQITgAAAHBKsSGnpurlMFUP5iM4AQAAwCnVTNXLLipXUVmlydWgtSM4AQAAwCkFeLkryMddEuucYD6CEwAAAJxW7Kl1TnTWg9kITgAAAHBaNeucUmgQAZMRnAAAAOC0fhlxIjjBXAQnAAAAOK22pxpEHGONE0xGcAIAAIDTig0+1ZKcNU4wGcEJAAAATqumJfnRnGIZhmFyNWjNCE4AAABwWm2Cqkecisutyi4qN7katGYEJwAAADgtL3dXRQZ4SpKO5jBdD+YhOAEAAMCp0VkPzoDgBAAAAKd2+jonwCwEJwAAADg1OuvBGRCcAAAA4NS4lxOcAcEJAAAATq1mjdMxmkPARAQnAAAAOLXoQC9JUmpeCfdygmkITgAAAHBqUaeCU2lFlfJLKk2uBq0VwQkAAABOzcvdVYHe7pKktPxSk6tBa0VwAgAAgNOrma5HcIJZCE4AAABwepEB1cEpPY/gBHMQnAAAAOD0ogIYcYK5CE4AAABwepFM1YPJCE4AAABwelFM1YPJCE4AAABwelGBnpIYcYJ5CE4AAABwerbmEAQnmITgBAAAAKdXM1Uvq7BcZZVWk6tBa0RwAgAAgNML8fWQh2v1r64Z+WUmV4PWiOAEAAAAp2exWBQRUL3Oiel6MAPBCQAAAM0C93KCmQhOAAAAaBZs93KiJTlMQHACAABAsxBFZz2YiOAEAACAZiG6ZsSJ5hAwAcEJAAAAzYLtXk5M1YMJCE4AAABoFqICaQ4B8xCcAAAA0Cyc3lXPMAyTq0FrQ3ACAABAs1BzH6fyyirlFleYXA1aG4ITAAAAmgVPN1eF+HpIYroemh7BCQAAAM1GJDfBhUkITgAAAGg2ok5N16OzHpoawQkAAADNBp31YBaCEwAAAJoN21Q9RpzQxAhOAAAAaDaiWOMEkxCcAAAA0GxEBjLiBHMQnAAAANBsRJ8KTumMOKGJEZwAAADQbNRM1csprlBphdXkatCaEJwAAADQbAR6u8vTrfpX2Iz8MpOrQWtCcAIAAECzYbFYaEkOUxCcAAAA0KzUtCRPzSsxuRK0JgQnAAAANCsxdNaDCQhOAAAAaFZigrwlSSdyGXFC0yE4AQAAoFmJPhWcjucy4oSmQ3ACAABAs9ImiDVOaHoEJwAAADQrTNWDGQhOAAAAaFaiA6uDU05xhUrKuQkumgbBCQAAAM1KgJeb/DzdJEknmK6HJkJwAgAAQLNisVgUc2qdE9P10FQITgAAAGh2aqbrEZzQVAhOAAAAaHZ+aRBBS3I0DYITAAAAmp2YQKbqoWkRnAAAANDs2EacaA6BJkJwAgAAQLNTE5xSmaqHJkJwAgAAQLNT01XveG6JDMMwuRq0BgQnAAAANDtRp9Y4lVVWKae4wuRq0BoQnAAAANDseLq5KszPUxINItA0CE4AAABoltqcNl0PaGwEJwAAADRLvzSIIDih8RGcAAAA0CxFB9a0JKezHhofwQkAAADNUgxT9dCECE4AAABoltowVQ9NiOAEAACAZin6VHA6wU1w0QQITgAAAGiWaqbqpReUqsJaZXI1aOkITgAAAGiWwnw95e5qkWFI6fmMOqFxEZwAAADQLLm4WH7prMd0PTQyghMAAACarZrpeql5NIhA4zI1OM2aNUsXXXSR/P39FRERoYkTJyo5ObnW133yySfq0qWLvLy81LNnTy1cuLAJqgUAAICziTk14kRLcjQ2U4PTihUrNH36dP30009avHixKioqdMUVV6ioqOicr1mzZo0mT56sO+64Q5s3b9bEiRM1ceJE7dixowkrBwAAgDOIsXXWIzihcVkMwzDMLqJGZmamIiIitGLFCg0bNuysx0yaNElFRUX65ptvbNsGDRqkPn366K233qr1PfLz8xUYGKi8vDwFBAQ0WO0AAABoevN+TtGfv9iu3rFBund4R7PLQR1ZLBaN7h5ldhn1ygZuTVRTneTl5UmSQkJCznnM2rVr9dBDD9ltGz16tBYsWHDW48vKylRWVmZ7np+ff+GFAgAAwCm0Ca4ecdp6NFe//c8mk6tBXXm4uWjv3680u4x6cZrgVFVVpRkzZmjIkCHq0aPHOY9LS0tTZGSk3bbIyEilpaWd9fhZs2bpiSeeaNBaAQAA4BwGdQzRxD4xOpbDVL3mxN21+fWoc5rgNH36dO3YsUOrV69u0PPOnDnTboQqPz9fsbGxDfoeAAAAMIenm6tevqmv2WWgFXCK4HT//ffrm2++0cqVK9W2bVuHx0ZFRSk9Pd1uW3p6uqKizj5H0tPTU56eng1WKwAAAIDWx9QxMsMwdP/99+uLL77QDz/8oA4dOtT6msGDB2vp0qV22xYvXqzBgwc3VpkAAAAAWjlTR5ymT5+uefPm6csvv5S/v79tnVJgYKC8vasX+k2dOlVt2rTRrFmzJEkPPvighg8frhdffFHjxo3T/PnztWHDBr3zzjumfQ4AAAAALZupI05vvvmm8vLyNGLECEVHR9seH330ke2YlJQUpaam2p4nJSVp3rx5euedd9S7d299+umnWrBggcOGEgAAAABwIZzqPk5Ngfs4AQAAAJDqlw2aXx9AAAAAAGhiBCcAAAAAqAXBCQAAAABqQXACAAAAgFoQnAAAAACgFgQnAAAAAKgFwQkAAAAAakFwAgAAAIBaEJwAAAAAoBYEJwAAAACoBcEJAAAAAGpBcAIAAACAWhCcAAAAAKAWbmYX0NQMw5Ak5efnm1wJAAAAADPVZIKajOBIqwtOBQUFkqTY2FiTKwEAAADgDAoKChQYGOjwGItRl3jVglRVVenEiRPy9/eXxWIxtZb8/HzFxsbq6NGjCggIMLUWmIfrAFwD4BoA1wC4BsxhGIYKCgoUExMjFxfHq5ha3YiTi4uL2rZta3YZdgICAvgXBFwH4BoA1wC4BsA1YILaRppq0BwCAAAAAGpBcAIAAACAWhCcTOTp6am//e1v8vT0NLsUmIjrAFwD4BoA1wC4Bpxfq2sOAQAAAAD1xYgTAAAAANSC4AQAAAAAtSA4AQAAAEAtCE4AAAAAUAuCk4lef/11xcXFycvLSwMHDtS6devMLgnnYdasWbrooovk7++viIgITZw4UcnJyXbHlJaWavr06QoNDZWfn5+uu+46paen2x2TkpKicePGycfHRxEREfr973+vyspKu2OWL1+ufv36ydPTU/Hx8Zo7d25jfzych9mzZ8tisWjGjBm2bVwDLd/x48d18803KzQ0VN7e3urZs6c2bNhg228Yhh577DFFR0fL29tbo0aN0r59++zOkZ2drSlTpiggIEBBQUG64447VFhYaHfMtm3bNHToUHl5eSk2NlbPPfdck3w+1M5qterRRx9Vhw4d5O3trU6dOumpp57S6X24uA5alpUrV2r8+PGKiYmRxWLRggUL7PY35c/7k08+UZcuXeTl5aWePXtq4cKFDf55Wz0Dppg/f77h4eFhvPfee8bOnTuNu+66ywgKCjLS09PNLg31NHr0aGPOnDnGjh07jC1bthhjx4412rVrZxQWFtqO+e1vf2vExsYaS5cuNTZs2GAMGjTISEpKsu2vrKw0evToYYwaNcrYvHmzsXDhQiMsLMyYOXOm7ZiDBw8aPj4+xkMPPWTs2rXLeO211wxXV1fj+++/b9LPC8fWrVtnxMXFGb169TIefPBB23augZYtOzvbaN++vTFt2jTj559/Ng4ePGgsWrTI2L9/v+2Y2bNnG4GBgcaCBQuMrVu3GhMmTDA6dOhglJSU2I4ZM2aM0bt3b+Onn34yVq1aZcTHxxuTJ0+27c/LyzMiIyONKVOmGDt27DA+/PBDw9vb23j77beb9PPi7J5++mkjNDTU+Oabb4xDhw4Zn3zyieHn52e88sortmO4DlqWhQsXGn/5y1+Mzz//3JBkfPHFF3b7m+rn/eOPPxqurq7Gc889Z+zatcv461//ari7uxvbt29v9O+gNSE4meTiiy82pk+fbntutVqNmJgYY9asWSZWhYaQkZFhSDJWrFhhGIZh5ObmGu7u7sYnn3xiO2b37t2GJGPt2rWGYVT/h9fFxcVIS0uzHfPmm28aAQEBRllZmWEYhvGHP/zB6N69u917TZo0yRg9enRjfyTUUUFBgZGQkGAsXrzYGD58uC04cQ20fH/84x+NSy655Jz7q6qqjKioKOP555+3bcvNzTU8PT2NDz/80DAMw9i1a5chyVi/fr3tmO+++86wWCzG8ePHDcMwjDfeeMMIDg62XRM1752YmNjQHwnnYdy4ccbtt99ut+3aa681pkyZYhgG10FL9+vg1JQ/7xtvvNEYN26cXT0DBw407rnnngb9jK0dU/VMUF5ero0bN2rUqFG2bS4uLho1apTWrl1rYmVoCHl5eZKkkJAQSdLGjRtVUVFh9/Pu0qWL2rVrZ/t5r127Vj179lRkZKTtmNGjRys/P187d+60HXP6OWqO4ZpxHtOnT9e4cePO+DlxDbR8X331lQYMGKAbbrhBERER6tu3r959913b/kOHDiktLc3u5xcYGKiBAwfaXQNBQUEaMGCA7ZhRo0bJxcVFP//8s+2YYcOGycPDw3bM6NGjlZycrJycnMb+mKhFUlKSli5dqr1790qStm7dqtWrV+vKK6+UxHXQ2jTlz5v/PzQNgpMJsrKyZLVa7X5BkqTIyEilpaWZVBUaQlVVlWbMmKEhQ4aoR48ekqS0tDR5eHgoKCjI7tjTf95paWlnvR5q9jk6Jj8/XyUlJY3xcVAP8+fP16ZNmzRr1qwz9nENtHwHDx7Um2++qYSEBC1atEj33nuvHnjgAb3//vuSfvkZOvrvflpamiIiIuz2u7m5KSQkpF7XCczzpz/9STfddJO6dOkid3d39e3bVzNmzNCUKVMkcR20Nk358z7XMVwPDcvN7AKAlmT69OnasWOHVq9ebXYpaEJHjx7Vgw8+qMWLF8vLy8vscmCCqqoqDRgwQM8884wkqW/fvtqxY4feeust3XrrrSZXh6by8ccf67///a/mzZun7t27a8uWLZoxY4ZiYmK4DoAWgBEnE4SFhcnV1fWMjlrp6emKiooyqSpcqPvvv1/ffPONli1bprZt29q2R0VFqby8XLm5uXbHn/7zjoqKOuv1ULPP0TEBAQHy9vZu6I+Deti4caMyMjLUr18/ubm5yc3NTStWrNCrr74qNzc3RUZGcg20cNHR0erWrZvdtq5duyolJUXSLz9DR//dj4qKUkZGht3+yspKZWdn1+s6gXl+//vf20adevbsqVtuuUX/7//9P9tINNdB69KUP+9zHcP10LAITibw8PBQ//79tXTpUtu2qqoqLV26VIMHDzaxMpwPwzB0//3364svvtAPP/ygDh062O3v37+/3N3d7X7eycnJSklJsf28Bw8erO3bt9v9x3Px4sUKCAiw/TI2ePBgu3PUHMM1Y76RI0dq+/bt2rJli+0xYMAATZkyxfZnroGWbciQIWfchmDv3r1q3769JKlDhw6Kioqy+/nl5+fr559/trsGcnNztXHjRtsxP/zwg6qqqjRw4EDbMStXrlRFRYXtmMWLFysxMVHBwcGN9vlQN8XFxXJxsf/VytXVVVVVVZK4Dlqbpvx58/+HJmJ2d4rWav78+Yanp6cxd+5cY9euXcbdd99tBAUF2XXUQvNw7733GoGBgcby5cuN1NRU26O4uNh2zG9/+1ujXbt2xg8//GBs2LDBGDx4sDF48GDb/ppW1FdccYWxZcsW4/vvvzfCw8PP2or697//vbF7927j9ddfpxW1Ezu9q55hcA20dOvWrTPc3NyMp59+2ti3b5/x3//+1/Dx8TH+85//2I6ZPXu2ERQUZHz55ZfGtm3bjKuvvvqsbYn79u1r/Pzzz8bq1auNhIQEu7bEubm5RmRkpHHLLbcYO3bsMObPn2/4+PjQhtpJ3HrrrUabNm1s7cg///xzIywszPjDH/5gO4broGUpKCgwNm/ebGzevNmQZLz00kvG5s2bjSNHjhiG0XQ/7x9//NFwc3MzXnjhBWP37t3G3/72N9qRNwKCk4lee+01o127doaHh4dx8cUXGz/99JPZJeE8SDrrY86cObZjSkpKjPvuu88IDg42fHx8jGuuucZITU21O8/hw4eNK6+80vD29jbCwsKMhx9+2KioqLA7ZtmyZUafPn0MDw8Po2PHjnbvAefy6+DENdDyff3110aPHj0MT09Po0uXLsY777xjt7+qqsp49NFHjcjISMPT09MYOXKkkZycbHfMyZMnjcmTJxt+fn5GQECAcdtttxkFBQV2x2zdutW45JJLDE9PT6NNmzbG7NmzG/2zoW7y8/ONBx980GjXrp3h5eVldOzY0fjLX/5i10aa66BlWbZs2Vl/B7j11lsNw2jan/fHH39sdO7c2fDw8DC6d+9ufPvtt432uVsri2GcdjtrAAAAAMAZWOMEAAAAALUgOAEAAABALQhOAAAAAFALghMAAAAA1ILgBAAAAAC1IDgBAAAAQC0ITgAAAABQC4ITAAAAANSC4AQAaFamTZumiRMnml0GAKCVcTO7AAAAalgsFof7//a3v+mVV16RYRhNVNGZVqxYoZtvvllHjx41rQYAQNMjOAEAnEZqaqrtzx999JEee+wxJScn27b5+fnJz8/PjNJsvvzyS40fP97UGgAATY+pegAApxEVFWV7BAYGymKx2G3z8/M7Y6reiBEj9Lvf/U4zZsxQcHCwIiMj9e6776qoqEi33Xab/P39FR8fr++++87uvXbs2KErr7xSfn5+ioyM1C233KKsrKxaa/zqq680YcKEs+47cuSIxo8fr+DgYPn6+qp79+5auHDhBX0nAADnQHACADR777//vsLCwrRu3Tr97ne/07333qsbbrhBSUlJ2rRpk6644grdcsstKi4uliTl5ubqsssuU9++fbVhwwZ9//33Sk9P14033ujwfXbu3KmMjAxddtllZ90/ffp0lZWVaeXKldq+fbueffZZ00fIAAANg6l6AIBmr3fv3vrrX/8qSZo5c6Zmz56tsLAw3XXXXZKkxx57TG+++aa2bdumQYMG6R//+If69u2rZ555xnaO9957T7Gxsdq7d686d+581vf58ssvNXr0aHl4eJx1f0pKiq677jr17NlTktSxY8eG/JgAABMx4gQAaPZ69epl+7Orq6tCQ0Nt4UWSIiMjJUkZGRmSpK1bt2rZsmW2NVN+fn7q0qWLJOnAgQPnfJ8vv/zynNP0JOmBBx7Q3//+dw0ZMkR/+9vftG3btgv6XAAA50FwAgA0e+7u7nbPLRaL3baabn1VVVWSpMLCQo0fP15btmyxe+zbt0/Dhg0763ukpqZq8+bNGjdu3DnruPPOO3Xw4EHdcsst2r59uwYMGKDXXnvtQj8eAMAJEJwAAK1Ov379tHPnTsXFxSk+Pt7u4evre9bXfP3110pKSlJISIjDc8fGxuq3v/2tPv/8cz388MN69913G+MjAACaGMEJANDqTJ8+XdnZ2Zo8ebLWr1+vAwcOaNGiRbrttttktVrP+hpH3fRqzJgxQ4sWLdKhQ4e0adMmLVu2TF27dm2MjwAAaGIEJwBAqxMTE6Mff/xRVqtVV1xxhXr27KkZM2YoKChILi5n/q+xqKhIS5curTU4Wa1WTZ8+XV27dtWYMWPUuXNnvfHGG431MQAATchimHn7dQAAmoHPP/9cf/3rX7Vr1y6zSwEAmIQRJwAAauHn56dnn33W7DIAACZixAkAAAAAasGIEwAAAADUguAEAAAAALUgOAEAAABALQhOAAAAAFALghMAAAAA1ILgBAAAAAC1IDgBAAAAQC0ITgAAAABQC4ITAAAAANTi/wMPiSjEF+6LlQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Extract column names for 'Time' and 'CellVoltage' based on propertyUrl\n", "time_column = None\n", @@ -387,28 +407,21 @@ " plt.show()\n", "else:\n", " print(\"Required columns not found in metadata.