From cfb9927cbfd3bafc63f2f5fd0712493ce9a9a75e Mon Sep 17 00:00:00 2001 From: Younes Strittmatter Date: Thu, 31 Aug 2023 19:14:41 -0400 Subject: [PATCH 1/4] feat: change state to userdict --- ...Introduction to Functions and States.ipynb | 55 +++-- ...ombining Experimentalists with State.ipynb | 50 ++--- ...Workflows using Functions and States.ipynb | 197 ++++------------- src/autora/state.py | 206 ++++++++++++++---- 4 files changed, 244 insertions(+), 264 deletions(-) diff --git a/docs/cycle/Basic Introduction to Functions and States.ipynb b/docs/cycle/Basic Introduction to Functions and States.ipynb index a41bf38a..b397842a 100644 --- a/docs/cycle/Basic Introduction to Functions and States.ipynb +++ b/docs/cycle/Basic Introduction to Functions and States.ipynb @@ -87,12 +87,12 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), conditions= x\n", + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", "0 5.479121\n", "1 -1.222431\n", "2 7.171958\n", "3 3.947361\n", - "4 -8.116453, experiment_data=None, models=[])" + "4 -8.116453, 'experiment_data': None, 'models': None}" ] }, "execution_count": null, @@ -125,17 +125,17 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), conditions= x\n", + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", "0 5.479121\n", "1 -1.222431\n", "2 7.171958\n", "3 3.947361\n", - "4 -8.116453, experiment_data= x y\n", + "4 -8.116453, 'experiment_data': x y\n", "0 5.479121 24.160713\n", "1 -1.222431 -2.211546\n", "2 7.171958 30.102304\n", "3 3.947361 16.880769\n", - "4 -8.116453 -32.457650, models=[])" + "4 -8.116453 -32.457650, 'models': None}" ] }, "execution_count": null, @@ -178,17 +178,12 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), conditions= x\n", - "0 5.479121\n", - "1 -1.222431\n", - "2 7.171958\n", - "3 3.947361\n", - "4 -8.116453, experiment_data= x y\n", + "{'experiment_data': x y\n", "0 5.479121 24.221201\n", "1 -1.222431 -3.929709\n", "2 7.171958 31.438285\n", "3 3.947361 18.730007\n", - "4 -8.116453 -32.416847, models=[])" + "4 -8.116453 -32.416847}" ] }, "execution_count": null, @@ -229,17 +224,17 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), conditions= x\n", + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", "0 5.479121\n", "1 -1.222431\n", "2 7.171958\n", "3 3.947361\n", - "4 -8.116453, experiment_data= x y\n", - "0 5.479121 24.372288\n", - "1 -1.222431 -1.583178\n", - "2 7.171958 30.032529\n", - "3 3.947361 16.745934\n", - "4 -8.116453 -31.388814, models=[])" + "4 -8.116453, 'experiment_data': x y\n", + "0 5.479121 25.241429\n", + "1 -1.222431 -1.237150\n", + "2 7.171958 31.258674\n", + "3 3.947361 18.018944\n", + "4 -8.116453 -31.809938, 'models': None}" ] }, "execution_count": null, @@ -295,17 +290,17 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), conditions= x\n", - "0 6.159515\n", - "1 -7.713961\n", - "2 -0.655764\n", - "3 9.297426\n", - "4 2.601009, experiment_data= x y\n", - "0 6.159515 27.502964\n", - "1 -7.713961 -30.950686\n", - "2 -0.655764 -1.488309\n", - "3 9.297426 38.992089\n", - "4 2.601009 13.351848, models=[LinearRegression()])" + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", + "0 3.056586\n", + "1 -7.392792\n", + "2 -4.502129\n", + "3 -7.037973\n", + "4 8.613511, 'experiment_data': x y\n", + "0 3.056586 16.271935\n", + "1 -7.392792 -27.401449\n", + "2 -4.502129 -17.914406\n", + "3 -7.037973 -25.823687\n", + "4 8.613511 36.439628, 'models': [LinearRegression()]}" ] }, "execution_count": null, diff --git a/docs/cycle/Combining Experimentalists with State.ipynb b/docs/cycle/Combining Experimentalists with State.ipynb index a7d6680a..0efb9e8b 100644 --- a/docs/cycle/Combining Experimentalists with State.ipynb +++ b/docs/cycle/Combining Experimentalists with State.ipynb @@ -299,7 +299,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABqTUlEQVR4nO3deXxc1Xk38N+dXaNlRpsla19sMDa2vGDLlq0ArYuzkbqB1EnzBvCb0pTabyFumsRtgsnqNCm80AQCISHwUvKxkzTQtEmgxMFBkjfwhllsZO22rF0aSSPNeu/7h3RHki3ZGmlmzr0zv+/no0/i8SyP5MPVc895nnMkRVEUEBEREQliEB0AERERJTYmI0RERCQUkxEiIiISiskIERERCcVkhIiIiIRiMkJERERCMRkhIiIioZiMEBERkVBMRoiIiEgoJiNEOiVJEh566KFrPu+hhx6CJEnRD0igQCCAL37xiygsLITBYMDWrVtFhzStZ599FpIkobm5WXQoRJrCZIQoQp544glIkoTKykrRoSScZ555Bt/73vdw55134rnnnsPnP/95ofF8+9vfxksvvSQ0BiI9kXg2DVFkbNy4Ee3t7WhubkZ9fT0WLVoU1c/zeDwwmUwwmUxXfd5DDz2Er33ta4jn/9Q/+clPora2FhcuXBAdCgAgJSUFd955J5599tkpjweDQfj9flit1rifrSIKB2dGiCKgqakJhw4dwiOPPILs7Gy88MILUf9Mm812zUQkUXR1dcHpdIoO45qMRiNsNhsTEaLLMBkhioAXXngB6enp+MhHPoI777xzSjLi9/uRkZGB7du3X/G6wcFB2Gw2fOELXwg91tXVhc9+9rPIycmBzWZDRUUFnnvuuSteO13NSG1tLdauXQubzYby8nI89dRTYX0fsizj0UcfxbJly2Cz2ZCTk4PPfe5z6O/vDz3nox/9KMrKyqZ9/YYNG3DTTTdNeezf//3fsWbNGiQlJSEjIwOf/OQn0dbWNuU5t9xyC2688Ua8++67uPXWW2G325Gfn4/vfve7V423ubkZkiThtddewzvvvANJkiBJEg4ePIiDBw+G/v90r5k8a3HPPfcgJSUFFy9exNatW5GSkoLs7Gx84QtfQDAYvOJn9Nhjj2H58uWw2WzIzs7GBz/4Qbz55psAxv5d3G43nnvuuVA899xzD4CZa0aeeOIJLFu2DFarFXl5edixYwcGBgYi8jMi0gMmI0QR8MILL+DjH/84LBYLPvWpT6G+vh5vvPEGAMBsNuMv/uIv8NJLL8Hn80153UsvvQSv14tPfvKTAIDR0VHccssteP755/HpT38a3/ve9+BwOHDPPffgscceu2oMZ86cwW233Yauri489NBD2L59O/bs2YMXX3xx1t/H5z73OfzjP/4jNm7ciMceewzbt2/HCy+8gC1btsDv9wMAtm3bhqamptD3p2ppacGRI0dC3wsAfOtb38Jdd92FxYsX45FHHsEDDzyAAwcO4AMf+MAVv2z7+/vxwQ9+EBUVFXj44YexZMkSfOlLX8Lvfve7GePNzs7G888/jyVLlqCgoADPP/88nn/+edxwww2z/p5VwWAQW7ZsQWZmJv71X/8VN998Mx5++GH86Ec/mvK8z372s3jggQdQWFiIf/mXf8GXv/xl2Gw2HDlyBADw/PPPw2q1orq6OhTP5z73uRk/96GHHsKOHTuQl5eHhx9+GHfccQeeeuop3HbbbaGf+Xx+RkS6oBDRvLz55psKAOXVV19VFEVRZFlWCgoKlPvvvz/0nFdeeUUBoPzXf/3XlNd++MMfVsrKykJ/fvTRRxUAyr//+7+HHvP5fMqGDRuUlJQUZXBwMPQ4AGXPnj2hP2/dulWx2WxKS0tL6LF3331XMRqNymz+U6+pqVEAKC+88MKUx19++eUpj7tcLsVqtSr/8A//MOV53/3udxVJkkKf39zcrBiNRuVb3/rWlOedOXNGMZlMUx6/+eabFQDK//t//y/0mNfrVXJzc5U77rjjmrHffPPNyrJly6Y89tprrykAlNdee23K401NTQoA5ac//WnosbvvvlsBoHz961+f8txVq1Ypa9asCf35D3/4gwJA+fu///srYpBlOfT/k5OTlbvvvvuK5/z0pz9VAChNTU2KoihKV1eXYrFYlNtuu00JBoOh5/3gBz9QACjPPPPMlO9xPj8jIi3jzAjRPL3wwgvIycnBrbfeCmBsmn7btm3Yt29faIr/T/7kT5CVlYX9+/eHXtff349XX30V27ZtCz3229/+Frm5ufjUpz4VesxsNuPv//7vMTw8jD/+8Y/TxhAMBvHKK69g69atKCoqCj1+ww03YMuWLbP6Pn7xi1/A4XDgz/7sz9DT0xP6WrNmDVJSUvDaa68BANLS0vChD30IP//5z6cUxe7fvx/r168Pff6vfvUryLKMv/zLv5zyfrm5uVi8eHHo/VQpKSn4X//rf4X+bLFYsG7dOjQ2Ns4q/kj427/92yl/rq6unvL5//Ef/wFJkrBnz54rXjuXOpDf//738Pl8eOCBB2AwTFyO7733XqSlpeE3v/nNlOdr4WdEFA1MRojmIRgMYt++fbj11lvR1NSE8+fP4/z586isrERnZycOHDgAADCZTLjjjjvwn//5n/B6vQDGfln7/f4pyUhLSwsWL1485RcTgNCyQ0tLy7RxdHd3Y3R0FIsXL77i766//vopf+7r60NHR0foy+VyAQDq6+vhcrmwYMECZGdnT/kaHh5GV1dX6D22bduGtrY2HD58GADQ0NCA48ePT/le6uvroSgKFi9efMX7vffee1PeDwAKCgqu+IWenp4+pV4lmtT6j6t9fkNDA/Ly8pCRkRGRz1T/PS//N7JYLCgrK7vi31v0z4goWliKTzQPf/jDH3Dp0iXs27cP+/btu+LvX3jhBdx2220AxtpPn3rqKfzud7/D1q1b8fOf/xxLlixBRUVFTGP++Mc/PmWG5e6778azzz4LWZaxYMGCGTuBJv+ivv3222G32/Hzn/8cVVVV+PnPfw6DwYBPfOIToefIsgxJkvC73/0ORqPxivdLSUmZ8ufpngNgzi3JM81UXF6Qeq3P15JI/4yItILJCNE8vPDCC1iwYAEef/zxK/7uV7/6FV588UU8+eSTSEpKwgc+8AEsXLgQ+/fvx6ZNm/CHP/wB//zP/zzlNcXFxXjrrbcgy/KU2ZGzZ8+G/n462dnZSEpKQn19/RV/d+7cuSl/fvjhh6fcSefl5QEAysvL8fvf/x4bN25EUlLSVb/v5ORkfPSjH8UvfvELPPLII9i/fz+qq6tD76W+n6IoKC0txXXXXXfV94uG9PR0ALiiUHam2aXZKC8vxyuvvIK+vr6rzo7MdslG/fc8d+7clA4ln8+HpqYmbN68ec6xEukJl2mI5mh0dBS/+tWv8NGPfhR33nnnFV87d+7E0NAQfv3rXwMADAYD7rzzTvzXf/0Xnn/+eQQCgSnLGgDw4Q9/GB0dHVNqSwKBAL7//e8jJSUFN99887SxGI1GbNmyBS+99BJaW1tDj7/33nt45ZVXpjx3zZo12Lx5c+hr6dKlAIC//Mu/RDAYxDe+8Y0r3j8QCFzxS33btm1ob2/Hj3/8Y5w+ffqK7+XjH/84jEbjtBuuKYqC3t7eab+XSCkuLobRaMTrr78+5fEnnnhizu95xx13QFEUfO1rX7vi7yZ/j8nJyVf8vKazefNmWCwW/Nu//duU1//kJz+By+XCRz7ykTnHSqQnnBkhmqNf//rXGBoawsc+9rFp/379+vWhDdDUX9Tbtm3D97//fezZswfLly+/ogX1b/7mb/DUU0/hnnvuwfHjx1FSUoJf/vKXqKurw6OPPorU1NQZ4/na176Gl19+GdXV1fi7v/u7UBKzbNkyvPXWW9f8fm6++WZ87nOfw969e3Hq1CncdtttMJvNqK+vxy9+8Qs89thjuPPOO0PP//CHP4zU1FR84QtfgNFoxB133DHl/crLy/HNb34Tu3fvRnNzM7Zu3YrU1FQ0NTXhxRdfxN/8zd9M2V8l0hwOBz7xiU/g+9//PiRJQnl5Of77v//7ilqVcNx66634zGc+g3/7t39DfX09PvjBD0KWZdTU1ODWW2/Fzp07AYwlfL///e/xyCOPIC8vD6WlpdMeE5CdnY3du3fja1/7Gj74wQ/iYx/7GM6dO4cnnngCa9eunVKsShTXRLXxEOnd7bffrthsNsXtds/4nHvuuUcxm81KT0+Poihj7Z+FhYUKAOWb3/zmtK/p7OxUtm/frmRlZSkWi0VZvnz5lDZUFS5r7VUURfnjH/+orFmzRrFYLEpZWZny5JNPKnv27JlVa6/qRz/6kbJmzRolKSlJSU1NVZYvX6588YtfVNrb26947qc//WkFgLJ58+YZ3+8//uM/lE2bNinJyclKcnKysmTJEmXHjh3KuXPnQs+ZrjVXUcZabouLi68Z80yv7+7uVu644w7Fbrcr6enpyuc+9znl7bffnra1Nzk5+YrXT/ezCwQCyve+9z1lyZIlisViUbKzs5UPfehDyvHjx0PPOXv2rPKBD3xASUpKUgCE2nwvb+1V/eAHP1CWLFmimM1mJScnR7nvvvuU/v7+WX2Ps/0ZEWkZz6YhIiIioVgzQkREREIxGSEiIiKhmIwQERGRUExGiIiISCgmI0RERCQUkxEiIiISShebnsmyjPb2dqSmps7pZEwiIiKKPUVRMDQ0hLy8vCsOAJ1MF8lIe3s7CgsLRYdBREREc9DW1oaCgoIZ/14XyYi6BXZbWxvS0tIER0NERESzMTg4iMLCwqseZQHoJBlRl2bS0tKYjBAREenMtUosWMBKREREQjEZISIiIqGYjBAREZFQTEaIiIhIKCYjREREJBSTESIiIhKKyQgREREJxWSEiIiIhGIyQkREREIxGSEiIiKhwk5GXn/9ddx+++3Iy8uDJEl46aWXrvmagwcPYvXq1bBarVi0aBGeffbZOYRKRERE8SjsZMTtdqOiogKPP/74rJ7f1NSEj3zkI7j11ltx6tQpPPDAA/jrv/5rvPLKK2EHS0RERPEn7IPyPvShD+FDH/rQrJ//5JNPorS0FA8//DAA4IYbbkBtbS3+7//9v9iyZcu0r/F6vfB6vaE/Dw4OhhsmaUj3kBf/ceIC/tf6YqRYdXE2I9GMFEXBz99sw/W5aVhZ6BQdDtG8Pfb7eviDMj5xUwGKM5OFxBD1mpHDhw9j8+bNUx7bsmULDh8+PONr9u7dC4fDEfoqLCyMdpgURd/53Vl853dn8cRr50WHQjRvhxp68aX/OIP7/v04FEURHQ7RvCiKguePtOAHr51H+4BHWBxRT0Y6OjqQk5Mz5bGcnBwMDg5idHR02tfs3r0bLpcr9NXW1hbtMClKFEXB6/XdAIA/vt8tOBqi+VPH8SWXB/Vdw4KjIZqfsx1D6Bn2IslsxOpip7A4NDlnbrVaYbVaRYdBEXCucwjdQ2NLbu+0D6LP7UNGskVwVERzV1PfE/r/tfU9uC4nVWA0RPNTOz6eK8syYDUZhcUR9ZmR3NxcdHZ2Tnmss7MTaWlpSEpKivbHk2C1ky7cAFB3vmeGZxJpX8+wF+9dmqhhq+V4Jp1Tx/CmRVlC44h6MrJhwwYcOHBgymOvvvoqNmzYEO2PJg1QB3qabWwS7vLkhEhP6i4bz0cae+ELyCJDIpozbyCIo029AIBNi3WWjAwPD+PUqVM4deoUgLHW3VOnTqG1tRXAWL3HXXfdFXr+3/7t36KxsRFf/OIXcfbsWTzxxBP4+c9/js9//vOR+Q5Is7yBII429gEA/u7WRQDGkhMW/ZFeqcn0trWFyEy2YMQXxKm2AbFBEc3R8ZZ+ePwyslOtuF7wcmPYycibb76JVatWYdWqVQCAXbt2YdWqVXjwwQcBAJcuXQolJgBQWlqK3/zmN3j11VdRUVGBhx9+GD/+8Y9nbOul+HGydQCj/iCyUqz4zPpiWIwGXBwYRXPviOjQiMKmKEpoZqR6cTaqxqe1a+tZmE36pCbXmxZlQZIkobGEXcB6yy23XPXOdrrdVW+55RacPHky3I8inZsY6JlItpqwutiJI419qK3vRmmWmF52orlq7HGj3eWBxWTAutIMdLg8+K/T7ag534Ndt10vOjyisKnJ9UbB9SIAz6ahKKq5bKCrBVIs+iM9UpPrm4rTYTMbsXF8jf102wAGPX6RoRGFbWDEh7cuugCIL14FmIxQlLhG/DhzYQDA2JQ2AGwa/99DDb0IBFn0R/qitvSqhX75ziSUZSVDVoDDDb0iQyMK26GGXigKsHhBCnIdNtHhMBmh6Djc2ANZARZNGujL8x1wJJkx5AmEMnIiPQgEZRxpHEs4qhdlhx5XExN2iZHehFp6BXfRqJiMUFTU1F/Zu240SKgqzwTAizfpy+kLAxj2BuC0m7EsLy30OJceSa9qp7lGi8RkhKJipo10NvLiTTqkJtcby7NgMEx0Hawvz4TRIKGpx40L/ewSI31o7R1Ba98ITAYJlWWZosMBwGSEoqCtbwQtvWMDfX351IFePT4leLK1H25vQER4RGGrrZ9+SjvNZkZFgQMAdxcm/ag5P9aOvrooXTMnqTMZoYhTZz1WFTmvGOjFmckozEiCP6iEdv4j0rIhjx8nxzc2m25KWy3MruHSI+lEncbqRQAmIxQF6l3kTL3roXX2eiYjpH1HG/sQlBUUZ9pRmGG/4u/V8XyooReyzN2FSduCsoK682PXXi3sL6JiMkIRFZQV1DWou1TOlIyM3UnWnufOlaR91zpIbFWRE8kWI/rcPrw76RA9Ii16+6ILrlE/Um2m0BKjFjAZoYh6p92FgRE/Uq0mVBQ4p33OxkWZkCTg/c5hdA56YhsgUZhqxrd7nym5NhsNWD9eBMjCbNI6dYxuKMuEyaidFEA7kVBcUAf6+vKZB7rTbsHyfBb9kfZdco2iodsNgwRsKJt5Sltde+d4Jq1Tl9FnSq5FYTJCETXb3vVQiy+L/kjD1PG5vMAJh9084/PU8X6sqQ8efzAmsRGFa9QXxPGWfgDaqhcBmIxQBI36gnizeWygX6tKu3rSfiNXO3iRSCR1pq/6GhfuRQtSkJNmhTcgh/4bINKao0298AVl5DuTNHdYKZMRipg3mvvgC8rIc9hQdo2Bvro4HTazAV1DXtR3DccoQqLZUxRl1i2QkiRNKszmbB9pU92kYmxJkq7x7NhiMkIRUzvplN5rDXSb2Yi1JRkAuD8DadPZjiH0DPuQZDZiVZHzms/ftFgtYmWXGGlTaCdhjdWLAExGKIIuP9X0WqpDh4zx4k3ao9aLVJZlwGoyXvP56hr8O+2D6HP7ohobUbi6h7w42zEEANhYro0t4CdjMkIR0TPsxXvjeyzMtjBKndY+2tQHX0COWmxEc3Gt/UUutyDVhiW5qVAU4FADZ/tIW9QxuSwvDZkpVsHRXInJCEWEuhZ5w8I0ZM1yoC/JTUVmsgUjviBOtrLoj7TDGwiGjisIZ8tsdomRVk13krqWMBmhiJhL77rBIPEUX9Kk4y398PhlZKdacX1O6qxfpyYuNfXsEiPtUBRlxsMetYLJCM2boihhT2mrJl+8ibRi8n454XQdVJZmwGyUcHFgFM29I9EKjygsDd3D6Bj0wGIyhBoHtIbJCM1bY48bl1weWIzhD3Q1eXnrwgBco/5ohEcUtrpJnWHhsFtMWF2UDoCzfaQdanK9tiQdNvO1i7FFYDJC86YO9JtK0pFkCW+g5zmTUJadDFkBDjfwFF8Sb2DEh7cuugDMbX2dXWKkNRMz19mCI5kZkxGat3Bbei83sRsrL94k3qGGXigKsHhBCnIdtrBfv2lxduh9AkF2iZFY/qCMI419ALR3Hs1kTEZoXgJBGUcax2Y0queYdasX77rznBkh8WpnuevqTJbnO5BmM2HIE8CZ8RkWIlFOtw1g2BtAut2MpQvTRIczIyYjNC+nL4wNdKfdjKV5cxvolWUZMBokNPW4caGfRX8k1mwPe5yJ0SChqpwtvqQN6sx11aIsGAza2gJ+MiYjNC+h7YXLs2Cc40BPs5mxstAJgBdvEqu1dwStfSMwGSRUls19l8pQlxiLWEmw2R72KBqTEZqXuXYdXG4T9xshDVDH36oiJ1Kspjm/j7o2f7K1H25vICKxEYVryOPHqbYBAPO/RkcbkxGas2FvACdbBwDMvzBKvZM81NALWeZmUSSGWkQ9366Dogw7CtKT4A8qONbUF4nQiMJ2pLEPQVlBSaYdhRl20eFcFZMRmrMjDb0IyAqKIzDQVxaO3Yn2uX14d/yMG6JYCspKqIh6vrtUSpIUStC5oR+JoraXa3XX1cmYjNCczXXX1emYjQasLxvbMI0XbxLhnXYXXKN+pFpNqChwzPv91NkVtqyTKHrYX0TFZITmLJLJyOT3qWPdCAmgJsHryzNhMs7/0lhVnglJAt7vHEbXoGfe70cUjkuuUTR0u2GQgA3lcy/GjhUmIzQnl1yjON81DIOEUBvjfKlTicea++DxByPynkSzNZfDHq8mPdmCG/PGZlhYmE2xpibXKwqccCSZBUdzbUxGaE7UtfXlBU447JEZ6OXZKchNs8EXkPFGM4v+KHZGfUEcb+kHENkj1jct5n4jJIY6w6zlXVcnYzJCcxIqjFoUuek/SZJ48SYhjjX3wReUkeewoTQrOWLvWz2pZV1R2CVGsSHLSsS2XYgVJiMUNkVRUKt2HUS4MCp0yBintSmGJncdSFLkdqlcXZwOm9mAriEv6ruGI/a+RFdztmMIPcM+2C3G0CnSWsdkhMI2NtC9SDIbsbrYGdH3VutP3mkfRO+wN6LvTTSTicMeI5tc28xGrC1hlxjFltrBVVmaAYtJH7/m9RElaYo6/beuNANWkzGi752dasWS3NSxz2ngwXkUfd1DXpztGAIw1gETaaHZvnq2+FJsqDPXelmiAZiM0BzURLjr4HK8eFMsHWoYG89LF6YhK8Ua8fdXlzKPNvXBF5Aj/v5Ek3n8QRxrGj9JPcIzfdHEZITC4g0EcbQpMrtUzkSdKq+tZ9EfRV+0k+sluanISrFgxBfEydb+qHwGkepESz88fhkLUq24LidFdDizxmSEwnKiZQAev4ysFCuuz0mNymesK8mAxWhAu8uDph53VD6DCBgrxlaXHaOVXBsMUqgWioXZFG2TN6OMZDF2tDEZobBMHCSWGbWBnmQxYk1x+vjn8eJN0dPQ7cYllwcWkyFUaBoNm3hODcVIrc5aelVMRigstVHqOrgcL94UC2pd0tqSdNjMkS3GnkxdAnrrwgBcI/6ofQ4ltn63D2cuugDo43C8yZiM0Ky5Rvx4Sx3oUc661Yv3kYZeBIIs+qPoiNZ+OZdb6EhCeXYyZAU43MgEm6LjcGMvFAW4LicFOWk20eGEhckIzdqhhh4oCrBoQQpyHdEd6MvyHHDazRjyBnD6giuqn0WJyR+UcaRRTUaifxe5aRHrRii61JlkvS3RAExGKAw1ET6l92qMBim05wO3hqdoON02gGFvAOl2M5blpUX98yZ3iRFFg1rTp5fzaCZjMkKzFulTTa9FnTqv450kRYF6F1m1KAsGQ/S7DtaXZcBokNDcO4K2vpGofx4llpZeN9r6RmE2SqgsjfzmfdHGZIRmpbV3BK19IzAZJFSWxWagqzMwJ1r7MewNxOQzKXGETjWN0ZR2qs2MlYXOKZ9NFCnq8t+qonQkW02CowkfkxGalYmB7kRKjAZ6UaYdRRl2BGQFRxu5NTxFzpDHj5NtAwBiu76uJtg1TEYowkKdjjqsFwGYjNAsTewvEtvthdniS9FwpLEPQVlBSaYdhRn2mH2uusR56HwPZJm7C1NkBGUFhxqiuzN2tDEZoWsKygrqzosZ6GqWz2ltiiR1f5FYj+eKwrGZxf4RP969NBjTz6b4deaiC65RP1JtJqzId4gOZ06YjNA1vdM+PtCtJlQUxHagV5VnQpKA+q5hdLg8Mf1sil8TW2bHdqbPbDRgfdnYTq+c7aNIUW/WqsozYTLq89e6PqOmmFIvmusFDHSn3RLK9Lk/A0XCJdcoGrrdMEjAhvLYdx1M7DfCU6kpMmrUmT6d1osATEZoFmLd0nu5jVyqoQhSk+sVBU44kswx/3x1aeiN5n54/MGYfz7FlxFfAMdbxk6DjvYxHdHEZISuatQXnBjogrJu9eJde74HisKiP5of0cl1eXYKctNs8AVkvNHcJyQGih9Hm/rgDyrIdyahJDN2xdiRxmSErupoUy98QRn5ziSUZiULiWFNcTqSzEZ0D3lxrnNISAwUH2RZCc2wiUquJUmaSLBZN0LzNDm5jtZJ6rHAZISuqi50HHWmsIFuNRmxrnSs6I8Xb5qPsx1D6HX7YLcYsaooXVgc1Yt5Tg1FxsQ1Wr/1IsAck5HHH38cJSUlsNlsqKysxLFjx676/EcffRTXX389kpKSUFhYiM9//vPweNgZoQfq+rrotUgeMkaRoBaNVpZmwGISdy9WVT42nt9pH0TvsFdYHKRvXUMenO0YgiQlYDKyf/9+7Nq1C3v27MGJEydQUVGBLVu2oKura9rn/+xnP8OXv/xl7NmzB++99x5+8pOfYP/+/finf/qneQdP0dU95MXZjrFlkY0Cug4mU6e1jzb2wRtg0R/NjVaS6+xUK5bkpgIA6hq4uzDNjTorsiwvDRnJFsHRzE/YycgjjzyCe++9F9u3b8fSpUvx5JNPwm6345lnnpn2+YcOHcLGjRvxV3/1VygpKcFtt92GT33qU9ecTSHx1IG+dGEaMlOsQmNZkpuKrBQLRv1BnGgZEBoL6ZPHH8SxprGCUS20QIaWaurZ4ktzoybXep8VAcJMRnw+H44fP47NmzdPvIHBgM2bN+Pw4cPTvqaqqgrHjx8PJR+NjY347W9/iw9/+MMzfo7X68Xg4OCUL4o9dUlEC8dRS5IU+g+O+zPQXJxo6Yc3ICM71YrrclJEhzMxnuvZJUbhUxRl0mGP+m3pVYWVjPT09CAYDCInJ2fK4zk5Oejo6Jj2NX/1V3+Fr3/969i0aRPMZjPKy8txyy23XHWZZu/evXA4