-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
215 lines (191 loc) · 7.81 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import interactive
import scipy
def rgb_min_image(image):
# extractes the min of the rgb values and outputs
# a gray scale image
rgb_image = np.amin(image, axis= 2)
return rgb_image
def min_filter(image):
# perfroms the min filter on 15 by 15 area
for k in range (3):
i_image = image.copy()
temp_image = image[:,:,k].copy()
[row,col] = temp_image.shape
temp_image = cv2.copyMakeBorder(temp_image, 14, 14, 14, 14, cv2.BORDER_REFLECT)
for i in range(row):
for j in range(col):
i_image[i,j,k] = (temp_image[i:14+i,j:14+j]).min()
return i_image
def dark_channel(image):
# output the dark channel as the image
new_image = image.copy()
min_image = min_filter(new_image)
dark_prior = rgb_min_image(min_image)
return dark_prior
def transmition_map(image,A,w):
#finds the transmition map for the image
image_new = np.divide(image,A).astype(float)
new_dark = dark_channel(image_new)
transmition = 1 - w*new_dark
return transmition
def A_estimator(image,dark_prior):
#Used the information extracted from the dark prior
#find a value for A
image_copy = image.copy()
[row,col,dem] = image_copy.shape
dark_copy = dark_prior.copy()
num = np.round(row*col*0.001).astype(int)
j = sorted(np.asarray(dark_copy).reshape(-1), reverse=True)[:num]
ind = np.unravel_index(j[0], dark_copy.shape)
max_val = image_copy[ind[0],ind[1],:]
for element in j:
ind = np.unravel_index(element, dark_copy.shape)
if (sum(max_val[:]) < sum(image_copy[ind[0],ind[1],:])):
max_val[:] = image_copy[ind[0],ind[1],:]
A = image_copy
A[:,:,:] = max_val[:]
return A
def Radience_cal(image,A,Transmission_map,t_not):
#Used information from the transmit map to remove haze from the image.
image_copy = image.copy()
A_copy = A.copy()
Transmission_map_copy = (Transmission_map.copy()).astype(float)
divisor = np.maximum(Transmission_map_copy,t_not)
radience = (image.copy()).astype(float)
for i in range(3):
radience[:,:,i] = np.divide(((image_copy[:,:,i]).astype(float) - A[0,0,i]),divisor) + A[0,0,i]
#radience = 255*(radience/np.max(radience))
radience[radience>255]=255
radience[radience<0]=0
return radience.astype('uint8')
def L_calculator(image,Transmission_map):
#helps fine tune the transmition map for a better result
epsalon = 10**(-8)
h,w = image.shape[:2]
window_area = (2*r + 1)**2
n_vals = (w - 2*r)*(h - 2*r)*window_area**2
k = 0
# data for matting laplacian in coordinate form
i = np.empty(n_vals, dtype=np.int32)
j = np.empty(n_vals, dtype=np.int32)
v = np.empty(n_vals, dtype=np.float64)
# for each pixel of image
for y in range(r, h - r):
for x in range(r, w - r):
# gather neighbors of current pixel in 3x3 window
n = image[y-r:y+r+1, x-r:x+r+1]
u = np.zeros(3)
for p in range(3):
u[p] = n[:, :, p].mean()
c = n - u
# calculate covariance matrix over color channels
cov = np.zeros((3, 3))
for p in range(3):
for q in range(3):
cov[p, q] = np.mean(c[:, :, p]*c[:, :, q])
# calculate inverse covariance of window
inv_cov = np.linalg.inv(cov + epsilon/window_area * np.eye(3))
# for each pair ((xi, yi), (xj, yj)) in a 3x3 window
for dyi in range(2*r + 1):
for dxi in range(2*r + 1):
for dyj in range(2*r + 1):
for dxj in range(2*r + 1):
i[k] = (x + dxi - r) + (y + dyi - r)*w
j[k] = (x + dxj - r) + (y + dyj - r)*w
temp = c[dyi, dxi].dot(inv_cov).dot(c[dyj, dxj])
v[k] = (1.0 if (i[k] == j[k]) else 0.0) - (1 + temp)/window_area
k += 1
h,w = Transmission_map.shape
L = scipy.sparse.csr_matrix((v, (i, j)), shape=(w*h, w*h))
return L