\")\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 564 - }, - "id": "YgHzwFzwn1TB", - "outputId": "b5436c51-7d2a-441d-88ff-763bc550198b" - }, - "execution_count": 69, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAAIjCAYAAAA0vUuxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABoX0lEQVR4nO3dd3hUZf7+8XvSe+8QCJAQelcgSFFQEASxIosi9lVc5aduYXd1Latg/VrWvivo7iJ2bCgLSBWU3iF0QkklvSeT8/sjZGQEJgkkOZPk/bquuWTOOXPmM5Oj5uZ5ns+xGIZhCAAAAABwTi5mFwAAAAAAzo7gBAAAAAC1IDgBAAAAQC0ITgAAAABQC4ITAAAAANSC4AQAAAAAtSA4AQAAAEAtCE4AAAAAUAuCEwAAAADUguAEAGgQhw8flsVi0dy5c80updlavny5LBaLli9fbnYpAIBfITgBQCs0YcIE+fj4qKCg4JzHTJkyRR4eHjp58uR5v8/ChQv1+OOPn/frW4Jp06bJYrHU+pg2bZrZpQIAHHAzuwAAQNObMmWKvv76a33xxReaOnXqGfuLi4v15ZdfasyYMQoNDT3v91m4cKFef/31Vh2e7rnnHo0aNcr2/NChQ3rsscd09913a+jQobbtnTp10sCBA1VSUiIPDw8zSgUAOEBwAoBWaMKECfL399e8efPOGpy+/PJLFRUVacqUKSZU17IMHjxYgwcPtj3fsGGDHnvsMQ0ePFg333zzGcd7eXk1ZXkAgDpiqh4AtELe3t669tprtXTpUmVkZJyxf968efL399eECRMkSQcPHtQNN9ygkJAQ+fj4aNCgQfr2228dvse0adP0+uuvS5LdlLQaL7zwgpKSkhQaGipvb2/1799fn3766RnnKSkp0QMPPKCwsDBbTcePH5fFYjljJOv48eO6/fbbFRkZKU9PT3Xv3l3vvfderd9Hjx49dOmll56xvaqqSm3atNH1119v2zZ//nz1799f/v7+CggIUM+ePfXKK6/U+h51cbY1TiNGjFCPHj20bds2DR8+XD4+PoqPj7d9VytWrNDAgQPl7e2txMRELVmy5Izznu/3AgD4BcEJAFqpKVOmqLKyUh9//LHd9uzsbC1atEjXXHONvL29lZ6erqSkJC1atEj33Xefnn76aZWWlmrChAn64osvznn+e+65R5dffrkk6d///rftUeOVV15R37599eSTT+qZZ56Rm5ubbrjhhjMC2bRp0/Taa69p7NixevbZZ+Xt7a1x48ad8X7p6ekaNGiQlixZovvvv1+vvPKK4uPjdccdd+jll192+F1MmjRJK1euVFpamt321atX68SJE7rpppskSYsXL9bkyZMVHBysZ599VrNnz9aIESP0448/Ojz/hcrJydFVV12lgQMH6rnnnpOnp6duuukmffTRR7rppps0duxYzZ49W0VFRbr++uvt1q5dyPcCADiNAQBolSorK43o6Ghj8ODBdtvfeustQ5KxaNEiwzAMY8aMGYYkY9WqVbZjCgoKjA4dOhhxcXGG1Wo1DMMwDh06ZEgy5syZYztu+vTpxrn+V1NcXGz3vLy83OjRo4dx2WWX2bZt3LjRkGTMmDHD7thp06YZkoy//e1vtm133HGHER0dbWRlZdkde9NNNxmBgYFnvN/pkpOTDUnGa6+9Zrf9vvvuM/z8/GyvffDBB42AgACjsrLynOeqzfr168/4nmosW7bMkGQsW7bMtm348OGGJGPevHm2bXv27DEkGS4uLsZPP/1k275o0aIzzn0h3wsA4BeMOAFAK+Xq6qqbbrpJa9eu1eHDh23b582bp8jISI0cOVJSdYOHiy++WJdccontGD8/P9199906fPiwdu3adV7v7+3tbftzTk6O8vLyNHToUG3atMm2/fvvv5ck3XfffXav/d3vfmf33DAMffbZZxo/frwMw1BWVpbtMXr0aOXl5dmd99c6d+6sPn366KOPPrJts1qt+vTTTzV+/HhbrUFBQSoqKtLixYvP6zOfLz8/P9uolyQlJiYqKChIXbt21cCBA23ba/588OBBSRf+vQAAfkFwAoBWrKb5w7x58yRJx44d06pVq3TTTTfJ1dVVknTkyBElJiae8dquXbva9p+Pb775RoMGDZKXl5dCQkIUHh6uN998U3l5ebZjjhw5IhcXF3Xo0MHutfHx8XbPMzMzlZubq3feeUfh4eF2j9tuu02SzrqW63STJk3Sjz/+qOPHj0uqXm+UkZGhSZMm2Y6577771LlzZ1155ZVq27atbr/9dlu4a0xt27a1Wx8mSYGBgYqNjT1jm1QdRKWG+V4AANXoqgcArVj//v3VpUsXffjhh/rzn/+sDz/8UIZhNHo3vVWrVmnChAkaNmyY3njjDUVHR8vd3V1z5syxhbj6qKqqkiTdfPPNuvXWW896TK9evRyeY9KkSZo5c6Y++eQTzZgxQx9//LECAwM1ZswY2zERERHasmWLFi1apO+++07fffed5syZo6lTp+r999+vd911VRNi67rdMAxJDfO9AACqEZwAoJWbMmWKHn30UW3btk3z5s1TQkKCLrroItv+9u3bKzk5+YzX7dmzx7b/XH49SlLjs88+k5eXlxYtWiRPT0/b9jlz5tgd1759e1VVVenQoUNKSEiwbd+/f7/dceHh4fL395fVarW7Z1J9dOjQQRdffLE++ugj3X///fr88881ceJEu/okycPDQ+PHj9f48eNVVVWl++67T2+//bYeffTRM0bCzNYQ3wsAoBpT9QCglasZXXrssce0ZcuWM0abxo4dq3Xr1mnt2rW2bUVFRXrnnXcUFxenbt26nfPcvr6+kqTc3Fy77a6urrJYLLJarbZthw8f1oIFC+yOGz16tCTpjTfesNv+2muvnXG+6667Tp999pl27NhxRh2ZmZnnrPF0kyZN0k8//aT33ntPWVlZdtP0JOnkyZN2z11cXGwjNmVlZXV6j6bUUN8LAIARJwBo9Tp06KCkpCR9+eWXknRGcPrTn/6kDz/8UFdeeaUeeOABhYSE6P3339ehQ4f02WefycXl3H8H179/f0nSAw88oNGjR9saUowbN04vvfSSxowZo9/85jfKyMjQ66+/rvj4eG3bts3u9dddd51efvllnTx5UoMGDdKKFSu0d+9eSfYjWrNnz9ayZcs0cOBA3XXXXerWrZuys7O1adMmLVmyRNnZ2bV+FzfeeKMeeeQRPfLIIwoJCTljlObOO+9Udna2LrvsMrVt21ZHjhzRa6+9pj59+tjWfDmbhvheAACMOAEA9EtYuvjii8+YbhYZGak1a9bo8ssv12uvvaaZM2fKw8NDX3/9ta655hqH57322mv1u9/9Tt9//71uueUWTZ48WZJ02WWX6V//+pfS0tI0Y8YMffjhh3r22WfPer4PPvhA06dP17fffqs//vGPKi8vt3W/8/Lysqtz3bp1uu222/T555/b7lmUnZ2tZ599tk7fQ9u2bZWUlKSCggJde+21cnd3t9t/8803y8vLS2+88Ybuu+8+vf/++5o0aZK+++47hwHSTA3xvQAAJItRs4IUAIBmYsuWLerbt6/+85//NHojCwAAJEacAABOrqSk5IxtL7/8slxcXDRs2DATKgIAtEascQIAOLXnnntOGzdu1KWXXio3NzdbG/C77777jPsYAQDQWJiqBwBwaosXL9YTTzyhXbt2qbCwUO3atdMtt9yiv/zlL3Jz4+//AABNg+AEAAAAALVgjRMAAAAA1ILgBAAAAAC1aHWTw6uqqnTixAn5+/vb3TgRAAAAQOtiGIYKCgoUExNT6/34Wl1wOnHiBF2YAAAAANgcPXpUbdu2dXhMqwtO/v7+kqq/nICAAJOrAQAAAGCW/Px8xcbG2jKCI60uONVMzwsICCA4AQAAAKjTEh6aQwAAAABALQhOAAAAAFALghMAAAAA1KLVrXECAACAOQzDUGVlpaxWq9mloJVwdXWVm5tbg9yGiOAEAACARldeXq7U1FQVFxebXQpaGR8fH0VHR8vDw+OCzkNwAgAAQKOqqqrSoUOH5OrqqpiYGHl4eDTICADgiGEYKi8vV2Zmpg4dOqSEhIRab3LrCMEJAAAAjaq8vFxVVVWKjY2Vj4+P2eWgFfH29pa7u7uOHDmi8vJyeXl5nfe5aA4BAACAJnEhf9sPnK+Guu64egEAAACgFgQnAAAAAKgFwQkAAABoJHFxcXr55ZfNLsMpLF++XBaLRbm5uWaXcl4ITgAAAMCvjB8/XmPGjDnrvlWrVslisWjbtm31Pq/FYtGCBQsusDrnM23aNFkslnM+4uLilJSUpNTUVAUGBppd7nkhOAEAAAC/cscdd2jx4sU6duzYGfvmzJmjAQMGqFevXiZU5pxeeeUVpaam2h5S9fdU83z9+vXy8PBQVFRUs21FT3ACAABAkzIMQ8XllaY8DMOoU41XXXWVwsPDNXfuXLvthYWF+uSTT3THHXdIkj777DN1795dnp6eiouL04svvnjOc8bFxUmSrrnmGtsojCQdOHBAV199tSIjI+Xn56eLLrpIS5YssXttamqqxo0bJ29vb3Xo0EHz5s07Yxpgbm6u7rzzToWHhysgIECXXXaZtm7des56kpKS9Mc//tFuW2Zmptzd3bVy5UpJ0htvvKGEhAR5eXkpMjJS119//VnPFRgYqKioKNtDkoKCgmzPw8PDz5iqN3fuXAUFBembb75RYmKifHx8dP3116u4uFjvv/++4uLiFBwcrAceeEBWq9X2XmVlZXrkkUfUpk0b+fr6auDAgVq+fPk5P2dD4T5OAAAAaFIlFVZ1e2yRKe+968nR8vGo/VdgNzc3TZ06VXPnztVf/vIX2yjJJ598IqvVqsmTJ2vjxo268cYb9fjjj2vSpElas2aN7rvvPoWGhmratGlnnHP9+vWKiIjQnDlzNGbMGLm6ukqqDmNjx47V008/LU9PT33wwQcaP368kpOT1a5dO0nS1KlTlZWVpeXLl8vd3V0PPfSQMjIy7M5/ww03yNvbW999950CAwP19ttva+TIkdq7d69CQkLOqGfKlCl67rnnNHv2bNvn++ijjxQTE6OhQ4dqw4YNeuCBB/Tvf/9bSUlJys7O1qpVq+r1fdemuLhYr776qubPn6+CggJde+21uuaaaxQUFKSFCxfq4MGDuu666zRkyBBNmjRJknT//fdr165dmj9/vmJiYvTFF19ozJgx2r59uxISEhq0vtMRnAAAAICzuP322/X8889rxYoVGjFihKTq6WfXXXedAgMD9dJLL2nkyJF69NFHJUmdO3fWrl279Pzzz581OIWHh0v6ZSSmRu/evdW7d2/b86eeekpffPGFvvrqK91///3as2ePlixZovXr12vAgAGSpH/+8592IWH16tVat26dMjIy5OnpKUl64YUXtGDBAn366ae6++67z6jnxhtv1IwZM7R69WoNHTpUkjRv3jxNnjxZFotFKSkp8vX11VVXXSV/f3+1b99effv2vYBv9EwVFRV688031alTJ0nS9ddfr3//+99KT0+Xn5+funXrpksvvVTLli3TpEmTlJKSojlz5iglJUUxMTGSpEceeUTff/+95syZo2eeeaZB6zsdwclEm1NylJZXqm4xAWof6mt2OQAAAE3C291Vu54cbdp711WXLl2UlJSk9957TyNGjND+/fu1atUqPfnkk5Kk3bt36+qrr7Z7zZAhQ/Tyyy/LarXaRpRqU1hYqMcff1zffvutUlNTVVlZqZKSEqWkpEiSkpOT5ebmpn79+tleEx8fr+DgYNvzrVu3qrCwUKGhoXbnLikp0YEDB876vuHh4briiiv03//+V0OHDtWhQ4e0du1avf3225Kkyy+/XO3bt1fHjh01ZswYjRkzRtdcc418fHzq9LnqwsfHxxaaJCkyMlJxcXHy8/Oz21YzurZ9+3ZZrVZ17tzZ7jxlZWVnfPaGRnAy0burDmrh9jQ9eXV3TR1McAIAAK2DxWKp03Q5Z3DHHXfod7/7nV5//XXNmTNHnTp10vDhwxv0PR555BEtXrxYL7zwguLj4+Xt7a3rr79e5eXldT5HYWGhoqOjz7rWJygo6JyvmzJlih544AG99tprmjdvnnr27KmePXtKkvz9/bVp0yYtX75c//vf//TYY4/p8ccf1/r16x2esz7c3d3tnlsslrNuq6qqklT9OV1dXbVx48YzgunpYasx0BzCRDVzSauq6rZIEQAAAE3rxhtvlIuLi+bNm6cPPvhAt99+u+13uK5du+rHH3+0O/7HH39U586dzzna5O7ubtfooOY106ZN0zXXXKOePXsqKipKhw8ftu1PTExUZWWlNm/ebNu2f/9+5eTk2J7369dPaWlpcnNzU3x8vN0jLCzsnJ/v6quvVmlpqb7//nvNmzdPU6ZMsdvv5uamUaNG6bnnntO2bdt0+PBh/fDDD46/tEbUt29fWa1WZWRknPE5T5/+2BgITiZyOfUvnZXcBAAA4JT8/Pw0adIkzZw5U6mpqXZrlx5++GEtXbpUTz31lPbu3av3339f//jHP/TII4+c83xxcXFaunSp0tLSbMEnISFBn3/+ubZs2aKtW7fqN7/5jW2ERaqeMjhq1CjdfffdWrdunTZv3qy7775b3t7ethA3atQoDR48WBMnTtT//vc/HT58WGvWrNFf/vIXbdiw4Zz1+Pr6auLEiXr00Ue1e/duTZ482bbvm2++0auvvqotW7boyJEj+uCDD1RVVaXExMTz/TovWOfOnTVlyhRNnTpVn3/+uQ4dOqR169Zp1qxZ+vbbbxv1vQlOJnI91cK+rm0xAQAA0PTuuOMO5eTkaPTo0baGBFL1KM/HH3+s+fPnq0ePHnrsscf05JNPnrUxRI0XX3xRixcvVmxsrK3RwksvvaTg4GAlJSVp/PjxGj16tN16Jkn64IMPFBkZqWHDhumaa67RXXfdJX9/f3l5eUmqnsm0cOFCDRs2TLfddps6d+6sm266SUeOHFFkZKTDzzdlyhRt3bpVQ4cOtXXxk6qn+H3++ee67LLL1LVrV7311lv68MMP1b179/p+hQ1qzpw5mjp1qh5++GElJiZq4sSJWr9+vV3tjcFitLLf2vPz8xUYGKi8vDwFBASYWstDH23R55uP689ju+juYZ1qfwEAAEAzVFpaqkOHDqlDhw62X/RxYY4dO6bY2FgtWbJEI0eONLscp+bo+qtPNmgeq/JaKNsap1YVXQEAAFBfP/zwgwoLC9WzZ0+lpqbqD3/4g+Li4jRs2DCzS2s1CE4mcjk1Va+qdQ36AQAAoJ4qKir05z//WQcPHpS/v7+SkpL03//+94wOdGg8BCcT1TSHIDcBAADAkdGjR2v0aHPufYVqNIcwkcupb5925AAAAIBzIziZiDVOAACgNWllPcngJBrquiM4mahmjZOV/4gAAIAWrGYdTnFxscmVoDWque4udD0Ya5xM9MsaJ4ITAABouVxdXRUUFKSMjAxJko+Pj23mDdBYDMNQcXGxMjIyFBQUJFdX1ws6H8HJRC62qXoEJwAA0LJFRUVJki08AU0lKCjIdv1dCIKTiVxY4wQAAFoJi8Wi6OhoRUREqKKiwuxy0Eq4u7tf8EhTDYKTibiPEwAAaG1cXV0b7BdZoCnRHMJELi7cxwkAAABoDghOJqpZE8l9nAAAAADnRnAyUc0aJ9qRAwAAAM6N4GSimjVO5CYAAADAuRGcTEQ7cgAAAKB5IDiZyNOt+usvKK00uRIAAAAAjhCcTNQtJkCStP5wtgxGnQAAAACnRXAy0aCOofJ0c9GxnBLtPJFvdjkAAAAAzoHgZCIfDzdd3i1SkjR3zWFziwEAAABwTgQnk91xSQdJ0ldbTuhAZqHJ1QAAAAA4G4KTyfq2C9awzuEqt1bp4Y+3qtJaZXZJAAAAAH6F4OQEZl/bU/5ebtpyNFev/bDf7HIAAAAA/ArByQnEBHnr8fHdJUmvLN2n2d/tUVUVXfYAAAAAZ0FwchLX9mujhy/vLEl6a8UBPfjRFpVVWk2uCgAAAIBEcHIaFotFvxuZoBdv6C03F4u+3npCt/xznY5mF5tdGgAAANDqEZyczHX92+r92y+Wv6eb1h3O1sgXV+iZhbuVV1xhdmkAAABAq0VwckJD4sP0xfQhuiQ+TOXWKr2z8qCGv7BMry7dxwgUAAAAYAKLYRitqgtBfn6+AgMDlZeXp4CAALPLccgwDC3fm6lnvt2tfRm/3ONpUMcQTezTRkPiwxQb4mNihQAAAEDzVZ9sQHBqBiqtVfp62wl9suGY1h48qdN/Ym2CvHVxhxD1bBOohEg/xUf4KSrASxaLxbyCAQAAgGaA4ORAcwxOpzueW6IFm49rye50bT+Wp8qztC338XBVVKCXogO9FBngpRAfDwV4uyvQ210B3m4K8Kr5s7v8PN3k5+UmXw83uboQtgAAANB6NMvgNHv2bM2cOVMPPvigXn755XMe98knn+jRRx/V4cOHlZCQoGeffVZjx46t8/s09+B0uuLySm06kqt1h7OVnJavfRmFOnKyWNbzvAeUr4erfE8FKf/TApWfV3XYCvX1UKifp0L9POz+7O/pxggXAAAAmp36ZAO3JqrJofXr1+vtt99Wr169HB63Zs0aTZ48WbNmzdJVV12lefPmaeLEidq0aZN69OjRRNU6Dx8PN12SEKZLEsJs28orq3Qsp1hp+aVKzy9VWl6ZcovLlV9aofySSuWVVCi/tEJ5JdWPwtJK26hVUblVReVWZRSU1asOTzcXtQ32VttgH8WGVP+zbbC3YoN91D7UR0E+Hg36uQEAAICmZvqIU2Fhofr166c33nhDf//739WnT59zjjhNmjRJRUVF+uabb2zbBg0apD59+uitt96q0/u1pBGnhmAYhsoqq1RYVqmiskoVlFba/lx46nlRWaVySyqUXViuk0XlOllUppOF5couKldhWWWt7xHh76nEKH91jvRXYqS/Okf5KyHCT76eTpHbAQAA0Eo1qxGn6dOna9y4cRo1apT+/ve/Ozx27dq1euihh+y2jR49WgsWLDjna8rKylRW9ssISn5+/gXV29JYLBZ5ubvKy91VYX6e9X59aYVV6fmlOpZTomM5xTqafeqfOSU6ml2sjIIy22PVviy717YP9VHvtkHqExukPu2C1C06QF7urg310QAAAIAGY2pwmj9/vjZt2qT169fX6fi0tDRFRkbabYuMjFRaWto5XzNr1iw98cQTF1Qnzs3L3VXtQ33VPtT3rPsLyyq1L71Ae9MLlJxWWP3P9AJlFpTpyMliHTlZrK+2npAkubta1DU6QH1ig9SvXbAGdgxRdKB3U34cAAAA4KxMC05Hjx7Vgw8+qMWLF8vLy6vR3mfmzJl2o1T5+fmKjY1ttPeDPT9PN/VtF6y+7YLttmcXlWvH8TxtOZpre2QXlWvbsTxtO5anD9YekVQ9KjWwQ4gGdQzVwI6hahNEkAIAAEDTMy04bdy4URkZGerXr59tm9Vq1cqVK/WPf/xDZWVlcnW1n7YVFRWl9PR0u23p6emKioo65/t4enrK07P+U9DQuEJ8PTSsc7iGdQ6XVL3W6lhOiTYfzdWWlFxtOJKtHcfzbKNSH284JkmKDfHW4I6hGpoQrkviwxTsS+MJAAAAND7TmkMUFBToyJEjdttuu+02denSRX/84x/P2iVv0qRJKi4u1tdff23blpSUpF69etEcogXKL63QxsM5+unQSf10sDpInd5q3WKRerUN0rCEMA3rHK6+sUFyc3UxsWIAAAA0J83yPk6SNGLECLuuelOnTlWbNm00a9YsSdXtyIcPH67Zs2dr3Lhxmj9/vp555pl6tSMnODVfhWWV2nA4Wz/uz9LKvVlKTi+w2+/v6aak+NDqkayEcMWG+JhUKQAAAJqDZtVVz5GUlBS5uPwygpCUlKR58+bpr3/9q/785z8rISFBCxYsaJX3cGqN/DzdNCIxQiMSI/SXcVJaXqlW7svUqn1ZWr0vUznFFVq0M12LdlZP5+wQ5qvhncN1aZcIDewQQsc+AAAAnDenGnFqCow4tUzWKkM7judp5d5MrdyXqU0puXbT+rzcXTSkU5hGJIZrRGIEo1EAAABovlP1mgLBqXUoKK3Qj/tPasXeDC3bk6m0/FK7/fERfhpxajTqorgQebixNgoAAKC1ITg5QHBqfQzD0J60Ai1PztSy5AxtPJJjNxrl6+GqIfFhurRLhEYkhnPvKAAAgFaC4OQAwQl5JRVavS9Ly5MztCw5U1mFZXb7u0T5n1pLFa7+7YPlTqc+AACAFong5ADBCaerqjK0KzVfy/ZkaPneTG1OydFpg1Hy93TT0M5h1UGqc7giAhrvZs0AAABoWgQnBwhOcCSnqFwr92VqeXKmVuzNVHZRud3+7jEBujQxQpd2CVef2GC5ulhMqhQAAAAXiuDkAMEJdWWtMrT9eF71aFRyhrYdz9Pp/7YE+bhraEK4Lk0M1/DO4Qr18zSvWAAAANQbwckBghPOV1ZhmVbuzdSy5Eyt3JupvJIK2z6LRerVNsjWqa9Xm0C5MBoFAADg1AhODhCc0BAqrVXaeixXy/ZUd+rbeSLfbn+or4eGdw7X8MRwDUsIV7Cvh0mVAgAA4FwITg4QnNAYMvJLtXxvppYnZ2jV3iwVlFXa9rlYpL7tgnXpqZvvdosOYDQKAADACRCcHCA4obFVWKu08UiOlidXB6k9aQV2+8P9PW1T+i5JCFOAl7tJlQIAALRuBCcHCE5oaidyS2whavX+LBWXW237XF0s6t8+WMM7h2toQpi6xwTSqQ8AAKCJEJwcIDjBTGWVVm04nGO7b9T+jEK7/cE+7hoSH6ZhCeG6JCFMMUHeJlUKAADQ8hGcHCA4wZkczS7W8r2ZWr0vU2v2n7RbGyVJ8RF+uiQ+TMM6h2lgh1D5erqZVCkAAEDLQ3BygOAEZ1XTqW/l3iyt2pepLUdzVXXav53urtXT+oYmVHfq6x5DkwkAAIALQXBygOCE5iKvpEJrD2Rp5b4srdybqWM5JXb7Q3w9NCQ+TEMTqh/RgUzrAwAAqA+CkwMEJzRHhmHoyMlirdqXqZX7srT2wEkV/mpaX0KEn4YmhGto5zAN7BAiHw+m9QEAADhCcHKA4ISWoMJapS1Hc7Vqb3WQ2nbMflqfh6uLBsRVT+sbmhDGvaMAAADOguDkAMEJLVFucbnWHDhZPSK1N0vHc+2n9YXaTesLV1Sgl0mVAgAAOA+CkwMEJ7R0hmHoUFaRVu/P0sq9WVp7IEtFp907SpI6R/rZRqMGdgiVt4erSdUCAACYh+DkAMEJrU2FtUqbU3Jt66O2HcuV8atpfRd1sJ/WZ7EwrQ8AALR8BCcHCE5o7XKKTp/Wl6kTeaV2+6MCvHRpl3Bd1iVSQ+JDaTIBAABaLIKTAwQn4BeGYehgVpGtycTaAydVUvHLtD4PNxcN7hiqkV0jdGlihGJDfEysFgAAoGERnBwgOAHnVlph1U8HT2rZngwt3ZNxxr2jOkf66dIuERrZJVL92gXJzdXFpEoBAAAuHMHJAYITUDeGYWh/RqGW7snQD3sytPFIjqyn9TwP9nHX5d0iNbp7lIbEh8nLnQYTAACgeSE4OUBwAs5PXnGFVuzL1A+707V8b6Zyiyts+3w9XHVplwiN7h6lS7tEyM+TdVEAAMD5EZwcIDgBF67SWqV1h7O1aEeaFu1MV1r+Lw0mPNxcdEl8mMZ0j9KobpEK8fUwsVIAAIBzIzg5QHACGlZVlaFtx/P0/Y40LdqZpkNZRbZ9LhZpYIdQje8do7E9oxTkQ4gCAADOg+DkAMEJaDyGYWhfRqEtRO08kW/b5+5q0fDO4RrfO0aXd4ukzTkAADAdwckBghPQdI5mF+vb7an6cssJ7U79JUR5u7vq8m6RmtA7RsM6h8vDje58AACg6RGcHCA4AebYl16gr7ae0JdbTiglu9i2PdDbXWN7RmlC7zYa2CFELi4WE6sEAACtCcHJAYITYC7DMLT1WJ6+3HJc32xLVWZBmW1fdKCXJvSJ0TV926hLFP9+AgCAxkVwcoDgBDgPa5Whnw6e1FdbTmjhjlQVlFba9nWJ8tfEvm10dZ8YRQd6m1glAABoqQhODhCcAOdUWmHV8uQMfbH5uJbtyVS5tUqSZLFIgzqE6pq+bTSmZ5QCvNxNrhQAALQUBCcHCE6A88srrtDCHan6YvNxrTuUbdvu4eaiUV0jNLFPG41IjKCpBAAAuCAEJwcITkDzciynWF9uOaEFm49rX0ahbXuQj7vG9ozWNX3bqH+7YJpKAACAeiM4OUBwAponwzC0KzVfCzYf15dbTijjV00lxvSI0tie0YQoAABQZwQnBwhOQPNnrTK09sBJfbH5uBbtTFNh2S9NJSL8PTWmR5Su7BGtizuEyJUQBQAAzoHg5ADBCWhZSiusWrUvS99tT9Xi3el2nfnC/Dx0Rfcoje0RrUEdQ+TmypooAADwC4KTAwQnoOUqq7Rqzf6TWrg9Vf/bla68kgrbvmAfd43qGqnLu0XqkoQw+Xi4mVgpAABwBgQnBwhOQOtQYa3S2gMn9d2OVC3ama7sonLbPk83F10SH6ZR3SI1skuEIgK8TKwUAACYheDkAMEJaH0qrVVadyhb/9uVrsW70nU8t8Ruf+/YIF3eNUKjukUqMdJfFgvrogAAaA0ITg4QnIDWzTAMJacXaMmudC3enaGtR3Pt9rcN9taorpEa1TVSF3cI4V5RAAC0YAQnBwhOAE6XkV+qpXsytGRXulbvz1JZZZVtn7+nm4YnhuvybpEa0TlCgT7uJlYKAAAaGsHJAYITgHMpKbdq9f4sLdmVrqV70pVV+Mu6KFcXiy6OC9GobpG6vGuk2oX6mFgpAABoCAQnBwhOAOqiqsrQlmO5WrIrXUt2p2tveqHd/sRIf13erbpLX882gdx0FwCAZojg5ADBCcD5OHKySEt2Z2jxrjStP5wja9Uv/+mMDPDUyFOtzgd3DJWXu6uJlQIAgLoiODlAcAJwoXKLy7UsOUOLd6VrRXKmisqttn2+Hq4a1rl6XdRlXSIU5ONhYqUAAMARgpMDBCcADams0qq1B05q8akpfen5ZbZ9ri4WDWgfrMu7ReqKblGsiwIAwMkQnBwgOAFoLIZhaPvxPC0+db+oPWkFdvs7R/qdWhcVpV6siwIAwHQEJwcITgCaytHsYluIWnc4225dVIR/9bqoK7pFanAn1kUBAGAGgpMDBCcAZsgrrrCti1qenGG3LsrHw1XDEsI16tS6qBBf1kUBANAUCE4OEJwAmK2s0qqfDmZr8a40LdmVobT8Uts+F4vUv32wRp3q0tcx3M/ESgEAaNkITg4QnAA4E8MwtON4vhbvTteSXenalZpvt79juK8u7xqpUd0i1a9dsFxZFwUAQIMhODlAcALgzI7nlmjp7up1UT8dPKkK6y//iQ7x9dCliRG6vFuEhiaEy9fTzcRKAQBo/ghODhCcADQXBaUVWrk3S0t2p+uHPRnKK6mw7fNwc9GQTqEa1S1SI7tEKirQy8RKAQBonghODhCcADRHFdYqbTicoyWnRqNSsovt9vdqG6hRXSM1qmukukb7y2JhSh8AALUhODlAcALQ3BmGof0ZhbZ1UZuP5ur0/5K3CfLWqK4RGtElQoM70uocAIBzITg5QHAC0NJkFpRp2Z4MLd6drlX7MlVaUWXb5+nmokEdQzUiMVwjEiPUIczXxEoBAHAuBCcHCE4AWrLSCqt+3J+lJbsztCI5QyfySu32x4X6aERihIYnhjMaBQBo9QhODhCcALQWhmFoX0ahlu3J0PLkTG04km3Xpa9mNGpY53ANTQhTQoQfa6MAAK0KwckBghOA1qqwrFI/7s/S8uTMs45GRfh76pL4MA2JD9MlCWGKDKBTHwCgZSM4OUBwAoBfRqOWJ2do1b4srTuUrbLKKrtjEiL8NCQ+TEMTwjSwY6j8uG8UAKCFITg5QHACgDOVVli16UiOVu/P0o/7s7TteJ5dpz43F4t6xwZpcMdQDeoYqn7tg+TjQZACADRvBCcHCE4AULvc4nKtPXDSFqQOn7S/b1RNkBrUMUQDO4Sqf/tg+TIiBQBoZghODhCcAKD+jmYXa82BLP18MFs/HTx5xvooNxeLerYN1KBTI1L92wcztQ8A4PQITg4QnADgwhiGoWM5JVp78KQtSB3PLbE7xsUidY0O0ID2wRoQF6IBccGKDvQ2qWIAAM6O4OQAwQkAGt7R7GL9dPCkfj5UHaSO5ZSccUybIG8NiDsVpNoHq3Okv1xdaH8OADAPwckBghMANL60vFJtOJKtDYdztOFItnadyFfVr/5v4+/lpn7tgnVRXLD6tw9Rn9ggeXtwQ14AQNMhODlAcAKApldYVqktKblafzhbG4/kaHNKjorKrXbHuLlY1D0mQP3aB6t/+2D1axesmCCm9wEAGg/ByQGCEwCYr9JapT1pBdpwOFvrj+Row+FspeeXnXFcdKBXdZBqF6x+7YPVLTpAHm4uJlQMAGiJCE4OEJwAwPnUNJzYlJKjTUdytDElR7tTC2T91fw+TzcX9W4bpH7tg9WvXfU/w/w8TaoaANDcEZwcIDgBQPNQXF6prUfztCklRxuP5GhTSo5yiyvOOC4u1OdUkKqe4kfTCQBAXRGcHCA4AUDzZBiGDmYVVYeoU0Fqb3rhGcf5ebqpb7sg9T0VpPrEBinQ292EigEAzo7g5ADBCQBajrziCm0+WhOkcs/adMJikRIi/GwNJ/q3D1aHMF9ZLIxKAUBrR3BygOAEAC2XtcpQclqBNqbkaPOptVJHThafcVywj7v6nWo40b99sHq3pRU6ALRGBCcHCE4A0LpkFpRVN5041Xhi67E8lVdW2R3j6mJRt+iA6lGpU40n2gR5MyoFAC0cwckBghMAtG7llVXaeSJPm1JytelI9Q16z9YKPTLA0za9r1/7YHWPCZCnG6NSANCSEJwcIDgBAE5nGIZO5JVWt0E/1XRi54n8M1qhe7i5qFebQPVvH6y+7YLVr32QIvy9TKoaANAQCE4OEJwAALUpKbdq27Fcbay5r9SRHOWcpRV6uxAfDWgfrEEdQzWoY6hiQ5jeBwDNCcHJAYITAKC+DMPQ4ZPF2lgzKnUkR3szCvTr/4O2CfLWwI4hGtQxVIM7hio2xMecggEAdUJwcoDgBABoCPmlFdqckqv1h7L108GT2nI0V5W/mt7XJsj71GhUiAZ3ClXbYIIUADgTgpMDBCcAQGMoLq/UxiM5+ungSf10MFtbzxKk4kJ9NDQhXEMTwjS4U6j8vbgxLwCYieDkAMEJANAUispOD1IntfVYnl3DCVcXi/q1C9Il8eEa2jlMvdoEys3VxcSKAaD1ITg5QHACAJihoLRCPx3M1qp9mVq9L0sHs4rs9gd4uWlIfJiGJoRrWOcwpvUBQBNoNsHpzTff1JtvvqnDhw9Lkrp3767HHntMV1555VmPnzt3rm677Ta7bZ6eniotLa3zexKcAADO4Gh2sVbvz7IFqfzSSrv9XaL8NbJrhC7rEqk+sUFydaFbHwA0tPpkA7cmqums2rZtq9mzZyshIUGGYej999/X1Vdfrc2bN6t79+5nfU1AQICSk5Ntz2n7CgBojmJDfDT54naafHE7WasMbTuWq9X7srRyX6Y2HsnRnrQC7Ukr0OvLDijU10OXdonQqK4RuiQhXH6epv7vGwBaJaebqhcSEqLnn39ed9xxxxn75s6dqxkzZig3N/e8z8+IEwDA2eUWl2t5cqaW7E7Xir2ZKjhtNMrD1UUDO4ZoVNdIXdYlgpbnAHABms2I0+msVqs++eQTFRUVafDgwec8rrCwUO3bt1dVVZX69eunZ5555pyjU5JUVlamsrIy2/P8/PwGrRsAgIYW5OOhiX3baGLfNqqwVmn94Wwt3Z2hpbvTdfhksVbty9KqfVn621c71aNNgK7sEa0re0SpY7if2aUDQItl+ojT9u3bNXjwYJWWlsrPz0/z5s3T2LFjz3rs2rVrtW/fPvXq1Ut5eXl64YUXtHLlSu3cuVNt27Y962sef/xxPfHEE2dsZ8QJANDcGIahA5lF+mFPupbsztCGw9k6veN5YqS/ruwZpbE9o5UQ4cd0dgCoRbNpDiFJ5eXlSklJUV5enj799FP985//1IoVK9StW7daX1tRUaGuXbtq8uTJeuqpp856zNlGnGJjYwlOAIBm72RhmRbvStfCHWlasz/L7r5RHcN9NbZHtK7sGaVu0QGEKAA4i2YVnH5t1KhR6tSpk95+++06HX/DDTfIzc1NH374YZ2OZ40TAKAlyiuu0OLd6fp+R6pW7s1SubXKtq9diI/G9ozWVb2i1T2GEAUANZrlGqcaVVVVdiNEjlitVm3fvv2cU/sAAGgtAn3cdX3/trq+f1sVlFbohz0ZWrg9VcuTM5WSXay3VhzQWysOKC7UR+N6ReuqXjHqEuVPiAKAOjI1OM2cOVNXXnml2rVrp4KCAs2bN0/Lly/XokWLJElTp05VmzZtNGvWLEnSk08+qUGDBik+Pl65ubl6/vnndeTIEd15551mfgwAAJyKv5e7ru7TRlf3aaOiskotS64OUUt3Z+jwyWK9vuyAXl92QJ3CfTWuV4zG94pWQqS/2WUDgFMzNThlZGRo6tSpSk1NVWBgoHr16qVFixbp8ssvlySlpKTIxcXFdnxOTo7uuusupaWlKTg4WP3799eaNWvqtB4KAIDWyNfTTVf1itFVvWJUVFapJbvT9e22VC3fm6kDmUV6dek+vbp0nxIj/U+NREXTnQ8AzsLp1jg1NtY4AQAgFZRWaMnudH2zNVUr92WqwvrLrwNdowN01akQ1T7U18QqAaBxNevmEI2N4AQAgL284gr9b1eavtmWqh9/1Z2vZ5tAXdUrWmN7RnOzXQAtDsHJAYITAADnllNUrkU7q0PUmgNZdveJ6hMbZAtRMUHe5hUJAA2E4OQAwQkAgLrJKizT9zvS9M22E/r5ULZO/41hQPtgjesVrXE9oxUR4GVekQBwAQhODhCcAACov4yCUn23PU3fbkvV+iO/hCiLRbo4LkRX9YrWmB7RCvf3NLdQAKgHgpMDBCcAAC5MWl6pvt2eqm+3ndCmlFzbdheLNLhTqMb1jNGYHlEK8fUwr0gAqAOCkwMEJwAAGs6xnGJ9t716Ot/WY3m27a4uFiV1CtX4XjG6onukgnwIUQCcD8HJAYITAACNI+Vksb7dnqpvtp3QzhP5tu1uLhZd3CFEo7pGalTXSLULpTsfAOdAcHKA4AQAQOM7lFWkb7ed0DfbUrUnrcBuX2Kkv0Z2jdCobpHq0zZILi4Wk6oE0NoRnBwgOAEA0LQOZRVp6e50LdmdrvWHc2Q9rcd5mJ+HLusSoVFdI3VJQph8PNxMrBRAa0NwcoDgBACAeXKLy7U8OVNLdqdrRXKmCsoqbfs83VyU1ClUl3aJ0KWJEdxwF0CjIzg5QHACAMA5lFdWad2hbC05NRp1LKfEbn+ncF9dmhihS7tEaEBcsDzdXE2qFEBLRXBygOAEAIDzMQxDyekFWrYnU8uSM7TxiP2UPl8PVw2JD9OIxAiNSAxXTJC3idUCaCkITg4QnAAAcH55JRVavS9Ly5IztDw5U1mFZXb7u0T5a0RihC5NDFe/9sFyd3UxqVIAzRnByQGCEwAAzUtVlaFdqflatidDy5IztPlork7/7cXfy03DEsI1IjFcwxPDFeHvZV6xAJoVgpMDBCcAAJq37KJyrdqXqWV7MrRib6Zyiivs9vdsE6hLE8M1okuEercNkivtzgGcA8HJAYITAAAth7XK0NZjuVq+J0PLkjO1/Xie3f5gH3cN7xyuS7tEaFhCuIJ9PUyqFIAzIjg5QHACAKDlyigo1YrkTC1PztTKfZkqKP2l3bmLReoTG2Tr1NctOoCb7wKtHMHJAYITAACtQ4W1SpuO5GhZcqaWJ2doT1qB3f5wf09d0S1S43vH6OK4EEIU0AoRnBwgOAEA0DqdyC3Rir3Va6NW789ScbnVti8ywFNX9YrR+N4x6t02UBYLIQpoDQhODhCcAABAWaVVPx3M1rfbTui7HWl2U/piQ7w1vleMru3XVvERfiZWCaCxEZwcIDgBAIDTlVVatXJvlr7eekKLd6WrpOKXkaiL4oJ100XtNLZntLw9XE2sEkBjIDg5QHACAADnUlxeqR/2ZGjB5uNalpwpa1X1r0kBXm6afHE7TU2KU5sgb5OrBNBQCE4OEJwAAEBdpOeX6tONxzR/fYqOZpdIklxdLBrTI0q/HdZJPdsGmlwhgAtFcHKA4AQAAOqjqsrQsuQM/Wv1Ia05cNK2/bIuEXpwZIJ6xwaZVxyAC0JwcoDgBAAAztfu1Hy9s/KgvtxyXKdm8emyLhH605Vd1DnS39ziANQbwckBghMAALhQBzML9Y9l+/XllhOyVhlydbHoNxe30/+7vLNCfD3MLg9AHRGcHCA4AQCAhnIoq0izv9utRTvTJUn+Xm76w+hETRnYnhvqAs0AwckBghMAAGhoaw5k6e/f7Nau1HxJ0sUdQvTsdb3UIczX5MoAOFKfbODSRDUBAAC0WEmdwvT17y7R4+O7ycfDVesOZWvMyyv17sqDqqpqVX9HDbRYBCcAAIAG4Opi0bQhHbRoxjANiQ9VWWWVnl64W7e/v17ZReVmlwfgAhGcAAAAGlBsiI/+c8dAPX1ND3m6uWh5cqbGvbpKGw5nm10agAtAcAIAAGhgFotFUwa214LpQ9QxzFepeaWa9M5PmvvjIbNLA3CeCE4AAACNpGt0gL763SWa0DtG1ipDj3+9S49/tVNW1j0BzQ7BCQAAoBH5ebrplZv66E9XdpEkzV1zWHd/sEFFZZUmVwagPuocnAYMGKC33npL+fn5jVkPAABAi2OxWPTb4Z30xpR+8nRz0dI9Gbrx7bXKKiwzuzQAdVTn4NS7d2/94Q9/UHR0tG655RYtX768EcsCAABoecb2jNaHdw9SqK+Hdp7I103v/KT0/FKzywJQB3UOTv/617+Ulpam119/XUePHtXIkSMVHx+vZ555RsePH2/MGgEAAFqMfu2C9clvBys60Ev7Mwp149trdSyn2OyyANSiXmucfHx8NG3aNC1fvlx79+7VTTfdpLfffltxcXEaN26cPv/888aqEwAAoMXoGO6nj+8ZrNgQbx05WaxJb/+kIyeLzC4LgAMWwzAuqK2LYRj67LPPdM899yg3N1dWq7WhamsU+fn5CgwMVF5engICAswuBwAAtGKpeSWa8u7POphVpDZB3vr4t4PVJsjb7LKAVqM+2eCCuuotX75c06ZN07Rp02S1WnXXXXddyOkAAABalehAb310z2B1DPfV8dwSTXn3J2Ww5glwSvUOTseOHdPf//53xcfH67LLLtPhw4f1xhtvKDU1VW+99VZj1AgAANBihft76r93DlTbYG8dPlmsm//1s7KLys0uC8Cv1Dk4ffzxxxozZow6dOigN998UzfeeKP27t2rFStWaOrUqfL2ZlgZAADgfEQHemvenYMUFeClvemFmvrezyrkPk+AU6lzcLr55pvl7e2tL774QkePHtUzzzyj+Pj4xqwNAACg1WgX6qP/3DlQob4e2nE8X/f+Z6MqrFVmlwXglDo3h8jIyFBERERj19PoaA4BAACc2bZjuZr09k8qqbDqun5t9cINvWSxWMwuC2iRGqU5REsITQAAAM6uV9sgvTGln1xdLPps0zG9tHiv2SUB0AV21QMAAEDDu7RLhJ65pock6bUf9uu/Px8xuSIABCcAAAAnNOmidnpwZIIk6dEFO7R0d7rJFQGtW52D08GDBxuzDgAAAPzKjFEJunFAW1UZ0v3zNmvL0VyzSwJarToHp169eqlHjx7685//rJ9//rkxawIAAIAki8Wip6/pqeGdw1VSYdXtc9frcFaR2WUBrVKdg1NWVpZmzZqljIwMXX311YqOjtZdd92lr7/+WqWl3OEaAACgMbi7uuiNKf3Us02gsovKdeucdTpZWGZ2WUCrU+d25KczDENr167VV199pa+++kopKSkaNWqUJkyYoPHjxys8PLwxam0QtCMHAADNUWZBma5980cdzS5R33ZB+vCuQfJydzW7LKBZa5R25KezWCxKSkrS7NmztWvXLm3evFlDhw7V3Llz1bZtW73++uvnVTgAAADOLtzfU3Nvu1iB3u7anJKrB+dvlrWq3n//DeA8ndeIkyMnT55Udna2EhISGvK0DYYRJwAA0JytO5Stm//5s8qtVbp9SAc9Nr6b2SUBzVajjzg5Ehoa6rShCQAAoLm7uEOIXryxtyTpvR8P6b3Vh0yuCGgduI8TAABAMzO+d4z+dGUXSdJT3+7S9zvSTK4IaPkITgAAAM3QPcM66uZB7WQY0oPzN2tTSo7ZJQEtGsEJAACgGbJYLHp8fHdd1iVCZZVVuvP9DTpykns8AY3lvIJTbm6u/vnPf2rmzJnKzs6WJG3atEnHjx9v0OIAAABwbm6uLnptcl/bPZ6mzVmv7KJys8sCWqR6B6dt27apc+fOevbZZ/XCCy8oNzdXkvT5559r5syZDV0fAAAAHPD1dNO/pg1QmyBvHcoq0l0fbFBphdXssoAWp97B6aGHHtK0adO0b98+eXl52baPHTtWK1eubNDiAAAAULsIfy+9f/tFCvBy08YjOXro4y2q4h5PQIOqd3Bav3697rnnnjO2t2nTRmlpdHQBAAAwQ3yEv96ZOkAeri5auD1Ns77bbXZJQItS7+Dk6emp/Pz8M7bv3btX4eHhDVIUAAAA6m9Qx1A9f0MvSdK7qw5p7o/c4wloKPUOThMmTNCTTz6piooKSdUdXVJSUvTHP/5R1113XYMXCAAAgLq7uk8b/X50oiTpiW+4xxPQUOodnF588UUVFhYqIiJCJSUlGj58uOLj4+Xv76+nn366MWoEAABAPdw3opOmDPzlHk8bj2SbXRLQ7FkMwzivlYOrV6/Wtm3bVFhYqH79+mnUqFENXVujyM/PV2BgoPLy8hQQEGB2OQAAAI2i0lql3/5no5bszlCQj7s+uzdJncL9zC4LcCr1yQbnHZyaK4ITAABoLYrLKzX53Z+19WiuYkO89fm9QxTu72l2WYDTaNTg9Oqrr579RBaLvLy8FB8fr2HDhsnV1bU+p20yBCcAANCaZBWW6bo31+jIyWL1bBOo+XcPkq+nm9llAU6hUYNThw4dlJmZqeLiYgUHB0uScnJy5OPjIz8/P2VkZKhjx45atmyZYmNjz/9TNBKCEwAAaG0OZxXp2jfXKLuoXJcmhuvdqQPk