HKGvwsLCcMKkCFAUZeLgJQ0kI8DkuhFOa1P4aiad0quFroPK0kxYjAa0uzxo6nGLDod05nzXMDoHvbCaDLipRFwxdqREvYLr4MGD+Pa3v40nnngCJ06cwK9+9Sv85je/wTe+8Y0ZX7N79264XK7QV1tbW7TDpMs0dA+jY9ADi8mAtSUZosMBMJEUnbkwANeIX3A0pDdaS66TLEasKR77JcLCbAqXukSzrjQDNrNRcDTzF1YykpWVBaPRiM7OzimPd3Z2Ijc3d9rXfPWrX8VnPvMZ/PVf/zWWL1+Ov/iLv8C3v/1t7N27F7IsT/saq9WKtLS0KV8UW+qFe21JumYG+kJHEsqzkyErwOFGXrxp9vrdPrzd7gKgrfV17jdCcxUvLb2qsJIRi8WCNWvW4MCBA6HHZFnGgQMHsGHDhmlfMzIyAoNh6scYjWO/3LhOql2iDhK7lurxLggeMkbhONTQC0UBrstJQU6aTXQ4IerS4+GGXgSC09+cEV3OH5RxpHH8JPVETEYAYNeuXXj66afx3HPP4b333sN9990Ht9uN7du3AwDuuusu7N69O/T822+/HT/84Q+xb98+NDU14dVXX8VXv/pV3H777aGkhLRlbKCPdR1ooXh1Mu43QnOhFj1rLbm+Md8BR5IZQ94ATl9wiQ6HdOJk6wDcviAyky1YujA+Vg5M4b5g27Zt6O7uxoMPPoiOjg6sXLkSL7/8cqiotbW1dcpMyFe+8hVIkoSvfOUruHjxIrKzs3H77bfjW9/6VuS+C4qo020DGPYGkG43a26gry/PhNEgoaV3BG19IyjM0O9ZDBQ7WuoMm8xokLBxUSZ+e6YDded7QjUkRFejjueqRVkwGMQXY0fCnApYd+7ciZaWFni9Xhw9ehSVlZWhvzt48CCeffbZ0J9NJhP27NmD8+fPY3R0FK2trXj88cfhdDrnGztFiboEosWBnmI1YVWhEwBnR2h2WnrdaOsbhdkohY4V0JLJLb5Es6HuTbNpkdjNKCOJZ9PQFWontUBqEYv+KBxqcr2qKB3J1rAng6NO3SPiRGs/hr0BwdGQ1g16/KElPdE7CUcSkxGaYsjjx6m2AQDaaYG8nDrVXtfQA1lmETRdXZ3Gk+uiTDuKMuwIyAqONXEPHbq6Iw29CMoKyrKSke9MEh1OxDAZoSmONPYhKCsoybSjIF2b9RgrCpxIsZowMOLHO+3cnZdmFpQVHBo/+2WjRpNrYGKphl1idC21cdbSq2IyQlOE1iI1fOE2Gw1YXza2VlrDreHpKs5cdME16keqzYQV+Q7R4cyomkuPNEta27wvUpiM0BQ1Gt1f5HK8eNNsqMl1VXkmTEbtXu6qyjMhSUB91zA6XB7R4ZBGXRwYRWOPGwYJ2CD4JPVI0+5/nRRz7QOjaOzWx0BXpyjfbO7HqC8oOBrSqonN+7R9F+m0W7B8fOamjl1iNIO68ZuvikIn0mxmwdFEFpMRClEv3CsKnHAkaXugl2cnY6HDBl9QxhvNfaLDIQ0a8QVwvKUfgD66DrihH11LjcaLseeDyQiFqEseWtsYajqSJPHiTVd1tKkP/qCCfGcSSjK1WYw9Wahl/XwPj8qgK8iyEpo100NyHS4mIwTgsoGuk6yb+43Q1dRNSq4lSVub901nTXE6bGYDuoe8eL9zWHQ4pDHvdQyiz+1DssWIVUVO0eFEHJMRAgCc7RhCr9sHu8WIVUX62JJarRt599Igeoa9gqMhrdFbC6TVZMS60vEusXp2idFU6k1XZVkmzBouxp6r+PuOaE7Ug8QqSzNgMeljWGSlWHHD+Nk5LPqjybqGPDjbMQRJ0k8yAkzUAnDpkS6nl2LsudLHbx2Kutrz48dR62wtki2+NJ1D4+N5WV4aMpItgqOZPXXp8WhjH7wBdonRGI8/iGNN2jxJPVKYjND4QB9PRnSWdat3vXUs+qNJ1J1M9TQrAgDX56QiK8WCUX8QJ1sHRIdDGnG8pR/egIycNCsWLUgRHU5UMBkhnGjph8cvY0GqFdfl6GugryvJgMVoQLvLg8Yet+hwSAMURQktO1ZrfPO+yxkMEk/xpStMTq71UIw9F0xGaMpapN4GepLFiJtKxgpuefEmAGjoHkbnoBdWkyE0NvREnZ2sYd0IjQsd9hinSzQAkxGC/roOLreRRX80iXoXubYkAzazUXA04VPrRs5cGIBrxC84GhKt3+3D2+0uAMDGcn1eo2eDyUiC63f7cObi2EDX68FL6t3CkYZeBIKy4GhINL0fJLbQkYTy7GTICnC4kQl2oqtr6IGijNUTLUiziQ4napiMJLjDjb1QFOC6nBTk6HSgL8tzwGk3Y8gbwOkLA6LDIYH8QRlHGvVZjD1Z9XhXWw2XHhPexK6r+h3Ps8FkJMHptetgMqNBQlW5ulkUL96J7FTbANy+IDKSLVg6vgeNHvGoAwLGirHVa5qek+vZYDKS4EJdBzrPujeNd01w87PEpl64q8ozYTDoqxh7svXlmTAaJLT0jqCtb0R0OCRIS+8ILvSPwmyUUFmWITqcqGIyksBaet1o6xsf6OPbUOuVmkydbB3AsDcgOBoSpbY+PpLrFKsJqwqdADg7ksjUjqrVRemwW0yCo4kuJiMJTL3IrSpKR7JV3wO9MMOO4kw7ArKCIw29osMhAQY9fpy+oBZj62t/kenwIEiq09FJ6vPFZCSB1cbZWiRbfBPbkYZeBGUFpVnJyHcmiQ5n3tRfQHUNPQjK3F040QRlBYca9F/TN1tMRhLU2EBXz6OJj4HOQ8YSW7wdJFZR4ESK1YSBET/ebR8UHQ7F2FsXBjDoCSDNZsKKAqfocKKOyUiCevuiC65RP1JtJqzId4gOJyKqyrMgScD5rmFcco2KDodirDbOWiBNRgPWl413iY0XmlPiUIvxq8qzYNRxMfZsMRlJUOqFe0NZJkzG+BgGDrs5lFhxnT2xtA+MorHbDYOE0C/weMBTqRNXaNuFOEmuryU+fgtR2GripOvgcqGiPy7VJBT1l3VFoROOJLPgaCJHHc9vNvdj1BcUHA3FyogvgBOt/QAmlp/jHZORBDTiC+BEywCA+Og6mGzyfiOKwqK/RKEmn/F24S7LSkaewwZfUMYbzX2iw6EYOdrUB39QQUF6Eooz7aLDiQkmIwnoWFMffEEZ+c4klMTZQF9d7ESS2YieYR/OdgyJDodiQJaV0Pp6vHUdSJLELrEENLnTUW8nqc8Vk5EEFM8D3WoyYl3p2E6FXGdPDO91DKLX7YPdYsSqonTR4USculTDow4Sh94Pe5wLJiMJKN66Di5XzbqRhKJeuNeXZcJiir9Lmjoz8t6lQfQMewVHQ9HWNejBuc4hSNJYJ02iiL//cumquoY8oeWLeJvSVqlJ1tGmXngDLPqLd/G2v8jlslKsuGH80D+evRT/6sY3OluWl4aMZIvgaGKHyUiCOXR+bKOzeB7o1+ekIivFCo9fxvGWftHhUBR5/EEcaxor7IzXmT6ALb6JZOKU3vhqLrgWJiMJpiYB1iIlScKmRWN7TfBOMr4db+mHNyAjJ82KxQtSRIcTNeqsD7vE4puiKKGEM962XbgWJiMJRFEU1I7v5Fgd51m32rLMO8n4FtoYKg6LsSdbW5IBi9GAdpcHjT1u0eFQlNR3DaNryAuryYA1xfFXjH01TEYSSEP3MDoHxwb6TSXxPdDVO8m3LrowMOITHA1FizrzFe93kUkWY+i/WSbY8Uv9t11XmgGb2Sg4mthiMpJA1LvItSXxP9BzHTYsWpACRUHoQECKL/1uH95udwEANiZA1wFbfONfvBdjXw2TkQSSaL3rm7hZVFyra+iBoowVLC9Is4kOJ+rU8XyksReBoCw4Goo0X0DGkcaxG6d47XS8GiYjCcIfnBjoiZJ1swMhviVacr0szwGn3YxhbwCnLwyIDoci7GRrP0Z8QWQmW7B0vJU7kTAZSRCn2gbg9gWRkUADvbIsEyaDhNa+EbT2jogOhyJIUZSE6AybzGiQQstRXKqJP2r9U9WiLBgM8VuMPRMmIwlCvXhVlWcmzEBPsZqwqsgJgEs18aaldwQXB0ZhNkqoHN/+PxGoiRdb1uNPTZwe9jhbTEYSRG39eEtvgtxFqtSNg9SWZooP6oV7dVE67BaT4GhiR11iPdk6gGFvQHA0FCmuUT9Otw0AADYm2DVaxWQkAQx6/Dh9YazrQN1/I1FM3En2Iihzs6h4kajJdWGGHcWZdgRkBUfYJRY3Djf0QlaAsqxk5DuTRIcjBJORBHCkYewXcWkCDvSKAgdSrSa4Rv14Z7wNlPQtKCuhdu1E7Dpgl1j8UZfdEnE8q5iMJIBE7l03GQ1YXz62NTyL/uLDWxcGMOQJIM1mwooCp+hwYo7JSPyJ95PUZ4PJSAJItBbIy7HFN77Uhoqxs2BMkGLsyarKs2CQgPNdw7jkGhUdDs3Thf4RNPW4YTRI2DB+45SImIzEuYsDo2jsccMgIWEHunonebylH6O+oOBoaL4S/S7SYTdj+fiMUN151o3onbpEU1HgQJrNLDgacZiMxLm68bvIikJnwg700qxk5Dls8AVlHGvuEx0OzYPbG8CJ1n4AibnsqFJPpVYLeUm/JvbLSazmgssxGYlzid67DgCSJIXuonnx1rdjTX3wBxUUpCehONMuOhxhJlrWe6Eo7BLTK3lSMXYiJ9cAk5G4JssKDp1n1g1MfP+1nNbWtdpJp/RKUuLVi6hWFzuRZDaiZ9iLc51DosOhOXr30iD63D4kW4yhDRoTFZOROPZexyB63T7YLUasLHSKDkeoqvF6mfcuDaJ7yCs4GportXg1kVsgAcBqMmLd+M6zLMzWLzW5Xl+WCbMxsX8dJ/Z3H+fUi9T6skxYTIn9T52VYg2dyXOogRdvPeoa9OBc5xAkCaEzWhKZ2iXGlnX9SvROx8kS+zdUnEvk/UWmw4u3vqnj+cY8B9KTLYKjEU/9BXa0qRfeALvE9MbjD4YK6nmNZjIStzz+II41jQ90Zt0AJqb26873sOhPh2q5S+UU1+ekIivFCo9fxomWAdHhUJjebO6HLyAjJ82KRQtSRIcjHJOROHW8pR/e8YG+mAMdALCuNAMWkwGXXB40dLtFh0NhUBQlNKWdaOfRzESSpIkWXx4EqTs14/9mmxZlJ3QxtorJSJyqmVTox4E+xmY2Ym1JOgC2+OpNfdcwuoa8sJoMWFOcLjoczQh1iXHpUXeYXE81p2Tk8ccfR0lJCWw2GyorK3Hs2LGrPn9gYAA7duzAwoULYbVacd111+G3v/3tnAKm2ak7z4E+ncn7M5B+qBfudaUZsJmNgqPRDrXW4K2LLrhG/IKjodnqc/vwTvsgAKBqUWLujH25sJOR/fv3Y9euXdizZw9OnDiBiooKbNmyBV1dXdM+3+fz4c/+7M/Q3NyMX/7ylzh37hyefvpp5Ofnzzt4ml6/24e3x0+oZdfBVOrF+0hjL/xBWXA0NFssxp5ersOGRQtSoCjsEtMT9WZxSW4qFqTaBEejDWEnI4888gjuvfdebN++HUuXLsWTTz4Ju92OZ555ZtrnP/PMM+jr68NLL72EjRs3oqSkBDfffDMqKirmHTxNr66hB4oyVuC2II0DfbJleWlIt5sx7A3gdNuA6HBoFnwBGUcax3ep5EzfFdQErYan+OpGqKWXyXVIWMmIz+fD8ePHsXnz5ok3MBiwefNmHD58eNrX/PrXv8aGDRuwY8cO5OTk4MYbb8S3v/1tBIMzt6J5vV4MDg5O+aLZq0vwg8SuxmCQULWILb56cqptACO+IDKTLbghN010OJrDU6n1RVGUhD/scTphJSM9PT0IBoPIycmZ8nhOTg46OjqmfU1jYyN++ctfIhgM4re//S2++tWv4uGHH8Y3v/nNGT9n7969cDgcoa/CwsJwwkxoiqJMHLzErHtamya1+JL2qcXGVYuyYDCwGPtylWWZMBkktPaNoK1vRHQ4dA3NvSO4ODAKs1EK7aJLMeimkWUZCxYswI9+9COsWbMG27Ztwz//8z/jySefnPE1u3fvhsvlCn21tbVFO8y40dI7ggv9YwO9sowDfTpqMnKybQBDHhb9aR0Pe7y6FKspdK4JZ/u0T02u1xSnw24xCY5GO8JKRrKysmA0GtHZ2Tnl8c7OTuTm5k77moULF+K6666D0ThRAX/DDTego6MDPp9v2tdYrVakpaVN+aLZUaf/VhdxoM+kMMOOkkw7grKCI419osOhqxj0+EO1PRs5pT2jiS4xtqxr3cRhj4l9eOnlwkpGLBYL1qxZgwMHDoQek2UZBw4cwIYNG6Z9zcaNG3H+/HnI8kTnwvvvv4+FCxfCYuGWzpHGwqjZ2cilGl043NALWQHKspKR70wSHY5mqbUHhxp6EZS5u7BWBYIyDjWMFWNzJ+Gpwl6m2bVrF55++mk899xzeO+993DffffB7XZj+/btAIC77roLu3fvDj3/vvvuQ19fH+6//368//77+M1vfoNvf/vb2LFjR+S+CwIABGUl1N7HwqirmzinhneSWsaDxGanosCBVKsJAyN+vDPe1k/a89ZFF4Y8ATiSzFie7xAdjqaEPY+/bds2dHd348EHH0RHRwdWrlyJl19+OVTU2traCoNhIscpLCzEK6+8gs9//vNYsWIF8vPzcf/99+NLX/pS5L4LAgC8dWEAg54AUm0mrChwig5H0zaUZcEgAQ3dblxyjWKhg3fdWsT9RWbHZDRgfXkmXn23EzX1PfzvX6PU5LqqPBNGFmNPMaeigp07d2Lnzp3T/t3BgweveGzDhg04cuTIXD6KwqAuOXCgX5vDbsbyAidOtw2gpr4Hf3kTO7a05kL/CJp63DAaJKwv5y6V11K9OAuvvtuJ2voe7Lh1kehwaBo87HFmPJsmjoRaelkYNSvVrBvRNPXfpaLAgTSbWXA02qfOHh1v6ceob+Z9nEgMtzeAk639AHhMx3SYjMQJtzeAE+pAZ9Y9K2odQt35Hsgs+tMcJtfhKc1KRp7DBl9QxrFmdolpzdGmXviDCgozklCcmSw6HM1hMhInjjX3wR9UkO9MQnGmXXQ4urCqyIkksxE9wz6c7RgSHQ5NIstKqOuA9SKzI0lSKMHmqdTaU1vP8Xw1TEbixOTjqCWJ9SKzYTUZQxvDcX8GbXn30iD63D4kW4yhDb3o2tRZJG5+pj3qNUbdE4amYjISJ9gCOTebeE6NJqmFfuvLMmE28jI1WxvHC33Pdgyhe8grOBpSdQ568H7nMCRprMGArsT/yuNA15AH5zqHxgc6k5FwqLsgvtHcB4+fRX9awcMe5yYzxYqlC8d2rFb3HCLx1PG8PN+B9GRu9jkdJiNxQB3oy/LSkMGBHpbrclKQnWqFxy/jREu/6HAIgMcfxLGmsQJMrq+Hb2JDPyYjWqHOXLOld2ZMRuLAxCm9XIsMlyRJE0s1bPHVhDeb++ENyMhJs2LRghTR4ejORBFrDxSFXWKiKYoycR4Nk5EZMRnROUVRphSvUvjUZKSWd5KaUDOp0I/F2OFbW5IBi8mAjkEPGrqHRYeT8N7vHEbXkBc2swGri9NFh6NZTEZ07nzX2EC3mgxYw4E+J+qd5NvtLvS7pz9JmmJnol6EhX5zYTMbsbZk7FrApRrx1FmRtSUZsJmN13h24mIyonPqxWZdKQf6XOWk2bB4QQoUBaG9LUiMPrcP77QPAuD6+nyoS7bcXVg8dc8XzlxfHZMRneNBYpERWmfnfiNC1Z3vgaIAS3JTsSDVJjoc3VJ/8R1p7IM/KAuOJnH5AjKOhoqxWdN3NUxGdMwXkHGkcXxXP2bd81IdSkZ4JylSaL8cJtfzsnRhGtLtZgx7AzjdNiA6nIR1orUfI74gMpMtWJKbKjocTWMyomOn2gZCA/2G3DTR4ejautJMmAwS2vpG0dLrFh1OQprcdbCRyfW8GAwSqrihn3B1k07pNfAk9atiMqJj6lpkFQf6vKVYTVhdxKI/kZp7R3BxYBQWowGVpRmiw9E9tY2Us33i1HBn7FljMqJjNexdj6jJp/hS7KnJ9epiJ+wWk+Bo9E8dz6faBjDk8QuOJvG4Rvx468IAAC47zgaTEZ1yjfpDa8Gc0o4M9eJ9qKEXQZmbRcVaTWi/HBb6RUJBuh0lmXYEZQVHGvtEh5NwDjf2QFaAsuxk5DmTRIejeUxGdOpIY+/YQM9KRj4HekSsyHcg1WaCa9SPMxddosNJKIGgjMPjxdhs6Y2cid1Y2SUWa9x1NTxMRnSKp/RGnslowIaysY22uFQTW29ddGHIE4AjyYzl+Q7R4cQNtZ2UdSOxN3GN5kzfbDAZ0SnuLxIdE4eM8U4yltQLd1V5Jowsxo6YDeWZMEhAQ7cbl1yjosNJGG19I2juHYHRIKGyjMXYs8FkRIcu9I+gqccNo0HC+nJumR1J6l3M8ZZ+jPgCgqNJHJzpiw5HkhkrCpwA2CUWS+rN4spCJ9JsZsHR6AOTER1SlxAqChwc6BFWkmlHvjMJ/qAS2jmRosvtDeBEaz8AzvRFQ/ViHgQZa5y5Dh+TER2q4Vpk1EiSFLqA1PHiHRNHm3oRkBUUZiShODNZdDhxRy0IrjvfA5ldYlEnywoOnedMX7iYjOiMLCuhw9x48FJ0bOLW8DEVSq55dkdUrC5Kh91iRK/bh7MdQ6LDiXvvtA+if8SPFKsJKwudosPRDSYjOvPupUH0uX1Ithg50KNEvZM82zGEriGP4GjiX21ofxEm19FgMU3saMuDIKOvZvxnvL4sA2Yjf8XOFn9SOqPera8vy+RAj5KMZAuW5Y2d9XPofK/gaOJb56AH9V3DkCSE2qop8tQl3VqO56irY73InPC3mc6w6yA2Ni3mIWOxoI7n5fkOpCdbBEcTv9RfjMeaeuHxBwVHE788/iDeaB4vxuY1OixMRnTE4w/iWPNYhwentKOrOrRZVDcUhUV/0cKug9i4LicFC1Kt8PhlnGjpFx1O3DrW1AdfQEZumg3l2Smiw9EVJiM68mZzPwd6jNxUkg6ryYDOQS8auodFhxOXFEWZSEaYXEfV5C4xFmZHT92k8SxJ3LwvHExGdEQtjNq4iAM92mxmI9aWjBX9cakmOt7vHEb3kBc2swFritNFhxP3NjIZibqJzjAm1+FiMqIj7DqIrU3cLCqq1C3315VmwmoyCo4m/qnj+cxFF/rdPsHRxJ+eYS/evTQIgIc9zgWTEZ3oc/vwTjsHeiypdzdHGnvhD8qCo4k/dTzVNKZy0my4LicFioLQCckUOer+T0tyU5GdahUcjf4wGdEJ9cLNgR47SxemISPZArcviFNtA6LDiSu+gBzabp/JdeyoP2suPUZe7fhMH2eu54bJiE7Uci0y5gwGCVXjBxHy4h1ZJ1r7MeILIivFgiW5qaLDSRihc2q4+VlEKYoSukYzuZ4bJiM6wK4DcdSLdx2L/iJK/XluXJQFg4HF2LFSWZoJk0FCW98oWntHRIcTN5p63Gh3eWAxGlBZys375oLJiA40947g4sAoLEYD1o1v60yxod7lnGobwKDHLzia+FHDu0ghkq0mrC4a61yq4exIxKg3i2uK05FkYTH2XDAZ0QF1LXJ1sRN2i0lwNImlIN2O0qxkBGUFRxpY9BcJrhE/3rowAIDr6yKwSyzyargz9rwxGdGBmlBLL081FYGbRUXW4cYeyApQnp2MhY4k0eEkHPUX5qGGXgRl7i48X4GgHLpRYU3f3DEZ0bhAUA614XGgixG6k2QyEhHqz5HJtRgr8h1ItZngGvXj7Ysu0eHo3ukLLgx5A3AkmXFjvkN0OLrFZETj3rrowpCHA12k9WWZMEhAY7cb7QOjosPRPXYdiGUyGkInJDPBnr+J8ZwJI4ux54zJiMapA72qnANdFEeSGRWFTgBcZ5+vtr4RNPeOwGiQsL6MxdiiVIdOpWYR63ypbdKbFnGmbz6YjGgcW3q1oZp1IxGhtvSuKnQi1WYWHE3i2jS+RHaiZQAjvoDgaPRr2BvAydYBAFxGny8mIxrm9gZwsnXsuG8OdLHUJYW68z2QWfQ3ZzXnuUSjBSWZduQ7k+ALyjg2vhMuhe9oYy8CsoKiDDuKMu2iw9E1JiMadrSpF/6ggsKMJBRnJosOJ6GtKkqH3WJEr9uH9zoGRYejS7Ks4NB5HvaoBZIkTXSJcelxztjSGzlMRjSstl7touFapGgWkwHrx4v+uBvr3Lx7aRD9I36kWE2hGhwSh11i88fDHiOHyYiGTRRGcaBrAQ8Zmx/157a+LANmIy89oqnnLp3tGEL3kFdwNPrT4fKgvmsYkgRsKOcW8PPFK4JGdQ568H7n2ECv4kDXBHVp4VhTHzz+oOBo9IfJtbZkplixLC8NAGf75kKdUVqR74DTbhEcjf4xGdEo9eKwPN+B9GQOdC1YvCAFC1Kt8AZkHG/pFx2Ornj8QbzRPF6Mzc3ONGPTYs72zVUdOx0jismIRnFjKO2ZUvTHO8mwvNHcB19ARm6aDeXZLMbWiurxerS68z1QFHaJzdbkk9R5jY4MJiMaNHmgszBKW3jI2NzUTuo6kCRu3qcVN5Wkw2IyoGPQg4buYdHh6Ma5zrE6mySzEWuK00WHExeYjGhQfdcwuoa8sJkNWM2BrinqzMjb7S70u32Co9GPWrb0apLNbMS6krGdcLlUM3tqcr2uNANWk1FwNPGByYgGqReFtSUZsJk50LVkQZoN1+WkQFGAugZevGejd9iLd9rH9mapKmcyojWc7QtfaGdszlxHDJMRDaodPy+Cd5HatGnSOjtdW9348epLclORnWoVHA1dTv2FeqSxF/6gLDga7fMGgjjaOLZrLYtXI4fJiMb4AjKOjm/PzM3OtKl6UgcCi/6ujcm1ti1dmIaMZAvcviBOtQ2IDkfzTrQMYNQfRFaKBUtyU0WHEzeYjGjMydZ+jPiCyEzmQNeqdaUZMBslXOgfRUvviOhwNE1RFHaGaZzBIIX2MmLdyLXVTeqiYTF25DAZ0ZjJ7WIGAwe6FiVbTVhVNFZYXMOlmqtq6nGj3eWBxWhAZSk379Oq6lDdSLfgSLSvhvUiUTGnZOTxxx9HSUkJbDYbKisrcezYsVm9bt++fZAkCVu3bp3LxyYEHrykD2rLdR3vJK9KTa7XFKcjycJibK1SN6I7fcGFQY9fcDTa5Rrx48yFAQBANTfvi6iwk5H9+/dj165d2LNnD06cOIGKigps2bIFXV1dV31dc3MzvvCFL6C6unrOwcY716gfb40PdGbd2qYmi4caehCUWTcyk1om17qQ70xCaVYygrKCI+MFx3Slw409kBVg0YIU5DpsosOJK2EnI4888gjuvfdebN++HUuXLsWTTz4Ju92OZ555ZsbXBINBfPrTn8bXvvY1lJWVzSvgeHa4oReyApRlJyPPmSQ6HLqK5fkOpNpMGPQEQgkkTRUIyjjcoJ48zWRE67i78LWFZq45niMurGTE5/Ph+PHj2Lx588QbGAzYvHkzDh8+POPrvv71r2PBggX47Gc/O6vP8Xq9GBwcnPKVCNSDxLjrqvaZjIZQ0R/3Z5je6QsuDHkDcCSZcWO+Q3Q4dA3cb+TauL9I9ISVjPT09CAYDCInJ2fK4zk5Oejo6Jj2NbW1tfjJT36Cp59+etafs3fvXjgcjtBXYWFhOGHqVt35sbtIdh3og7rOzjvJ6aldB1XlmTCyGFvzNpRnwiABjT1uXBwYFR2O5rT1jaCldwRGg4TKsgzR4cSdqHbTDA0N4TOf+QyefvppZGXN/hfs7t274XK5Ql9tbW1RjFIbLvSPoKnHDaNBwvpydh3ogXp3dKK1H25vQHA02sN6EX1Js5lRUegEwMLs6ag3HasKnUi1mQVHE39M4Tw5KysLRqMRnZ2dUx7v7OxEbm7uFc9vaGhAc3Mzbr/99tBjsjy2w5/JZMK5c+dQXl5+xeusVius1sTaqVG9cK8sdCKNA10XSjLtyHcm4eLAKI419eHWJQtEh6QZw94ATrT2A5g4GZa0r3pRFk62DqDmfA/+cm1izEjPFpPr6AprZsRisWDNmjU4cOBA6DFZlnHgwAFs2LDhiucvWbIEZ86cwalTp0JfH/vYx3Drrbfi1KlTCbP8MhvsXdcfSZIm9mfgUs0URxt7EZAVFGXYUZRpFx0OzZK69HjofA9kdomFBGUldBYVdxKOjrBmRgBg165duPvuu3HTTTdh3bp1ePTRR+F2u7F9+3YAwF133YX8/Hzs3bsXNpsNN95445TXO51OALji8UQmywoO8VRTXdq0OAv73mhj0d9lQoV+HM+6srLQCbvFiF63D+91DGJZHguPAeDd9kEMjPiRYjVhRYFTdDhxKexkZNu2beju7saDDz6Ijo4OrFy5Ei+//HKoqLW1tRUGAzd2Dce7lwbRPz7Q1TVb0oeq8ixIEnCucwhdgx4sSOPeA8CkKW3O9OmKxWTA+rJM/OFsF2rre5iMjKsZ73RcX5YJs5G/36Ih7GQEAHbu3ImdO3dO+3cHDx686mufffbZuXxkXFN719eXZXCg60xGsgXL8tLw9sVB1DX04C9WFYgOSbgOlwf1XcOQJITan0k/Ni3KGktGzvfgczdfWdOXiNTkmjPX0cPffBqg7i/Cu0h9Uk9X5iFjY9QlmhX5DjjtFsHRULjUpbVjTX3w+IOCoxFv1BfEm81jxdjcdiF6mIwI5vEH8cb4QN/Esw50qXrSZlGKwqK/OtaL6NriBSnISbPCG5BxvKVfdDjCvdHcB19QxkKHDeXZyaLDiVtMRgR7o7kPvoCM3DQOdL1aU5wOq8mAriEv6ruGRYcjlKIoU06eJv2RJCn0b8fZvqm7rkoSN++LFiYjgk3uXedA1yeb2Yh1pWM7MiZ6V825ziF0D3mRZDZiTXG66HBojtQl4zq2rPMk9RhhMiJYDQuj4gIPGRujJmPrSjNgNRkFR0NzpY7nt9td6Hf7BEcjTveQF+9dGjsbjTN90cVkRKDeYS/eHR/oVeUc6Hqm3jUdaeyFLyALjkacWu6XExcWpNlwfU4qFAWhzb4S0aHx7/2GhWnISkmsXcFjjcmIQHXjx6svyU1FdioHup7dkJuGzGQLRnxBnGobEB2OEN5AEEcb+wDwLjIeqAl2Ii/VsKU3dpiMCFRbP9bSy4GufwaDhCp1qWb83zXRnGgZwKg/iKwUK5bkpooOh+Zp06Qi1kTsEmMxdmwxGRFEUZRJxats6Y0H1erFO0HvJCf2y8lkMXYcqCzLgNko4UL/KFp6R0SHE3MN3W5ccnlgMRqwriRDdDhxj8mIIE09brRzoMeVjeMzXKfbBuAa9QuOJvZqz48tOzK5jg92iwmri8Y6ohIxwVaXp24qSUeShcXY0cZkRBB1+m9NMQd6vMh3JqEsKxmyMlbImkhcI36cuTAAANi4iFvAx4tQi28CtqyrnY5cookNJiOCsHc9Pm2atBtrIjnU0ANZARYtSMFCR5LocChC1PF8qKEHQTlx6kb8QTl0Q8GavthgMiJAICjjSAMHejxK1M2iJu9SSfFjRYETqTYTBj0BnLnoEh1OzLx1YQDD3gCcdjNPLo4RJiMCnL7gwpA3AEcSB3q8WV+eCaNBQmOPGxcHRkWHEzNMRuKT0SCFTl5OpC6x0BJNeRaMBhZjxwKTEQFqQ2uRmRzocSbNZkZFwViCmSgX77a+EbT0jsBkkLC+nPUi8UYtSE6kc2pqWS8Sc0xGBJhogWTXQTxKtIu3+n2uKnIixWoSHA1FmtqyfqK1H25vQHA00Tfk8ePk+MaFXEaPHSYjMTbsDeBk6wAATmnHK/Xf9VBDL+QEKPqr48ZQca040458ZxL8QQXHmvtEhxN1Rxv7EJQVFGfaUZhhFx1OwmAyEmNHG3sRkBUUZdhRlMmBHo9WFTmRbDGiz+0LnT0Ur4KyEjq7hHeR8UmSpNC/bSJ0ibH+SQwmIzHGlt74ZzYasL5svOgvzrtq3ml3YWDEjxSrCRUFTtHhUJQkUst6Tb26jM5rdCwxGYmxOmbdCWFjgrT4qsnW+rJMmIy8nMSrqvIsSBJwrnMIXUMe0eFEzSXXKBq63TBIPEk91nj1iKEOlwf1XcOQJITa5Sg+qdPax5r64PEHBUcTPTzVNDFkJFuwLC8NQHwn2Op4Xl7ghMNuFhxNYmEyEkPqXeSKfAecdovgaCiaFi1IQU6aFd6AjDeb+0WHExWjvmDoe+OyY/xTu//iuUtMvUZXc+Y65piMxFBoiYYX7rgnSVLo4h2vdSNvNPfBF5SR57ChLCtZdDgUZersV935HihK/HWJKYrCzjCBmIzEiKIooV9KHOiJYdNitYg1Pjc/mzyeJYmb98W7NcXpsJoM6Bz04nzXsOhwIu5sxxB6hn1IMhuxutgpOpyEw2QkRs51DqF7yIsksxFritNFh0MxoCad77QPos/tExxN5LEzLLHYzEasK80AEJ9LNWq9SGVZBqwmnqQea0xGYkQd6OtKOdATxYJUG5bkpkJR4q/or3vIi/fG91DhTF/iULsA43HpsYadjkIxGYkRbqSTmNRf1PG2P8Oh8Y3ObliYhqwUq+BoKFbU8XyksRe+gCw4msjxBoI41jR2kjpn+sRgMhID3kAQRxvHtlHmQE8soc2i4qzojy29iWnpwjRkJlsw4gvi1Pj5LfHgeEs/PH4Z2alWXJ+TKjqchMRkJAZOtAxg1B9EVooFS3I50BNJZWkGzEYJFwdG0dw7IjqciJhcjM2ZvsRiMEioCs32xU9htppcb2IxtjBMRmKgjl0HCctuMWF10VjBcrxcvBt73Ljk