Skip to content

Latest commit

 

History

History
5 lines (3 loc) · 2.03 KB

2403.19655.md

File metadata and controls

5 lines (3 loc) · 2.03 KB

GaussianCube: Structuring Gaussian Splatting using Optimal Transport for 3D Generative Modeling

3D Gaussian Splatting (GS) have achieved considerable improvement over Neural Radiance Fields in terms of 3D fitting fidelity and rendering speed. However, this unstructured representation with scattered Gaussians poses a significant challenge for generative modeling. To address the problem, we introduce GaussianCube, a structured GS representation that is both powerful and efficient for generative modeling. We achieve this by first proposing a modified densification-constrained GS fitting algorithm which can yield high-quality fitting results using a fixed number of free Gaussians, and then re-arranging the Gaussians into a predefined voxel grid via Optimal Transport. The structured grid representation allows us to use standard 3D U-Net as our backbone in diffusion generative modeling without elaborate designs. Extensive experiments conducted on ShapeNet and OmniObject3D show that our model achieves state-of-the-art generation results both qualitatively and quantitatively, underscoring the potential of GaussianCube as a powerful and versatile 3D representation.

3D高斯喷溅(GS)在3D拟合保真度和渲染速度方面相较于神经辐射场取得了显著改进。然而,这种散布的高斯的无结构表示对于生成模型构成了重大挑战。为了解决这个问题,我们介绍了GaussianCube,一种结构化的GS表示,对于生成模型既强大又高效。我们首先提出了一种修改后的密度约束GS拟合算法,该算法使用固定数量的自由高斯可以产生高质量的拟合结果,然后通过最优传输将高斯重新排列到预定义的体素网格中。结构化网格表示允许我们在扩散生成模型中使用标准的3D U-Net作为我们的骨干网络,无需复杂设计。在ShapeNet和OmniObject3D上进行的广泛实验表明,我们的模型在质量和数量上都实现了最先进的生成结果,突显了GaussianCube作为一种强大且多用途的3D表示的潜力。