5lrvpe5Ai1OfbFDvf2OeeeYZXXTRRdq3b59OnjypkydPau/evRo4cKBeeeUVpaSkKCoqSv/v//2/8/4AAAAAaDhxYb76160D5OXuomXJmfrrgh1qZas1gAtW7xGnTp066bPPPlOfPn3stm/evFnXXXedDh48qDVr1ui6665TampqQ9baIBhxAgAArdXiXem6598bVGVIj1zRWfdflmB2SYCpGnXEKTU1VZWVlWdsr6ysVFpa9X0CYmJiVFBQUN9TAwAAoBFd3i1ST0zoLkl64X979e025/tLbsBZ1Ts4XXrppbrnnnu0efNm27bNmzfr3nvv1WWXXSZJ2r59uzp06NBwVQIAAKBB3DI4TrcPqf497aGPt2jL0VxzCwKaiXoHp3/9618KCQlR//795enpKU9PTw0YMEAhISH617/+JUny8/PTiy++2ODFAgAA4ML9ZVxXXdYlQmWVVbrz/Q06nltidkmA0zvv+zjt2bNHe/fulSQlJiYqMTGxQQtrLKxxAgAAkArLKnX9m2u0J61AXaL89fl9SfLxoE05WhdugOsAwQkAAKDa8dwSXf2P1coqLNf43jF69aY+slgsZpcFNJn6ZIPz+muFY8eO6auvvlJKSorKy8vt9r300kvnc0oAAAA0sTZB3npjSn/95t2f9PXWE+rdNlB3Du1odlmAU6p3cFq6dKkmTJigjh07as+ePerRo4cOHz4swzDUr1+/xqgRAAAAjeTiDiH667iuevzrXZr13R51iwlQUqcws8sCnE69m0PMnDlTjzzyiLZv3y4vLy999tlnOnr0qIYPH64bbrihMWoEAABAI7o1KU7X9m0ja5Wh++dtplkEcBb1Dk67d+/W1KlTJUlubm4qKSmRn5+fnnzyST377LMNXiAAAAAal8Vi0TPX9lS36ABlF5VrxvzNsla1qmXwQK3qHZx8fX1t65qio6N14MAB276srKyGqwwAAABNxsvdVW/d3F9+nm5afzhH//hhv9klAU6l3sFp0KBBWr16tSRp7Nixevjhh/X000/r9ttv16BBgxq8QAAAADSNdqE+empid0nSK0v3asPhbJMrApxHvYPTSy+9pIEDB0qSnnjiCY0cOVIfffSR4uLibDfABQAAQPN0Td+2uqZvG1UZ0oPztyi/tMLskgCnwH2cAAAAYKegtELjXl2tlOxiTegdo1cn9zW7JKBR1Ccb1HvEqWPHjjp58uQZ23Nzc9WxI33/AQAAmjt/L3e9clMfubpY9NXWE/rfzjSzSwJMV+/gdPjwYVmt1jO2l5WV6fjx4w1SFAAAAMzVt12w7h5W/Zfij325UwVM2UMrV+fg9NVXX+mrr76SJC1atMj2/KuvvtIXX3yhp556SnFxcfV68zfffFO9evVSQECAAgICNHjwYH333XcOX/PJJ5+oS5cu8vLyUs+ePbVw4cJ6vScAAADq5sGRCYoL9VFafqme+z7Z7HIAU9V5jZOLS3XGslgs+vVL3N3dFRcXpxdffFFXXXVVnd/866+/lqurqxISEmQYht5//309//zz2rx5s7p3737G8WvWrNGwYcM0a9YsXXXVVZo3b56effZZbdq0ST169KjTe7LGCQAAoO7WHMjSb979WZL06W8Ha0BciMkVAQ2nPtmg3s0hOnTooPXr1yssLOyCijyXkJAQPf/887rjjjvO2Ddp0iQVFRXpm2++sW0bNGiQ+vTpo7feeqtO5yc4AQAA1M8fPt2qjzccU6dwXy18cKg83VzNLgloEI3aHOLQoUONEpqsVqvmz5+voqIiDR48+KzHrF27VqNGjbLbNnr0aK1du/ac5y0rK1N+fr7dAwAAAHX357FdFebnqQOZRfrnqkNmlwOYwq0uB7366qt1PuEDDzxQrwK2b9+uwYMHq7S0VH5+fvriiy/UrVu3sx6blpamyMhIu22RkZFKSzt3p5dZs2bpiSeeqFdNAAAA+EWQj4f+Oq6rZny0RW8s268bB8Qq3N/T7LKAJlWn4PR///d/dTqZxWKpd3BKTEzUli1blJeXp08//VS33nqrVqxYcc7wVF8zZ87UQw89ZHuen5+v2NjYBjk3AABAazGhd4ze+/GQth3L0ytL9+rvE3uaXRLQpOoUnA4darwhWQ8PD8XHx0uS+vfvr/Xr1+uVV17R22+/fcaxUVFRSk9Pt9uWnp6uqKioc57f09NTnp78jQgAAMCFcHGx6M9ju+qmd37Sh+uOalpSnOIj/M0uC2gy9V7jdDrDMM7osHehqqqqVFZWdtZ9gwcP1tKlS+22LV68+JxrogAAANBwBnUM1eXdImWtMjT7uz1mlwM0qfMKTh988IF69uwpb29veXt7q1evXvr3v/9d7/PMnDlTK1eu1OHDh7V9+3bNnDlTy5cv15QpUyRJU6dO1cyZM23HP/jgg/r+++/14osvas+ePXr88ce1YcMG3X///efzMQAAAFBPf7qyi1xdLFqyO0NrDmSZXQ7QZOodnF566SXde++9Gjt2rD7++GN9/PHHGjNmjH7729/WeS1UjYyMDE2dOlWJiYkaOXKk1q9fr0WLFunyyy+XJKWkpCg1NdV2fFJSkubNm6d33nlHvXv31qeffqoFCxbU+R5OAAAAuDCdwv00ZWA7SdKshXsafPYR4KzO6z5OTzzxhKZOnWq3/f3339fjjz/eqOuhGgL3cQIAALgwJwvLNPS5ZSout2rObRfp0sQIs0sCzkuj3scpNTVVSUlJZ2xPSkqyGx0CAABAyxTq56nfXFw96vTmsgMmVwM0jXoHp/j4eH388cdnbP/oo4+UkJDQIEUBAADAud05tKM8XF207nC21h/ONrscoNHVqR356Z544glNmjRJK1eu1JAhQyRJP/74o5YuXXrWQAUAAICWJyrQS9f1b6MP1x3VG8v2a85tF5tdEtCo6jzitGPHDknSddddp59//llhYWFasGCBFixYoLCwMK1bt07XXHNNoxUKAAAA53LPsE5ysUjLkjO180Se2eUAjarOzSFcXFx00UUX6c4779RNN90kf//mecMzmkMAAAA0nN99uFlfbz2hq3pF6x+/6Wd2OUC9NEpziBUrVqh79+56+OGHFR0drWnTpmnVqlUXXCwAAACar3uHd5IkLdyeqkNZRSZXAzSeOgenoUOH6r333lNqaqpee+01HTp0SMOHD1fnzp317LPPKi0trTHrBAAAgBPqFhOgSxPDVWVIH6w9bHY5QKOpd1c9X19f3XbbbVqxYoX27t2rG264Qa+//rratWunCRMmNEaNAAAAcGK3JsVJkj7beEylFVZziwEaSb2D0+ni4+P15z//WX/961/l7++vb7/9tqHqAgAAQDMxLCFcbYK8lV9aqW+3cV9PtEznHZxWrlypadOmKSoqSr///e917bXX6scff2zI2gAAANAMuLhYNPniWEnSh+tSTK4GaBz1Ck4nTpzQM888o86dO2vEiBHav3+/Xn31VZ04cULvvvuuBg0a1Fh1AgAAwIndOCBWri4WbTiSo73pBWaXAzS4OgenK6+8Uu3bt9drr72ma665Rrt379bq1at12223ydfXtzFrBAAAgJOLCPDSqK4RkqR5PzPqhJanzsHJ3d1dn376qY4dO6Znn31WiYmJjVkXAAAAmpnfDGwvSfp8E00i0PK41fXAr776qjHrAAAAQDM3ND5MbYO9dSynRN9uS9V1/duaXRLQYC6oqx4AAABQo7pJRDtJ0jyaRKCFITgBAACgwdzQv61cLNLGIzk6ml1sdjlAgyE4AQAAoMFEBHhpYIdQSdLC7dzTCS0HwQkAAAANalyvaEkEJ7QsBCcAAAA0qDE9ouRikbYey2O6HloMghMAAAAaVJifpwZ1rJ6u9y2jTmghCE4AAABocDXT9b7dRnBCy0BwAgAAQIMb0716ut7243k6crLI7HKAC0ZwAgAAQIML9fNUUqcwSUzXQ8tAcAIAAECjYLoeWhKCEwAAABrF6O5RcnWxaOeJfB3KYroemjeCEwAAABpFiK+HkjpVd9dbtDPN5GqAC0NwAgAAQKMZ2SVCkrRyb6bJlQAXhuAEAACARjOsc7gkacPhHBWVVZpcDXD+CE4AAABoNB3CfNU22Fvl1ir9dPCk2eUA543gBAAAgEZjsVg0/NSoE9P10JwRnAAAANCoaqbrrSA4oRkjOAEAAKBRJXUKlZuLRYdPFivlZLHZ5QDnheAEAACARuXv5a5+7YMlSSv2MeqE5ongBAAAgEZXs85pRTLBCc0TwQkAAACNriY4rT2QpfLKKpOrAeqP4AQAAIBG1y06QKG+Hioqt2rjkRyzywHqjeAEAACARufiYrF111vJOic0QwQnAAAANIlhncMkcT8nNE8EJwAAADSJIfHVwWlXar7ySipMrgaoH4ITAAAAmkSEv5fah/rIMKTNKaxzQvNCcAIAAECT6X/qfk40iEBzQ3ACAABAkxnQPkSStOEwwQnNC8EJAAAATWZAXPWI05ajuaqwcj8nNB8EJwAAADSZ+HA/BXi5qaTCql0n8s0uB6gzghMAAACajIuLxbbOaQPrnNCMEJwAAADQpAbEVa9z2ngk2+RKgLojOAEAAKBJDagZcTqcI8MwTK4GqBuCEwAAAJpU79ggubtalFFQpmM5JWaXA9QJwQkAAABNysvdVd1jAiVJG5iuh2aC4AQAAIAmd/p0PaA5IDgBAACgydXcz4nghOaC4AQAAIAm1799dWe9vRkFyiupMLkaoHYEJwAAADS5cH9PxYX6yDCkTSmMOsH5EZwAAABgin7tqqfrbTuaZ3IlQO0ITgAAADBFt5gASdLOEwQnOD+CEwAAAExR05J8V2q+yZUAtSM4AQAAwBQ1I07HckqUV0yDCDg3ghMAAABMEejtrrbB3pKknalM14NzIzgBAADANN1PjTrtOsF0PTg3ghMAAABMU7POaSfBCU6O4AQAAADTdKezHpoJghMAAABMUzPidCCzSKUVVpOrAc6N4AQAAADTRAZ4KtTXQ9YqQ3vSCswuBzgnghMAAABMY7FYbG3JaRABZ0ZwAgAAgKl+aRDBOic4L4ITAAAATPVLgwhGnOC8CE4AAAAwVU1w2pOWL2uVYXI1wNkRnAAAAGCquFBf+Xi4qrSiSgczC80uBzgrghMAAABM5eJiUddopuvBuRGcAAAAYDpuhAtnR3ACAACA6WgQAWdHcAIAAIDpukVXtyTnJrhwVgQnAAAAmK5ThK8kKbuoXDlF5SZXA5yJ4AQAAADT+Xi4qU2QtyTpAJ314IQITgAAAHAKHcOrR50ITnBGBCcAAAA4hfgIP0nSgcwikysBzkRwAgAAgFPoFH4qOGUw4gTnQ3ACAACAU6gJTvuZqgcnRHACAACAU6jprHc0u1ilFVaTqwHsEZwAAADgFML9POXv5aYqQzpystjscgA7BCcAAAA4BYvFclqDCKbrwbkQnAAAAOA0aBABZ0VwAgAAgNOgQQScFcEJAAAATqMTN8GFkzI1OM2aNUsXXXSR/P39FRERoYkTJyo5Odnha+bOnSuLxWL38PLyaqKKAQAA0Jg61axxyihSVZVhcjXAL0wNTitWrND06dP1008/afHixaqoqNAVV1yhoiLHd4sOCAhQamqq7XHkyJEmqhgAAACNqV2Ij9xcLCqpsCotv9TscgAbNzPf/Pvvv7d7PnfuXEVERGjjxo0aNmzYOV9nsVgUFRXV2OUBAACgibm7uiguzFf7Mwq1P6NQMUHeZpcESHKyNU55eXmSpJCQEIfHFRYWqn379oqNjdXVV1+tnTt3nvPYsrIy5efn2z0AAADgvFjnBGfkNMGpqqpKM2bM0JAhQ9SjR49zHpeYmKj33ntPX375pf7zn/+oqqpKSUlJOnbs2FmPnzVrlgIDA22P2NjYxvoIAAAAaAC2luQEJzgRi2EYTrHq7t5779V3332n1atXq23btnV+XUVFhbp27arJkyfrqaeeOmN/WVmZysrKbM/z8/MVGxurvLw8BQQENEjtAAAAaDifbTymhz/ZqsEdQ/Xh3YPMLgctWH5+vgIDA+uUDUxd41Tj/vvv1zfffKOVK1fWKzRJkru7u/r27av9+/efdb+np6c8PT0bokwAAAA0AVtnPUac4ERMnapnGIbuv/9+ffHFF/rhhx/UoUOHep/DarVq+/btio6OboQKAQAA0NRq1jhlFJQpv7TC5GqAaqYGp+nTp+s///mP5s2bJ39/f6WlpSktLU0lJSW2Y6ZOnaqZM2fanj/55JP63//+p4MHD2rTpk26+eabdeTIEd15551mfAQAAAA0MH8vd0UGVM8YOpDBqBOcg6nB6c0331ReXp5GjBih6Oho2+Ojjz6yHZOSkqLU1FTb85ycHN11113q2rWrxo4dq/z8fK1Zs0bdunUz4yMAAACgEXQMq5mu5/j+nkBTMXWNU136Uixfvtzu+f/93//p//7v/xqpIgAAADiD9qE+WnvwpI5mF5tdCiDJidqRAwAAADViQ3wkSUdzCE5wDgQnAAAAOJ22wd6SpGPZJbUcCTQNghMAAACcDiNOcDYEJwAAADid2ODq4JSWX6qySqvJ1QAEJwAAADihMD8Pebu7yjCkE7mlZpcDEJwAAADgfCwWi22dE5314AwITgAAAHBKrHOCMyE4AQAAwCnF2kac6KwH8xGcAAAA4JQYcYIzITgBAADAKbU91VnvGGuc4AQITgAAAHBKsSGnpurlMFUP5iM4AQAAwCnVTNXLLipXUVmlydWgtSM4AQAAwCkFeLkryMddEuucYD6CEwAAAJxW7Kl1TnTWg9kITgAAAHBaNeucUmgQAZMRnAAAAOC0fhlxIjjBXAQnAAAAOK22pxpEHGONE0xGcAIAAIDTig0+1ZKcNU4wGcEJAAAATqumJfnRnGIZhmFyNWjNCE4AAABwWm2Cqkecisutyi4qN7katGYEJwAAADgtL3dXRQZ4SpKO5jBdD+YhOAEAAMCp0VkPzoDgBAAAAKd2+jonwCwEJwAAADg1OuvBGRCcAAAA4NS4lxOcAcEJAAAATq1mjdMxmkPARAQnAAAAOLXoQC9JUmpeCfdygmkITgAAAHBqUaeCU2lFlfJLKk2uBq0VwQkAAABOzcvdVYHe7pKktPxSk6tBa0VwAgAAgNOrma5HcIJZCE4AAABwepEB1cEpPY/gBHMQnAAAAOD0ogIYcYK5CE4AAABwepFM1YPJCE4AAABwelFM1YPJCE4AAABwelGBnpIYcYJ5CE4AAABwerbmEAQnmITgBAAAAKdXM1Uvq7BcZZVWk6tBa0RwAgAAgNML8fWQh2v1r64Z+WUmV4PWiOAEAAAAp2exWBQRUL3Oiel6MAPBCQAAAM0C93KCmQhOAAAAaBZs93KiJTlMQHACAABAsxBFZz2YiOAEAACAZiG6ZsSJ5hAwAcEJAAAAzYLtXk5M1YMJCE4AAABoFqICaQ4B8xCcAAAA0Cyc3lXPMAyTq0FrQ3ACAABAs1BzH6fyyirlFleYXA1aG4ITAAAAmgVPN1eF+HpIYroemh7BCQAAAM1GJDfBhUkITgAAAGg2ok5N16OzHpoawQkAAADNBp31YBaCEwAAAJoN21Q9RpzQxAhOAAAAaDaiWOMEkxCcAAAA0GxEBjLiBHMQnAAAANBsRJ8KTumMOKGJEZwAAADQbNRM1csprlBphdXkatCaEJwAAADQbAR6u8vTrfpX2Iz8MpOrQWtCcAIAAECzYbFYaEkOUxCcAAAA0KzUtCRPzSsxuRK0JgQnAAAANCsxdNaDCQhOAAAAaFZigrwlSSdyGXFC0yE4AQAAoFmJPhWcjucy4oSmQ3ACAABAs9ImiDVOaHoEJwAAADQrTNWDGQhOAAAAaFaiA6uDU05xhUrKuQkumgbBCQAAAM1KgJeb/DzdJEknmK6HJkJwAgAAQLNisVgUc2qdE9P10FQITgAAAGh2aqbrEZzQVAhOAAAAaHZ+aRBBS3I0DYITAAAAmp2YQKbqoWkRnAAAANDs2EacaA6BJkJwAgAAQLNTE5xSmaqHJkJwAgAAQLNT01XveG6JDMMwuRq0BgQnAAAANDtRp9Y4lVVWKae4wuRq0BoQnAAAANDseLq5KszPUxINItA0CE4AAABoltqcNl0PaGwEJwAAADRLvzSIIDih8RGcAAAA0CxFB9a0JKezHhofwQkAAADNUgxT9dCECE4AAABoltowVQ9NiOAEAACAZin6VHA6wU1w0QQITgAAAGiWaqbqpReUqsJaZXI1aOkITgAAAGiWwnw95e5qkWFI6fmMOqFxEZwAAADQLLm4WH7prMd0PTQyghMAAACarZrpeql5NIhA4zI1OM2aNUsXXXSR/P39FRERoYkTJyo5ObnW133yySfq0qWLvLy81LNnTy1cuLAJqgUAAICziTk14kRLcjQ2U4PTihUrNH36dP30009avHixKioqdMUVV6ioqOicr1mzZo0mT56sO+64Q5s3b9bEiRM1ceJE7dixowkrBwAAgDOIsXXWIzihcVkMwzDMLqJGZmamIiIitGLFCg0bNuysx0yaNElFRUX65ptvbNsGDRqkPn366K233qr1PfLz8xUYGKi8vDwFBAQ0WO0AAABoevN+TtGfv9iu3rFBund4R7PLQR1ZLBaN7h5ldhn1ygZuTVRTneTl5UmSQkJCznnM2rVr9dBDD9ltGz16tBYsWHDW48vKylRWVmZ7np+ff+GFAgAAwCm0Ca4ecdp6NFe//c8mk6tBXXm4uWjv3680u4x6cZrgVFVVpRkzZmjIkCHq0aPHOY9LS0tTZGSk3bbIyEilpaWd9fhZs2bpiSeeaNBaAQAA4BwGdQzRxD4xOpbDVL3mxN21+fWoc5rgNH36dO3YsUOrV69u0PPOnDnTboQqPz9fsbGxDfoeAAAAMIenm6tevqmv2WWgFXCK4HT//ffrm2++0cqVK9W2bVuHx0ZFRSk9Pd1uW3p6uqKizj5H0tPTU56eng1WKwAAAIDWx9QxMsMwdP/99+uLL77QDz/8oA4dOtT6msGDB2vp0qV22xYvXqzBgwc3VpkAAAAAWjlTR5ymT5+uefPm6csvv5S/v79tnVJgYKC8vasX+k2dOlVt2rTRrFmzJEkPPvighg8frhdffFHjxo3T/PnztWHDBr3zzjumfQ4AAAAALZupI05vvvmm8vLyNGLECEVHR9seH330ke2YlJQUpaam2p4nJSVp3rx5euedd9S7d299+umnWrBggcOGEgAAAABwIZzqPk5Ngfs4AQAAAJDqlw2aXx9AAAAAAGhiBCcAAAAAqAXBCQAAAABqQXACAAAAgFoQnAAAAACgFgQnAAAAAKgFwQkAAAAAakFwAgAAAIBaEJwAAAAAoBYEJwAAAACoBcEJAAAAAGpBcAIAAACAWhCcAAAAAKAWbmYX0NQMw5Ak5efnm1wJAAAAADPVZIKajOBIqwtOBQUFkqTY2FiTKwEAAADgDAoKChQYGOjwGItRl3jVglRVVenEiRPy9/eXxWIxtZb8/HzFxsbq6NGjCggIMLUWmIfrAFwD4BoA1wC4BsxhGIYKCgoUExMjFxfHq5ha3YiTi4uL2rZta3YZdgICAvgXBFwH4BoA1wC4BsA1YILaRppq0BwCAAAAAGpBcAIAAACAWhCcTOTp6am//e1v8vT0NLsUmIjrAFwD4BoA1wC4Bpxfq2sOAQAAAAD1xYgTAAAAANSC4AQAAAAAtSA4AQAAAEAtCE4AAAAAUAuCk4lef/11xcXFycvLSwMHDtS6devMLgnnYdasWbrooovk7++viIgITZw4UcnJyXbHlJaWavr06QoNDZWfn5+uu+46paen2x2TkpKicePGycfHRxEREfr973+vyspKu2OWL1+ufv36ydPTU/Hx8Zo7d25jfzych9mzZ8tisWjGjBm2bVwDLd/x48d18803KzQ0VN7e3urZs6c2bNhg228Yhh577DFFR0fL29tbo0aN0r59++zOkZ2drSlTpiggIEBBQUG64447VFhYaHfMtm3bNHToUHl5eSk2NlbPPfdck3w+1M5qterRRx9Vhw4d5O3trU6dOumpp57S6X24uA5alpUrV2r8+PGKiYmRxWLRggUL7PY35c/7k08+UZcuXeTl5aWePXtq4cKFDf55Wz0Dppg/f77h4eFhvPfee8bOnTuNu+66ywgKCjLS09PNLg31NHr0aGPOnDnGjh07jC1bthhjx4412rVrZxQWFtqO+e1vf2vExsYaS5cuNTZs2GAMGjTISEpKsu2vrKw0evToYYwaNcrYvHmzsXDhQiMsLMyYOXOm7ZiDBw8aPj4+xkMPPWTs2rXLeO211wxXV1fj+++/b9LPC8fWrVtnxMXFGb169TIefPBB23augZYtOzvbaN++vTFt2jTj559/Ng4ePGgsWrTI2L9/v+2Y2bNnG4GBgcaCBQuMrVu3GhMmTDA6dOhglJSU2I4ZM2aM0bt3b+Onn34yVq1aZcTHxxuTJ0+27c/LyzMiIyONKVOmGDt27DA+/PBDw9vb23j77beb9PPi7J5++mkjNDTU+Oabb4xDhw4Zn3zyieHn52e88sortmO4DlqWhQsXGn/5y1+Mzz//3JBkfPHFF3b7m+rn/eOPPxqurq7Gc889Z+zatcv461//ari7uxvbt29v9O+gNSE4meTiiy82pk+fbntutVqNmJgYY9asWSZWhYaQkZFhSDJWrFhhGIZh5ObmGu7u7sYnn3xiO2b37t2GJGPt2rWGYVT/h9fFxcVIS0uzHfPmm28aAQEBRllZmWEYhvGHP/zB6N69u917TZo0yRg9enRjfyTUUUFBgZGQkGAsXrzYGD58uC04cQ20fH/84x+NSy655Jz7q6qqjKioKOP555+3bcvNzTU8PT2NDz/80DAMw9i1a5chyVi/fr3tmO+++86wWCzG8ePHDcMwjDfeeMMIDg62XRM1752YmNjQHwnnYdy4ccbtt99ut+3aa681pkyZYhgG10FL9+vg1JQ/7xtvvNEYN26cXT0DBw407rnnngb9jK0dU/VMUF5ero0bN2rUqFG2bS4uLho1apTWrl1rYmVoCHl5eZKkkJAQSdLGjRtVUVFh9/Pu0qWL2rVrZ/t5r127Vj179lRkZKTtmNGjRys/P187d+60HXP6OWqO4ZpxHtOnT9e4cePO+DlxDbR8X331lQYMGKAbbrhBERER6tu3r959913b/kOHDiktLc3u5xcYGKiBAwfaXQNBQUEaMGCA7ZhRo0bJxcVFP//8s+2YYcOGycPDw3bM6NGjlZycrJycnMb+mKhFUlKSli5dqr1790qStm7dqtWrV+vKK6+UxHXQ2jTlz5v/PzQNgpMJsrKyZLVa7X5BkqTIyEilpaWZVBUaQlVVlWbMmKEhQ4aoR48ekqS0tDR5eHgoKCjI7tjTf95paWlnvR5q9jk6Jj8/XyUlJY3xcVAP8+fP16ZNmzRr1qwz9nENtHwHDx7Um2++qYSEBC1atEj33nuvHnjgAb3//vuSfvkZOvrvflpamiIiIuz2u7m5KSQkpF7XCczzpz/9STfddJO6dOkid3d39e3bVzNmzNCUKVMkcR20Nk358z7XMVwPDcvN7AKAlmT69OnasWOHVq9ebXYpaEJHjx7Vgw8+qMWLF8vLy8vscmCCqqoqDRgwQM8884wkqW/fvtqxY4feeust3XrrrSZXh6by8ccf67///a/mzZun7t27a8uWLZoxY4ZiYmK4DoAWgBEnE4SFhcnV1fWMjlrp6emKiooyqSpcqPvvv1/ffPONli1bprZt29q2R0VFqby8XLm5uXbHn/7zjoqKOuv1ULPP0TEBAQHy9vZu6I+Deti4caMyMjLUr18/ubm5yc3NTStWrNCrr74qNzc3RUZGcg20cNHR0erWrZvdtq5duyolJUXSLz9DR//dj4qKUkZGht3+yspKZWdn1+s6gXl+//vf20adevbsqVtuuUX/7//9P9tINNdB69KUP+9zHcP10LAITibw8PBQ//79tXTpUtu2qqoqLV26VIMHDzaxMpwPwzB0//3364svvtAPP/ygDh062O3v37+/3N3d7X7eycnJSklJsf28Bw8erO3bt9v9x3Px4sUKCAiw/TI2ePBgu3PUHMM1Y76RI0dq+/bt2rJli+0xYMAATZkyxfZnroGWbciQIWfchmDv3r1q3769JKlDhw6Kioqy+/nl5+fr559/trsGcnNztXHjRtsxP/zwg6qqqjRw4EDbMStXrlRFRYXtmMWLFysxMVHBwcGN9vlQN8XFxXJxsf/VytXVVVVVVZK4Dlqbpvx58/+HJmJ2d4rWav78+Yanp6cxd+5cY9euXcbdd99tBAUF2XXUQvNw7733GoGBgcby5cuN1NRU26O4uNh2zG9/+1ujXbt2xg8//GBs2LDBGDx4sDF48GDb/ppW1FdccYWxZcsW4/vvvzfCw8PP2or697//vbF7927j9ddfpxW1Ezu9q55hcA20dOvWrTPc3NyMp59+2ti3b5/x3//+1/Dx8TH+85//2I6ZPXu2ERQUZHz55ZfGtm3bjKuvvvqsbYn79u1r/Pzzz8bq1auNhIQEu7bEubm5RmRkpHHLLbcYO3bsMObPn2/4+PjQhtpJ3HrrrUabNm1s7cg///xzIywszPjDH/5gO4broGUpKCgwNm/ebGzevNmQZLz00kvG5s2bjSNHjhiG0XQ/7x9//NFwc3MzXnjhBWP37t3G3/72N9qRNwKCk4lee+01o127doaHh4dx8cUXGz/99JPZJeE8SDrrY86cObZjSkpKjPvuu88IDg42fHx8jGuuucZITU21O8/hw4eNK6+80vD29jbCwsKMhx9+2KioqLA7ZtmyZUafPn0MDw8Po2PHjnbvAefy6+DENdDyff3110aPHj0MT09Po0uXLsY777xjt7+qqsp49NFHjcjISMPT09MYOXKkkZycbHfMyZMnjcmTJxt+fn5GQECAcdtttxkFBQV2x2zdutW45JJLDE9PT6NNmzbG7NmzG/2zoW7y8/ONBx980GjXrp3h5eVldOzY0fjLX/5i10aa66BlWbZs2Vl/B7j11lsNw2jan/fHH39sdO7c2fDw8DC6d+9ufPvtt432uVsri2GcdjtrAAAAAMAZWOMEAAAAALUgOAEAAABALQhOAAAAAFALghMAAAAA1ILgBAAAAAC1IDgBAAAAQC0ITgAAAABQC4ITAAAAANSC4AQAaFamTZumiRMnml0GAKCVcTO7AAAAalgsFof7//a3v+mVV16RYRhNVNGZVqxYoZtvvllHjx41rQYAQNMjOAEAnEZqaqrtzx999JEee+wxJScn27b5+fnJz8/PjNJsvvzyS40fP97UGgAATY+pegAApxEVFWV7BAYGymKx2G3z8/M7Y6reiBEj9Lvf/U4zZsxQcHCwIiMj9e6776qoqEi33Xab/P39FR8fr++++87uvXbs2KErr7xSfn5+ioyM1C233KKsrKxaa/zqq680YcKEs+47cuSIxo8fr+DgYPn6+qp79+5auHDhBX0nAADnQHACADR777//vsLCwrRu3Tr97ne/07333qsbbrhBSUlJ2rRpk6644grdcsstKi4uliTl5ubqsssuU9++fbVhwwZ9//33Sk9P14033ujwfXbu3KmMjAxddtllZ90/ffp0lZWVaeXKldq+fbueffZZ00fIAAANg6l6AIBmr3fv3vrrX/8qSZo5c6Zmz56tsLAw3XXXXZKkxx57TG+++aa2bdumQYMG6R//+If69u2rZ555xnaO9957T7Gxsdq7d686d+581vf58ssvNXr0aHl4eJx1f0pKiq677jr17NlTktSxY8eG/JgAABMx4gQAaPZ69epl+7Orq6tCQ0Nt4UWSIiMjJUkZGRmSpK1bt2rZsmW2NVN+fn7q0qWLJOnAgQPnfJ8vv/zynNP0JOmBBx7Q3//+dw0ZMkR/+9vftG3btgv6XAAA50FwAgA0e+7u7nbPLRaL3baabn1VVVWSpMLCQo0fP15btmyxe+zbt0/Dhg0763ukpqZq8+bNGjdu3DnruPPOO3Xw4EHdcsst2r59uwYMGKDXXnvtQj8eAMAJEJwAAK1Ov379tHPnTsXFxSk+Pt7u4evre9bXfP3110pKSlJISIjDc8fGxuq3v/2tPv/8cz388MN69913G+MjAACaGMEJANDqTJ8+XdnZ2Zo8ebLWr1+vAwcOaNGiRbrttttktVrP+hpH3fRqzJgxQ4sWLdKhQ4e0adMmLVu2TF27dm2MjwAAaGIEJwBAqxMTE6Mff/xRVqtVV1xxhXr27KkZM2YoKChILi5n/q+xqKhIS5curTU4Wa1WTZ8+XV27dtWYMWPUuXNnvfHGG431MQAATchimHn7dQAAmoHPP/9cf/3rX7Vr1y6zSwEAmIQRJwAAauHn56dnn33W7DIAACZixAkAAAAAasGIEwAAAADUguAEAAAAALUgOAEAAABALQhOAAAAAFALghMAAAAA1ILgBAAAAAC1IDgBAAAAQC0ITgAAAABQC4ITAAAAANTi/wMPiSjEF+6LlQAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } ] } - ] -} \ No newline at end of file + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sphinx/example_linked_data_zinc_powder.ipynb b/sphinx/example_linked_data_zinc_powder.ipynb