8sBiNGBtSYbocCjG1D04auKoboQtveIxGYkBFkYlturF8VX0p95F3lSSjiQLi7ETzcbx8Xy6bQCDHr/gaOZvYMSHty66APAaLRKTkShzjfhx5sIAAKB6cbbYYEiITeP/7ocaehEI6r/ojy29iS3fmYSyrGTICnC4oVd0OPN2qKEXigIsXpCCXIdNdDgJi8lIlB1u7IGsjG0PzoGemJbnO5BmM2HIEwjdgelVICjjSOPYL6DqRUyuE1U8neJby52xNYHJSJTV1HOJJtEZDVLoBFC9X7xPXxjAsDcAp92MpeMHp1Hiiaf9Rmp5jdYEJiNRxq4DAqa2+OqZmlxvLM+C0cBi7ES1vjwTRoOEph43LvTrt0ustXcErX0jMBkkVJbxJHWRmIxEUVvfCFp6R2A0SFhfzoGeyNQi1pOt/XB7A4KjmTse9kgAkGYzo6LAAUDfuwurNweri9KRYjUJjiaxMRmJInWgryp0cqAnuKIMOwrSk+APKjjapM+iv2FvACdbBwBwpo8mCrP1fE6NeoglW3rFYzISRbXsOqBxkiSFZkf0evE+0tCLgKygONOOwgy76HBIMHU8H2rohSzrb3fhoKyg7jy3gNcKJiNREpQV1DVwy2yasGm8+0Sv09qsf6LJVhY6kWwxos/tw7vjhybqydsXXXCN+pFqNYWWnEgcJiNR8m77IAZG/EixmrCiwCk6HNKAqvJMSBLwfucwOgc9osMJG5MRmsxsNGD9eNGnHguz1ZjXl2fCZOSvQtH4LxAlNeNrkevLMmHmQCcA6ckW3Jg3dgemtxbfS65RnO8ahkFCqE2ZSM/7jfCwR23hb8ko4UCn6ei1xVcdz8sLnHDYzYKjIa1Qr2/Hmvvg8QcFRzN7o74gjrf0A+BMn1YwGYmCUV8QbzaPD3QmIzRJ9aTNohRFP0V/ap1LNS/cNEl5dgpy0qzwBeTQNU8PjjX3wReUke9MQmlWsuhwCExGouKN8YG+0GFDGQc6TbK6OB02swHdQ1683zksOpxZURQFteNdB2yBpMkkSQoVZqtL03qgnqC9cVEmT1LXCCYjUTC50I8DnSazmY1YW5IBAKip18fF+2zHEHqGvUgyG7G62Ck6HNKYah3WjUwc9sjzlbSCyUgU8FRTuhr14q2XFl/1l0xlWQasJqPgaEhr1Nmyd9oH0ef2CY7m2rqHvDjbMQQA2MidsTWDyUiE9Qx78d54zz2ntGk66rg42tQHX0AWHM21saWXriY71YoluakA9JFgHxrf/2npwjRkplgFR0MqJiMRpv7HeMPCNGRxoNM0bshNQ2ayBSO+IE60arvozxsIhrav50wfzSR0iq8Olmpq2OmoSUxGIowtvXQtBoMUmh3R+p3k8ZZ+ePwyslOtuD4nVXQ4pFGTW9a13CWmKAqP6dAoJiMRpCjKxKmmnNKmq9ikk3Nq6liMTbOwrjQDFqMBFwdG0dw7IjqcGTV0u9Ex6IHFZAgVkpM2MBmJoMYeN9pdHliMHOh0dWqy+taFAbhG/IKjmZl6F8n6J7oau8UU6rSq1XCXmBrb2pJ02MwsxtYSJiMRpF64bypJR5KFA51mludMQll2MmQFONzYKzqcaQ2M+PDWRRcAzvTRtVWPt8lqeXfhiWJstvRqDZORCGJLL4VjYjdWbd5JHmrohaIAixekINdhEx0OaZw6e3aooReBoPa6xPxBGUca+wAwudYiJiMREgjKODJ+h1vNrJtmQd1wSasdCKG7SCbXNAvL8x1wJJkx5AmEZtS05HTbAIa9AaTbzViWlyY6HLoMk5EIOX1hbKA77WYs5UCnWagsy4DRIKG5dwRtfdor+gt1HfAukmbBaJBQNb6JmBYTbHXmumpRFgwGFmNrDZORCFEH+sbyLBg50GkW0mxmrCx0AtBei29r7wha+0ZgMkioLOMulTQ7Wj6VupaHPWranJKRxx9/HCUlJbDZbKisrMSxY8dmfO7TTz+N6upqpKenIz09HZs3b77q8/WKves0F+qsQ43GLt7qoWeri9KRYjUJjob0Qh3PJ1v74fYGBEczYdDjx6m2AQDsDNOqsJOR/fv3Y9euXdizZw9OnDiBiooKbNmyBV1dXdM+/+DBg/jUpz6F1157DYcPH0ZhYSFuu+02XLx4cd7Ba8WQx4+T4wOdU9oUDnVzvEPneyDL2tksqo71IjQHxZnJKMxIgj+ohHbu1YKjjX0IygpKMu0ozLCLDoemEXYy8sgjj+Dee+/F9u3bsXTpUjz55JOw2+145plnpn3+Cy+8gL/7u7/DypUrsWTJEvz4xz+GLMs4cODAvIPXCnWgF3OgU5gqCp1IsZrQP+LHu+NnGokWlBXUnR/7RcK7SAqX2jZbW6+dZETdX4TJtXaFlYz4fD4cP34cmzdvnngDgwGbN2/G4cOHZ/UeIyMj8Pv9yMiYeVMwr9eLwcHBKV9axoPEaK7MRgPWl439t6CV3VjfvuiCa9SPVJsJFQUO0eGQzmzSYMt6Da/RmhdWMtLT04NgMIicnJwpj+fk5KCjo2NW7/GlL30JeXl5UxKay+3duxcOhyP0VVhYGE6YMVcznnXzPBqaC61dvNXkekNZJkxG1rhTeDYuyoQkAe93DqNz0CM6HLQPjKKx2w2DBGwo4zVaq2J6pfnOd76Dffv24cUXX4TNNvMmSrt374bL5Qp9tbW1xTDK8FxyjaKBA53mQd1v5I3mfnj8QcHR8LBHmh+n3YLl+WMzalroElOT6xUFTjjsZsHR0EzCSkaysrJgNBrR2dk55fHOzk7k5uZe9bX/+q//iu985zv4n//5H6xYseKqz7VarUhLS5vypVXqhXs5BzrNUXl2MnLTbPAFZLzR3Cc0llFfEMdb+gGwXoTmTh07WthvhPvl6ENYyYjFYsGaNWumFJ+qxagbNmyY8XXf/e538Y1vfAMvv/wybrrpprlHq0HsXaf5kiRpYn8GwRfvo0298AVl5DuTUJqVLDQW0q+Jow56oCjiusRkWWFnmE6EvUyza9cuPP3003juuefw3nvv4b777oPb7cb27dsBAHfddRd2794dev6//Mu/4Ktf/SqeeeYZlJSUoKOjAx0dHRgeHo7cdyGIonCgU2RUa2SzqLpJhX6SxM37aG5WF6fDZjaga8iL+i5x1/qzHUPodftgtxixuihdWBx0bWHvZrRt2zZ0d3fjwQcfREdHB1auXImXX345VNTa2toKg2Eix/nhD38In8+HO++8c8r77NmzBw899ND8ohfsbMcQeoZ9SDIbsarIKToc0rGq8rFk5J32QfQOe5GZYhUSR2gnYSbXNA82sxFrSzJQU9+DmvoeXJeTKiQOtSi8sjQDFhOLsbVsTlsr7ty5Ezt37pz27w4ePDjlz83NzXP5CF1Qp9QryzJgNRkFR0N6lp1qxZLcVJztGEJdQy8+VpEX8xi6h7w42zEEANhYzi3gaX6qF2ehpr4HtfXd+OymUiExhJJrLqNrHlPFeeD+IhRJ6lJNnaC6kUMNY5+7LC9N2MwMxQ9187OjTX3wBeSYf77HHwwVhFcv5knqWsdkZI68gWBou2PWi1AkbBRc9FfDrgOKoCW5qchMtmDEF8TJ1v6Yf/6Jln54/DIWpFpxXU5KzD+fwsNkZI6Ojw/07FQrrhe0HkrxpbI0ExajARcHRtHU447pZyuKwsMeKaIMBmlKgh1rNSzG1hUmI3M0uXedA50iIclixJrisYr/WF+8G7qH0THogcVkwNqSmY9qIAqHmtiKOOqglvUiusJkZI7UFkgOdIokUfuNqJ+3tiQdNjOLsSky1CW/ty4MwDXqj9nn9rt9eLvdNRYDZ/p0gcnIHAyM+PDWxfGBzmSEIkgdT4cbehEIxq7ob6IYm4V+FDl5ziSUZSdDVsbGdKwcauiFogDX5aQgJ23mo0dIO5iMzIE60BcvSEGugwOdIufGfAccSWYMeQM4fcEVk8/0B2UcaVS7DphcU2RVCzgIUv0sJtf6wWRkDmq56ypFidEgYeOisT0+YnXI2Om2AQx7A0i3m7F0oXbPgSJ9Ug+CrDsfu5mRiWs098vRCyYjc8CDlyiaYn3ImFpcWLUoCwYDi7EpsirLMmA0SGjqceNC/0jUP6+l1422vlGYjRIqS5mM6AWTkTC19o6gtW8EJoOEyjIOdIq86vGp5ROt/Rj2BqL+eTzskaIpzWbGykIngNgk2GpyvaooHcnWOW0yTgIwGQmTeuFeVeRECgc6RUFRph1FGXYEZAXHmqI7tT3k8eNU2wAAdoZR9GyK4X4jddwZW5eYjISJhVEUC2piEO39GY409iEoKyjJtKMwwx7Vz6LEpdbXHWrohSxHb3fhoKzgUAN3xtYjJiNhCMpKqAiLA52iqTpG+43U1o8n1xzPFEUrC8dmkvvcPrx7aTBqn3PmoguuUT9SbSasyHdE7XMo8piMhOGd9vGBbjWhooADnaKnqjwTkgTUdw2jw+WJ2udwfxGKBbPRgPVlYzv7RnO2T12iqSrPhMnIX296wn+tMKj/Ea3nQKcoc9otWD5+ZxetFt9LrlE0dLthkIAN5SzGpuhSazii2bJeo870sV5Ed/gbNQzqlDk3hqJYiHbRn5pcryhwwpFkjspnEKnUpcBjzX3w+IMRf/8RXwDHW/rHP4szfXrDZGSWRn3BiYHOrJtiIHROzfkeKErki/7UO1Qm1xQL5dkpyE2zwReQ8UZzX8Tf/1hTH/xBBfnOJJRkshhbb5iMzNKx5j74gjLyHDaUZiWLDocSwJridNjMBnQPeXGucyii7y3LCg97pJiSJCmqB0HyJHV9YzIyS5O7DjjQKRasJiPWje8gGemL99mOIfQM+2C3GLG6KD2i7000k+rF0Vt65DEd+sZkZJbU9XWuRVIsVUepbkTdL6eyNAMWEy8DFBtV5WPj+Z32QfQOeyP2vl1DHpztGJs95EyfPvEqNAvdQ97QQK9i1wHFkHphPdrYB28gckV/teP75fDCTbGUnWrFktxUAEBdQ+R2Fz40Pp6X5aUhI9kSsfel2GEyMguHGsbuSpcuTENWilVwNJRIluSmIivFglF/ECdaBiLynh5/MLTNfDVn+ijGJjb0647Ye07MXDO51ismI7NQw5ZeEsRgkEKzF5Han+FESz88fhkLUq24LiclIu9JNFvqUndtfWS6xBRFCS07VnPzPt1iMnINijLRdcCsm0RQW8lrIpSM1J5n1wGJs64kAxajAe0uD5p63PN+v4buYXQOemE1GXBTCYux9YrJyDU0dLtxyeWBxWTA2pIM0eFQAlKT4DMXBuAa8c/7/WrZ0ksCJVmMWFM8ljREojBbnbleW5IBm9k47/cjMZiMXIO6rrm2JJ0DnYRY6EhCeXYyZGWifmmu+t0+nLnoAsCZPhJHHXuROKemlvUicYHJyDWoXQc8SIxEUgtN57tUc7ixF4oCXJeTgpw0WyRCIwqbWn93pKEXgaA85/fxB2UcaVSv0UxG9IzJyFVwoJNWRKqIVb0T5RINibQszwGn3YwhbwCnL7jm/D6n2gbg9gWRkWzB0oVpEYyQYo3JyFWcbhvAsDeAdLsZy/I40Emc9WUZMBoktPSOoK1vZM7vE+o64JQ2CWQ0SKE9m+azu7CaXFeVZ8JgYDG2njEZuYrQQF+UxYFOQqXazFhV6AQw96K/ll432vpGYTZKqCzl5n0klrr0PZ/ZPrWmj8m1/jEZuYrQqaac0iYNmO8hY2oSs6ooHclWU8TiIpoLden7RGs/hr2BsF8/6PGHlni47Kh/TEZmMOTx42TbAAAOdNIG9eJd19CDoBz+ZlGTTzUlEq0o046iDDsCsoKjjeFvDX+koRdBWUFpVjIK0u1RiJBiicnIDI409iEoKyjJtKMwgwOdxKsodCLFasLAiB/vtIdX9BeUFRwaPwuELZCkFfNp8Z28eR/pH5ORGahrkbxwk1aYjQasLxsv+gtznf3MRRdco36k2kxYke+IRnhEYds0jy6xWnaGxRUmIzOYyLq5vwhpR/Uc60bUi31VeSZMRv5nT9pQVZ4JSQLqu4bR4fLM+nUXB0bR2OOGQQI28CT1uMCr0jQuuUbR0M2BTtqj3gW+2dyPUV9w1q+rUWf6eBdJGuK0W0IzdeHM9tWNJ+MVhU44ksxRiY1ii8nINNT1yxUFHOikLeXZyVjosMEXlPFGc9+sXjPiC+B4Sz+AiRNTibRiLhv61bBeJO4wGZmGOgXO3nXSGkmSQhfg2d5JHm3qgz+oIN+ZhJJMFmOTtoRa1s/3QFGu3SUmy5NOUmcyEjeYjFyGA520LtwOhMnJtSRx8z7SljXF6UgyG9E95MW5zqFrPv/dS4Poc/tgtxixqig9BhFSLDAZuczZjiH0cqCThqnT2u9dGkTPsPeaz1eTa3YdkBZZTUasK80AMLvCbHU8ry/LhMXEX2Hxgv+Sl1HP7qgszeBAJ03KSrHihvFDwa61zt415MHZjiFIEpMR0q5wlh5rmVzHJf62vYw69c1CP9Ky2bb4qsnKsrw0ZCRboh4X0VyoS49HG/vgDczcJebxB3GsaaxwmzV98YXJyCSTBzrrRUjLNi6aXdFfDTeGIh1YkpuKrBQLRv1BnGgZmPF5bzb3wxuQsSDVisULUmIXIEUdk5FJTrSMDfTsVCuuy+FAJ+1aVzK2jHjJ5UFDt3va5yiKMumwR870kXZJkjQpwe6e8XmTt4BnMXZ8YTIySc2kU3o50EnLkixG3FQ8VmA9U93I+a5hdA56YTUZcFMJi7FJ2ybqRmY+NE9NVHhMR/xhMjJJ6FRTDnTSgWu1+KqPryvNgM1sjFlcRHOhjuczFwbgGvFf8fd9bh/eaR8cey6XHeMOk5Fx/W4f3h4/CZXr66QH6gX5SGMvAkH5ir9nSy/pyUJHEsqzkyErwOHGKxPsQw09UBTg+pxULEizCYiQoonJyLhDDb1QFOC6nBTkcKCTDizLc8BpN2PYG8DpCwNT/s4flHGkcWy6m3eRpBfV412M08328ZTe+MZkZFxoLZKFfqQTRoOEjeXTL9WcahuA2xdEZrIFS8f3JCHSupn2G1EUJTTG2dIbn5iMjAtVaS/mKb2kH5tm2G9EvXBXLcqCwcBibNKH9eWZMBoktPSOoK1vJPR4S+8ILg6MwmyUUFmWITBCihYmIwBaet1o6xsf6KVMRkg/1DvJk20DGPJMFP3V1qszfRzPpB8pVhNWFToBTJ0dUTsdVxelw24xiQiNoozJCCbuIlcVpSPZyoFO+lGYYUdxph1BWcHRxrEN+wY9fpy+MFaMzZ2ESW+mm+2rq5/YX4TiE5MRYNLGUBzopD+Xr7MfaehFUFZQlpWMfGeSyNCIwqbWhNQ19CAoKwjKCg41cNuFeJfwycjYQB/rOtjIgU46dHkywoPESM9WFDiRYjVhYMSPd9sH8daFAQx6AkizmbCiwCk6PIqShE9Gzlx0wTXqR6rNhBX5DtHhEIWtqjwLBmlsx9VLrtFJxdhMRkh/zEYD1peN1TrVnO8OzVxXlWfByGLsuJXwycjEQM+EyZjwPw7SIYfdjOXjd4y/ePMCGrvdMEjAhnIWr5I+TT6VOnTYI5PruJbw1Zo1oa4DDnTSr02LMnG6bQA/er0RAFBR6ESazSw4KqK5UZcY32zuh4KxU6lZ0xff5jQV8Pjjj6OkpAQ2mw2VlZU4duzYVZ//i1/8AkuWLIHNZsPy5cvx29/+dk7BRtqIL4DjLf0A2HVA+qZu1jfsDQDghZv0rTw7GQsdNviCMvxBBQXpSSjOtIsOi6Io7GRk//792LVrF/bs2YMTJ06goqICW7ZsQVdX17TPP3ToED71qU/hs5/9LE6ePImtW7di69atePvtt+cd/Hwda+qDP6gg35mEEg500rHVxU4kTToMj8k16ZkkSVNmq6sX8yT1eBd2MvLII4/g3nvvxfbt27F06VI8+eSTsNvteOaZZ6Z9/mOPPYYPfvCD+Md//EfccMMN+MY3voHVq1fjBz/4wYyf4fV6MTg4OOUrGmon9a5zoJOeWU3G0M6UyRYjVhU5xQZENE+TC7DZGRb/wkpGfD4fjh8/js2bN0+8gcGAzZs34/Dhw9O+5vDhw1OeDwBbtmyZ8fkAsHfvXjgcjtBXYWFhOGHOGrsOKJ7cct3YbEjVoiyYWYxNOrdxURbMRglmo4Sqcl6j411YBaw9PT0IBoPIycmZ8nhOTg7Onj077Ws6OjqmfX5HR8eMn7N7927s2rUr9OfBwcGIJySKouC+W8pRW9/DrJviwqfXF8NsMuBPl+Rc+8lEGpeVYsVP71kHgwRkJFtEh0NRpsluGqvVCqvVGtXPkCQJf74yH3++Mj+qn0MUK2ajAZ+uLBYdBlHEcNY6cYQ1l5uVlQWj0YjOzs4pj3d2diI3N3fa1+Tm5ob1fCIiIkosYSUjFosFa9aswYEDB0KPybKMAwcOYMOGDdO+ZsOGDVOeDwCvvvrqjM8nIiKixBL2Ms2uXbtw991346abbsK6devw6KOPwu12Y/v27QCAu+66C/n5+di7dy8A4P7778fNN9+Mhx9+GB/5yEewb98+vPnmm/jRj34U2e+EiIiIdCnsZGTbtm3o7u7Ggw8+iI6ODqxcuRIvv/xyqEi1tbUVBsPEhEtVVRV+9rOf4Stf+Qr+6Z/+CYsXL8ZLL72EG2+8MXLfBREREemWpCiKIjqIaxkcHITD4YDL5UJaWprocIiIiGgWZvv7m5sREBERkVBMRoiIiEgoJiNEREQkFJMRIiIiEorJCBEREQnFZISIiIiEYjJCREREQjEZISIiIqE0eWrv5dR92QYHBwVHQkRERLOl/t6+1v6qukhGhoaGAACFhYWCIyEiIqJwDQ0NweFwzPj3utgOXpZltLe3IzU1FZIkRex9BwcHUVhYiLa2Nm4zH0X8OccOf9axwZ9zbPDnHBvR/DkrioKhoSHk5eVNObfucrqYGTEYDCgoKIja+6elpXGgxwB/zrHDn3Vs8OccG/w5x0a0fs5XmxFRsYCViIiIhGIyQkREREIldDJitVqxZ88eWK1W0aHENf6cY4c/69jgzzk2+HOODS38nHVRwEpERETxK6FnRoiIiEg8JiNEREQkFJMRIiIiEorJCBEREQnFZISIiIiEYjIy7lvf+haqqqpgt9vhdDpFhxNXHn/8cZSUlMBms6GyshLHjh0THVLcef3113H77bcjLy8PkiThpZdeEh1S3Nm7dy/Wrl2L1NRULFiwAFu3bsW5c+dEhxWXfvjDH2LFihWhHUE3bNiA3/3ud6LDimvf+c53IEkSHnjgASGfz2RknM/nwyc+8Qncd999okOJK/v378euXbuwZ88enDhxAhUVFdiyZQu6urpEhxZX3G43Kioq8Pjjj4sOJW798Y9/xI4dO3DkyBG8+uqr8Pv9uO222+B2u0WHFncKCgrwne98B8ePH8ebb76JP/mTP8Gf//mf45133hEdWlx644038NRTT2HFihXiglBoip/+9KeKw+EQHUbcWLdunbJjx47Qn4PBoJKXl6fs3btXYFTxDYDy4osvig4j7nV1dSkAlD/+8Y+iQ0kI6enpyo9//GPRYcSdoaEhZfHixcqrr76q3Hzzzcr9998vJA7OjFDU+Hw+HD9+HJs3bw49ZjAYsHnzZhw+fFhgZETz53K5AAAZGRmCI4lvwWAQ+/btg9vtxoYNG0SHE3d27NiBj3zkI1Ou0yLo4tRe0qeenh4Eg0Hk5ORMeTwnJwdnz54VFBXR/MmyjAceeAAbN27EjTfeKDqcuHTmzBls2LABHo8HKSkpePHFF7F06VLRYcWVffv24cSJE3jjjTdEhxLfNSNf/vKXIUnSVb/4S5GIwrVjxw68/fbb2Ldvn+hQ4tb111+PU6dO4ejRo7jvvvtw991349133xUdVtxoa2vD/fffjxdeeAE2m010OPE9M/IP//APuOeee676nLKystgEk4CysrJgNBrR2dk55fHOzk7k5uYKiopofnbu3In//u//xuuvv46CggLR4cQti8WCRYsWAQDWrFmDN954A4899hieeuopwZHFh+PHj6OrqwurV68OPRYMBvH666/jBz/4AbxeL4xGY8ziietkJDs7G9nZ2aLDSFgWiwVr1qzBgQMHsHXrVgBj09sHDhzAzp07xQZHFCZFUfB//s//wYsvvoiDBw+itLRUdEgJRZZleL1e0WHEjT/90z/FmTNnpjy2fft2LFmyBF/60pdimogAcZ6MhKO1tRV9fX1obW1FMBjEqVOnAACLFi1CSkqK2OB0bNeuXbj77rtx0003Yd26dXj00Ufhdruxfft20aHFleHhYZw/fz7056amJpw6dQoZGRkoKioSGFn82LFjB372s5/hP//zP5GamoqOjg4AgMPhQFJSkuDo4svu3bvxoQ99CEVFRRgaGsLPfvYzHDx4EK+88oro0OJGamrqFfVOycnJyMzMFFMHJaSHR4PuvvtuBcAVX6+99pro0HTv+9//vlJUVKRYLBZl3bp1ypEjR0SHFHdee+21acfv3XffLTq0uDHdzxeA8tOf/lR0aHHnf//v/60UFxcrFotFyc7OVv70T/9U+Z//+R/RYcU9ka29kqIoSuxTICIiIqIxcd1NQ0RERNrHZISIiIiEYjJCREREQjEZISIiIqGYjBAREZFQTEaIiIhIKCYjREREJBSTESIiIhKKyQgREREJxWSEiIiIhGIyQkREREL9fzX0+uzhuD+SAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABqTUlEQVR4nO3deXxc1Xk38N+dXaNlRpsla19sMDa2vGDLlq0ArYuzkbqB1EnzBvCb0pTabyFumsRtgsnqNCm80AQCISHwUvKxkzTQtEmgxMFBkjfwhllsZO22rF0aSSPNeu/7h3RHki3ZGmlmzr0zv+/no0/i8SyP5MPVc895nnMkRVEUEBEREQliEB0AERERJTYmI0RERCQUkxEiIiISiskIERERCcVkhIiIiIRiMkJERERCMRkhIiIioZiMEBERkVBMRoiIiEgoJiNEOiVJEh566KFrPu+hhx6CJEnRD0igQCCAL37xiygsLITBYMDWrVtFhzStZ599FpIkobm5WXQoRJrCZIQoQp544glIkoTKykrRoSScZ555Bt/73vdw55134rnnnsPnP/95ofF8+9vfxksvvSQ0BiI9kXg2DVFkbNy4Ee3t7WhubkZ9fT0WLVoU1c/zeDwwmUwwmUxXfd5DDz2Er33ta4jn/9Q/+clPora2FhcuXBAdCgAgJSUFd955J5599tkpjweDQfj9flit1rifrSIKB2dGiCKgqakJhw4dwiOPPILs7Gy88MILUf9Mm812zUQkUXR1dcHpdIoO45qMRiNsNhsTEaLLMBkhioAXXngB6enp+MhHPoI777xzSjLi9/uRkZGB7du3X/G6wcFB2Gw2fOELXwg91tXVhc9+9rPIycmBzWZDRUUFnnvuuSteO13NSG1tLdauXQubzYby8nI89dRTYX0fsizj0UcfxbJly2Cz2ZCTk4PPfe5z6O/vDz3nox/9KMrKyqZ9/YYNG3DTTTdNeezf//3fsWbNGiQlJSEjIwOf/OQn0dbWNuU5t9xyC2688Ua8++67uPXWW2G325Gfn4/vfve7V423ubkZkiThtddewzvvvANJkiBJEg4ePIiDBw+G/v90r5k8a3HPPfcgJSUFFy9exNatW5GSkoLs7Gx84QtfQDAYvOJn9Nhjj2H58uWw2WzIzs7GBz/4Qbz55psAxv5d3G43nnvuuVA899xzD4CZa0aeeOIJLFu2DFarFXl5edixYwcGBgYi8jMi0gMmI0QR8MILL+DjH/84LBYLPvWpT6G+vh5vvPEGAMBsNuMv/uIv8NJLL8Hn80153UsvvQSv14tPfvKTAIDR0VHccssteP755/HpT38a3/ve9+BwOHDPPffgscceu2oMZ86cwW233Yauri489NBD2L59O/bs2YMXX3xx1t/H5z73OfzjP/4jNm7ciMceewzbt2/HCy+8gC1btsDv9wMAtm3bhqamptD3p2ppacGRI0dC3wsAfOtb38Jdd92FxYsX45FHHsEDDzyAAwcO4AMf+MAVv2z7+/vxwQ9+EBUVFXj44YexZMkSfOlLX8Lvfve7GePNzs7G888/jyVLlqCgoADPP/88nn/+edxwww2z/p5VwWAQW7ZsQWZmJv71X/8VN998Mx5++GH86Ec/mvK8z372s3jggQdQWFiIf/mXf8GXv/xl2Gw2HDlyBADw/PPPw2q1orq6OhTP5z73uRk/96GHHsKOHTuQl5eHhx9+GHfccQeeeuop3HbbbaGf+Xx+RkS6oBDRvLz55psKAOXVV19VFEVRZFlWCgoKlPvvvz/0nFdeeUUBoPzXf/3XlNd++MMfVsrKykJ/fvTRRxUAyr//+7+HHvP5fMqGDRuUlJQUZXBwMPQ4AGXPnj2hP2/dulWx2WxKS0tL6LF3331XMRqNymz+U6+pqVEAKC+88MKUx19++eUpj7tcLsVqtSr/8A//MOV53/3udxVJkkKf39zcrBiNRuVb3/rWlOedOXNGMZlMUx6/+eabFQDK//t//y/0mNfrVXJzc5U77rjjmrHffPPNyrJly6Y89tprrykAlNdee23K401NTQoA5ac//WnosbvvvlsBoHz961+f8txVq1Ypa9asCf35D3/4gwJA+fu///srYpBlOfT/k5OTlbvvvvuK5/z0pz9VAChNTU2KoihKV1eXYrFYlNtuu00JBoOh5/3gBz9QACjPPPPMlO9xPj8jIi3jzAjRPL3wwgvIycnBrbfeCmBsmn7btm3Yt29faIr/T/7kT5CVlYX9+/eHXtff349XX30V27ZtCz3229/+Frm5ufjUpz4VesxsNuPv//7vMTw8jD/+8Y/TxhAMBvHKK69g69atKCoqCj1+ww03YMuWLbP6Pn7xi1/A4XDgz/7sz9DT0xP6WrNmDVJSUvDaa68BANLS0vChD30IP//5z6cUxe7fvx/r168Pff6vfvUryLKMv/zLv5zyfrm5uVi8eHHo/VQpKSn4X//rf4X+bLFYsG7dOjQ2Ns4q/kj427/92yl/rq6unvL5//Ef/wFJkrBnz54rXjuXOpDf//738Pl8eOCBB2AwTFyO7733XqSlpeE3v/nNlOdr4WdEFA1MRojmIRgMYt++fbj11lvR1NSE8+fP4/z586isrERnZycOHDgAADCZTLjjjjvwn//5n/B6vQDGfln7/f4pyUhLSwsWL1485RcTgNCyQ0tLy7RxdHd3Y3R0FIsXL77i766//vopf+7r60NHR0foy+VyAQDq6+vhcrmwYMECZGdnT/kaHh5GV1dX6D22bduGtrY2HD58GADQ0NCA48ePT/le6uvroSgKFi9efMX7vffee1PeDwAKCgqu+IWenp4+pV4lmtT6j6t9fkNDA/Ly8pCRkRGRz1T/PS//N7JYLCgrK7vi31v0z4goWliKTzQPf/jDH3Dp0iXs27cP+/btu+LvX3jhBdx2220AxtpPn3rqKfzud7/D1q1b8fOf/xxLlixBRUVFTGP++Mc/PmWG5e6778azzz4LWZaxYMGCGTuBJv+ivv3222G32/Hzn/8cVVVV+PnPfw6DwYBPfOIToefIsgxJkvC73/0ORqPxivdLSUmZ8ufpngNgzi3JM81UXF6Qeq3P15JI/4yItILJCNE8vPDCC1iwYAEef/zxK/7uV7/6FV588UU8+eSTSEpKwgc+8AEsXLgQ+/fvx6ZNm/CHP/wB//zP/zzlNcXFxXjrrbcgy/KU2ZGzZ8+G/n462dnZSEpKQn19/RV/d+7cuSl/fvjhh6fcSefl5QEAysvL8fvf/x4bN25EUlLSVb/v5ORkfPSjH8UvfvELPPLII9i/fz+qq6tD76W+n6IoKC0txXXXXXfV94uG9PR0ALiiUHam2aXZKC8vxyuvvIK+vr6rzo7MdslG/fc8d+7clA4ln8+HpqYmbN68ec6xEukJl2mI5mh0dBS/+tWv8NGPfhR33nnnFV87d+7E0NAQfv3rXwMADAYD7rzzTvzXf/0Xnn/+eQQCgSnLGgDw4Q9/GB0dHVNqSwKBAL7//e8jJSUFN99887SxGI1GbNmyBS+99BJaW1tDj7/33nt45ZVXpjx3zZo12Lx5c+hr6dKlAIC//Mu/RDAYxDe+8Y0r3j8QCFzxS33btm1ob2/Hj3/8Y5w+ffqK7+XjH/84jEbjtBuuKYqC3t7eab+XSCkuLobRaMTrr78+5fEnnnhizu95xx13QFEUfO1rX7vi7yZ/j8nJyVf8vKazefNmWCwW/Nu//duU1//kJz+By+XCRz7ykTnHSqQnnBkhmqNf//rXGBoawsc+9rFp/379+vWhDdDUX9Tbtm3D97//fezZswfLly+/ogX1b/7mb/DUU0/hnnvuwfHjx1FSUoJf/vKXqKurw6OPPorU1NQZ4/na176Gl19+GdXV1fi7v/u7UBKzbNkyvPXWW9f8fm6++WZ87nOfw969e3Hq1CncdtttMJvNqK+vxy9+8Qs89thjuPPOO0PP//CHP4zU1FR84QtfgNFoxB133DHl/crLy/HNb34Tu3fvRnNzM7Zu3YrU1FQ0NTXhxRdfxN/8zd9M2V8l0hwOBz7xiU/g+9//PiRJQnl5Of77v//7ilqVcNx66634zGc+g3/7t39DfX09PvjBD0KWZdTU1ODWW2/Fzp07AYwlfL///e/xyCOPIC8vD6WlpdMeE5CdnY3du3fja1/7Gj74wQ/iYx/7GM6dO4cnnngCa9eunVKsShTXRLXxEOnd7bffrthsNsXtds/4nHvuuUcxm81KT0+Poihj7Z+FhYUKAOWb3/zmtK/p7OxUtm/frmRlZSkWi0VZvnz5lDZUFS5r7VUURfnjH/+orFmzRrFYLEpZWZny5JNPKnv27JlVa6/qRz/6kbJmzRolKSlJSU1NVZYvX6588YtfVNrb26947qc//WkFgLJ58+YZ3+8//uM/lE2bNinJyclKcnKysmTJEmXHjh3KuXPnQs+ZrjVXUcZabouLi68Z80yv7+7uVu644w7Fbrcr6enpyuc+9znl7bffnra1Nzk5+YrXT/ezCwQCyve+9z1lyZIlisViUbKzs5UPfehDyvHjx0PPOXv2rPKBD3xASUpKUgCE2nwvb+1V/eAHP1CWLFmimM1mJScnR7nvvvuU/v7+WX2Ps/0ZEWkZz6YhIiIioVgzQkREREIxGSEiIiKhmIwQERGRUExGiIiISCgmI0RERCQUkxEiIiISShebnsmyjPb2dqSmps7pZEwiIiKKPUVRMDQ0hLy8vCsOAJ1MF8lIe3s7CgsLRYdBREREc9DW1oaCgoIZ/14XyYi6BXZbWxvS0tIER0NERESzMTg4iMLCwqseZQHoJBlRl2bS0tKYjBAREenMtUosWMBKREREQjEZISIiIqGYjBAREZFQTEaIiIhIKCYjREREJBSTESIiIhKKyQgREREJxWSEiIiIhGIyQkREREIxGSEiIiKhwk5GXn/9ddx+++3Iy8uDJEl46aWXrvmagwcPYvXq1bBarVi0aBGeffbZOYRKRERE8SjsZMTtdqOiogKPP/74rJ7f1NSEj3zkI7j11ltx6tQpPPDAA/jrv/5rvPLKK2EHS0RERPEn7IPyPvShD+FDH/rQrJ//5JNPorS0FA8//DAA4IYbbkBtbS3+7//9v9iyZcu0r/F6vfB6vaE/Dw4OhhsmaUj3kBf/ceIC/tf6YqRYdXE2I9GMFEXBz99sw/W5aVhZ6BQdDtG8Pfb7eviDMj5xUwGKM5OFxBD1mpHDhw9j8+bNUx7bsmULDh8+PONr9u7dC4fDEfoqLCyMdpgURd/53Vl853dn8cRr50WHQjRvhxp68aX/OIP7/v04FEURHQ7RvCiKguePtOAHr51H+4BHWBxRT0Y6OjqQk5Mz5bGcnBwMDg5idHR02tfs3r0bLpcr9NXW1hbtMClKFEXB6/XdAIA/vt8tOBqi+VPH8SWXB/Vdw4KjIZqfsx1D6Bn2IslsxOpip7A4NDlnbrVaYbVaRYdBEXCucwjdQ2NLbu+0D6LP7UNGskVwVERzV1PfE/r/tfU9uC4nVWA0RPNTOz6eK8syYDUZhcUR9ZmR3NxcdHZ2Tnmss7MTaWlpSEpKivbHk2C1ky7cAFB3vmeGZxJpX8+wF+9dmqhhq+V4Jp1Tx/CmRVlC44h6MrJhwwYcOHBgymOvvvoqNmzYEO2PJg1QB3qabWwS7vLkhEhP6i4bz0cae+ELyCJDIpozbyCIo029AIBNi3WWjAwPD+PUqVM4deoUgLHW3VOnTqG1tRXAWL3HXXfdFXr+3/7t36KxsRFf/OIXcfbsWTzxxBP4+c9/js9//vOR+Q5Is7yBII429gEA/u7WRQDGkhMW/ZFeqcn0trWFyEy2YMQXxKm2AbFBEc3R8ZZ+ePwyslOtuF7wcmPYycibb76JVatWYdWqVQCAXbt2YdWqVXjwwQcBAJcuXQolJgBQWlqK3/zmN3j11VdRUVGBhx9+GD/+8Y9nbOul+HGydQCj/iCyUqz4zPpiWIwGXBwYRXPviOjQiMKmKEpoZqR6cTaqxqe1a+tZmE36pCbXmxZlQZIkobGEXcB6yy23XPXOdrrdVW+55RacPHky3I8inZsY6JlItpqwutiJI419qK3vRmmWmF52orlq7HGj3eWBxWTAutIMdLg8+K/T7ag534Ndt10vOjyisKnJ9UbB9SIAz6ahKKq5bKCrBVIs+iM9UpPrm4rTYTMbsXF8jf102wAGPX6RoRGFbWDEh7cuugCIL14FmIxQlLhG/DhzYQDA2JQ2AGwa/99DDb0IBFn0R/qitvSqhX75ziSUZSVDVoDDDb0iQyMK26GGXigKsHhBCnIdNtHhMBmh6Djc2ANZARZNGujL8x1wJJkx5AmEMnIiPQgEZRxpHEs4qhdlhx5XExN2iZHehFp6BXfRqJiMUFTU1F/Zu240SKgqzwTAizfpy+kLAxj2BuC0m7EsLy30OJceSa9qp7lGi8RkhKJipo10NvLiTTqkJtcby7NgMEx0Hawvz4TRIKGpx40L/ewSI31o7R1Ba98ITAYJlWWZosMBwGSEoqCtbwQtvWMDfX351IFePT4leLK1H25vQER4RGGrrZ9+SjvNZkZFgQMAdxcm/ag5P9aOvrooXTMnqTMZoYhTZz1WFTmvGOjFmckozEiCP6iEdv4j0rIhjx8nxzc2m25KWy3MruHSI+lEncbqRQAmIxQF6l3kTL3roXX2eiYjpH1HG/sQlBUUZ9pRmGG/4u/V8XyooReyzN2FSduCsoK682PXXi3sL6JiMkIRFZQV1DWou1TOlIyM3UnWnufOlaR91zpIbFWRE8kWI/rcPrw76RA9Ii16+6ILrlE/Um2m0BKjFjAZoYh6p92FgRE/Uq0mVBQ4p33OxkWZkCTg/c5hdA56YhsgUZhqxrd7nym5NhsNWD9eBMjCbNI6dYxuKMuEyaidFEA7kVBcUAf6+vKZB7rTbsHyfBb9kfZdco2iodsNgwRsKJt5Sltde+d4Jq1Tl9FnSq5FYTJCETXb3vVQiy+L/kjD1PG5vMAJh9084/PU8X6sqQ8efzAmsRGFa9QXxPGWfgDaqhcBmIxQBI36gnizeWygX6tKu3rSfiNXO3iRSCR1pq/6GhfuRQtSkJNmhTcgh/4bINKao0298AVl5DuTNHdYKZMRipg3mvvgC8rIc9hQdo2Bvro4HTazAV1DXtR3DccoQqLZUxRl1i2QkiRNKszmbB9pU92kYmxJkq7x7NhiMkIRUzvplN5rDXSb2Yi1JRkAuD8DadPZjiH0DPuQZDZiVZHzms/ftFgtYmWXGGlTaCdhjdWLAExGKIIuP9X0WqpDh4zx4k3ao9aLVJZlwGoyXvP56hr8O+2D6HP7ohobUbi6h7w42zEEANhYro0t4CdjMkIR0TPsxXvjeyzMtjBKndY+2tQHX0COWmxEc3Gt/UUutyDVhiW5qVAU4FADZ/tIW9QxuSwvDZkpVsHRXInJCEWEuhZ5w8I0ZM1yoC/JTUVmsgUjviBOtrLoj7TDGwiGjisIZ8tsdomRVk13krqWMBmhiJhL77rBIPEUX9Kk4y398PhlZKdacX1O6qxfpyYuNfXsEiPtUBRlxsMetYLJCM2boihhT2mrJl+8ibRi8n454XQdVJZmwGyUcHFgFM29I9EKjygsDd3D6Bj0wGIyhBoHtIbJCM1bY48bl1weWIzhD3Q1eXnrwgBco/5ohEcUtrpJnWHhsFtMWF2UDoCzfaQdanK9tiQdNvO1i7FFYDJC86YO9JtK0pFkCW+g5zmTUJadDFkBDjfwFF8Sb2DEh7cuugDMbX2dXWKkNRMz19mCI5kZkxGat3Bbei83sRsrL94k3qGGXigKsHhBCnIdtrBfv2lxduh9AkF2iZFY/qCMI419ALR3Hs1kTEZoXgJBGUcax2Y0queYdasX77rznBkh8WpnuevqTJbnO5BmM2HIE8CZ8RkWIlFOtw1g2BtAut2MpQvTRIczIyYjNC+nL4wNdKfdjKV5cxvolWUZMBokNPW4caGfRX8k1mwPe5yJ0SChqpwtvqQN6sx11aIsGAza2gJ+MiYjNC+h7YXLs2Cc40BPs5mxstAJgBdvEqu1dwStfSMwGSRUls19l8pQlxiLWEmw2R72KBqTEZqXuXYdXG4T9xshDVDH36oiJ1Kspjm/j7o2f7K1H25vICKxEYVryOPHqbYBAPO/RkcbkxGas2FvACdbBwDMvzBKvZM81NALWeZmUSSGWkQ9366Dogw7CtKT4A8qONbUF4nQiMJ2pLEPQVlBSaYdhRl20eFcFZMRmrMjDb0IyAqKIzDQVxaO3Yn2uX14d/yMG6JYCspKqIh6vrtUSpIUStC5oR+JoraXa3XX1cmYjNCczXXX1emYjQasLxvbMI0XbxLhnXYXXKN+pFpNqChwzPv91NkVtqyTKHrYX0TFZITmLJLJyOT3qWPdCAmgJsHryzNhMs7/0lhVnglJAt7vHEbXoGfe70cUjkuuUTR0u2GQgA3lcy/GjhUmIzQnl1yjON81DIOEUBvjfKlTicea++DxByPynkSzNZfDHq8mPdmCG/PGZlhYmE2xpibXKwqccCSZBUdzbUxGaE7UtfXlBU447JEZ6OXZKchNs8EXkPFGM4v+KHZGfUEcb+kHENkj1jct5n4jJIY6w6zlXVcnYzJCcxIqjFoUuek/SZJ48SYhjjX3wReUkeewoTQrOWLvWz2pZV1R2CVGsSHLSsS2XYgVJiMUNkVRUKt2HUS4MCp0yBintSmGJncdSFLkdqlcXZwOm9mAriEv6ruGI/a+RFdztmMIPcM+2C3G0CnSWsdkhMI2NtC9SDIbsbrYGdH3VutP3mkfRO+wN6LvTTSTicMeI5tc28xGrC1hlxjFltrBVVmaAYtJH7/m9RElaYo6/beuNANWkzGi752dasWS3NSxz2ngwXkUfd1DXpztGAIw1gETaaHZvnq2+FJsqDPXelmiAZiM0BzURLjr4HK8eFMsHWoYG89LF6YhK8Ua8fdXlzKPNvXBF5Aj/v5Ek3n8QRxrGj9JPcIzfdHEZITC4g0EcbQpMrtUzkSdKq+tZ9EfRV+0k+sluanISrFgxBfEydb+qHwGkepESz88fhkLUq24LidFdDizxmSEwnKiZQAev4ysFCuuz0mNymesK8mAxWhAu8uDph53VD6DCBgrxlaXHaOVXBsMUqgWioXZFG2TN6OMZDF2tDEZobBMHCSWGbWBnmQxYk1x+vjn8eJN0dPQ7cYllwcWkyFUaBoNm3hODcVIrc5aelVMRigstVHqOrgcL94UC2pd0tqSdNjMkS3GnkxdAnrrwgBcI/6ofQ4ltn63D2cuugDo43C8yZiM0Ky5Rvx4Sx3oUc661Yv3kYZeBIIs+qPoiNZ+OZdb6EhCeXYyZAU43MgEm6LjcGMvFAW4LicFOWk20eGEhckIzdqhhh4oCrBoQQpyHdEd6MvyHHDazRjyBnD6giuqn0WJyR+UcaRRTUaifxe5aRHrRii61JlkvS3RAExGKAw1ET6l92qMBim05wO3hqdoON02gGFvAOl2M5blpUX98yZ3iRFFg1rTp5fzaCZjMkKzFulTTa9FnTqv450kRYF6F1m1KAsGQ/S7DtaXZcBokNDcO4K2vpGofx4llpZeN9r6RmE2SqgsjfzmfdHGZIRmpbV3BK19IzAZJFSWxWagqzMwJ1r7MewNxOQzKXGETjWN0ZR2qs2MlYXOKZ9NFCnq8t+qonQkW02CowkfkxGalYmB7kRKjAZ6UaYdRRl2BGQFRxu5NTxFzpDHj5NtAwBiu76uJtg1TEYowkKdjjqsFwGYjNAsTewvEtvthdniS9FwpLEPQVlBSaYdhRn2mH2uusR56HwPZJm7C1NkBGUFhxqiuzN2tDEZoWsKygrqzosZ6GqWz2ltiiR1f5FYj+eKwrGZxf4RP969NBjTz6b4deaiC65RP1JtJqzId4gOZ06YjNA1vdM+PtCtJlQUxHagV5VnQpKA+q5hdLg8Mf1sil8TW2bHdqbPbDRgfdnYTq+c7aNIUW/WqsozYTLq89e6PqOmmFIvmusFDHSn3RLK9Lk/A0XCJdcoGrrdMEjAhvLYdx1M7DfCU6kpMmrUmT6d1osATEZoFmLd0nu5jVyqoQhSk+sVBU44kswx/3x1aeiN5n54/MGYfz7FlxFfAMdbxk6DjvYxHdHEZISuatQXnBjogrJu9eJde74HisKiP5of0cl1eXYKctNs8AVkvNHcJyQGih9Hm/rgDyrIdyahJDN2xdiRxmSErupoUy98QRn5ziSUZiULiWFNcTqSzEZ0D3lxrnNISAwUH2RZCc2wiUquJUmaSLBZN0LzNDm5jtZJ6rHAZISuqi50HHWmsIFuNRmxrnSs6I8Xb5qPsx1D6HX7YLcYsaooXVgc1Yt5Tg1FxsQ1Wr/1IsAck5HHH38cJSUlsNlsqKysxLFjx676/EcffRTXX389kpKSUFhYiM9//vPweNgZoQfq+rrotUgeMkaRoBaNVpZmwGISdy9WVT42nt9pH0TvsFdYHKRvXUMenO0YgiQlYDKyf/9+7Nq1C3v27MGJEydQUVGBLVu2oKura9rn/+xnP8OXv/xl7NmzB++99x5+8pOfYP/+/finf/qneQdP0dU95MXZjrFlkY0Cug4mU6e1jzb2wRtg0R/NjVaS6+xUK5bkpgIA6hq4uzDNjTorsiwvDRnJFsHRzE/YycgjjzyCe++9F9u3b8fSpUvx5JNPwm6345lnnpn2+YcOHcLGjRvxV3/1VygpKcFtt92GT33qU9ecTSHx1IG+dGEaMlOsQmNZkpuKrBQLRv1BnGgZEBoL6ZPHH8SxprGCUS20QIaWaurZ4ktzoybXep8VAcJMRnw+H44fP47NmzdPvIHBgM2bN+Pw4cPTvqaqqgrHjx8PJR+NjY347W9/iw9/+MMzfo7X68Xg4OCUL4o9dUlEC8dRS5IU+g+O+zPQXJxo6Yc3ICM71YrrclJEhzMxnuvZJUbhUxRl0mGP+m3pVYWVjPT09CAYDCInJ2fK4zk5Oejo6Jj2NX/1V3+Fr3/969i0aRPMZjPKy8txyy23XHWZZu/evXA4HKGvwsLCcMKkCFAUZeLgJQ0kI8DkuhFOa1P4aiad0quFroPK0kxYjAa0uzxo6nGLDod05nzXMDoHvbCaDLipRFwxdqREvYLr4MGD+Pa3v40nnngCJ06cwK9+9Sv85je/wTe+8Y0ZX7N79264XK7QV1tbW7TDpMs0dA+jY9ADi8mAtSUZosMBMJEUnbkwANeIX3A0pDdaS66TLEasKR77JcLCbAqXukSzrjQDNrNRcDTzF1YykpWVBaPRiM7OzimPd3Z2Ijc3d9rXfPWrX8VnPvMZ/PVf/zWWL1+Ov/iLv8C3v/1t7N27F7IsT/saq9WKtLS0KV8UW+qFe21JumYG+kJHEsqzkyErwOFGXrxp9vrdPrzd7gKgrfV17jdCcxUvLb2qsJIRi8WCNWvW4MCBA6HHZFnGgQMHsGHDhmlfMzIyAoNh6scYjWO/3LhOql2iDhK7lurxLggeMkbhONTQC0UBrstJQU6aTXQ4IerS4+GGXgSC09+cEV3OH5RxpHH8JPVETEYAYNeuXXj66afx3HPP4b333sN9990Ht9uN7du3AwDuuusu7N69O/T822+/HT/84Q+xb98+NDU14dVXX8VXv/pV3H777aGkhLRlbKCPdR1ooXh1Mu43QnOhFj1rLbm+Md8BR5IZQ94ATl9wiQ6HdOJk6wDcviAyky1YujA+Vg5M4b5g27Zt6O7uxoMPPoiOjg6sXLkSL7/8cqiotbW1dcpMyFe+8hVIkoSvfOUruHjxIrKzs3H77bfjW9/6VuS+C4qo020DGPYGkG43a26gry/PhNEgoaV3BG19IyjM0O9ZDBQ7WuoMm8xokLBxUSZ+e6YDded7QjUkRFejjueqRVkwGMQXY0fCnApYd+7ciZaWFni9Xhw9ehSVlZWhvzt48CCeffbZ0J9NJhP27NmD8+fPY3R0FK2trXj88cfhdDrnGztFiboEosWBnmI1YVWhEwBnR2h2WnrdaOsbhdkohY4V0JLJLb5Es6HuTbNpkdjNKCOJZ9PQFWontUBqEYv+KBxqcr2qKB3J1rAng6NO3SPiRGs/hr0BwdGQ1g16/KElPdE7CUcSkxGaYsjjx6m2AQDaaYG8nDrVXtfQA1lmETRdXZ3Gk+uiTDuKMuwIyAqONXEPHbq6Iw29CMoKyrKSke9MEh1OxDAZoSmONPYhKCsoybSjIF2b9RgrCpxIsZowMOLHO+3cnZdmFpQVHBo/+2WjRpNrYGKphl1idC21cdbSq2IyQlOE1iI1fOE2Gw1YXza2VlrDreHpKs5cdME16keqzYQV+Q7R4cyomkuPNEta27wvUpiM0BQ1Gt1f5HK8eNNsqMl1VXkmTEbtXu6qyjMhSUB91zA6XB7R4ZBGXRwYRWOPGwYJ2CD4JPVI0+5/nRRz7QOjaOzWx0BXpyjfbO7HqC8oOBrSqonN+7R9F+m0W7B8fOamjl1iNIO68ZuvikIn0mxmwdFEFpMRClEv3CsKnHAkaXugl2cnY6HDBl9QxhvNfaLDIQ0a8QVwvKUfgD66DrihH11LjcaLseeDyQiFqEseWtsYajqSJPHiTVd1tKkP/qCCfGcSSjK1WYw9Wahl/XwPj8qgK8iyEpo100NyHS4mIwTgsoGuk6yb+43Q1dRNSq4lSVub901nTXE6bGYDuoe8eL9zWHQ4pDHvdQyiz+1DssWIVUVO0eFEHJMRAgCc7RhCr9sHu8WIVUX62JJarRt599Igeoa9gqMhrdFbC6TVZMS60vEusXp2idFU6k1XZVkmzBouxp6r+PuOaE7Ug8QqSzNgMeljWGSlWHHD+Nk5LPqjybqGPDjbMQRJ0k8yAkzUAnDpkS6nl2LsudLHbx2Kutrz48dR62wtki2+NJ1D4+N5WV4aMpItgqOZPXXp8WhjH7wBdonRGI8/iGNN2jxJPVKYjND4QB9PRnSWdat3vXUs+qNJ1J1M9TQrAgDX56QiK8WCUX8QJ1sHRIdDGnG8pR/egIycNCsWLUgRHU5UMBkhnGjph8cvY0GqFdfl6GugryvJgMVoQLvLg8Yet+hwSAMURQktO1ZrfPO+yxkMEk/xpStMTq71UIw9F0xGaMpapN4GepLFiJtKxgpuefEmAGjoHkbnoBdWkyE0NvREnZ2sYd0IjQsd9hinSzQAkxGC/roOLreRRX80iXoXubYkAzazUXA04VPrRs5cGIBrxC84GhKt3+3D2+0uAMDGcn1eo2eDyUiC63f7cObi2EDX68FL6t3CkYZeBIKy4GhINL0fJLbQkYTy7GTICnC4kQl2oqtr6IGijNUTLUiziQ4napiMJLjDjb1QFOC6nBTk6HSgL8tzwGk3Y8gbwOkLA6LDIYH8QRlHGvVZjD1Z9XhXWw2XHhPexK6r+h3Ps8FkJMHptetgMqNBQlW5ulkUL96J7FTbANy+IDKSLVg6vgeNHvGoAwLGirHVa5qek+vZYDKS4EJdBzrPujeNd01w87PEpl64q8ozYTDoqxh7svXlmTAaJLT0jqCtb0R0OCRIS+8ILvSPwmyUUFmWITqcqGIyksBaet1o6xsf6OPbUOuVmkydbB3AsDcgOBoSpbY+PpLrFKsJqwqdADg7ksjUjqrVRemwW0yCo4kuJiMJTL3IrSpKR7JV3wO9MMOO4kw7ArKCIw29osMhAQY9fpy+oBZj62t/kenwIEiq09FJ6vPFZCSB1cbZWiRbfBPbkYZeBGUFpVnJyHcmiQ5n3tRfQHUNPQjK3F040QRlBYca9F/TN1tMRhLU2EBXz6OJj4HOQ8YSW7wdJFZR4ESK1YSBET/ebR8UHQ7F2FsXBjDoCSDNZsKKAqfocKKOyUiCevuiC65RP1JtJqzId4gOJyKqyrMgScD5rmFcco2KDodirDbOWiBNRgPWl413iY0XmlPiUIvxq8qzYNRxMfZsMRlJUOqFe0NZJkzG+BgGDrs5lFhxnT2xtA+MorHbDYOE0C/weMBTqRNXaNuFOEmuryU+fgtR2GripOvgcqGiPy7VJBT1l3VFoROOJLPgaCJHHc9vNvdj1BcUHA3FyogvgBOt/QAmlp/jHZORBDTiC+BEywCA+Og6mGzyfiOKwqK/RKEmn/F24S7LSkaewwZfUMYbzX2iw6EYOdrUB39QQUF6Eooz7aLDiQkmIwnoWFMffEEZ+c4klMTZQF9d7ESS2YieYR/OdgyJDodiQJaV0Pp6vHUdSJLELrEENLnTUW8nqc8Vk5EEFM8D3WoyYl3p2E6FXGdPDO91DKLX7YPdYsSqonTR4USculTDow4Sh94Pe5wLJiMJKN66Di5XzbqRhKJeuNeXZcJiir9Lmjoz8t6lQfQMewVHQ9HWNejBuc4hSNJYJ02iiL//cumquoY8oeWLeJvSVqlJ1tGmXngDLPqLd/G2v8jlslKsuGH80D+evRT/6sY3OluWl4aMZIvgaGKHyUiCOXR+bKOzeB7o1+ekIivFCo9fxvGWftHhUBR5/EEcaxor7IzXmT6ALb6JZOKU3vhqLrgWJiMJpiYB1iIlScKmRWN7TfBOMr4db+mHNyAjJ82KxQtSRIcTNeqsD7vE4puiKKGEM962XbgWJiMJRFEU1I7v5Fgd51m32rLMO8n4FtoYKg6LsSdbW5IBi9GAdpcHjT1u0eFQlNR3DaNryAuryYA1xfFXjH01TEYSSEP3MDoHxwb6TSXxPdDVO8m3LrowMOITHA1FizrzFe93kUkWY+i/WSbY8Uv9t11XmgGb2Sg4mthiMpJA1LvItSXxP9BzHTYsWpACRUHoQECKL/1uH95udwEANiZA1wFbfONfvBdjXw2TkQSSaL3rm7hZVFyra+iBoowVLC9Is4kOJ+rU8XyksReBoCw4Goo0X0DGkcaxG6d47XS8GiYjCcIfnBjoiZJ1swMhviVacr0szwGn3YxhbwCnLwyIDoci7GRrP0Z8QWQmW7B0vJU7kTAZSRCn2gbg9gWRkUADvbIsEyaDhNa+EbT2jogOhyJIUZSE6AybzGiQQstRXKqJP2r9U9WiLBgM8VuMPRMmIwlCvXhVlWcmzEBPsZqwqsgJgEs18aaldwQXB0ZhNkqoHN/+PxGoiRdb1uNPTZwe9jhbTEYSRG39eEtvgtxFqtSNg9SWZooP6oV7dVE67BaT4GhiR11iPdk6gGFvQHA0FCmuUT9Otw0AADYm2DVaxWQkAQx6/Dh9YazrQN1/I1FM3En2Iihzs6h4kajJdWGGHcWZdgRkBUfYJRY3Djf0QlaAsqxk5DuTRIcjBJORBHCkYewXcWkCDvSKAgdSrSa4Rv14Z7wNlPQtKCuhdu1E7Dpgl1j8UZfdEnE8q5iMJIBE7l03GQ1YXz62NTyL/uLDWxcGMOQJIM1mwooCp+hwYo7JSPyJ95PUZ4PJSAJItBbIy7HFN77Uhoqxs2BMkGLsyarKs2CQgPNdw7jkGhUdDs3Thf4RNPW4YTRI2DB+45SImIzEuYsDo2jsccMgIWEHunonebylH6O+oOBoaL4S/S7SYTdj+fiMUN151o3onbpEU1HgQJrNLDgacZiMxLm68bvIikJnwg700qxk5Dls8AVlHGvuEx0OzYPbG8CJ1n4AibnsqFJPpVYLeUm/JvbLSazmgssxGYlzid67DgCSJIXuonnx1rdjTX3wBxUUpCehONMuOhxhJlrWe6Eo7BLTK3lSMXYiJ9cAk5G4JssKDp1n1g1MfP+1nNbWtdpJp/RKUuLVi6hWFzuRZDaiZ9iLc51DosOhOXr30iD63D4kW4yhDRoTFZOROPZexyB63T7YLUasLHSKDkeoqvF6mfcuDaJ7yCs4GportXg1kVsgAcBqMmLd+M6zLMzWLzW5Xl+WCbMxsX8dJ/Z3H+fUi9T6skxYTIn9T52VYg2dyXOogRdvPeoa9OBc5xAkCaEzWhKZ2iXGlnX9SvROx8kS+zdUnEvk/UWmw4u3vqnj+cY8B9KTLYKjEU/9BXa0qRfeALvE9MbjD4YK6nmNZjIStzz+II41jQ90Zt0AJqb26873sOhPh2q5S+UU1+ekIivFCo9fxomWAdHhUJjebO6HLyAjJ82KRQtSRIcjHJOROHW8pR/e8YG+mAMdALCuNAMWkwGXXB40dLtFh0NhUBQlNKWdaOfRzESSpIkWXx4EqTs14/9mmxZlJ3QxtorJSJyqmVTox4E+xmY2Ym1JOgC2+OpNfdcwuoa8sJoMWFOcLjoczQh1iXHpUXeYXE81p2Tk8ccfR0lJCWw2GyorK3Hs2LGrPn9gYAA7duzAwoULYbVacd111+G3v/3tnAKm2ak7z4E+ncn7M5B+qBfudaUZsJmNgqPRDrXW4K2LLrhG/IKjodnqc/vwTvsgAKBqUWLujH25sJOR/fv3Y9euXdizZw9OnDiBiooKbNmyBV1dXdM+3+fz4c/+7M/Q3NyMX/7ylzh37hyefvpp5Ofnzzt4ml6/24e3x0+oZdfBVOrF+0hjL/xBWXA0NFssxp5ersOGRQtSoCjsEtMT9WZxSW4qFqTaBEejDWEnI4888gjuvfdebN++HUuXLsWTTz4Ju92OZ555ZtrnP/PMM+jr68NLL72EjRs3oqSkBDfffDMqKirmHTxNr66hB4oyVuC2II0DfbJleWlIt5sx7A3gdNuA6HBoFnwBGUcax3ep5EzfFdQErYan+OpGqKWXyXVIWMmIz+fD8ePHsXnz5ok3MBiwefNmHD58eNrX/PrXv8aGDRuwY8cO5OTk4MYbb8S3v/1tBIMzt6J5vV4MDg5O+aLZq0vwg8SuxmCQULWILb56cqptACO+IDKTLbghN010OJrDU6n1RVGUhD/scTphJSM9PT0IBoPIycmZ8nhOTg46OjqmfU1jYyN++ctfIhgM4re//S2++tWv4uGHH8Y3v/nNGT9n7969cDgcoa/CwsJwwkxoiqJMHLzErHtamya1+JL2qcXGVYuyYDCwGPtylWWZMBkktPaNoK1vRHQ4dA3NvSO4ODAKs1EK7aJLMeimkWUZCxYswI9+9COsWbMG27Ztwz//8z/jySefnPE1u3fvhsvlCn21tbVFO8y40dI7ggv9YwO9sowDfTpqMnKybQBDHhb9aR0Pe7y6FKspdK4JZ/u0T02u1xSnw24xCY5GO8JKRrKysmA0GtHZ2Tnl8c7OTuTm5k77moULF+K6666D0ThRAX/DDTego6MDPp9v2tdYrVakpaVN+aLZUaf/VhdxoM+kMMOOkkw7grKCI419osOhqxj0+EO1PRs5pT2jiS4xtqxr3cRhj4l9eOnlwkpGLBYL1qxZgwMHDoQek2UZBw4cwIYNG6Z9zcaNG3H+/HnI8kTnwvvvv4+FCxfCYuGWzpHGwqjZ2cilGl043NALWQHKspKR70wSHY5mqbUHhxp6EZS5u7BWBYIyDjWMFWNzJ+Gpwl6m2bVrF55++mk899xzeO+993DffffB7XZj+/btAIC77roLu3fvDj3/vvvuQ19fH+6//368//77+M1vfoNvf/vb2LFjR+S+CwIABGUl1N7HwqirmzinhneSWsaDxGanosCBVKsJAyN+vDPe1k/a89ZFF4Y8ATiSzFie7xAdjqaEPY+/bds2dHd348EHH0RHRwdWrlyJl19+OVTU2traCoNhIscpLCzEK6+8gs9//vNYsWIF8vPzcf/99+NLX/pS5L4LAgC8dWEAg54AUm0mrChwig5H0zaUZcEgAQ3dblxyjWKhg3fdWsT9RWbHZDRgfXkmXn23EzX1PfzvX6PU5LqqPBNGFmNPMaeigp07d2Lnzp3T/t3BgweveGzDhg04cuTIXD6KwqAuOXCgX5vDbsbyAidOtw2gpr4Hf3kTO7a05kL/CJp63DAaJKwv5y6V11K9OAuvvtuJ2voe7Lh1kehwaBo87HFmPJsmjoRaelkYNSvVrBvRNPXfpaLAgTSbWXA02qfOHh1v6ceob+Z9nEgMtzeAk639AHhMx3SYjMQJtzeAE+pAZ9Y9K2odQt35Hsgs+tMcJtfhKc1KRp7DBl9QxrFmdolpzdGmXviDCgozklCcmSw6HM1hMhInjjX3wR9UkO9MQnGmXXQ4urCqyIkksxE9wz6c7RgSHQ5NIstKqOuA9SKzI0lSKMHmqdTaU1vP8Xw1TEbixOTjqCWJ9SKzYTUZQxvDcX8GbXn30iD63D4kW4yhDb3o2tRZJG5+pj3qNUbdE4amYjISJ9gCOTebeE6NJqmFfuvLMmE28jI1WxvHC33Pdgyhe8grOBpSdQ568H7nMCRprMGArsT/yuNA15AH5zqHxgc6k5FwqLsgvtHcB4+fRX9awcMe5yYzxYqlC8d2rFb3HCLx1PG8PN+B9GRu9jkdJiNxQB3oy/LSkMGBHpbrclKQnWqFxy/jREu/6HAIgMcfxLGmsQJMrq+Hb2JDPyYjWqHOXLOld2ZMRuLAxCm9XIsMlyRJE0s1bPHVhDeb++ENyMhJs2LRghTR4ejORBFrDxSFXWKiKYoycR4Nk5EZMRnROUVRphSvUvjUZKSWd5KaUDOp0I/F2OFbW5IBi8mAjkEPGrqHRYeT8N7vHEbXkBc2swGri9NFh6NZTEZ07nzX2EC3mgxYw4E+J+qd5NvtLvS7pz9JmmJnol6EhX5zYTMbsbZk7FrApRrx1FmRtSUZsJmN13h24mIyonPqxWZdKQf6XOWk2bB4QQoUBaG9LUiMPrcP77QPAuD6+nyoS7bcXVg8dc8XzlxfHZMRneNBYpERWmfnfiNC1Z3vgaIAS3JTsSDVJjoc3VJ/8R1p7IM/KAuOJnH5AjKOhoqxWdN3NUxGdMwXkHGkcXxXP2bd81IdSkZ4JylSaL8cJtfzsnRhGtLtZgx7AzjdNiA6nIR1orUfI74gMpMtWJKbKjocTWMyomOn2gZCA/2G3DTR4ejautJMmAwS2vpG0dLrFh1OQprcdbCRyfW8GAwSqrihn3B1k07pNfAk9atiMqJj6lpkFQf6vKVYTVhdxKI/kZp7R3BxYBQWowGVpRmiw9E9tY2Us33i1HBn7FljMqJjNexdj6jJp/hS7KnJ9epiJ+wWk+Bo9E8dz6faBjDk8QuOJvG4Rvx468IAAC47zgaTEZ1yjfpDa8Gc0o4M9eJ9qKEXQZmbRcVaTWi/HBb6RUJBuh0lmXYEZQVHGvtEh5NwDjf2QFaAsuxk5DmTRIejeUxGdOpIY+/YQM9KRj4HekSsyHcg1WaCa9SPMxddosNJKIGgjMPjxdhs6Y2cid1Y2SUWa9x1NTxMRnSKp/RGnslowIaysY22uFQTW29ddGHIE4AjyYzl+Q7R4cQNtZ2UdSOxN3GN5kzfbDAZ0SnuLxIdE4eM8U4yltQLd1V5Jowsxo6YDeWZMEhAQ7cbl1yjosNJGG19I2juHYHRIKGyjMXYs8FkRIcu9I+gqccNo0HC+nJumR1J6l3M8ZZ+jPgCgqNJHJzpiw5HkhkrCpwA2CUWS+rN4spCJ9JsZsHR6AOTER1SlxAqChwc6BFWkmlHvjMJ/qAS2jmRosvtDeBEaz8AzvRFQ/ViHgQZa5y5Dh+TER2q4Vpk1EiSFLqA1PHiHRNHm3oRkBUUZiShODNZdDhxRy0IrjvfA5ldYlEnywoOnedMX7iYjOiMLCuhw9x48FJ0bOLW8DEVSq55dkdUrC5Kh91iRK/bh7MdQ6LDiXvvtA+if8SPFKsJKwudosPRDSYjOvPupUH0uX1Ithg50KNEvZM82zGEriGP4GjiX21ofxEm19FgMU3saMuDIKOvZvxnvL4sA2Yjf8XOFn9SOqPera8vy+RAj5KMZAuW5Y2d9XPofK/gaOJb56AH9V3DkCSE2qop8tQl3VqO56irY73InPC3mc6w6yA2Ni3mIWOxoI7n5fkOpCdbBEcTv9RfjMeaeuHxBwVHE788/iDeaB4vxuY1OixMRnTE4w/iWPNYhwentKOrOrRZVDcUhUV/0cKug9i4LicFC1Kt8PhlnGjpFx1O3DrW1AdfQEZumg3l2Smiw9EVJiM68mZzPwd6jNxUkg6ryYDOQS8auodFhxOXFEWZSEaYXEfV5C4xFmZHT92k8SxJ3LwvHExGdEQtjNq4iAM92mxmI9aWjBX9cakmOt7vHEb3kBc2swFritNFhxP3NjIZibqJzjAm1+FiMqIj7DqIrU3cLCqq1C3315VmwmoyCo4m/qnj+cxFF/rdPsHRxJ+eYS/evTQIgIc9zgWTEZ3oc/vwTjsHeiypdzdHGnvhD8qCo4k/dTzVNKZy0my4LicFioLQCckUOer+T0tyU5GdahUcjf4wGdEJ9cLNgR47SxemISPZArcviFNtA6LDiSu+gBzabp/JdeyoP2suPUZe7fhMH2eu54bJiE7Uci0y5gwGCVXjBxHy4h1ZJ1r7MeILIivFgiW5qaLDSRihc2q4+VlEKYoSukYzuZ4bJiM6wK4DcdSLdx2L/iJK/XluXJQFg4HF2LFSWZoJk0FCW98oWntHRIcTN5p63Gh3eWAxGlBZys375oLJiA40947g4sAoLEYD1o1v60yxod7lnGobwKDHLzia+FHDu0ghkq0mrC4a61yq4exIxKg3i2uK05FkYTH2XDAZ0QF1LXJ1sRN2i0lwNImlIN2O0qxkBGUFRxpY9BcJrhE/3rowAIDr6yKwSyzyargz9rwxGdGBmlBLL081FYGbRUXW4cYeyApQnp2MhY4k0eEkHPUX5qGGXgRl7i48X4GgHLpRYU3f3DEZ0bhAUA614XGgixG6k2QyEhHqz5HJtRgr8h1ItZngGvXj7Ysu0eHo3ukLLgx5A3AkmXFjvkN0OLrFZETj3rrowpCHA12k9WWZMEhAY7cb7QOjosPRPXYdiGUyGkInJDPBnr+J8ZwJI4ux54zJiMapA72qnANdFEeSGRWFTgBcZ5+vtr4RNPeOwGiQsL6MxdiiVIdOpWYR63ypbdKbFnGmbz6YjGgcW3q1oZp1IxGhtvSuKnQi1WYWHE3i2jS+RHaiZQAjvoDgaPRr2BvAydYBAFxGny8mIxrm9gZwsnXsuG8OdLHUJYW68z2QWfQ3ZzXnuUSjBSWZduQ7k+ALyjg2vhMuhe9oYy8CsoKiDDuKMu2iw9E1JiMadrSpF/6ggsKMJBRnJosOJ6GtKkqH3WJEr9uH9zoGRYejS7Ks4NB5HvaoBZIkTXSJcelxztjSGzlMRjSstl7touFapGgWkwHrx4v+uBvr3Lx7aRD9I36kWE2hGhwSh11i88fDHiOHyYiGTRRGcaBrAQ8Zmx/157a+LANmIy89oqnnLp3tGEL3kFdwNPrT4fKgvmsYkgRsKOcW8PPFK4JGdQ568H7n2ECv4kDXBHVp4VhTHzz+oOBo9IfJtbZkplixLC8NAGf75kKdUVqR74DTbhEcjf4xGdEo9eKwPN+B9GQOdC1YvCAFC1Kt8AZkHG/pFx2Ornj8QbzRPF6Mzc3ONGPTYs72zVUdOx0jismIRnFjKO2ZUvTHO8mwvNHcB19ARm6aDeXZLMbWiurxerS68z1QFHaJzdbkk9R5jY4MJiMaNHmgszBKW3jI2NzUTuo6kCRu3qcVN5Wkw2IyoGPQg4buYdHh6Ma5zrE6mySzEWuK00WHExeYjGhQfdcwuoa8sJkNWM2BrinqzMjb7S70u32Co9GPWrb0apLNbMS6krGdcLlUM3tqcr2uNANWk1FwNPGByYgGqReFtSUZsJk50LVkQZoN1+WkQFGAugZevGejd9iLd9rH9mapKmcyojWc7QtfaGdszlxHDJMRDaodPy+Cd5HatGnSOjtdW9348epLclORnWoVHA1dTv2FeqSxF/6gLDga7fMGgjjaOLZrLYtXI4fJiMb4AjKOjm/PzM3OtKl6UgcCi/6ujcm1ti1dmIaMZAvcviBOtQ2IDkfzTrQMYNQfRFaKBUtyU0WHEzeYjGjMydZ+jPiCyEzmQNeqdaUZMBslXOgfRUvviOhwNE1RFHaGaZzBIIX2MmLdyLXVTeqiYTF25DAZ0ZjJ7WIGAwe6FiVbTVhVNFZYXMOlmqtq6nGj3eWBxWhAZSk379Oq6lDdSLfgSLSvhvUiUTGnZOTxxx9HSUkJbDYbKisrcezYsVm9bt++fZAkCVu3bp3LxyYEHrykD2rLdR3vJK9KTa7XFKcjycJibK1SN6I7fcGFQY9fcDTa5Rrx48yFAQBANTfvi6iwk5H9+/dj165d2LNnD06cOIGKigps2bIFXV1dV31dc3MzvvCFL6C6unrOwcY716gfb40PdGbd2qYmi4caehCUWTcyk1om17qQ70xCaVYygrKCI+MFx3Slw409kBVg0YIU5DpsosOJK2EnI4888gjuvfdebN++HUuXLsWTTz4Ju92OZ555ZsbXBINBfPrTn8bXvvY1lJWVzSvgeHa4oReyApRlJyPPmSQ6HLqK5fkOpNpMGPQEQgkkTRUIyjjcoJ48zWRE67i78LWFZq45niMurGTE5/Ph+PHj2Lx588QbGAzYvHkzDh8+POPrvv71r2PBggX47Gc/O6vP8Xq9GBwcnPKVCNSDxLjrqvaZjIZQ0R/3Z5je6QsuDHkDcCSZcWO+Q3Q4dA3cb+TauL9I9ISVjPT09CAYDCInJ2fK4zk5Oejo6Jj2NbW1tfjJT36Cp59+etafs3fvXjgcjtBXYWFhOGHqVt35sbtIdh3og7rOzjvJ6aldB1XlmTCyGFvzNpRnwiABjT1uXBwYFR2O5rT1jaCldwRGg4TKsgzR4cSdqHbTDA0N4TOf+QyefvppZGXN/hfs7t274XK5Ql9tbW1RjFIbLvSPoKnHDaNBwvpydh3ogXp3dKK1H25vQHA02sN6EX1Js5lRUegEwMLs6ag3HasKnUi1mQVHE39M4Tw5KysLRqMRnZ2dUx7v7OxEbm7uFc9vaGhAc3Mzbr/99tBjsjy2w5/JZMK5c+dQXl5+xeusVius1sTaqVG9cK8sdCKNA10XSjLtyHcm4eLAKI419eHWJQtEh6QZw94ATrT2A5g4GZa0r3pRFk62DqDmfA/+cm1izEjPFpPr6AprZsRisWDNmjU4cOBA6DFZlnHgwAFs2LDhiucvWbIEZ86cwalTp0JfH/vYx3Drrbfi1KlTCbP8MhvsXdcfSZIm9mfgUs0URxt7EZAVFGXYUZRpFx0OzZK69HjofA9kdomFBGUldBYVdxKOjrBmRgBg165duPvuu3HTTTdh3bp1ePTRR+F2u7F9+3YAwF133YX8/Hzs3bsXNpsNN95445TXO51OALji8UQmywoO8VRTXdq0OAv73mhj0d9lQoV+HM+6srLQCbvFiF63D+91DGJZHguPAeDd9kEMjPiRYjVhRYFTdDhxKexkZNu2beju7saDDz6Ijo4OrFy5Ei+//HKoqLW1tRUGAzd2Dce7lwbRPz7Q1TVb0oeq8ixIEnCucwhdgx4sSOPeA8CkKW3O9OmKxWTA+rJM/OFsF2rre5iMjKsZ73RcX5YJs5G/36Ih7GQEAHbu3ImdO3dO+3cHDx686mufffbZuXxkXFN719eXZXCg60xGsgXL8tLw9sVB1DX04C9WFYgOSbgOlwf1XcOQJITan0k/Ni3KGktGzvfgczdfWdOXiNTkmjPX0cPffBqg7i/Cu0h9Uk9X5iFjY9QlmhX5DjjtFsHRULjUpbVjTX3w+IOCoxFv1BfEm81jxdjcdiF6mIwI5vEH8cb4QN/Esw50qXrSZlGKwqK/OtaL6NriBSnISbPCG5BxvKVfdDjCvdHcB19QxkKHDeXZyaLDiVtMRgR7o7kPvoCM3DQOdL1aU5wOq8mAriEv6ruGRYcjlKIoU06eJv2RJCn0b8fZvqm7rkoSN++LFiYjgk3uXedA1yeb2Yh1pWM7MiZ6V825ziF0D3mRZDZiTXG66HBojtQl4zq2rPMk9RhhMiJYDQuj4gIPGRujJmPrSjNgNRkFR0NzpY7nt9td6Hf7BEcjTveQF+9dGjsbjTN90cVkRKDeYS/eHR/oVeUc6Hqm3jUdaeyFLyALjkacWu6XExcWpNlwfU4qFAWhzb4S0aHx7/2GhWnISkmsXcFjjcmIQHXjx6svyU1FdioHup7dkJuGzGQLRnxBnGobEB2OEN5AEEcb+wDwLjIeqAl2Ii/VsKU3dpiMCFRbP9bSy4GufwaDhCp1qWb83zXRnGgZwKg/iKwUK5bkpooOh+Zp06Qi1kTsEmMxdmwxGRFEUZRJxats6Y0H1erFO0HvJCf2y8lkMXYcqCzLgNko4UL/KFp6R0SHE3MN3W5ccnlgMRqwriRDdDhxj8mIIE09brRzoMeVjeMzXKfbBuAa9QuOJvZqz48tOzK5jg92iwmri8Y6ohIxwVaXp24qSUeShcXY0cZkRBB1+m9NMQd6vMh3JqEsKxmyMlbImkhcI36cuTAAANi4iFvAx4tQi28CtqyrnY5cookNJiOCsHc9Pm2atBtrIjnU0ANZARYtSMFCR5LocChC1PF8qKEHQTlx6kb8QTl0Q8GavthgMiJAICjjSAMHejxK1M2iJu9SSfFjRYETqTYTBj0BnLnoEh1OzLx1YQDD3gCcdjNPLo4RJiMCnL7gwpA3AEcSB3q8WV+eCaNBQmOPGxcHRkWHEzNMRuKT0SCFTl5OpC6x0BJNeRaMBhZjxwKTEQFqQ2uRmRzocSbNZkZFwViCmSgX77a+EbT0jsBkkLC+nPUi8UYtSE6kc2pqWS8Sc0xGBJhogWTXQTxKtIu3+n2uKnIixWoSHA1FmtqyfqK1H25vQHA00Tfk8ePk+MaFXEaPHSYjMTbsDeBk6wAATmnHK/Xf9VBDL+QEKPqr48ZQca040458ZxL8QQXHmvtEhxN1Rxv7EJQVFGfaUZhhFx1OwmAyEmNHG3sRkBUUZdhRlMmBHo9WFTmRbDGiz+0LnT0Ur4KyEjq7hHeR8UmSpNC/bSJ0ibH+SQwmIzHGlt74ZzYasL5svOgvzrtq3ml3YWDEjxSrCRUFTtHhUJQkUst6Tb26jM5rdCwxGYmxOmbdCWFjgrT4qsnW+rJMmIy8nMSrqvIsSBJwrnMIXUMe0eFEzSXXKBq63TBIPEk91nj1iKEOlwf1XcOQJITa5Sg+qdPax5r64PEHBUcTPTzVNDFkJFuwLC8NQHwn2Op4Xl7ghMNuFhxNYmEyEkPqXeSKfAecdovgaCiaFi1IQU6aFd6AjDeb+0WHExWjvmDoe+OyY/xTu//iuUtMvUZXc+Y65piMxFBoiYYX7rgnSVLo4h2vdSNvNPfBF5SR57ChLCtZdDgUZersV935HihK/HWJKYrCzjCBmIzEiKIooV9KHOiJYdNitYg1Pjc/mzyeJYmb98W7NcXpsJoM6Bz04nzXsOhwIu5sxxB6hn1IMhuxutgpOpyEw2QkRs51DqF7yIsksxFritNFh0MxoCad77QPos/tExxN5LEzLLHYzEasK80AEJ9LNWq9SGVZBqwmnqQea0xGYkQd6OtKOdATxYJUG5bkpkJR4q/or3vIi/fG91DhTF/iULsA43HpsYadjkIxGYkRbqSTmNRf1PG2P8Oh8Y3ObliYhqwUq+BoKFbU8XyksRe+gCw4msjxBoI41jR2kjpn+sRgMhID3kAQRxvHtlHmQE8soc2i4qzojy29iWnpwjRkJlsw4gvi1Pj5LfHgeEs/PH4Z2alWXJ+TKjqchMRkJAZOtAxg1B9EVooFS3I50BNJZWkGzEYJFwdG0dw7IjqciJhcjM2ZvsRiMEioCs32xU9htppcb2IxtjBMRmKgjl0HCctuMWF10VjBcrxcvBt73Ljk8sBiNGBtSYbocCjG1D04auKoboQtveIxGYkBFkYlturF8VX0p95F3lSSjiQLi7ETzcbx8Xy6bQCDHr/gaOZvYMSHty66APAaLRKTkShzjfhx5sIAAKB6cbbYYEiITeP/7ocaehEI6r/ojy29iS3fmYSyrGTICnC4oVd0OPN2qKEXigIsXpCCXIdNdDgJi8lIlB1u7IGsjG0PzoGemJbnO5BmM2HIEwjdgelVICjjSOPYL6DqRUyuE1U8neJby52xNYHJSJTV1HOJJtEZDVLoBFC9X7xPXxjAsDcAp92MpeMHp1Hiiaf9Rmp5jdYEJiNRxq4DAqa2+OqZmlxvLM+C0cBi7ES1vjwTRoOEph43LvTrt0ustXcErX0jMBkkVJbxJHWRmIxEUVvfCFp6R2A0SFhfzoGeyNQi1pOt/XB7A4KjmTse9kgAkGYzo6LAAUDfuwurNweri9KRYjUJjiaxMRmJInWgryp0cqAnuKIMOwrSk+APKjjapM+iv2FvACdbBwBwpo8mCrP1fE6NeoglW3rFYzISRbXsOqBxkiSFZkf0evE+0tCLgKygONOOwgy76HBIMHU8H2rohSzrb3fhoKyg7jy3gNcKJiNREpQV1DVwy2yasGm8+0Sv09qsf6LJVhY6kWwxos/tw7vjhybqydsXXXCN+pFqNYWWnEgcJiNR8m77IAZG/EixmrCiwCk6HNKAqvJMSBLwfucwOgc9osMJG5MRmsxsNGD9eNGnHguz1ZjXl2fCZOSvQtH4LxAlNeNrkevLMmHmQCcA6ckW3Jg3dgemtxbfS65RnO8ahkFCqE2ZSM/7jfCwR23hb8ko4UCn6ei1xVcdz8sLnHDYzYKjIa1Qr2/Hmvvg8QcFRzN7o74gjrf0A+BMn1YwGYmCUV8QbzaPD3QmIzRJ9aTNohRFP0V/ap1LNS/cNEl5dgpy0qzwBeTQNU8PjjX3wReUke9MQmlWsuhwCExGouKN8YG+0GFDGQc6TbK6OB02swHdQ1683zksOpxZURQFteNdB2yBpMkkSQoVZqtL03qgnqC9cVEmT1LXCCYjUTC50I8DnSazmY1YW5IBAKip18fF+2zHEHqGvUgyG7G62Ck6HNKYah3WjUwc9sjzlbSCyUgU8FRTuhr14q2XFl/1l0xlWQasJqPgaEhr1Nmyd9oH0ef2CY7m2rqHvDjbMQQA2MidsTWDyUiE9Qx78d54zz2ntGk66rg42tQHX0AWHM21saWXriY71YoluakA9JFgHxrf/2npwjRkplgFR0MqJiMRpv7HeMPCNGRxoNM0bshNQ2ayBSO+IE60arvozxsIhrav50wfzSR0iq8Olmpq2OmoSUxGIowtvXQtBoMUmh3R+p3k8ZZ+ePwyslOtuD4nVXQ4pFGTW9a13CWmKAqP6dAoJiMRpCjKxKmmnNKmq9ikk3Nq6liMTbOwrjQDFqMBFwdG0dw7IjqcGTV0u9Ex6IHFZAgVkpM2MBmJoMYeN9pdHliMHOh0dWqy+taFAbhG/IKjmZl6F8n6J7oau8UU6rSq1XCXmBrb2pJ02MwsxtYSJiMRpF64bypJR5KFA51mludMQll2MmQFONzYKzqcaQ2M+PDWRRcAzvTRtVWPt8lqeXfhiWJstvRqDZORCGJLL4VjYjdWbd5JHmrohaIAixekINdhEx0OaZw6e3aooReBoPa6xPxBGUca+wAwudYiJiMREgjKODJ+h1vNrJtmQd1wSasdCKG7SCbXNAvL8x1wJJkx5AmEZtS05HTbAIa9AaTbzViWlyY6HLoMk5EIOX1hbKA77WYs5UCnWagsy4DRIKG5dwRtfdor+gt1HfAukmbBaJBQNb6JmBYTbHXmumpRFgwGFmNrDZORCFEH+sbyLBg50GkW0mxmrCx0AtBei29r7wha+0ZgMkioLOMulTQ7Wj6VupaHPWranJKRxx9/HCUlJbDZbKisrMSxY8dmfO7TTz+N6upqpKenIz09HZs3b77q8/WKves0F+qsQ43GLt7qoWeri9KRYjUJjob0Qh3PJ1v74fYGBEczYdDjx6m2AQDsDNOqsJOR/fv3Y9euXdizZw9OnDiBiooKbNmyBV1dXdM+/+DBg/jUpz6F1157DYcPH0ZhYSFuu+02XLx4cd7Ba8WQx4+T4wOdU9oUDnVzvEPneyDL2tksqo71IjQHxZnJKMxIgj+ohHbu1YKjjX0IygpKMu0ozLCLDoemEXYy8sgjj+Dee+/F9u3bsXTpUjz55JOw2+145plnpn3+Cy+8gL/7u7/DypUrsWTJEvz4xz+GLMs4cODAvIPXCnWgF3OgU5gqCp1IsZrQP+LHu+NnGokWlBXUnR/7RcK7SAqX2jZbW6+dZETdX4TJtXaFlYz4fD4cP34cmzdvnngDgwGbN2/G4cOHZ/UeIyMj8Pv9yMiYeVMwr9eLwcHBKV9axoPEaK7MRgPWl439t6CV3VjfvuiCa9SPVJsJFQUO0eGQzmzSYMt6Da/RmhdWMtLT04NgMIicnJwpj+fk5KCjo2NW7/GlL30JeXl5UxKay+3duxcOhyP0VVhYGE6YMVcznnXzPBqaC61dvNXkekNZJkxG1rhTeDYuyoQkAe93DqNz0CM6HLQPjKKx2w2DBGwo4zVaq2J6pfnOd76Dffv24cUXX4TNNvMmSrt374bL5Qp9tbW1xTDK8FxyjaKBA53mQd1v5I3mfnj8QcHR8LBHmh+n3YLl+WMzalroElOT6xUFTjjsZsHR0EzCSkaysrJgNBrR2dk55fHOzk7k5uZe9bX/+q//iu985zv4n//5H6xYseKqz7VarUhLS5vypVXqhXs5BzrNUXl2MnLTbPAFZLzR3Cc0llFfEMdb+gGwXoTmTh07WthvhPvl6ENYyYjFYsGaNWumFJ+qxagbNmyY8XXf/e538Y1vfAMvv/wybrrpprlHq0HsXaf5kiRpYn8GwRfvo0298AVl5DuTUJqVLDQW0q+Jow56oCjiusRkWWFnmE6EvUyza9cuPP3003juuefw3nvv4b777oPb7cb27dsBAHfddRd2794dev6//Mu/4Ktf/SqeeeYZlJSUoKOjAx0dHRgeHo7cdyGIonCgU2RUa2SzqLpJhX6SxM37aG5WF6fDZjaga8iL+i5x1/qzHUPodftgtxixuihdWBx0bWHvZrRt2zZ0d3fjwQcfREdHB1auXImXX345VNTa2toKg2Eix/nhD38In8+HO++8c8r77NmzBw899ND8ohfsbMcQeoZ9SDIbsarIKToc0rGq8rFk5J32QfQOe5GZYhUSR2gnYSbXNA82sxFrSzJQU9+DmvoeXJeTKiQOtSi8sjQDFhOLsbVsTlsr7ty5Ezt37pz27w4ePDjlz83NzXP5CF1Qp9QryzJgNRkFR0N6lp1qxZLcVJztGEJdQy8+VpEX8xi6h7w42zEEANhYzi3gaX6qF2ehpr4HtfXd+OymUiExhJJrLqNrHlPFeeD+IhRJ6lJNnaC6kUMNY5+7LC9N2MwMxQ9187OjTX3wBeSYf77HHwwVhFcv5knqWsdkZI68gWBou2PWi1AkbBRc9FfDrgOKoCW5qchMtmDEF8TJ1v6Yf/6Jln54/DIWpFpxXU5KzD+fwsNkZI6Ojw/07FQrrhe0HkrxpbI0ExajARcHRtHU447pZyuKwsMeKaIMBmlKgh1rNSzG1hUmI3M0uXedA50iIclixJrisYr/WF+8G7qH0THogcVkwNqSmY9qIAqHmtiKOOqglvUiusJkZI7UFkgOdIokUfuNqJ+3tiQdNjOLsSky1CW/ty4MwDXqj9nn9rt9eLvdNRYDZ/p0gcnIHAyM+PDWxfGBzmSEIkgdT4cbehEIxq7ob6IYm4V+FDl5ziSUZSdDVsbGdKwcauiFogDX5aQgJ23mo0dIO5iMzIE60BcvSEGugwOdIufGfAccSWYMeQM4fcEVk8/0B2UcaVS7DphcU2RVCzgIUv0sJtf6wWRkDmq56ypFidEgYeOisT0+YnXI2Om2AQx7A0i3m7F0oXbPgSJ9Ug+CrDsfu5mRiWs098vRCyYjc8CDlyiaYn3ImFpcWLUoCwYDi7EpsirLMmA0SGjqceNC/0jUP6+l1422vlGYjRIqS5mM6AWTkTC19o6gtW8EJoOEyjIOdIq86vGp5ROt/Rj2BqL+eTzskaIpzWbGykIngNgk2GpyvaooHcnWOW0yTgIwGQmTeuFeVeRECgc6RUFRph1FGXYEZAXHmqI7tT3k8eNU2wAAdoZR9GyK4X4jddwZW5eYjISJhVEUC2piEO39GY409iEoKyjJtKMwwx7Vz6LEpdbXHWrohSxHb3fhoKzgUAN3xtYjJiNhCMpKqAiLA52iqTpG+43U1o8n1xzPFEUrC8dmkvvcPrx7aTBqn3PmoguuUT9SbSasyHdE7XMo8piMhOGd9vGBbjWhooADnaKnqjwTkgTUdw2jw+WJ2udwfxGKBbPRgPVlYzv7RnO2T12iqSrPhMnIX296wn+tMKj/Ea3nQKcoc9otWD5+ZxetFt9LrlE0dLthkIAN5SzGpuhSazii2bJeo870sV5Ed/gbNQzqlDk3hqJYiHbRn5pcryhwwpFkjspnEKnUpcBjzX3w+IMRf/8RXwDHW/rHP4szfXrDZGSWRn3BiYHOrJtiIHROzfkeKErki/7UO1Qm1xQL5dkpyE2zwReQ8UZzX8Tf/1hTH/xBBfnOJJRkshhbb5iMzNKx5j74gjLyHDaUZiWLDocSwJridNjMBnQPeXGucyii7y3LCg97pJiSJCmqB0HyJHV9YzIyS5O7DjjQKRasJiPWje8gGemL99mOIfQM+2C3GLG6KD2i7000k+rF0Vt65DEd+sZkZJbU9XWuRVIsVUepbkTdL6eyNAMWEy8DFBtV5WPj+Z32QfQOeyP2vl1DHpztGJs95EyfPvEqNAvdQ97QQK9i1wHFkHphPdrYB28gckV/teP75fDCTbGUnWrFktxUAEBdQ+R2Fz40Pp6X5aUhI9kSsfel2GEyMguHGsbuSpcuTENWilVwNJRIluSmIivFglF/ECdaBiLynh5/MLTNfDVn+ijGJjb0647Ye07MXDO51ismI7NQw5ZeEsRgkEKzF5Han+FESz88fhkLUq24LiclIu9JNFvqUndtfWS6xBRFCS07VnPzPt1iMnINijLRdcCsm0RQW8lrIpSM1J5n1wGJs64kAxajAe0uD5p63PN+v4buYXQOemE1GXBTCYux9YrJyDU0dLtxyeWBxWTA2pIM0eFQAlKT4DMXBuAa8c/7/WrZ0ksCJVmMWFM8ljREojBbnbleW5IBm9k47/cjMZiMXIO6rrm2JJ0DnYRY6EhCeXYyZGWifmmu+t0+nLnoAsCZPhJHHXuROKemlvUicYHJyDWoXQc8SIxEUgtN57tUc7ixF4oCXJeTgpw0WyRCIwqbWn93pKEXgaA85/fxB2UcaVSv0UxG9IzJyFVwoJNWRKqIVb0T5RINibQszwGn3YwhbwCnL7jm/D6n2gbg9gWRkWzB0oVpEYyQYo3JyFWcbhvAsDeAdLsZy/I40Emc9WUZMBoktPSOoK1vZM7vE+o64JQ2CWQ0SKE9m+azu7CaXFeVZ8JgYDG2njEZuYrQQF+UxYFOQqXazFhV6AQw96K/ll432vpGYTZKqCzl5n0klrr0PZ/ZPrWmj8m1/jEZuYrQqaac0iYNmO8hY2oSs6ooHclWU8TiIpoLden7RGs/hr2BsF8/6PGHlni47Kh/TEZmMOTx42TbAAAOdNIG9eJd19CDoBz+ZlGTTzUlEq0o046iDDsCsoKjjeFvDX+koRdBWUFpVjIK0u1RiJBiicnIDI409iEoKyjJtKMwgwOdxKsodCLFasLAiB/vtIdX9BeUFRwaPwuELZCkFfNp8Z28eR/pH5ORGahrkbxwk1aYjQasLxsv+gtznf3MRRdco36k2kxYke+IRnhEYds0jy6xWnaGxRUmIzOYyLq5vwhpR/Uc60bUi31VeSZMRv5nT9pQVZ4JSQLqu4bR4fLM+nUXB0bR2OOGQQI28CT1uMCr0jQuuUbR0M2BTtqj3gW+2dyPUV9w1q+rUWf6eBdJGuK0W0IzdeHM9tWNJ+MVhU44ksxRiY1ii8nINNT1yxUFHOikLeXZyVjosMEXlPFGc9+sXjPiC+B4Sz+AiRNTibRiLhv61bBeJO4wGZmGOgXO3nXSGkmSQhfg2d5JHm3qgz+oIN+ZhJJMFmOTtoRa1s/3QFGu3SUmy5NOUmcyEjeYjFyGA520LtwOhMnJtSRx8z7SljXF6UgyG9E95MW5zqFrPv/dS4Poc/tgtxixqig9BhFSLDAZuczZjiH0cqCThqnT2u9dGkTPsPeaz1eTa3YdkBZZTUasK80AMLvCbHU8ry/LhMXEX2Hxgv+Sl1HP7qgszeBAJ03KSrHihvFDwa61zt415MHZjiFIEpMR0q5wlh5rmVzHJf62vYw69c1CP9Ky2bb4qsnKsrw0ZCRboh4X0VyoS49HG/vgDczcJebxB3GsaaxwmzV98YXJyCSTBzrrRUjLNi6aXdFfDTeGIh1YkpuKrBQLRv1BnGgZmPF5bzb3wxuQsSDVisULUmIXIEUdk5FJTrSMDfTsVCuuy+FAJ+1aVzK2jHjJ5UFDt3va5yiKMumwR870kXZJkjQpwe6e8XmTt4BnMXZ8YTIySc2kU3o50EnLkixG3FQ8VmA9U93I+a5hdA56YTUZcFMJi7FJ2ybqRmY+NE9NVHhMR/xhMjJJ6FRTDnTSgWu1+KqPryvNgM1sjFlcRHOhjuczFwbgGvFf8fd9bh/eaR8cey6XHeMOk5Fx/W4f3h4/CZXr66QH6gX5SGMvAkH5ir9nSy/pyUJHEsqzkyErwOHGKxPsQw09UBTg+pxULEizCYiQoonJyLhDDb1QFOC6nBTkcKCTDizLc8BpN2PYG8DpCwNT/s4flHGkcWy6m3eRpBfV412M08328ZTe+MZkZFxoLZKFfqQTRoOEjeXTL9WcahuA2xdEZrIFS8f3JCHSupn2G1EUJTTG2dIbn5iMjAtVaS/mKb2kH5tm2G9EvXBXLcqCwcBibNKH9eWZMBoktPSOoK1vJPR4S+8ILg6MwmyUUFmWITBCihYmIwBaet1o6xsf6KVMRkg/1DvJk20DGPJMFP3V1qszfRzPpB8pVhNWFToBTJ0dUTsdVxelw24xiQiNoozJCCbuIlcVpSPZyoFO+lGYYUdxph1BWcHRxrEN+wY9fpy+MFaMzZ2ESW+mm+2rq5/YX4TiE5MRYNLGUBzopD+Xr7MfaehFUFZQlpWMfGeSyNCIwqbWhNQ19CAoKwjKCg41cNuFeJfwycjYQB/rOtjIgU46dHkywoPESM9WFDiRYjVhYMSPd9sH8daFAQx6AkizmbCiwCk6PIqShE9Gzlx0wTXqR6rNhBX5DtHhEIWtqjwLBmlsx9VLrtFJxdhMRkh/zEYD1peN1TrVnO8OzVxXlWfByGLsuJXwycjEQM+EyZjwPw7SIYfdjOXjd4y/ePMCGrvdMEjAhnIWr5I+TT6VOnTYI5PruJbw1Zo1oa4DDnTSr02LMnG6bQA/er0RAFBR6ESazSw4KqK5UZcY32zuh4KxU6lZ0xff5jQV8Pjjj6OkpAQ2mw2VlZU4duzYVZ//i1/8AkuWLIHNZsPy5cvx29/+dk7BRtqIL4DjLf0A2HVA+qZu1jfsDQDghZv0rTw7GQsdNviCMvxBBQXpSSjOtIsOi6Io7GRk//792LVrF/bs2YMTJ06goqICW7ZsQVdX17TPP3ToED71qU/hs5/9LE6ePImtW7di69atePvtt+cd/Hwda+qDP6gg35mEEg500rHVxU4kTToMj8k16ZkkSVNmq6sX8yT1eBd2MvLII4/g3nvvxfbt27F06VI8+eSTsNvteOaZZ6Z9/mOPPYYPfvCD+Md//EfccMMN+MY3voHVq1fjBz/4wYyf4fV6MTg4OOUrGmon9a5zoJOeWU3G0M6UyRYjVhU5xQZENE+TC7DZGRb/wkpGfD4fjh8/js2bN0+8gcGAzZs34/Dhw9O+5vDhw1OeDwBbtmyZ8fkAsHfvXjgcjtBXYWFhOGHOGrsOKJ7cct3YbEjVoiyYWYxNOrdxURbMRglmo4Sqcl6j411YBaw9PT0IBoPIycmZ8nhOTg7Onj077Ws6OjqmfX5HR8eMn7N7927s2rUr9OfBwcGIJySKouC+W8pRW9/DrJviwqfXF8NsMuBPl+Rc+8lEGpeVYsVP71kHgwRkJFtEh0NRpsluGqvVCqvVGtXPkCQJf74yH3++Mj+qn0MUK2ajAZ+uLBYdBlHEcNY6cYQ1l5uVlQWj0YjOzs4pj3d2diI3N3fa1+Tm5ob1fCIiIkosYSUjFosFa9aswYEDB0KPybKMAwcOYMOGDdO+ZsOGDVOeDwCvvvrqjM8nIiKixBL2Ms2uXbtw991346abbsK6devw6KOPwu12Y/v27QCAu+66C/n5+di7dy8A4P7778fNN9+Mhx9+GB/5yEewb98+vPnmm/jRj34U2e+EiIiIdCnsZGTbtm3o7u7Ggw8+iI6ODqxcuRIvv/xyqEi1tbUVBsPEhEtVVRV+9rOf4Stf+Qr+6Z/+CYsXL8ZLL72EG2+8MXLfBREREemWpCiKIjqIaxkcHITD4YDL5UJaWprocIiIiGgWZvv7m5sREBERkVBMRoiIiEgoJiNEREQkFJMRIiIiEorJCBEREQnFZISIiIiEYjJCREREQjEZISIiIqE0eWrv5dR92QYHBwVHQkRERLOl/t6+1v6qukhGhoaGAACFhYWCIyEiIqJwDQ0NweFwzPj3utgOXpZltLe3IzU1FZIkRex9BwcHUVhYiLa2Nm4zH0X8OccOf9axwZ9zbPDnHBvR/DkrioKhoSHk5eVNObfucrqYGTEYDCgoKIja+6elpXGgxwB/zrHDn3Vs8OccG/w5x0a0fs5XmxFRsYCViIiIhGIyQkREREIldDJitVqxZ88eWK1W0aHENf6cY4c/69jgzzk2+HOODS38nHVRwEpERETxK6FnRoiIiEg8JiNEREQkFJMRIiIiEorJCBEREQnFZISIiIiEYjIy7lvf+haqqqpgt9vhdDpFhxNXHn/8cZSUlMBms6GyshLHjh0THVLcef3113H77bcjLy8PkiThpZdeEh1S3Nm7dy/Wrl2L1NRULFiwAFu3bsW5c+dEhxWXfvjDH2LFihWhHUE3bNiA3/3ud6LDimvf+c53IEkSHnjgASGfz2RknM/nwyc+8Qncd999okOJK/v378euXbuwZ88enDhxAhUVFdiyZQu6urpEhxZX3G43Kioq8Pjjj4sOJW798Y9/xI4dO3DkyBG8+uqr8Pv9uO222+B2u0WHFncKCgrwne98B8ePH8ebb76JP/mTP8Gf//mf45133hEdWlx644038NRTT2HFihXiglBoip/+9KeKw+EQHUbcWLdunbJjx47Qn4PBoJKXl6fs3btXYFTxDYDy4osvig4j7nV1dSkAlD/+8Y+iQ0kI6enpyo9//GPRYcSdoaEhZfHixcqrr76q3Hzzzcr9998vJA7OjFDU+Hw+HD9+HJs3bw49ZjAYsHnzZhw+fFhgZETz53K5AAAZGRmCI4lvwWAQ+/btg9vtxoYNG0SHE3d27NiBj3zkI1Ou0yLo4tRe0qeenh4Eg0Hk5ORMeTwnJwdnz54VFBXR/MmyjAceeAAbN27EjTfeKDqcuHTmzBls2LABHo8HKSkpePHFF7F06VLRYcWVffv24cSJE3jjjTdEhxLfNSNf/vKXIUnSVb/4S5GIwrVjxw68/fbb2Ldvn+hQ4tb111+PU6dO4ejRo7jvvvtw991349133xUdVtxoa2vD/fffjxdeeAE2m010OPE9M/IP//APuOeee676nLKystgEk4CysrJgNBrR2dk55fHOzk7k5uYKiopofnbu3In//u//xuuvv46CggLR4cQti8WCRYsWAQDWrFmDN954A4899hieeuopwZHFh+PHj6OrqwurV68OPRYMBvH666/jBz/4AbxeL4xGY8ziietkJDs7G9nZ2aLDSFgWiwVr1qzBgQMHsHXrVgBj09sHDhzAzp07xQZHFCZFUfB//s//wYsvvoiDBw+itLRUdEgJRZZleL1e0WHEjT/90z/FmTNnpjy2fft2LFmyBF/60pdimogAcZ6MhKO1tRV9fX1obW1FMBjEqVOnAACLFi1CSkqK2OB0bNeuXbj77rtx0003Yd26dXj00Ufhdruxfft20aHFleHhYZw/fz7056amJpw6dQoZGRkoKioSGFn82LFjB372s5/hP//zP5GamoqOjg4AgMPhQFJSkuDo4svu3bvxoQ99CEVFRRgaGsLPfvYzHDx4EK+88oro0OJGamrqFfVOycnJyMzMFFMHJaSHR4PuvvtuBcAVX6+99pro0HTv+9//vlJUVKRYLBZl3bp1ypEjR0SHFHdee+21acfv3XffLTq0uDHdzxeA8tOf/lR0aHHnf//v/60UFxcrFotFyc7OVv70T/9U+Z//+R/RYcU9ka29kqIoSuxTICIiIqIxcd1NQ0RERNrHZISIiIiEYjJCREREQjEZISIiIqGYjBAREZFQTEaIiIhIKCYjREREJBSTESIiIhKKyQgREREJxWSEiIiIhGIyQkREREL9fzX0+uzhuD+SAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1454,28 +1454,20 @@ "execution_count": null, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jholla10/Developer/autora-core/src/autora/state/delta.py:273: UserWarning: These fields: ['already_seen'] could not be used to update StandardState, which has these fields & aliases: ['variables', 'conditions', 'experiment_data', 'models', 'model']\n", - " warnings.warn(\n" - ] - }, { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), conditions= x1 x2 downvotes\n", + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), 'conditions': x1 x2 downvotes\n", "0 -3.0 -1.0 2.0\n", "1 -2.0 0.0 0.0\n", "2 -1.0 1.0 0.0\n", "3 0.0 2.0 0.0\n", "4 1.0 3.0 0.0\n", "5 2.0 4.0 0.0\n", - "6 3.0 5.0 1.0, experiment_data= x1 x2\n", + "6 3.0 5.0 1.0, 'experiment_data': x1 x2\n", "0 -3 -1\n", "1 3 5\n", - "2 -3 -1, models=[])" + "2 -3 -1, 'models': None}" ] }, "execution_count": null, @@ -1506,14 +1498,6 @@ "execution_count": null, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jholla10/Developer/autora-core/src/autora/state/delta.py:273: UserWarning: These fields: ['already_seen'] could not be used to update StandardState, which has these fields & aliases: ['variables', 'conditions', 'experiment_data', 'models', 'model']\n", - " warnings.warn(\n" - ] - }, { "data": { "text/html": [ @@ -1752,14 +1736,6 @@ "execution_count": null, "metadata": {}, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/jholla10/Developer/autora-core/src/autora/state/delta.py:273: UserWarning: These fields: ['downvotes'] could not be used to update StandardState, which has these fields & aliases: ['variables', 'conditions', 'experiment_data', 'models', 'model']\n", - " warnings.warn(\n" - ] - }, { "data": { "text/html": [ @@ -2148,17 +2124,17 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), conditions= x1 x2 downvotes avoid_even.downvotes\n", + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), 'conditions': x1 x2 downvotes avoid_even.downvotes\n", "0 -3.0 -1.0 0.0 0.0\n", "1 -2.0 0.0 2.0 2.0\n", "2 -1.0 1.0 0.0 0.0\n", "3 0.0 2.0 2.0 2.0\n", "4 1.0 3.0 0.0 0.0\n", "5 2.0 4.0 2.0 2.0\n", - "6 3.0 5.0 0.0 0.0, experiment_data= x1 x2\n", + "6 3.0 5.0 0.0 0.0, 'experiment_data': x1 x2\n", "0 -3 -1\n", "1 3 5\n", - "2 -3 -1, models=[])" + "2 -3 -1, 'models': None}" ] }, "execution_count": null, @@ -2185,17 +2161,17 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), conditions= x1 x2 downvotes avoid_negative.downvotes\n", + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), 'conditions': x1 x2 downvotes avoid_negative.downvotes\n", "0 -3.0 -1.0 2 2\n", "1 -2.0 0.0 1 1\n", "2 -1.0 1.0 1 1\n", "3 0.0 2.0 0 0\n", "4 1.0 3.0 0 0\n", "5 2.0 4.0 0 0\n", - "6 3.0 5.0 0 0, experiment_data= x1 x2\n", + "6 3.0 5.0 0 0, 'experiment_data': x1 x2\n", "0 -3 -1\n", "1 3 5\n", - "2 -3 -1, models=[])" + "2 -3 -1, 'models': None}" ] }, "execution_count": null, @@ -2222,17 +2198,17 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), conditions= x1 x2 downvotes avoid_repeat.downvotes\n", + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), 'conditions': x1 x2 downvotes avoid_repeat.downvotes\n", "0 -3.0 -1.0 2.0 2.0\n", "1 -2.0 0.0 0.0 0.0\n", "2 -1.0 1.0 0.0 0.0\n", "3 0.0 2.0 0.0 0.0\n", "4 1.0 3.0 0.0 0.0\n", "5 2.0 4.0 0.0 0.0\n", - "6 3.0 5.0 1.0 1.0, experiment_data= x1 x2\n", + "6 3.0 5.0 1.0 1.0, 'experiment_data': x1 x2\n", "0 -3 -1\n", "1 3 5\n", - "2 -3 -1, models=[])" + "2 -3 -1, 'models': None}" ] }, "execution_count": null, diff --git a/docs/cycle/Linear and Cyclical Workflows using Functions and States.ipynb b/docs/cycle/Linear and Cyclical Workflows using Functions and States.ipynb index f04ee104..5384c9e6 100644 --- a/docs/cycle/Linear and Cyclical Workflows using Functions and States.ipynb +++ b/docs/cycle/Linear and Cyclical Workflows using Functions and States.ipynb @@ -64,7 +64,7 @@ { "data": { "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x', value_range=(-15, 15), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), conditions= x\n", + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-15, 15), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", "0 -15.0\n", "1 -14.7\n", "2 -14.4\n", @@ -77,9 +77,9 @@ "99 14.7\n", "100 15.0\n", "\n", - "[101 rows x 1 columns], experiment_data=Empty DataFrame\n", + "[101 rows x 1 columns], 'experiment_data': Empty DataFrame\n", "Columns: [x, y]\n", - "Index: [], models=[])" + "Index: [], 'models': None}" ] }, "execution_count": null, @@ -178,27 +178,27 @@ " \n", " 0\n", " -15.0\n", - " -1457.218119\n", + " -1459.626544\n", " \n", " \n", " 1\n", " -14.7\n", - " -1275.332030\n", + " -1274.924484\n", " \n", " \n", " 2\n", " -14.4\n", - " -1102.558433\n", + " -1103.501192\n", " \n", " \n", " 3\n", " -14.1\n", - " -937.742130\n", + " -936.513786\n", " \n", " \n", " 4\n", " -13.8\n", - " -780.935825\n", + " -781.771299\n", " \n", " \n", " ...\n", @@ -208,27 +208,27 @@ " \n", " 96\n", " 13.8\n", - " 501.733867\n", + " 503.745992\n", " \n", " \n", " 97\n", " 14.1\n", - " 607.023667\n", + " 609.525166\n", " \n", " \n", " 98\n", " 14.4\n", - " 721.623458\n", + " 722.577968\n", " \n", " \n", " 99\n", " 14.7\n", - " 843.627156\n", + " 843.765689\n", " \n", " \n", " 100\n", " 15.0\n", - " 973.391517\n", + " 971.678104\n", " \n", " \n", "\n", @@ -237,17 +237,17 @@ ], "text/plain": [ " x y\n", - "0 -15.0 -1457.218119\n", - "1 -14.7 -1275.332030\n", - "2 -14.4 -1102.558433\n", - "3 -14.1 -937.742130\n", - "4 -13.8 -780.935825\n", + "0 -15.0 -1459.626544\n", + "1 -14.7 -1274.924484\n", + "2 -14.4 -1103.501192\n", + "3 -14.1 -936.513786\n", + "4 -13.8 -781.771299\n", ".. ... ...\n", - "96 13.8 501.733867\n", - "97 14.1 607.023667\n", - "98 14.4 721.623458\n", - "99 14.7 843.627156\n", - "100 15.0 973.391517\n", + "96 13.8 503.745992\n", + "97 14.1 609.525166\n", + "98 14.4 722.577968\n", + "99 14.7 843.765689\n", + "100 15.0 971.678104\n", "\n", "[101 rows x 2 columns]" ] @@ -696,7 +696,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnmElEQVR4nO3dd3xT9eLG8U+S7pa2QDcUStl7U4qILCmKXlFEVFRQrgNBRcCrXAXXVVTcovJzAW5RlOtEEUFEoChY9ioFCpS2zC46k/P7o9IrUqCFtidJn/frlRc2OUmexEKenPM936/FMAwDEREREakwq9kBRERERFyNCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSh9kB3JHD4SAtLY06depgsVjMjiMiIiIVYBgGOTk5REVFYbWeeR+TClQ1SEtLIzo62uwYIiIicg727t1Lw4YNz7iNClQ1qFOnDlD6PyAwMNDkNCIiIlIR2dnZREdHl32On4kKVDU4cdguMDBQBUpERMTFVGT4jQaRi4iIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIm0hLS2P58uWkpaWZHUVExO15mB1ARKpGSkoKycnJAERFRZmcRkTEvalAibiJ2NjYk/4UEZHqowIl4iaioqIqvecpLS2NlJQUYmNjtddKRKQSVKBEajEd9hMROTcqUCK1mA77iYicGxUokVrsXA77iYiIpjEQERERqTQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKcqkCtWzZMi6//HKioqKwWCwsWLDgpNsNw2DatGlERkbi6+vLwIED2bFjx0nbHDlyhJEjRxIYGEhwcDBjxowhNzf3pG3Wr1/PhRdeiI+PD9HR0TzzzDPV/dJERETEhbhUgcrLy6Njx468+uqr5d7+zDPP8PLLLzNr1iwSExPx9/cnISGBgoKCsm1GjhzJpk2bWLRoEV9//TXLli3jtttuK7s9OzubQYMG0bhxY9asWcOMGTN45JFHeOONN6r99Yk4g7S0NJYvX05aWprZUUREnJbFMAzD7BDnwmKx8MUXXzB06FCgdO9TVFQUkyZNYvLkyQBkZWURHh7OnDlzuPbaa9myZQtt2rTht99+o1u3bgAsXLiQSy+9lH379hEVFcXrr7/Ogw8+SHp6Ol5eXgA88MADLFiwgK1bt5abpbCwkMLCwrKfs7OziY6OJisri8DAwGp8F0Sq3vLly0lOTqZZs2b07t3b7DgiIjUmOzuboKCgCn1+u9QeqDPZtWsX6enpDBw4sOy6oKAg4uLiWLlyJQArV64kODi4rDwBDBw4EKvVSmJiYtk2ffr0KStPAAkJCWzbto2jR4+W+9zTp08nKCio7BIdHV0dL1GkTHXuJYqNjaVZs2bExsZW+3OJiLgqtylQ6enpAISHh590fXh4eNlt6enphIWFnXS7h4cH9erVO2mb8h7jr8/xd1OmTCErK6vssnfv3vN/QSJ/8fcSk5KSQnJyMikpKVX+XFFRUfTu3ZuoqKhqfy4REVflYXYAd+Dt7Y23t7fZMcSNnSgxUFpwoqJj2JdjJ8e7Pj+v20F+3jEKc7MwLDY8/ILw8q2Dt38ggb5eNK7vTz1/r7M8w+md2BN14k8REVMdS4WcDGjQBaw202K4TYGKiIgAICMjg8jIyLLrMzIy6NSpU9k2mZmZJ92vpKSEI0eOlN0/IiKCjIyMk7Y58fOJbUTKk5aWRkpKCrGxsWV7b6pCXkExWcfzceTsIzPxNxYvfYqooj1cZskkwFJw2vs5DAvZ+LHbiOBXa0Oy/GMortsMv8ZdaNe2Pa0jArFaLWd9/qioqCp9PSIi5+WP9+Hnp6Hj9XDl66bFcJsC1aRJEyIiIli8eHFZYcrOziYxMZGxY8cCEB8fz7Fjx1izZg1du3YF4KeffsLhcBAXF1e2zYMPPkhxcTGenp4ALFq0iJYtW1K3bt2af2HitP5emP6+l+h87EnLZHvit1h2/kiLnESGWE4u/n8/+F6CBwVWP6zY8XHkY8WB1WIQTB6dLDvpxE7I+xnygH2w95dQvrS25XBIHP6t+nFht040CPY9r8wiIjVi50+lfzbuZWoMlypQubm5ZR9QUDpwPCkpiXr16tGoUSMmTJjAf/7zH5o3b06TJk2YOnUqUVFRZWfqtW7dmsGDB3Prrbcya9YsiouLGT9+PNdee23ZB97111/Po48+ypgxY7j//vvZuHEjL730Ei+88IIZL1mc2N8L0/ke6iooLGL14vl4Jc2lS+FqGlvspTdYoBgP0n2akV+3OZ7hrakX04Gghq3Aty5418HDw5uAEw9kGFCcD4U5cPwQhRnbydq7iaKM7Xge2U793O1EWw8SzVI4tBSWP03Ssqb8EDiAgC5Xc1H3joTV8Tmv90ZEpFrkH4X9a0r/u2l/U6O41DQGS5cupV+/fqdcP2rUKObMmYNhGDz88MO88cYbHDt2jN69e/Paa6/RokWLsm2PHDnC+PHj+eqrr7BarQwbNoyXX36ZgICyjx/Wr1/PuHHj+O233wgJCeGuu+7i/vvvr3DOypwGKa6rqg7Z7UvdRfIPr9Ni3+dEcbDs+kxbBIci+lC34yVEdLwYi3edqogNhbnY96zk8MbFGLt+ITRnM1YcQOlhv9+MlmwMHULz/qPp3Tq6Qof5RERqxKYv4NPRENoKxiVW+cNX5vPbpQqUq1CBkorITN/Ljk8foduhBXhbSgDIxp9dDf5B44F3EBzTESw1UF5yM8le8yn5a+cRnpVUdvURI4DvvAfjE38bg3t1xd/bpXZYi4g7+vIuWPsu9LwTBk+v8odXgTKZCpScSfaxQ2z69D902Pch/pbSCVh3eLWhqNMoWg24CZu3n3nhju3laOIHWNbMJriodNqOYsPGj5Y4Dne5m6EJFxOgIiUiZjAMeKEdZO+DkfOh+cCz36eSVKBMpgIl5TEcdtZ8NoPmm18miDwAtnu05Fi3uykKiKnys/fKU+HDjvYS8jd9RdZPrxBxrHS8gcOw8L31ArLjJnPFgD74eJp3+rCI1EIHt8Or3cHmDffvBq+q/7JZmc9vfZUUqQEZuzZy7KPb6Fa0CYDd1miO9byfjgNH8uuKFScNRq+u6RDg1IHvp2XzwLfDlfh2uBLH/iQOfDudBvsXcomxnJKVK/hmdT+46H4uu7AHNo2REpGasHNx6Z+N46ulPFWWCpRINTLsxaz/9AlabZlJuKWYPMOHpFb3Enf1JGL+nCbj72fvVeV0CH93LmcKWht0osGtn1CyL4mML6fRIPNnrnAspuCnZXySeA3thk+jQxPNkSYi1ezP6QuyQruzYfnyGtlrfyY6hFcNdAhPAI7t38GRuSOJLdoGwB9eXag/4nUaNW11xvtV5x6oqlC0exWHF/ybyD8P7e0xwvi5yUQuHz6Guucx47mIyGmVFMLTMVB8nI+bv8iHewK5pHU9xl556pn556NWLiYs4kz2JP4X65t9iS3aRrbhx9JWD9Ph/sVnLU9w6lp0zsYrpieR9ywma8j/ccwjlMaWTG7a/QAbZiTww4rV6DuZiFS51JVQfBwCwllW3JL12T7sLvQ3NZIKlEhVcjjYMu9hor8dRSC5bLY25+CNS+l77URsNjf662axENT9WoLvSyKt7W0U40Ef1hL//T/44LXHOJRTcMoCyCIi5+zPw3eO2H4k7i09CeeKbuauz+lG/6KLmMuen8X2V4bSevOLWC0GPwUMocGEpTRt1tLsaNXHO4Co4TNg7K+kBXagjiWfGw4+z47nBvH10uUkJyeTkpJidkoRcWFpaWnkrvsSgN3BPTmcV0QdHw+6N6lnai4VKJEqUHBkP2kv9KXF0Z8pNDz4tskULpr4AUGBAWe/sxvwDG9F1ISlpPecSiFexLOOa7fdTcHBbYQ3aGR2PBFxYXu3/E5A7i4Avskr/UJ6UYtQPE3eq68CJXKejqcnk/XqAKKLUsg0glnV930uHfWA6af3V+chtHIf22ojYvBkLHcsIy2gLYGWfO7Ie43dH4xn624dxhORc9PCth+AopA2fJVcDMDA1uFmRgJUoETOS07qegreuJhw+wFSjXD2XbmAi/pdYnYs4H/TIVTHIbQzPbZXRGuiJv7Cvi6TKcHKxSU/4z27H/M+/4xffvlFY6JEpFLqHvkDgIKYAWzPyMVmtdC3ZajJqTQPlMg5y9r+K9aPrqGekcsOoim4bj5dWjnPeKdzmfOpyh7baqPhP6aS3bIvxfNupok9nah1tzPbNoKCkmud9gxDEXEyDkfZAPJfjQ4AdG1cl2A/86dMUYESOQdHty7D5+Ph+FLAOlrgM3o+7WOca6xPVFRUtRWVij52YMsLcdybyJ45o2l8aBl3OD5g8fJU9rZuQ3RESLVkExE3kr4O8g6CVwAfp0cBWQxsHWZ2KkCH8EQqLXfPWjw/uRZfClht6Ujgbd/Q0snKkzOxBtSn8bgv2dtjKiXYGGD/hbxZA1iTtM7saCLi7Lb/AEBxzEWs2J0NwAAnGP8EKlAilVKYvo2SuVcSYOSxltaE3zafJlHO8W3IqVksRF86mazhn3HMEkQrdhPzxRAWfjVPE2+KyOnt+B6ALf49KbYbNAnxp2moc5zdrAIlUkElR1LJffMygh3H2Gw0wXf0pzSONH8goyup37Y/PuN+Ya9PC+pbchj4++38981HKbY7zI4mIs4m9yDsXwvA5zltABjQynm+sKpAiVSAkXuQI7OGUN+eSYoRyfFrPqF1TLTZsVyST0hjGk5cSnL4JXhYHAxNe4GfXryF3PxCs6OJiDNJXgQYGBEd+G9K6ZcsZzl8BypQImdXXMCBWVcQVpRKmlGffZd9SLe2znO2nSuyePnT7I6PSO4wGYCEnC9Y//w/yDh8xORkIuI0tpcevjsQ1oejx4sJ9PGgW0xdk0P9jwqUyJkYBnvfvZWo3E0cM/xZ13cOfbp3MTuVe7BYaHbVVPb0m0khnvQqXsXhmRezc5eWfhGp9ezFZdMXLCrpBEDflmGmzz7+V86TRMQJHVg4g+i9X1JiWPmu9dNc0q+P2ZHcTuOLbuTY1Z+RZalDGyMZ77mDWPfHarNjiYiZUldBYTb41eeDvfUBGOAk0xecoAIlchpZ678hPPFJAN4LvJUGDWI0i3Y1CW/XF8Ys4oAtioYcJHrBVfy+YrHZsUTELDtKpy/Ije7H9oP5pbOPt1CBEnF6xRlb8fzin1gx+NpjEFGdLyNl585qWRZFSgU1bE3du5ayy6sF9Sw5tPr+elb8+IXZsUTEDH8WqFW2rgDEx9YnyM/TzESnUIES+bv8Yxx76yr8jOOsMVrSasws2rdqRrNmzaplWRT5H5/gcBpO+JHtfp0JsBTQ9Zd/suzL2WbHEpGadHQPHNwKFhuzM5sCkNDWec6+O0EFSuSvDIP9791GaPF+9hkhrGk9hWaR9YmKiqJ3795aw60GePoF0WzCd2wOuhBvSwkXrLmXpR8/b3YsEakpf+59Korqwa/7SgAY1DbCzETlUoES+YvDv7xFg7TvKTZsfBo+mcv6xJkdqVayevnS+u4vWB96OTaLQd+tj7LwrYfNjiUiNeHP6Qs2+Jf++9u5UTDhgT5mJiqXCpTIn0rSNxPw04MAfFxnFHfdfnuV73FKS0tj+fLlGoxeARabJx3ufI9lgZcBMHjfiyyd+6jJqUSkWhUdh92/ADAvq3T28QQn3PsEKlAipYoLOPrujXhTyAo60O+Wx/GohvlGUlJSSE5OdrvB6NVWDC0Wmo14hqWBVwLQd9fzLJs9VevnibirXcugpABHYDTz95aueacCJeLE0j+bTOjxZA4ageRdOpOG9apnscrY2Fi3HIxencUwqkED+t47mzUxtwHQZ8/LLH/nAZUoEXe0fSEAu+pdQIkDWobXoUmIv8mhyqcCJbVe3rr/ErHtPQD+23gqF/foWG3P5a6D0auqGJ52