def soft_matting(L,image,t_map):
image_copy = image.copy()
lamda = 10**(-4)
U = np.identity(L.shape[0])
t_map_mat = t_map*(L+lamda*U)/lamda
return t_map_mat
def guided_filter(image,guide,diameter,epsilon):
w_size = diameter+1
# Exatrcation the mean of the image by blurring
meanI=cv2.blur(image,(w_size,w_size))
mean_Guide=cv2.blur(guide,(w_size,w_size))
# Extracting the auto correlation
II=image**2
corrI=cv2.blur(II,(w_size,w_size))
# Finding the correlation between image and guide
I_guide=image*guide
corrIG=cv2.blur(I_guide,(w_size,w_size))
# using the mean of the image to find the variance of each point
varI=corrI-meanI**2
covIG=corrIG-meanI*mean_Guide
#covIG normalized with a epsilon factor
a=covIG/(varI+epsilon)
#a is used to find the b
b=mean_Guide-a*meanI
meanA=cv2.blur(a,(w_size,w_size))
meanB=cv2.blur(b,(w_size,w_size))
transmission_rate=meanA*image+meanB
# normalizaing of the transimational map
transmission_rate = transmission_rate/np.max(transmission_rate)
return transmission_rate
#---------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------
# inputing the information
base_path = os.getcwd()
test_Haze = os.listdir(base_path+ '/data_set/Training_Set/hazy')
test_GT = os.listdir(base_path+ '/data_set/Training_Set/GT')
image = cv2.imread( base_path + "/data_set/Test_Set/Bridge.jpg",cv2.IMREAD_COLOR)
# extracting the minmum value from 15 by 15 patch
min_image = min_filter(image)
# perfroming the minmin with 15by15 min filter
dark_prior = rgb_min_image(min_image)
# displaying the results
fig, axes= plt.subplots(nrows=1, ncols=3,figsize=(20,5))
plt.suptitle('Stages of Dark channel')
axes[0].imshow(cv2.cvtColor(image,cv2.COLOR_BGR2RGB))
axes[0].set_title('original image')
axes[1].imshow(cv2.cvtColor(min_image,cv2.COLOR_BGR2RGB))
axes[1].set_title('The min 15 patch image',)
axes[2].imshow(dark_prior,cmap='gray')
axes[2].set_title('The dark prior')
interactive(True)
plt.show()
A = A_estimator(image,dark_prior)
fig, axes= plt.subplots(nrows=1, ncols=3,figsize=(20,5))
axes[0].imshow(cv2.cvtColor(image,cv2.COLOR_BGR2RGB))
axes[0].set_title('original image')
axes[1].imshow(A,cmap='gray')
axes[1].set_title('The Ambiance image')
Transmition_image = transmition_map(image,A,0.95)
axes[2].imshow(Transmition_image,cmap='gray')
axes[2].set_title('The transmitance image')
plt.show()
fig, axes= plt.subplots(nrows=1, ncols=3,figsize=(20,5))
radience_image = Radience_cal(image,A,Transmition_image,0.1)
axes[0].imshow(cv2.cvtColor(image,cv2.COLOR_BGR2RGB))
axes[0].set_title('original image')
axes[1].imshow(Transmition_image,cmap='gray')
axes[1].set_title('The transmitance image')
axes[2].imshow(cv2.cvtColor(radience_image,cv2.COLOR_BGR2RGB))
axes[2].set_title('Haze Free image')
plt.show()
epsilon = 10**-8
img_gray=cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)
# refined the transmition map using the guide filter
refine_Transmission_image=guided_filter(img_gray.astype(np.float32),Transmition_image.astype(np.float32),100,epsilon)
refine_radience_image = Radience_cal(image,A,refine_Transmission_image,0.1)
# diplaying the refined results
fig, axes= plt.subplots(nrows=1, ncols=3,figsize=(20,5))
radience_image = Radience_cal(image,A,Transmition_image,0.1)
axes[0].imshow(cv2.cvtColor(image,cv2.COLOR_BGR2RGB))
axes[0].set_title('original image')
axes[1].imshow(refine_Transmission_image,cmap='gray')
axes[1].set_title('The Refine Transmitance image')
axes[2].imshow(cv2.cvtColor(refine_radience_image,cv2.COLOR_BGR2RGB))
axes[2].set_title('Haze Free image')
interactive(False)
plt.show()