index 9b8fe83..356b650 100644 --- a/sphinx/example_linked_data_zinc_powder.ipynb +++ b/sphinx/example_linked_data_zinc_powder.ipynb @@ -1,21 +1,10 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, "cells": [ { "cell_type": "markdown", + "metadata": { + "id": "1wseTQGaB4x9" + }, "source": [ "# Example: Zinc Powder from a Supplier\n", "\n", @@ -30,23 +19,25 @@ "- How to use the ontology to fetch more information from other sources **[Advanced]** \n", "\n", "A live version of this notebook is available on Google Colab [here](https://colab.research.google.com/drive/19PxdZDPcKda8Ji6Nyzsz-_8KJFgNkmCa?usp=sharing)\n" - ], - "metadata": { - "id": "1wseTQGaB4x9" - } + ] }, { "cell_type": "markdown", + "metadata": { + "id": "jcTVz9-DEh3m" + }, "source": [ "## Describe the powder using ontology terms in JSON-LD format\n", "The JSON-LD data that we will use is:" - ], - "metadata": { - "id": "jcTVz9-DEh3m" - } + ] }, { "cell_type": "code", + "execution_count": 104, + "metadata": { + "id": "gohQKEBrF2QP" + }, + "outputs": [], "source": [ "jsonld = {\n", " \"@context\": \"https://raw.githubusercontent.com/emmo-repo/domain-electrochemistry/master/context.json\",\n", @@ -69,77 +60,63 @@ " }\n", " ]\n", "}" - ], - "metadata": { - "id": "gohQKEBrF2QP" - }, - "execution_count": 104, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "in30p-x4H91Y" + }, "source": [ "## Parse this description into a graph\n", "Now let's see how a machine would process this data by reading it into a Graph!\n", "\n", - "First, we install and import the python dependencies that we need for this example." - ], + "First, we install and import the python dependencies that we need for this example.\n", + "\n", + "Note, the `pip install` statement is to be run in a shell/terminal." + ] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": { - "id": "in30p-x4H91Y" - } + "vscode": { + "languageId": "shellscript" + } + }, + "outputs": [], + "source": [ + "# Install dependencies\n", + "pip install jsonschema rdflib requests matplotlib > /dev/null" + ] }, { "cell_type": "code", + "execution_count": 105, + "metadata": { + "id": "wk4sFl_eA2ML" + }, + "outputs": [], "source": [ - "# Install and import dependencies\n", - "!pip install jsonschema rdflib requests matplotlib > /dev/null\n", - "\n", + "# Import dependencies\n", "import json\n", "import rdflib\n", "import requests\n", - "import sys\n", - "from IPython.display import Image, display\n", - "import matplotlib.pyplot as plt" - ], - "metadata": { - "id": "wk4sFl_eA2ML" - }, - "execution_count": 105, - "outputs": [] + "from IPython.display import Image, display" + ] }, { "cell_type": "markdown", - "source": [ - "We create the graph using a very handy python package called [rdflib](https://rdflib.readthedocs.io/en/stable/), which provides us a way to parse our json-ld data, run some queries using the language [SPARQL](https://en.wikipedia.org/wiki/SPARQL), and serialize the graph in any RDF compatible format (e.g. JSON-LD, Turtle, etc.)." - ], "metadata": { "id": "lotp-0QABV-2" - } + }, + "source": [ + "We create the graph using a very handy python package called [rdflib](https://rdflib.readthedocs.io/en/stable/), which provides us a way to parse our json-ld data, run some queries using the language [SPARQL](https://en.wikipedia.org/wiki/SPARQL), and serialize the graph in any RDF compatible format (e.g. JSON-LD, Turtle, etc.)." + ] }, { "cell_type": "code", - "source": [ - "# Create a new graph\n", - "g = rdflib.Graph()\n", - "\n", - "# Parse our json-ld data into the graph\n", - "g.parse(data=json.dumps(jsonld), format=\"json-ld\")\n", - "\n", - "# Create a SPARQL query to return all the triples in the graph\n", - "query_all = \"\"\"\n", - "SELECT ?subject ?predicate ?object\n", - "WHERE {\n", - " ?subject ?predicate ?object\n", - "}\n", - "\"\"\"\n", - "\n", - "# Execute the SPARQL query\n", - "all_the_things = g.query(query_all)\n", - "\n", - "# Print the results\n", - "for row in all_the_things:\n", - " print(row)\n" - ], + "execution_count": 106, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -147,11 +124,10 @@ "id": "zWibLw6NIrrq", "outputId": "2b87d0a0-06b4-4093-f44b-4add7f9651e0" }, - "execution_count": 106, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "(rdflib.term.BNode('Nba3653d5211a479faa84120717afec04'), rdflib.term.URIRef('https://schema.org/manufacturer'), rdflib.term.URIRef('https://www.wikidata.org/wiki/Q680841'))\n", "(rdflib.term.BNode('Nbad48dcf37014f5989126dde499c31e7'), rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), rdflib.term.URIRef('http://emmo.info/emmo#EMMO_d8aa8e1f_b650_416d_88a0_5118de945456'))\n", @@ -169,10 +145,35 @@ "(rdflib.term.BNode('Nba3653d5211a479faa84120717afec04'), rdflib.term.URIRef('http://emmo.info/emmo#EMMO_e1097637_70d2_4895_973f_2396f04fa204'), rdflib.term.BNode('Nbad48dcf37014f5989126dde499c31e7'))\n" ] } + ], + "source": [ + "# Create a new graph\n", + "g = rdflib.Graph()\n", + "\n", + "# Parse our json-ld data into the graph\n", + "g.parse(data=json.dumps(jsonld), format=\"json-ld\")\n", + "\n", + "# Create a SPARQL query to return all the triples in the graph\n", + "query_all = \"\"\"\n", + "SELECT ?subject ?predicate ?object\n", + "WHERE {\n", + " ?subject ?predicate ?object\n", + "}\n", + "\"\"\"\n", + "\n", + "# Execute the SPARQL query\n", + "all_the_things = g.query(query_all)\n", + "\n", + "# Print the results\n", + "for row in all_the_things:\n", + " print(row)\n" ] }, { "cell_type": "markdown", + "metadata": { + "id": "C-w1TbxkI4W5" + }, "source": [ "You can see that our human-readable JSON-LD file has been transformed into some nasty looking (but machine-readable!) triples. Let's look at a couple in more detail to understand what's going on.

\n", "\n", @@ -208,13 +209,27 @@ "## Query the graph using SPARQL [Moderate]\n", "\n", "Now, let's write a SPARQL query to get back some specific thing...like what is the name of the manufacturer?" - ], - "metadata": { - "id": "C-w1TbxkI4W5" - } + ] }, { "cell_type": "code", + "execution_count": 107, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "6bXHGG4cI-kr", + "outputId": "c1a5fef2-f4bc-4e63-dc87-617f6bb9cecd" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(rdflib.term.Literal('Sigma-Aldrich'),)\n" + ] + } + ], "source": [ "query = \"\"\"\n", "PREFIX schema: \n", @@ -232,39 +247,39 @@ "# Print the results\n", "for row in results:\n", " print(row)\n" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "6bXHGG4cI-kr", - "outputId": "c1a5fef2-f4bc-4e63-dc87-617f6bb9cecd" - }, - "execution_count": 107, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "(rdflib.term.Literal('Sigma-Aldrich'),)\n" - ] - } ] }, { "cell_type": "markdown", + "metadata": { + "id": "b7LJC8BubFce" + }, "source": [ "## Fetch additional information from other sources [Advanced]\n", "Ontologies contain a lot of information about the meaning of things, but they don't always contain an exhaustive list of all the properties. Instead, they often point to other sources where that information exists rather than duplicating it. Let's see how you can use the ontology to fetch additional information from other sources.\n", "\n", "First, we parse the ontology into the knowledge graph and retrieve the IRIs for the terms that we are interested in. In this case, we want to retrieve more information about Zinc from Wikidata, so we query the ontology to find Zinc's Wikidata ID." - ], - "metadata": { - "id": "b7LJC8BubFce" - } + ] }, { "cell_type": "code", + "execution_count": 108, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ntT1Rf_yM6sZ", + "outputId": "dbd2e4a6-6a4e-4e85-f221-ee240e79c9af" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The Wikidata ID of Zinc: Q758\n" + ] + } + ], "source": [ "# Parse the ontology into the knowledge graph\n", "ontology = \"https://raw.githubusercontent.com/emmo-repo/domain-electrochemistry/master/electrochemistry-inferred.ttl\"\n", @@ -292,36 +307,36 @@ " wikidata_id = row.wikidataId.split('/')[-1]\n", "\n", "print(f\"The Wikidata ID of Zinc: {wikidata_id}\")" - ], + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XGXFrNa5dKSr" + }, + "source": [ + "Now that we have the Wikidata ID for Zinc, we can query their SPARQL endpoint to retrieve some property. Let's ask it for the atomic mass." + ] + }, + { + "cell_type": "code", + "execution_count": 109, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, - "id": "ntT1Rf_yM6sZ", - "outputId": "dbd2e4a6-6a4e-4e85-f221-ee240e79c9af" + "id": "zTBOZAf-dWQQ", + "outputId": "e894b2c6-e2fc-4564-b77f-3e623afeecdb" }, - "execution_count": 108, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ - "The Wikidata ID of Zinc: Q758\n" + "Wikidata says the atomic mass of zinc is: 65.38\n" ] } - ] - }, - { - "cell_type": "markdown", - "source": [ - "Now that we have the Wikidata ID for Zinc, we can query their SPARQL endpoint to retrieve some property. Let's ask it for the atomic mass." ], - "metadata": { - "id": "XGXFrNa5dKSr" - } - }, - { - "cell_type": "code", "source": [ "# Query the Wikidata knowledge graph for more information about zinc\n", "wikidata_endpoint = \"https://query.wikidata.org/sparql\"\n", @@ -340,57 +355,20 @@ "# Extract and print the mass value\n", "mass = data['results']['bindings'][0]['mass']['value']\n", "print(f\"Wikidata says the atomic mass of zinc is: {mass}\")" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "zTBOZAf-dWQQ", - "outputId": "e894b2c6-e2fc-4564-b77f-3e623afeecdb" - }, - "execution_count": 109, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Wikidata says the atomic mass of zinc is: 65.38\n" - ] - } ] }, { "cell_type": "markdown", - "source": [ - "We can also retrieve more complex data. For example, let's ask Wikidata to show us an image of zinc." - ], "metadata": { "id": "-xdSIS6Idy5m" - } + }, + "source": [ + "We can also retrieve more complex data. For example, let's ask Wikidata to show us an image of zinc." + ] }, { "cell_type": "code", - "source": [ - "# SPARQL query to get the image of zinc (Q758)\n", - "query = \"\"\"\n", - "SELECT ?image WHERE {\n", - " wd:%s wdt:P18 ?image .\n", - "}\n", - "\"\"\" % wikidata_id\n", - "\n", - "# Execute the request\n", - "response = requests.get(wikidata_endpoint, params={'query': query, 'format': 'json'})\n", - "data = response.json()\n", - "\n", - "# Extract and display the image URL\n", - "if data['results']['bindings']:\n", - " image_url = data['results']['bindings'][0]['image']['value']\n", - " print(f\"Image of Zinc: {image_url}\")\n", - " display(Image(url=image_url, width=300)) # Adjust width and height as needed\n", - "\n", - "else:\n", - " print(\"No image found for Zinc.\")" - ], + "execution_count": 110, "metadata": { "colab": { "base_uri": "https://localhost:8080/", @@ -399,17 +377,15 @@ "id": "T7bkBY0sNqNY", "outputId": "a5cad6b9-84be-43b2-9411-569f938a09fc" }, - "execution_count": 110, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "Image of Zinc: http://commons.wikimedia.org/wiki/Special:FilePath/Zinc%20fragment%20sublimed%20and%201cm3%20cube.jpg\n" ] }, { - "output_type": "display_data", "data": { "text/html": [ "" @@ -418,18 +394,54 @@ "" ] }, - "metadata": {} + "metadata": {}, + "output_type": "display_data" } + ], + "source": [ + "# SPARQL query to get the image of zinc (Q758)\n", + "query = \"\"\"\n", + "SELECT ?image WHERE {\n", + " wd:%s wdt:P18 ?image .\n", + "}\n", + "\"\"\" % wikidata_id\n", + "\n", + "# Execute the request\n", + "response = requests.get(wikidata_endpoint, params={'query': query, 'format': 'json'})\n", + "data = response.json()\n", + "\n", + "# Extract and display the image URL\n", + "if data['results']['bindings']:\n", + " image_url = data['results']['bindings'][0]['image']['value']\n", + " print(f\"Image of Zinc: {image_url}\")\n", + " display(Image(url=image_url, width=300)) # Adjust width and height as needed\n", + "\n", + "else:\n", + " print(\"No image found for Zinc.\")" ] }, { "cell_type": "code", - "source": [], + "execution_count": 110, "metadata": { "id": "T1qUAeCDVNq3" }, - "execution_count": 110, - "outputs": [] + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ] -} \ No newline at end of file + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/sphinx/example_person_jsonld_nb.ipynb b/sphinx/example_person_jsonld_nb.ipynb index 75a7cb3..8c2fed3 100644 --- a/sphinx/example_person_jsonld_nb.ipynb +++ b/sphinx/example_person_jsonld_nb.ipynb @@ -10,7 +10,9 @@ "\n", "In this notebook, we will explore the principles of JSON-LD using the example of a person. JSON-LD stands for \"JSON for Linking Data\" and it provides a method to enrich your JSON data with semantics.\n", "\n", - "An operational version of this notebook can be accessed [here](https://colab.research.google.com/drive/14XqRJPWs07RUQgZmDZEu3yb2m1xGvxEQ?usp=sharing)." + "An operational version of this notebook can be accessed [here](https://colab.research.google.com/drive/14XqRJPWs07RUQgZmDZEu3yb2m1xGvxEQ?usp=sharing).\n", + "\n", + "Note, the `pip install` statements are to be run in a shell/terminal." ] }, { @@ -21,7 +23,10 @@ "base_uri": "https://localhost:8080/" }, "id": "y-aalpcNb223", - "outputId": "565a219c-1d10-4b55-fd75-a1fcb2257022" + "outputId": "565a219c-1d10-4b55-fd75-a1fcb2257022", + "vscode": { + "languageId": "shellscript" + } }, "outputs": [ { @@ -48,8 +53,8 @@ ], "source": [ "# Install the required library for JSON schema validation\n", - "!pip install jsonschema\n", - "!pip install rdflib" + "pip install jsonschema\n", + "pip install rdflib" ] }, { diff --git a/sphinx/examples.rst b/sphinx/examples.rst index 8e214f1..14eaf4c 100644 --- a/sphinx/examples.rst +++ b/sphinx/examples.rst @@ -1,10 +1,19 @@ .. toctree:: :hidden: - example_linked_data_battery_cell_metadata.ipynb - example_linked_data_custom_battery_cell_metadata.ipynb - example_linked_data_timeseries_battery_data.ipynb - example_linked_data_zinc_powder.ipynb + example_linked_data_battery_cell_metadata + example_linked_data_custom_battery_cell_metadata + example_linked_data_timeseries_battery_data + example_linked_data_zinc_powder + example_aqueous_electrolyte_KOH + example_alkaline_electrochemical_cell + example_cyclic_voltammetry + example_eis_nyquist + + example_zinc_electrode + example_zinc_powder + + example_person_jsonld_nb Examples ======== diff --git a/sphinx/img/protege_config_contribute.png b/sphinx/img/protege_config_contribute.png new file mode 100644 index 0000000..3b58a25 Binary files /dev/null and b/sphinx/img/protege_config_contribute.png differ diff --git a/sphinx/index.rst b/sphinx/index.rst index a7a5b8d..abe6966 100644 --- a/sphinx/index.rst +++ b/sphinx/index.rst @@ -9,6 +9,10 @@ About FAQ + Contribute + tools + resources + Battery Interface Ontology ================================