T5bFQtfRM/g99k4ALtw7ixXv3H9ezyUiTsbhgG3fAfBVQSfAOc++O0EFSmq3vMM4vrwbgE88h3LdyFtMDuSaqqoYnm1PVrebpvNb83sAuGDv/7Fy7oPn9Xwi4kTS1kJuOoZXAG/vbwBAQjvnPHwHKlBSy6V9cjd17MfY5oimzQ0z8Pf2MDtSrVaRPVndRz5GYuxdAMTvmkni+4/UUDoRqVZbvwEgPawPOcU2Gtb1pU1koMmhTk8FSmqtvA1fEZX6NXbDQmKHx2jf2LmWCagN/n7IrqJ7suJu+g8rG91e+t/JL/Dbx09We1YRqWZ/FqhFjm5A6eBxi8ViZqIzUoGS2in/GCX/nQDAJx5X0DA0VFMLmOB8Bp/3vPlpVjS4GYDuW59mzWczqjqeiNSUQ8lwaBuG1ZNZaaV7oAc78eE7UIGSWirjs/sIKjlEiiOCwnbXk7pL69yZ4XwGn1ssFuLHPM+v4SMB6LrxP6z/5vWqjigiNWFb6d6nY+FxpBV4ERLgRZdGdU0OdWYqUFLrFG77kfCd83AYFha3mEZCXHu3nFrAFZzv4HOL1Uqv22eyJGgoAG1W/5vNP31YhQlFpEb8efhumbV09vGL24Rjszrv4TsAjZiV2qUwl/z54/AG5tsGc+3V11DHx9PtphWoTSxWK7aut/DDkkMMYjnNfr6LHX6BNO95mdnRRKQicjNh72oAXj/QAoBL20eamahCtAdKapXMb/5DcFE6+4wQwq+cTh0fT7MjSRVo1qw5Xn3uY5VXPF6WEhosvIVF8/5P49pEXMG27wCDnPod2Hq8DnX9PImPrW92qrNSgZJaw5G5nbrr3wTg24YT6dO+icmJpKpERUXRt19f2t8znz88O+NHIXGbHmFL4iKzo4nI2fx5+G6FZ+nhu8HtIqtlKa2q5vwJRaqCYXDw0wl4UsLPRmeuuEYTZrojf39/Yu78go3WlgRajtNx3cNkpSWbHUtETqcwB1KWAvBGRmsALuvg/IfvQAVKaon8jV8RfvBXCg0P9sc9THiQb408b7UtsiunVbduXUJv/5KdlkaEcJTct/9B/tEMs2OJSHmSF4O9kPyAxqzJD6e+vxdxTeqZnapCVKDE/RXnU/B16bppn3pdwbBBfWrsqatzkd3aqiKlNDw8AssN80kjhAb2/aS/fjkl+dk1mFJEKmTbtwCs9okHLAxuF+ESh+9ABUpqgSOLnqVuYRoHjHpE/+MhvD1sNfbcVbXIrvxPRUtpbNMWHB76MUeNOjQp2kbKq1dhlBTWUEoROSt7MY6tpYsHv3Ww9PDdEBc5fAcqUOLmjKN7CPjtZQAWhN7BRe1rtshU1SK78j+VKaXtO3Vna/+3OW540yL3N9Y+fzVp+/fVQEoROatdP2MtyibXUodfC5sSEuBNXBPnP/vuBBUocWuZ8/+Fl1FEoqM1g0eMMzuOVIHKltL4ixJY2e0Fig0bXY8vY/f8qdWcUEQqZNMCABK943Fg5dL2EU4/eeZfqUCJ2yrZk0j4voXYDQsbOz5Ik9AAsyOJSQZcPpKvGk4CoNeRz9n57csmJxKp5ezFsPVrAD4s6AnAEBeYPPOvVKDEPRkGhxdMAeBra19GXHZJ2U06M652Gjrm33xTv3Tx4ZjEaexb9fkp2+h3Q6SG7FoG+Ucp8q7H0oLmhNXxpltMPZf6O6gCJW6pcMv3hB9dQ6HhSWHv+wnw/t+qRTozrnayWi0MuP1ZFvsmYLMY1F94B0e2rzxpG/1uiNSQzQsA+N2vN3ZsXNo+EpvV4lJ/B1WgxP047OR88yAAn9ouJcyz5KRvMzozrvby8fKgy9jZJNq64Esh1o9GcDz9fxNtlve74UrfiEVcgr0YtpQevnvnaEfgf2ffudK/z1pMWNxO3u8fEpKXTJbhx+GmwyhJ2YmH1VI26DgqKkpnxdVidQP9ifznx2z5vwRaG7s48PZQvCf8gs2/brm/Gye+EQP6vRGpCrt/gfwjFHnVZUl2CyICfejaqC7gWv8+aw+UuJfiAkp+/A8An/ldw7C+3Vzm24zUnEaR4RSN+IQ0oz6RxXvZO+sqKCkqd1tX+kYs4hI2/xeARJ8LsGPjik5RWF3o7LsTVKDErWT98jpBRekcMOrR7LJJNGzQQPMwSbk6tm7J9gFvk2P4EpOzlpTZY8AwTtlOc3mJVCF7CWz5CoC3j5QevhvauYGZic6ZCpS4j/xjeCx/DoD5ASPp0yba5EDi7Pr26ceP7Z6ixLASu/9L9ix4zOxIIu5tz3I4fpgCr7r8UtKKluF1aB0ZaHaqc+JWBeqRRx7BYrGcdGnVqlXZ7QUFBYwbN4769esTEBDAsGHDyMg4eZHR1NRUhgwZgp+fH2FhYdx3332UlJTU9EuRc3D4p5fwd+Sww9GAOi37YbG43i5hqXlDrx7F5+H3ANB43fNk/Pq+yYlE3Nifk2f+6tETOzaX3fsEblagANq2bcuBAwfKLsuXLy+77d577+Wrr77i008/5eeffyYtLY2rrrqq7Ha73c6QIUMoKipixYoVzJ07lzlz5jBt2jQzXoqcxUlnRxVk4bvmDQC+9B/Oxd1am5xOXIXFYuEft07lS98rAai76B6yt/9qcioRN/SXw3dzjnUC4B+dXPfQuNsVKA8PDyIiIsouISEhAGRlZfH222/z/PPP079/f7p27crs2bNZsWIFq1atAuCHH35g8+bNvP/++3Tq1IlLLrmExx9/nFdffZWiovIHmIp5/jpfyJElr+DnyGW7owGDb5ig8SpSISdK+JGDGfQa+xrLrD3wogTj4+spPrzb7Hgi7mXPr3D8EPmewaxwtCGuST0aBPuaneqcuV2B2rFjB1FRUcTGxjJy5EhSU1MBWLNmDcXFxQwcOLBs21atWtGoUSNWriydTG/lypW0b9+e8PDwsm0SEhLIzs5m06ZNp33OwsJCsrOzT7pI9TtxdlTThuH4/DYLgKXho2jboK7JycRV/LWEhwT6EX7zu2w1GhPkOMbhN6+EwhyzI4q4j01fALDU0sPlD9+BmxWouLg45syZw8KFC3n99dfZtWsXF154ITk5OaSnp+Pl5UVwcPBJ9wkPDyc9PR2A9PT0k8rTidtP3HY606dPJygoqOwSHa3ByzXhxNlRPtvm4+fIYacjkrjL/ml2LHEhf5+ioGV0JJmXv0umEUxEQQr73roOHHaTU4q4gZIiHBtLl096P7crXjYrl7ZzrbXv/s6tCtQll1zC8OHD6dChAwkJCXz77bccO3aMefPmVevzTpkyhaysrLLL3r17q/X55C8Kc/Fc/RoAi0NvpGPj+iYHEldS3hQFfbp14peuL1NgeNLw4C/sn3efiQlF3ETyj1gLszhqCWKloy39WoUS5Odpdqrz4lYF6u+Cg4Np0aIFycnJREREUFRUxLFjx07aJiMjg4iICAAiIiJOOSvvxM8ntimPt7c3gYGBJ12kZhxbNosAexa7HOF0vew2s+OIm7jq8n8wr+G/AWiw9W0O/vyGyYlEXNyGTwH4xrgAB1aGdnLtw3fg5gUqNzeXnTt3EhkZSdeuXfH09GTx4sVlt2/bto3U1FTi4+MBiI+PZ8OGDWRmZpZts2jRIgIDA2nTpk2N55ezKDqOR+IrAPxQ/0a6Ngk1OZC4C4vFwjWj7+Ej/5EABC+ZQt72nwGtjSdSaYU5sO07AD4u7EUdHw/6tQozOdT5c6sCNXnyZH7++Wd2797NihUruPLKK7HZbFx33XUEBQUxZswYJk6cyJIlS1izZg0333wz8fHx9OzZE4BBgwbRpk0bbrzxRtatW8f333/PQw89xLhx4/D29jb51cnfZS1/g4CSY6Q6QumivU9SxXw8bQy4/Tl+tPbCkxIcH9+I/chul1otXsQpbPkaSvLJ9GrERqMJl7aLxMfTZnaq8+ZWBWrfvn1cd911tGzZkmuuuYb69euzatUqQkNL90y88MILXHbZZQwbNow+ffoQERHB559/XnZ/m83G119/jc1mIz4+nhtuuIGbbrqJxx7T7MROp6QIy8rSvU/f1b2e7k3Dz3IHkcoLC/Ql/KZ32Gg0oY4ji8NvDaNpw3CtjSdSGRtKxyF/UtATsHBVF9c/fAdgMYxyFn+S85KdnU1QUBBZWVkaD1VNclfNJWDh3aQbdUm5fgW9WmreJ6k+369cQ+eFVxFmOcaBiP5E3jYfrG71/VOkeuRkwPOtwHBwUeHzWOrFsmRyX6ddKaIyn9/6F0Bcj2FQsOxFAL7zH0p8C9c+FVacX0J8V75r9xyFhieR6T+R+d+pZkcScQ2bvgDDwQ7PVuwxIri6a0OnLU+VpQIlLqdo2w+EHE8h1/AhvN8dbvOXUZzbDcOGMTd0EgBh62aS/dvHJicScQF/Hr57/3gcFgtc1aWhyYGqjgqUuJwji54D4CuPQQzq0sLkNFJb2KwWrv3nZD7yKl0/0/ubuyne+0e52+pMPRHg8E7YvwYHNr629+TC5qFEufDSLX+nAiUuxbH/DyIOJ1JiWLHEj8XDpl9hqTmBPp70GPMivxid8aaQ4+9eA7mZp2ynM/Wktin3S8Ofcz8lWjpwmCCGd3WfvU+gAiUuJuP70r1P31t6cdmFPUxOI7VR0/AgjGFvstMRSVBxJgffvgZKCk/a5u9LxIi4u1O+NBgGrP/z7LvCeAJ9PLi4jXudLa0CJa7j2F7CUr8BILPdbQR4e5gcSGqrPh2asypuJtmGH6FH/+DgvLtKPzD+VN4SMSLu7JQvDfvXwJGdFFm8WeToytDODdxi7qe/UoESl5G56AVsOPjV0Y5LLk4wO47UctdfOoB3G0zFYVgI3f4J2cteNzuSiGlO+dLwx3sAfGvvQR6+DO8abWK66qECJa4h/xiBmz8EYFPMKCKCfEwOJLWdxWLh5lG38Y7vaAD8ljxEUfLP5oYScQZFx2Fj6STVn5T0oVVEHdo1cL85EVWgxCUc/fUdfIx8tjqi6XPJCLPjiADg7+3BoH8+wXdcgAd2ij66EePoHrNjiZhry1dQmE26NZxVjtYM7xbtltPNqECJ83M4MH57C4Bf6w+jVWSQyYFE/qdRiD+BI2ax0RFDgD2Lo+9cU/oNXKS2SnofgA8LL8RmtTG0k3uOBVSBEqdXuO0H6hXuJ8vwI7b/aLPjiJzigtaNSLrgVQ4ZgdTL2crhD289aVC5SK1xdDfsWoYDC/PtF5LQLoL6Ad5mp6oWKlDi9A7/NBOAhZ4D6NM2xtwwIqcxctAFvBf9GMWGjfq7vyZn8bNmRxKpeUkfAbDKaMd+QhkZ18jkQNVHBUqcmnE4hYiDywFwdB2Dzep+x9HFPVgsFm6/6UZm+d0GgP/yJyja9v1pt9ds5eJ2HA5IKj3Z5+PiPsSG+BMfW9/kUNVHBUqcWsZPr2HFYJmjI4P7XGB2HJEz8vPy4IoxU/mMAVgxKPnkFoxDyeVuq9nKxe3sXgZZqeRa/Pne0Z3r4xq55eDxE1SgxHkVHSdwS+nu4B0x15OfdUjf2MXpNQrxJ2zEy6xxNMfPkUvWnGugMOeU7TRbubidP0oHjy8o7onh4cPVbrZ0y9+pQInTyvn9Y/wcuaQ6Qom7+Bp9YxeX0ad1QzZeMJN0oy7BuTs5+sEtpYc3/kKzlYtbyT9WOn0B8Kn9Ii7rEEmwn5e5maqZCpQ4J8Og4NfSmZ1/CvwH7aLr6Ru7OK3yxjPdNCiOdxv9h0LDg7qpP5C7aLqJCUWq2cb5UFLAdqMh64ymjIxrbHaiaqcCJU6pZM8qQvO2U2B4EnrhGEDf2MV5lbd31GKxMO6Ga3nF704AAlY+Q/Hmr82KKFJ9DAPWzAFgXslFtIoIpEujYFMj1QQVKHFKmYtfAWCh9UIGdm1lchqRMzvd3lF/bw+uHvMAHzIYAPtnt8LB7WZEFKk++9dC+nqK8GS+/UJG9mzs1oPHT1CBEudz/Aihe38AILvdTXh7uNcK3uJ+zrR3NCbEn6gRz5PoaIWP4zjZc4ZDQZYJKUWqye9vA/C1PY5Cr7puO/P436lAidM5vPI9PClmgyOGdu06mx1H5Lz1bd2Ajb1eZr9Rn8C83WR9MPqUQeUiLun4kdLxT8D7JQO5olMD6vh4mhyqZqhAiXMxDBy/zwXgJ9uFHD+4z+RAIlXj5kE9mBP9HwoMT4L2/kTeD4+ZHUnk/K37CEoK2OJoxFqjOTf2dP/B4yeoQIlTKdn7G6H5O8k3vPBsmaAz7sRtWK0W7rnxGl7wHQ+A/6oXKN743zPeR7OVi1MzDPj9HQDetw+kZ2x92kQFmhyq5qhAiVNJX/IGAD9Ze/LPq4fojDtxKwHeHlwzZjJzjcsAcHx+O2RsPu32mvtMnNquZXA4mTx8WGC/gFsuaGJ2ohqlAiXOozCXkN2lp3kfbXkdXh769RT3cWJvkm9xNg2HP8Nye1u8Hfnkzh1eOo6kHJr7TJzan4PHvyi5gHr16jGgdbjJgWqWPqHEaWT9Pg8fI58URwTx/S83O45Ilfrr3qQB7RqwsdeL7HWEEnB8HzkfjAJ7ySn30dxn4rRy0jG2fgPA+/aLGd2rSa1b7F0FSpzG8cTZAKwIHELTsDompxGpWn/fm3RbQnfebvgExw1v6uxfxvHvppmcUKQS1r6HxVHC744W7PVswvBu7r3uXXlUoMQpONI3E5m9nmLDRlD8jWbHEalyf9+bZLVamHTTVczwvRsAv99fpWTdPDMjilSMvaRs5vH3SwYyvFs0gbVk6oK/UoESp5C+9E0AltGFAd3bm5xGpGbU8fFk5C0TeMsYCoCxYDwcWGduKJGz2fYNZO/jiBHAd0YPRvWKMTuRKVSgxHwlhQTu+AyA/bHD8fPyMDmQSM1pFhZA4+HTWWrviKdRSN67IyD3oNmxRE5v5atA6dQFvVs2pEmIv8mBzKECJabL2/AVAfZsDhj16NzvarPjiNS4i9tFsbnXC6Q4IvDPP0Du+yPBXmx2LJFT7VsDexMpNmy8V3Ixt/SuXVMX/JUKlJjuyIp3AfjZdwDtouuZnEbEHHckdGF29JPkGL4EpCeS/+V9ZkcSOdWq0r1PXzp64VOnPjG+hSYHMo8KlJgr7xCRB5cD4Nn5ulqxgrdIeaxWC/+68R887TcRh2HBd91sSla/Y3Yskf/J2oexaQEAb5dcQveAY+zatcvcTCZSgRJTHVz1ER7Y2eBowkUX9DY7joip6vh4csstdzKTEaVXfHcfpK4yN5TICavfwGLYWWFvw9E6Lbiic8MzTvLq7ksRqUCJqUr++AiADfUHExLgbXIaEfPFhgbQ7tpH+dbeAw+jhIL3r4MsLaotJivMxfi9dK6+t+2XMLZfcy7qc+EZJ3l196WIVKCkxp34VpK+aTmRuZsoMazU73m92bFEnEb/1hHsu+g5tjga4VN0pPTMvKLjZseS2izpQyyF2aQ4IkjyiWN41+iz3sXdlyJSgZIad+JbyYFlcwFYSUcu6tLW5FQizuXWAe35IPYpDht18D+8kfzP7gDDMDuW1EYOB0bi6wDMtg9m9AWx+HrZzno3d1+KSAVKalxsbCzNmjal0eGfAdgbfTk+nmf/yyhSm1gsFqZcl8D0Ov+m2LDhu/2/FP/8nNmxpDbavhDLkRSOGf58Z+vHTfExZidyCipQUuOioqLo3sBK/ZIMcgxfml44wuxIIk7J39uDe24ZzdPWMQDYlv6nbAFXkRphGPDrSwB8ZO/PlXEtCPKrfcu2lEcFSkyRvmwOAMs84unevIHbn60hcq6i6/kx4IYHeM9+MVYMij/9J2RuMTuW1BZ7foW9qyg0PHnXcQljervneKZzoQIlNa+4gJDUbwHIaTEMq9Xi9mdriJyP+Kb1YfB0Vtrb4GU/TtZbV5CessnsWFIbLHsWgHn2i2jRIJSIIB+TAzkPFSipcTkbvsbfkUuaUY9ufS8H3P9sDZHzdUOvZvzY/hn2OMIIKsrA+sVtUFJkdixxZ/vXQMoSSgwrb9gv585+zcxO5FRUoKTGHV35HgAr/PrTLDwIcP+zNUQq4kyHsi0WC/dfdQEzgqeSY/gSlrORwi8n6sw8qT7LSk9a+K/jAuK6dCaujb7g/pUKlNSs/GNlS7fYOl1rchgR53K2Q9leHlYevW0Ej3pNwmFY8F7/HvZVs2o4pdQKGZth2zc4DAuz7Fdwd//mZidyOipQUqMOrfkcT0rY5mjIhRf0MTuOiFOpyKHs+gHejLnldp41RgJg+f7fkPxjTUUUN1PeXs+0tDQyv5gCwHeO7nTpEkej+n5mRXRaKlBSo/LWfgbAhuD+WrpF5G8qeii7dWQgHa95iHklF2HFQdHHoyFza82EFLdS3l7PtI3LCUkvnafv/xxDGd9fY5/KowIlNef4ERocKV0Y1a/z1SaHEXFtCe0iOdzvKVY7WuJVkkPBu1dD3iGzY4mLKW+vZ+sj32PF4Cd7J9p160N0Pe19Ko8KlNSYzNWf4YGdzY7G9IqLNzuOiMu7o39rFrR4mlRHKD65e8l//zooKTQ7lriQU/Z6HtuL7/b/AvB/xlDG6cy701KBkhqTn/QpAJvrDSDYz8vkNCKuz2KxMG1EH54NeZxswxffA6sp+mK8zsyTc/fzU1gdxaywt6FFt4tpEOxrdiKnpQIlNcLIzaThsd8BCOh6jclpRNyHj6eNqTdfxcNe/6LEsOK1aR4lP88wO5a4okM7MJI+AuBF41ru7NfU5EDOTQVKakT6qnnYcLDBiOWC7t3MjiPiVkLreHP7mH/ypHEzAB5Ln8DY+LnJqcTVOJY8icWws8jehQ49LyYySHufzkQFSmpE8fr5AGytfzF1fLQQpUhVaxURSO/r72d2yWAA7J/fDntXm5xKXMaB9Vg3lZbuWbbrdOZdBahASbUzsg/QMPsPAOp21+E7kerSv1U4RsITLLJ3wcNRRNF718ARrS8pZ2df/DgA/7X3IqG/xqlWhArUabz66qvExMTg4+NDXFwcq1frm9y5Slv5MVYM/jBa0KtrJ7PjiLi1m3s3ZVWnp9ngiMGr6CgFc4bB8SNmxxJnlroKW/IPlBhWPvQdyU3xMWYncgkqUOX45JNPmDhxIg8//DBr166lY8eOJCQkkJmZaXY0l+TYULpbeGfYxfh5eZicRsS9WSwWRsU14LnAKew36uOTnULB+9dqegMpn2FQ/MMjAMyzX8R1l/TDx9NmbiYXoQJVjueff55bb72Vm2++mTZt2jBr1iz8/Px45513yt2+sLCQ7Ozsky5SynF0L9G563EYFjxaDDI7jkitkLp7F/H1CnjQ8wGyDV980hJJ+7/hpO3fb3Y0cTY7f8Jz30oKDU9+CLmJf3TUgu4VpQL1N0VFRaxZs4aBAweWXWe1Whk4cCArV64s9z7Tp08nKCio7BIdHV1TcZ3e/pXzAFhjtCDQS99qRGpCbGwsbVs0495rBvGQ530UGzaiDv5M8Q/TzI4mzsRhp3DhQwC8bx/IbZf1wWq1mBzKdahA/c2hQ4ew2+2Eh4efdH14eDjp6enl3mfKlClkZWWVXfbu3VsTUV2CY/OXAGwJiKdVc80pIlITTswu3bFFDHfccisPG7cC0HjPZzgS3wTKX0RW3N9J/9//eA/vQ5vJMvz4I2YMvZqFmB3PpWhAShXw9vbG21sL4/6dkZtJw9z1ADTuN+qsC6SKSNVrExXI4Bsm88K7h7nX41Ms390HgRGkHK5LcnIygP5u1iInFg+2leQRsvJRvICX7Vdz9+U9zY7mcrQH6m9CQkKw2WxkZGScdH1GRgYREREmpXJNaYmfY8PBRiOWHh07mh1HpNbq0yKU6KEP82FJPywYlHw6hpZ+WacsIivu78Tiwa0PfYdX4RF2OiKx9biVFuF1zI7mclSg/sbLy4uuXbuyePHisuscDgeLFy8mPl4L4FZG4YbSw3c76/fFV+OfREx1dbdojvabzo/2zng4CglaeCe9W4Zp71MtExUVRe/WkdTZ9B4Ar3jezF2DWpucyjWpQJVj4sSJvPnmm8ydO5ctW7YwduxY8vLyuPnmm82O5joKsml4LBGAgM5XmhxGxH1VZizTnf1b8UvHZ0hyNMWr6BiFc66ALJ2ZV9sc/2YKNqOEpfaO9Lv8Bq0OcY5UoMoxYsQInn32WaZNm0anTp1ISkpi4cKFpwwsl9NLX/MVXpSw04iie3ftuROpLifGtKSknH3GcYvFwtQruzEn5ml2OiLxzkujcM5QTbRZm6QsxS/le0oMK1+G36lpC86DCtRpjB8/nj179lBYWEhiYiJxcXFmR3IpOUlfALAlqA+B+nYjUm1OjGmp6FgmD5uV6Tf0Z0bYdNKNungf3U7hu1dDUV41JxXT2UvI/e99AHzguJjbrx6CxaJpC86VCpRUveICGhxcDoBXuytMDiPi3k5MWVCZsUy+XjaevuUyptV5nGOGP97payj68AawF1djUjFb8YpXCcjazjHDn4Nd76VlhAaOnw8VKKlyh9Z/jx/5pBn16BLf3+w4IlKOID9PHr9tOP/yfoh8wwuv3T9RPP92cDjMjiZV5KTxcUf3YCx5EoCZHjdx++BuJqdzfSpQUqXS0tLYs3QuAOv9exNSx8fkRCJyOuGBPky5bRT/sk2m2LDhuXk+JV9PBMMwO5pUgbLxcTt3kj3/LrwcBaxytKb7lfdo4HgVUIGSKpWSvIOmOaVn39H6MnPDiMhZNQnx5/Yxd/BvxpWuWbl2NvbvH1KJcgMnxse1tG8hcN/PFBoeLGo6hYR2kWZHcwsqUFKlGlgPEkwuR40AOlxwqdlxRKQC2jUIYtioCUx1lC75Yls1E/vSp01OJecrKiqK3l3a4PfrdADesQ7jzmGDTU7lPlSgpEoV7SidgHStT0+i6mmAooir6Blbn4tvuI8n7DcCYPt5Oo5fXzE5lZyvo19Owb/4CNsdDWh0xb+pH6Blx6qKCpRUHcOg/r4fAShsrr1PIq6mb8swuo54iOdLhgNgXfQQxm9vm5xKzlVJyi/U3foxAAsa3selHRubnMi9qEBJlclLTSLEnkm+4UWrC/5hdhwROQeD20UQe9UjzCq5HADLNxMxfp9jaiY5B4U55M27HYBPuZjR112nOZ+qWKUL1KhRo1i2bFl1ZBEXt2/1AgD+8OhIbGSouWFE5JwN7dKQoMuf4J2S0vEylq/vwVgzt1LLxoi5Dn02kaCC/ewzQvC59HHCdEZ0lat0gcrKymLgwIE0b96cJ598kv37tY6SlPLZ+QMAxxpq7icRV3ddXGM8L32K2SUJpVd8dQ+5v7xe4WVjxDx5SV8QsmMeDsPC/MbTuKx7K7MjuaVKF6gFCxawf/9+xo4dyyeffEJMTAyXXHIJn332GcXFmsW2trJnZxBdsAWA8O6afVzEHdzYqwkelz7NnJJBWDBotuUV4n13VXjZGKl5RnYaxpd3A/CB51Xccv31OnRXTc5pDFRoaCgTJ05k3bp1JCYm0qxZM2688UaioqK499572bFjR1XnFCeXmrgAKwabaULH1q3NjiMiVeTGXk2wXvoM75ZcjBWDFlteIvLAIrNjSXkcDtLfHUOAI5uNjiZ0uOEpTZhZjc5rEPmBAwdYtGgRixYtwmazcemll7JhwwbatGnDCy+8UFUZxQUUbv4WgNT6ffCw6dwEEXdyU68mcOkM5pZcjAUDy1d341j5utmx5G8yf3qFyEMryDe82NjzWTrGhJkdya1V+pOuuLiY+fPnc9lll9G4cWM+/fRTJkyYQFpaGnPnzuXHH39k3rx5PPbYY9WRV5xRSSGNjq4CwK+9Zh8XcUc39WqCdciz/F/JEACs3z+AY9nzFbqvBp9Xv4K9SQQt/w8AH9S5hWsGDzA5kfvzqOwdIiMjcTgcXHfddaxevZpOnTqdsk2/fv0IDg6ugnjiCtLX/0gEBWQYwXSKu8jsOCJyDtLS0khJSSE2NpaoqKhyt7kxPobPPJ/m5QXe3O3xOdafHsVefBxb/wfhDONsTqzJBpz2seXcGcePkPvutYRQxFJHJyI6XorVqnFP1a3SBeqFF15g+PDh+Pic/pTI4OBgdu3adV7BxHUcXvslEcAm/57099UstyKuqKIl5+pu0Xzr/SQz5nlzn+0jbL/MoKQwB4/B08Fa/kGNE4PONfj83J224Drs7H3rehoVH2CPEcaejvdxcdvm5gWtRSpdoG688cbqyCEuKm3/furvL12+xd5cayyJuKrKlJxL20fi6/kYj3/gzVTbHDxWz6I49yCeV80iLfPQKR/0UVFR2vN0nk5XcHd/9hAxR1aSb3ixoddMRiUkmBWx1ql0gRL5q5S1S+htHKTQ8KRV/OVmxxGRc1TZktOvVRjeo6fywLsBPM7reG6eT2HeYfY0GUfy7rSyxzxXFTmk6K7Ke+3lFdwDifOJ2fwaAF82eoBrBg2q+bC1mAqUnBffIxsA+MPWnp4RISanEZGa1KtpCIG3/YuJbwfzlH0G/nuW0j47E2v7B4k+z8N1tXncVHmv/e8FN2f/Fup8Nx6Ab3yv4MpR92q+pxqm883lvASnLwcgq9FAk5OIiBnaNQjivnHjmOz3Hw4bdQg4upmOSQ8S5Z1/Xo8bGxtLs2bNauW4qbO99sKsDPJmX0UAx/nD0oYet7+Gl4c+zmuaxTAMw+wQ7iY7O5ugoCCysrIIDAw0O061Kc45iPW55tgwWDf8Vzq2bWd2JBGpQpU5jHY4t5CH3l7Ag0f+TUPLIYq8gvC6/iOIuaCG0tYO9oJc9r4wgJjCrew3Qske+R2tW2jQeFWpzOe3Kqucs92rFmDDYCsxtGvd1uw4IlLFThxKOtPadyfmeCrMPsxzY4fxbPRrJDma4lWUhX3uPzD++KAGE7s3w17MjleHE1O4laNGAAf+8YHKk4lUoOScFW4tXTx4X/0LsGnOERG3U5HDaH8tWX5eHjx3yyC+7foWX9vjsBklWP57JyU/PAIOR80Fd0eGwcb/u4VWOSsoMDzZ1PcNunWNMztVraYCJefGYSf6yEoAfNpo+gIRdxQVFUXv3r3PePju7yXLZrXw7yu6kD3kDV61DwXAY8ULFH54PRRk10Rst/THe/fTPvNL7IaFlV2fpXe/IWZHqvVUoOScHNyeSJCRQ47hS7seWjJApLY6Xcm6vmcMnUc/x4OMp9DwwDv5O/Jfuwgyt5qU1HWt/WAqnVP+D4Cfmz9Av3+MNjeQACpQco4OrPkagI0+nQmu429yGhFxRr2ahvDP8f9mUsBTpBn18M1Oofj/+mJs/MLsaK7BMPhtzv102fEyAEuibqPfyPtNDiUnqEDJOfFLXQrA8eh+5gYREafWJMSfp+++mZnN3uFXe1s87flYPhtN0XcPgr3Y7HhOy3A4WPX2RLrvngXAz43upO+tz2iuJyeiAiWVVpRzhCYFmwGI6qbj8CJyZv7eHjxxQ192JrzLG/bSFQu8EmdyfNZAOLwT+N/ZfGlpaWZGdQqGw8Gq/xtHz33vALA89l4uumX6SeVJ75f5VKCk0nb99g02i8FOGtKyRRuz44iIC7BYLNzUuxndbn2FBzz+xTHDH7+DSRS91hvHHx+QsnPnWadMqA0KCwtY9coo4jM+BGBVywfofdMjp2xXkSkmpHppKRepsBOT6vmsLx3/tLdeL5pq+gIRqYQujerS5N77eHpeF67Y9Sg92QL/vZM2jQZja3IzjWvhzOMnHDqYQdqb1xBflITDsLC2/UP0vHpyudtWZvFnqR7aAyUVlpKSQvKOHTQ+lgiAVystXCkilVfX34snRw9m7+Uf86LjWkoMK/VSF9Ip8S4is/84r8euyKGt6jr8dT6Pu33TH+S91pcORUkcx5vNF71Ot9OUJ6jYFBNSvVSgpMJiY2NpVNdGKEfJN7xoHZdgdiQRcVEWi4Xh3WO48p7n+Xe9Z9nlCMe3IBPLx9eT98GNkHvwnB63Ioe2quvw17k+7qofPyd83hAaG2lkWEI5MuJr2vW/rkqzSdVTgZIKi4qKol7BLgA2eXekbpD7rvMnIjWjcX1/nhx/Mz9c9DlvOi6nxLDiv+NLCl7sSsnaD6GSy7VWZPb06lqouLKPm3c8n8WvTaDbL2MIsuSxw6sNvuN+pmHrHlWaS6qHFhOuBu68mPDWp/vSKv8PlsROpt9NU82OIyJuZM/hPN785HOuT59BG+seALJCuhA09Flo2NXkdFVr4/rfsS24g9aOHQCsD7mUtre9g83L1+RktZsWE5ZqUZyfTdPj6wEI73KZyWlExN00ru/P42NvYPsV/+Vly0iOG94EHVoLb/Un68NbINv1T9kvKrbzw9wniZ1/Ka0dO8jGn20XvkSH8R+pPLkY7YGqBu66B2rbz/NoueRW9hJOg6lbsdrUv0WkehzNK2LOwhU0XvcsV1l/AaDI4kNR9zsI6HsP+NUzOWHFnDh7uUmTJuxLTcbzx4foYi/9IrrdrwuRo+dQJ6yxySnlBO2BkmqRt3khALuD41WeRKRa1fX34t5hfely9yc8Hf0avzta4GUUELD6RQqfbcOxL6ec80DzmpSSksIf69axYfZddFt4BV3s6ynEky0dHqDF5MUqTy5Mn4JSYZEHfwXAs+XFJicRkdoiJsSf+8eMxHLLQp4NfohNjsZ4O/IJXvsaRc+15dBn95bNZl4eM2fs3p2WzpG18xmd+TiDSxZjsxhsrjeAojsSaX3VFLDqI9iV6RBeNXDHQ3iH926j/ts9KDZsZN+zg/r16psdSURqod92HebXbz+gb8ZsOln/N11Aev04gi68Hd/2/wCbZ9n1y5cvJzk5mWbNmtG7d+9qz2cYBuvWr+Pg4pfpmfUtdSz5AOzxboHPkKcJ79C/2jPIuavM57dmIpcKSf39O+oD2zxb0k7lSURMkJaWRuH+FK658mqOGaN49buPaZP6IRdZ1hFxOBEWJJL9VT2ym/2DsB5X49WkV43N2H3wWA4bln+F1/r3iS9cgc1igAXSPBtREHc3sf3HaI+Tm1GBkorZ9TMAR8N7mRxERGqrExNVAvTu3Zs2/7ydgzmj+XjFahxr5jKocBFh9iMEbpsD2+aQYw2iIKo/7br8g+CgVlWe58Chw2z9ZQG27V/T6fgq+luOl95ggR0B3fHvew9RXYaoOLkpFSg5K8NhJyb7dwAC22j8k4iYo7y9SaF1vLk+4UKMQb1ZuzuThUvnUz/1ey5w/EawI4s6+76AfV8AkOkRxdF6nbA16k5gdHuCo5riVbcheHid8XntdgdHjhwmfc9WjuxIxHIgidCczTR17KafxV66kQWOWOqSFjWQ6IvvonlMx+p5E8RpaAxUNXC3MVB7Nq2i8acJ5Bo+eEzZg4+Pj9mRREROy+Ew2LTvMNtWf4938re0Ov4Hza37y98WC0csdcn2CKHE4oHDYsOOBw6LFe+SHAJKjlLPOIaPpbjc+2daw0hvMIjwuOGEt+mjvU0uTmOgpEplJC2kMbDdtyNdVJ5ExMlZrRbaNwqhfaORwEhyCor5bfc+Dm5ZAftWU+/YBsJK0ojiED6WYkKMI4QUHzn9A1pK/8jGn33ezSgM64Rfk+40bNuLsLBYwiyWGnld4lxUoOSsfPeWTmKX3/BCk5OIiFReHR9PurdqAq2aACOB0rPljuYVsSdjPznpKRRlpWNxlIBhx+IoxuIowTsgmIB6kQSHNmDLzr3s3LO/xs7mE+enAiVnVFSQT7P89WCBsI4JZscREakSFouFegHe1AuIhaZnP0OvqUcgFk/faj+bT1yHCpScUfLan2hjKeIQwTRt083sOCIipoiKiiIqKsrsGOJENNpNzih78yIAUgK7a/kWEXFL5zpbeVXNcm7mbOly7rQHSs6obvqK0v+IucjcICLiNk4ssBsbG3tee3Wq6nH+Or9UZR7nXO9XXY8jNUsFSk4r6+ghmhVvBws06n6J2XFExE04W/E419nKq2qW85qaLV2qlgqUnNbO1QvpYjFItTagUXQzs+OIiJtwtuJxruObqmpclMZXuSYVKDmtoh2LAThQL45GJmcREfeh4iHuwK1GBcfExGCxWE66PPXUUydts379ei688EJ8fHyIjo7mmWeeOeVxPv30U1q1aoWPjw/t27fn22+/ramX4FSiDicC4N1ygMlJREREnItbFSiAxx57jAMHDpRd7rrrrrLbsrOzGTRoEI0bN2bNmjXMmDGDRx55hDfeeKNsmxUrVnDdddcxZswY/vjjD4YOHcrQoUPZuHGjGS/HNGl7kmlk7MduWGjafbDZcURERJyK2x3Cq1OnDhEREeXe9sEHH1BUVMQ777yDl5cXbdu2JSkpieeff57bbrsNgJdeeonBgwdz3333AfD444+zaNEiZs6cyaxZs2rsdZgtdc13RAE7vVrQIjjE7DgiIiJOxe32QD311FPUr1+fzp07M2PGDEpKSspuW7lyJX369MHL638rbyckJLBt2zaOHj1ats3AgQNPesyEhARWrlx52ucsLCwkOzv7pIurs+wuXb7laHi8yUlEREScj1vtgbr77rvp0qUL9erVY8WKFUyZMoUDBw7w/PPPA5Cenk6TJk1Ouk94eHjZbXXr1iU9Pb3sur9uk56eftrnnT59Oo8++mgVvxrzGIZBdPZaAOq07GdyGhER91FVc1eJ+Zx+D9QDDzxwysDwv1+2bt0KwMSJE+nbty8dOnTgjjvu4LnnnuOVV16hsLCwWjNOmTKFrKysssvevXur9fmq256dm4niIMWGjdgu/c2OIyLiNk7MXZWSkmJ2FDlPTr8HatKkSYwePfqM25xuDpC4uDhKSkrYvXs3LVu2JCIigoyMjJO2OfHziXFTp9vmdOOqALy9vfH29j7bS3EZaUmLiAFSvFvS0j/Q7DgiIm5Dk2a6D6cvUKGhoYSGhp7TfZOSkrBarYSFhQEQHx/Pgw8+SHFxMZ6engAsWrSIli1bUrdu3bJtFi9ezIQJE8oeZ9GiRcTH156xQNY9vwKQEx5nchIREfeiuavch9MfwquolStX8uKLL7Ju3TpSUlL44IMPuPfee7nhhhvKytH111+Pl5cXY8aMYdOmTXzyySe89NJLTJw4sexx7rnnHhYuXMhzzz3H1q1beeSRR/j9998ZP368WS+tRjnsDhrnlI5/Cmyjw3ciIiLlcZsC5e3tzccff8xFF11E27ZteeKJJ7j33ntPmuMpKCiIH374gV27dtG1a1cmTZrEtGnTyqYwAOjVqxcffvghb7zxBh07duSzzz5jwYIFtGvXzoyXVeNSkjcRySGKDRu+4a21QriI1EppaWn690/OyOkP4VVUly5dWLVq1Vm369ChA7/88ssZtxk+fDjDhw+vqmguJS3pR5oBu3xakZmWoRXCRaRWqqqFisV9uU2BkqrhsffP8U8RPTXYUURqLf37J2ejAiVl7HYHsbml45/qtumvwY4iUmvp3z85G7cZAyXnb8e2DURwmGJsNO6kCTRFRERORwVKgNIBkxt/+hiAXd6tsXn7m5xIRETEealACVA6YDL48B8A5EX1MjmNiIiIc9MYKAGgUaMYvBzbwFI6/klEREROT3ugBIDsrINEWI5QhAeNOvQxO46IiIhTU4ESADLXLwJgj09rrBr/JCIickYqUAKA974VABxvoPFPIiIiZ6MCJRQV22l2PAmAkHYa/yQiInI2KlDCtm0bCLccpRgPotpq/JOIiMjZqEAJmRuXAJDq0wKLl5/JaURERJyfCpTgsa90EebjET1MTiIiIuIaVKBqObvDoFHOOgACW+rwnYiISEWoQNVy25N30sRyAAcWGnbQAHIREZGKUIGq5fZv+Kn0T88YbP51TU4jIiLiGrSUSy2VlpZGSkoK9pTlAGSHdjM5kYiIiOvQHqhaKiUlhe07kmmYux4Av+a9TU4kIiLiOlSgaqnY2FgCQ8NpxW4AGnQcYG4gERERF6ICVUtFRUURzDFsFoNMWzhe9aLNjiQiIuIyVKBqsZJdvwJwuF5Xk5OIiIi4FhWoWsowDEKPrAXAq6nGP4mIiFSGClQtlXrwKG0d2wFo2FHzP4mIiFSGClQtlZy0HB9LMdmWQLwjWpkdR0RExKWoQNVSBcml8z9lBHcGi8XkNCIiIq5FBaqWCj60BgBrTC+Tk4iIiLgeFahaKO1oHm3tWwCI1Pp3IiIilaYCVQttXb+aYEse+fjg16iL2XFERERcjgpULZS7YxkAB+q0B5uWQxQREaksFahaKCCjdP4ne8MeJicRERFxTSpQtUx2QTFNizYDENqmj8lpREREXJMKVC2zcdsOGlsycWAhuHm82XFERERckgpULXNoc+n4p3TvJuATZHIaERER16QCVctY9/8GQF6Yzr4TERE5VypQtUix3UFUznoAAppdYHIaERER16UCVYts3XeQtuwCIFwDyEVERM6ZClQtsnvjKrwtxWRbg7CGNDU7joiIiMtSgapFinatBOBw3U5aQFhEROQ8qEDVEoZhUPfwHwDYGmkCTRERkfOhAlVL7DtynDaObQCEt73I5DQiIiKuTQWqlti8dRMRlqOUYMO7UVez44iIiLg0FahaImv7cgAy/FqAl5/JaURERFybClQt4X1gDQDFUd1NTiIiIuL6VKBqgeyCYmILNgJQt6Um0BQRETlfKlC1wLqUNFpbUgEIatHb5DQiIiKuTwWqFjiw6Vc8LA6OeoRCUEOz44iIiLg8FahawNibCEB2iBYQFhERqQoqUG6uxO4gPKt0AWGf2HiT04iIiLgHFSg3ty09m45sByC09YUmpxEREXEPKlBuLnnreupacinCE2tkB7PjiIiIuAUVKDeXu3MVAIfqtAIPL5PTiIiIuAcVKDfndzAJAHukBpCLiIhUFRUoN3Y0r4gmhVsAqNeil8lpRERE3IfLFKgnnniCXr164efnR3BwcLnbpKamMmTIEPz8/AgLC+O+++6jpKTkpG2WLl1Kly5d8Pb2plmzZsyZM+eUx3n11VeJiYnBx8eHuLg4Vq9eXQ2vqPqt351BG8seAPxj40xOIyIi4j5cpkAVFRUxfPhwxo4dW+7tdrudIUOGUFRUxIoVK5g7dy5z5sxh2rRpZdvs2rWLIUOG0K9fP5KSkpgwYQL//Oc/+f7778u2+eSTT5g4cSIPP/wwa9eupWPHjiQkJJCZmVntr7GqpW1NxMtiJ9cWBHVjzI4jIiLiNiyGYRhmh6iMOXPmMGHCBI4dO3bS9d999x2XXXYZaWlphIeHAzBr1izuv/9+Dh48iJeXF/fffz/ffPMNGzduLLvftddey7Fjx1i4cCEAcXFxdO/enZkzZwLgcDiIjo7mrrvu4oEHHqhQxuzsbIKCgsjKyiIwMLAKXvW5ee/FB7jx2OvsC+1Dw3FfmZZDRETEFVTm89tl9kCdzcqVK2nfvn1ZeQJISEggOzubTZs2lW0zcODAk+6XkJDAypUrgdK9XGvWrDlpG6vVysCBA8u2KU9hYSHZ2dknXczmcBjUO7oBAK/G3U1OIyIi4l7cpkClp6efVJ6Asp/T09PPuE12djb5+fkcOnQIu91e7jYnHqM806dPJygoqOwSHR1dFS/pvCQfzKWtsQOA+hpALiIiUqVMLVAPPPAAFovljJetW7eaGbFCpkyZQlZWVtll7969ZkdiU3IKMdYMAGzR3UxOIyIi4l48zHzySZMmMXr06DNuExsbW6HHioiIOOVsuYyMjLLbTvx54rq/bhMYGIivry82mw2bzVbuNiceozze3t54e3tXKGdNObq9dALNwz6Nqe8bbG4YERERN2NqgQoNDSU0NLRKHis+Pp4nnniCzMxMwsLCAFi0aBGBgYG0adOmbJtvv/32pPstWrSI+PjSRXa9vLzo2rUrixcvZujQoUDpIPLFixczfvz4KslZUzzT1wJQGN7Z5CQiIiLux2XGQKWmppKUlERqaip2u52kpCSSkpLIzc0FYNCgQbRp04Ybb7yRdevW8f333/PQQw8xbty4sr1Dd9xxBykpKfzrX/9i69atvPbaa8ybN49777237HkmTpzIm2++ydy5c9myZQtjx44lLy+Pm2++2ZTXfS6yC4pplL8ZgMBmPU1OIyIi4n5M3QNVGdOmTWPu3LllP3fuXLpnZcmSJfTt2xebzcbXX3/N2LFjiY+Px9/fn1GjRvHYY4+V3adJkyZ888033Hvvvbz00ks0bNiQt956i4SEhLJtRowYwcGDB5k2bRrp6el06tSJhQsXnjKw3JmtSz1KR8tOAAI0gaaIiEiVc7l5oFyB2fNAvfvVj9y0ZhjFFk88H0zTIsIiIiIVUCvngZL/KdidCMDRwNbg4UVaWhrLly8nLS3N5GQiIiLuwWUO4UnFGIZBncPrACio3w6AlJQUkpOTAYiKijItm4iIiLtQgXIzuw7l0caxA6yQ69sA+N9UEBWdEkJERETOTAXKzazblcEQyx4A6rcfBJTuddKeJxERkaqjMVBu5uCO3/Cy2MnzqEt4S62BJyIiUh1UoNyMJW0NALkhHcFiMTmNiIiIe1KBciOFJXbCcjYB4BOjvU8iIiLVRQXKjWw5kEM7UgAIjO1hchoRERH3pQLlRjbv2kdT6wEALA26mJxGRETEfalAuZGjyb8BkO0dCf4hJqcRERFxXypQbsQj4w8ACsI6mJxERETEvalAuYnsgmIaHN8GQEATDSAXERGpTipQbmLDvizaW0oHkPs17mZyGhEREfemAuUmtqTsobE1s/SHqE6mZhEREXF3WsrFTeTuKh1AnuUbTZBvXZPTiIiYy263U1xcbHYMcTKenp7YbLYqeSwVKDfhnbkOgJKITuYGERExkWEYpKenc+zYMbOjiJMKDg4mIiICy3mu1qEC5eLS0tL4fVMyTYp2gA3qxGoAuYjUXifKU1hYGH5+fuf9ISnuwzAMjh8/TmZm6XCXyMjI83o8FSgXl5KSwq9b93G3tXQAuVe0BpCLSO1kt9vLylP9+vXNjiNOyNfXF4DMzEzCwsLO63CeBpG7uNjYWGxeXjSwHMaBBSI1B5SI1E4nxjz5+fmZnESc2Ynfj/MdI6cC5eKioqKoV5QGQE5AE/CuY3IiERFz6bCdnElV/X6oQLk4h8PA9/B6AIzIzianERERqR1UoFzcrsN5tLQnA1AntofJaURE5Fz07duXCRMmmB0DgAULFtCsWTNsNhsTJkxgzpw5BAcHmx3L6ahAubh1qUfp+OcAclvDLianERERZ7R06VIsFkuFpne4/fbbufrqq9m7dy+PP/44I0aMYPv27WW3P/LII3Tq1Kn6wroInYXn4nbvSuYqSxYObFjD25kdR0REXFhubi6ZmZkkJCQQFRVVdv2Js9fkf7QHysUVpv4OQE5Qc/DSmSciIn9lGAbHi0pMuRiGUamsJSUljB8/nqCgIEJCQpg6depJj1FYWMjkyZNp0KAB/v7+xMXFsXTp0rLb9+zZw+WXX07dunXx9/enbdu2fPvtt+zevZt+/foBULduXSwWC6NHjz7l+ZcuXUqdOqUnIvXv3x+LxcLSpUtPOoQ3Z84cHn30UdatW4fFYsFisTBnzpxKvU53oT1QLqyoxEHQsU1gBWsDDSAXEfm7/GI7baZ9b8pzb34sAT+vin/Mzp07lzFjxrB69Wp+//13brvtNho1asStt94KwPjx49m8eTMff/wxUVFRfPHFFwwePJgNGzbQvHlzxo0bR1FREcuWLcPf35/NmzcTEBBAdHQ08+fPZ9iwYWzbto3AwMBy9yj16tWLbdu20bJlS+bPn0+vXr2oV68eu3fvLttmxIgRbNy4kYULF/Ljjz8CEBQUdH5vlItSgXJh2zNyaGeUDiAPaKIZyEVEXFl0dDQvvPACFouFli1bsmHDBl544QVuvfVWUlNTmT17NqmpqWWH1iZPnszChQuZPXs2Tz75JKmpqQwbNoz27dsDpfMEnlCvXj0AwsLCTjsg3MvLi7CwsLLtIyIiTtnG19eXgIAAPDw8yr29NlGBcmEb9x0jwboLAEuU9kCJiPydr6eNzY8lmPbcldGzZ8+T5iiKj4/nueeew263s2HDBux2Oy1atDjpPoWFhWWzrt99992MHTuWH374gYEDBzJs2DA6dNDkytVFBcqFpe7eTl1LLnaLB7bwtmbHERFxOhaLpVKH0ZxVbm4uNpuNNWvWnLL8SEBAAAD//Oc/SUhI4JtvvuGHH35g+vTpPPfcc9x1111mRHZ7GkTuwkr2/QFAbmBz8PA2OY2IiJyPxMTEk35etWoVzZs3x2az0blzZ+x2O5mZmTRr1uyky18PpUVHR3PHHXfw+eefM2nSJN58802g9PAclK4XeL68vLyq5HFcnQqUiyodQL4ZAFuDTuaGERGR85aamsrEiRPZtm0bH330Ea+88gr33HMPAC1atGDkyJHcdNNNfP755+zatYvVq1czffp0vvnmGwAmTJjA999/z65du1i7di1LliyhdevWADRu3BiLxcLXX3/NwYMHyc3NPeecMTEx7Nq1i6SkJA4dOkRhYeH5v3gXpALlorZn5NCa0vFP/o01gaaIiKu76aabyM/Pp0ePHowbN4577rmH2267rez22bNnc9NNNzFp0iRatmzJ0KFD+e2332jUqBFQundp3LhxtG7dmsGDB9OiRQtee+01ABo0aMCjjz7KAw88QHh4OOPHjz/nnMOGDWPw4MH069eP0NBQPvroo/N74S7KYlR2ogo5q+zsbIKCgsjKyiIwMLBanuOj1an0/+ZCwi3HYMwiiNYyLiJSuxUUFLBr1y6aNGmCj4+P2XHESZ3p96Qyn9/aA+Widu3aSbjlGA6soAHkIiIiNUoFykUV7UsCIK9OLHj5mxtGRESkllGBckGFJfbSGcgBa1RHk9OIiIjUPipQLmh7ei6t2Q2AX2NNoCkiIlLTVKBc0Pr9x2h3YgbyyE7mhhEREamFVKBcUMqeVBpaDpX+ENHe3DAiIiK1kAqUCyrYmwRAnn8j8A02NYuIiEhtpALlYv46gNwSqQHkIiIiZlCBcjHb0nNo9ecAcl/NQC4iImIKFSgXs35fFm0tuwHtgRIREfPMmTOH4OBgs2MwevRohg4dWuPPqwLlYnakptHUeqD0BxUoERFxUrt378ZisZCUlOSUj3e+VKBcTP6fA8jzfSPAP8TcMCIiYpqioiKzI1QJV30dKlAupKDYTp2jm0t/0N4nEZGzMwwoyjPnYhgVjpmTk8PIkSPx9/cnMjKSF154gb59+zJhwoSybWJiYnj88ce56aabCAwM5LbbbgNg/vz5tG3bFm9vb2JiYnjuuedOemyLxcKCBQtOui44OJg5c+YA/9uz8/nnn9OvXz/8/Pzo2LEjK1euPOk+c+bMoVGjRvj5+XHllVdy+PDhM76mJk2aANC5c2csFgt9+/YF/nfI7YknniAqKoqWLVtWKOfpHu+EZ599lsjISOrXr8+4ceMoLi4+Y77z5VGtjy5Valt6Dm0spRNoFgc3w9fkPCIiTq/4ODwZZc5z/zutwmuVTpw4kV9//ZUvv/yS8PBwpk2bxtq1a+nUqdNJ2z377LNMmzaNhx9+GIA1a9ZwzTXX8MgjjzBixAhWrFjBnXfeSf369Rk9enSl4j744IM8++yzNG/enAcffJDrrruO5ORkPDw8SExMZMyYMUyfPp2hQ4eycOHCsgyns3r1anr06MGPP/5I27Zt8fLyKrtt8eLFBAYGsmjRogrnO9PjLVmyhMjISJYsWUJycjIjRoygU6dO3HrrrZV6DypDBcqFrN+fRfc/B5Dvs9enjblxRESkCuTk5DB37lw+/PBDBgwYAMDs2bOJijq1+PXv359JkyaV/Txy5EgGDBjA1KlTAWjRogWbN29mxowZlS5QkydPZsiQIQA8+uijtG3bluTkZFq1asVLL73E4MGD+de//lX2PCtWrGDhwoWnfbzQ0FAA6tevT0RExEm3+fv789Zbb51Ugs7mTI9Xt25dZs6cic1mo1WrVgwZMoTFixerQEmp/Lxsmlv2AVCvXX+T04iIuABPv9I9QWY9dwWkpKRQXFxMjx49yq4LCgoqO7T1V926dTvp5y1btnDFFVecdN0FF1zAiy++iN1ux2azVThuhw4dyv47MjISgMzMTFq1asWWLVu48sorT9o+Pj7+jAXqTNq3b1+p8nQ2bdu2Pem1RkZGsmHDhip7/PKoQLmQ21oWwi8Ghl8oEc06mR1HRMT5WSwVPozmCvz9K/9aLBYLxt/GY5U3PsjT0/Ok+wA4HI5KP19FlPc6KpqzPH/NfuKxqiv7CRpE7koOrAPAEtmh9B8FERFxebGxsXh6evLbb7+VXZeVlcX27dvPet/WrVvz66+/nnTdr7/+SosWLcr2yISGhnLgwIGy23fs2MHx48crlbF169YkJiaedN2qVavOeJ8Te5jsdnuFnuNsOSv7eNVNe6BcScEx8PDVGXgiIm6kTp06jBo1ivvuu4969eoRFhbGww8/jNVqLdsTdDqTJk2ie/fuPP7444wYMYKVK1cyc+ZMXnvttbJt+vfvz8yZM4mPj8dut3P//fefssfmbO6++24uuOACnn32Wa644gq+//77sx6+CwsLw9fXl4ULF9KwYUN8fHwICgo67fZny1nZx6tu2gPlSi6cBP/eX/qniIi4jeeff574+Hguu+wyBg4cyAUXXEDr1q3x8fE54/26dOnCvHnz+Pjjj2nXrh3Tpk3jscceO2kA+XPPPUd0dDQXXngh119/PZMnT8bPr2Ljs07o2bMnb775Ji+99BIdO3bkhx9+4KGHHjrjfTw8PHj55Zf5v//7P6Kiok4Zq/V3Z8tZ2cerdoaL+M9//mPEx8cbvr6+RlBQULnbAKdcPvroo5O2WbJkidG5c2fDy8vLaNq0qTF79uxTHmfmzJlG48aNDW9vb6NHjx5GYmJipbJmZWUZgJGVlVWp+4mIyLnLz883Nm/ebOTn55sd5bzl5uYaQUFBxltvvWV2FLdzpt+Tynx+u8weqKKiIoYPH87YsWPPuN3s2bM5cOBA2eWv6+Ps2rWLIUOG0K9fP5KSkpgwYQL//Oc/+f7778u2+eSTT5g4cSIPP/wwa9eupWPHjiQkJJCZmVldL01ERGq5P/74g48++oidO3eydu1aRo4cCWD+XhY5LZcZA/Xoo48ClM1IejrBwcGnzA9xwqxZs2jSpEnZLK2tW7dm+fLlvPDCCyQkJAClu1FvvfVWbr755rL7fPPNN7zzzjs88MAD5T5uYWEhhYWFZT9nZ2dX6rWJiIg8++yzbNu2DS8vL7p27covv/xCSIiW7HJWLrMHqqLGjRtHSEgIPXr04J133jnplMiVK1cycODAk7ZPSEgom66+qKiINWvWnLSN1Wpl4MCBp0xp/1fTp08nKCio7BIdHV3Fr0pERNxZ586dWbNmDbm5uRw5coRFixbRvn17s2PJGbhVgXrssceYN28eixYtYtiwYdx555288sorZbenp6cTHh5+0n3Cw8PJzs4mPz+fQ4cOYbfby90mPT39tM87ZcoUsrKyyi579+6t2hcmIiIiTsXUQ3gPPPAATz/99Bm32bJlC61atarQ452Yyh5K23xeXh4zZszg7rvvPq+cZ+Pt7Y23t3e1PoeIiFSMUYlFfKX2qarfD1ML1KRJk866Vk9sbOw5P35cXByPP/44hYWFeHt7ExERQUZGxknbZGRkEBgYiK+vLzabDZvNVu42pxtXJSIizuHEnEHHjx/H11fLrUv5TkzOWdm5sP7O1AIVGhpatjhgdUhKSqJu3bple4fi4+P59ttvT9pm0aJFxMfHA5QN3Fu8eHHZ2XsOh4PFixczfvz4asspIiLnz2azERwcXHbWtJ+f31knopTawzAMjh8/TmZmJsHBwZVaJ7A8LnMWXmpqKkeOHCE1NRW73U5SUhIAzZo1IyAggK+++oqMjAx69uyJj48PixYt4sknn2Ty5Mllj3HHHXcwc+ZM/vWvf3HLLbfw008/MW/ePL755puybSZOnMioUaPo1q0bPXr04MUXXyQvL6/srDwREXFeJ44WaOoZOZ0zna1fGRbDRQ4Wjx49mrlz555y/ZIlS+jbty8LFy5kypQpJCcnYxgGzZo1Y+zYsdx6661Yrf8bK7906VLuvfdeNm/eTMOGDZk6deophxFnzpzJjBkzSE9Pp1OnTrz88svExcVVOGt2djZBQUFkZWURGBh4zq9ZRETOjd1ur/BCtFJ7eHp6nnHPU2U+v12mQLkSFSgRERHXU5nPb7eaxkBERESkJqhAiYiIiFSSCpSIiIhIJbnMWXiu5MSwMq2JJyIi4jpOfG5XZHi4ClQ1yMnJAdCaeCIiIi4oJyeHoKCgM26js/CqgcPhIC0tjTp16lT5JG7Z2dlER0ezd+9eneF3FnqvKk7vVcXpvao4vVcVp/eq4qrzvTIMg5ycHKKiok6aAqk82gNVDaxWKw0bNqzW5wgMDNRfsgrSe1Vxeq8qTu9Vxem9qji9VxVXXe/V2fY8naBB5CIiIiKVpAIlIiIiUkkqUC7G29ubhx9+uGyBZDk9vVcVp/eq4vReVZzeq4rTe1VxzvJeaRC5iIiISCVpD5SIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSLeOKJJ+jVqxd+fn4EBweXu43FYjnl8vHHH9dsUCdRkfcrNTWVIUOG4OfnR1hYGPfddx8lJSU1G9QJxcTEnPJ79NRTT5kdy2m8+uqrxMTE4OPjQ1xcHKtXrzY7ktN55JFHTvkdatWqldmxnMKyZcu4/PLLiYqKwmKxsGDBgpNuNwyDadOmERkZia+vLwMHDmTHjh3mhDXZ2d6r0aNHn/J7Nnjw4BrLpwLlIoqKihg+fDhjx44943azZ8/mwIEDZZehQ4fWTEAnc7b3y263M2TIEIqKilixYgVz585lzpw5TJs2rYaTOqfHHnvspN+ju+66y+xITuGTTz5h4sSJPPzww6xdu5aOHTuSkJBAZmam2dGcTtu2bU/6HVq+fLnZkZxCXl4eHTt25NVXXy339meeeYaXX36ZWbNmkZiYiL+/PwkJCRQUFNRwUvOd7b0CGDx48Em/Zx999FHNBTTEpcyePdsICgoq9zbA+OKLL2o0j7M73fv17bffGlar1UhPTy+77vXXXzcCAwONwsLCGkzofBo3bmy88MILZsdwSj169DDGjRtX9rPdbjeioqKM6dOnm5jK+Tz88MNGx44dzY7h9P7+b7bD4TAiIiKMGTNmlF137Ngxw9vb2/joo49MSOg8yvt8GzVqlHHFFVeYkscwDEN7oNzMuHHjCAkJoUePHrzzzjsYmuarXCtXrqR9+/aEh4eXXZeQkEB2djabNm0yMZlzeOqpp6hfvz6dO3dmxowZOrRJ6V7NNWvWMHDgwLLrrFYrAwcOZOXKlSYmc047duwgKiqK2NhYRo4cSWpqqtmRnN6uXbtIT08/6XcsKCiIuLg4/Y6dxtKlSwkLC6Nly5aMHTuWw4cP19hzazFhN/LYY4/Rv39//Pz8+OGHH7jzzjvJzc3l7rvvNjua00lPTz+pPAFlP6enp5sRyWncfffddOnShXr16rFixQqmTJnCgQMHeP75582OZqpDhw5ht9vL/b3ZunWrSamcU1xcHHPmzKFly5YcOHCARx99lAsvvJCNGzdSp04ds+M5rRP/9pT3O1bb/10qz+DBg7nqqqto0qQJO3fu5N///jeXXHIJK1euxGazVfvzq0CZ6IEHHuDpp58+4zZbtmyp8ODLqVOnlv13586dycvLY8aMGW5ToKr6/apNKvPeTZw4sey6Dh064OXlxe2338706dNNXzpBXMMll1xS9t8dOnQgLi6Oxo0bM2/ePMaMGWNiMnEn1157bdl/t2/fng4dOtC0aVOWLl3KgAEDqv35VaBMNGnSJEaPHn3GbWJjY8/58ePi4nj88ccpLCx0iw++qny/IiIiTjl7KiMjo+w2d3M+711cXBwlJSXs3r2bli1bVkM61xASEoLNZiv7PTkhIyPDLX9nqlJwcDAtWrQgOTnZ7ChO7cTvUUZGBpGRkWXXZ2Rk0KlTJ5NSuY7Y2FhCQkJITk5WgXJ3oaGhhIaGVtvjJyUlUbduXbcoT1C171d8fDxPPPEEmZmZhIWFAbBo0SICAwNp06ZNlTyHMzmf9y4pKQmr1Vr2PtVWXl5edO3alcWLF5ed3epwOFi8eDHjx483N5yTy83NZefOndx4441mR3FqTZo0ISIigsWLF5cVpuzsbBITE896BrbAvn37OHz48EnlszqpQLmI1NRUjhw5QmpqKna7naSkJACaNWtGQEAAX331FRkZGfTs2RMfHx8WLVrEk08+yeTJk80NbpKzvV+DBg2iTZs23HjjjTzzzDOkp6fz0EMPMW7cOLcpnOdi5cqVJCYm0q9fP+rUqcPKlSu59957ueGGG6hbt67Z8Uw3ceJERo0aRbdu3ejRowcvvvgieXl53HzzzWZHcyqTJ0/m8ssvp3HjxqSlpfHwww9js9m47rrrzI5mutzc3JP2xO3atYukpCTq1atHo0aNmDBhAv/5z39o3rw5TZo0YerUqURFRdXKKWnO9F7Vq1ePRx99lGHDhhEREcHOnTv517/+RbNmzUhISKiZgKad/yeVMmrUKAM45bJkyRLDMAzju+++Mzp16mQEBAQY/v7+RseOHY1Zs2YZdrvd3OAmOdv7ZRiGsXv3buOSSy4xfH19jZCQEGPSpElGcXGxeaGdwJo1a4y4uDgjKCjI8PHxMVq3bm08+eSTRkFBgdnRnMYrr7xiNGrUyPDy8jJ69OhhrFq1yuxITmfEiBFGZGSk4eXlZTRo0MAYMWKEkZycbHYsp7BkyZJy/20aNWqUYRilUxlMnTrVCA8PN7y9vY0BAwYY27ZtMze0Sc70Xh0/ftwYNGiQERoaanh6ehqNGzc2br311pOmpqluFsPQee4iIiIilaF5oEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKROQsDh48SEREBE8++WTZdStWrMDLy4vFixebmExEzKLFhEVEKuDbb79l6NChrFixgpYtW9KpUyeuuOIKnn/+ebOjiYgJVKBERCpo3Lhx/Pjjj3Tr1o0NGzbw22+/4e3tbXYsETGBCpSISAXl5+fTrl079u7dy5o1a2jfvr3ZkUTEJBoDJSJSQTt37iQtLQ2Hw8Hu3bvNjiMiJtIeKBGRCigqKqJHjx506tSJli1b8uKLL7JhwwbCwsLMjiYiJlCBEhGpgPvuu4/PPvuMdevWERAQwEUXXURQUBBff/212dFExAQ6hCcichZLly7lxRdf5L333iMwMBCr1cp7773HL7/8wuuvv252PBExgfZAiYiIiFSS9kCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVNL/A7HAAmZTKmL3AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnmElEQVR4nO3dd3xT9eLG8U+S7pa2QDcUStl7U4qILCmKXlFEVFRQrgNBRcCrXAXXVVTcovJzAW5RlOtEEUFEoChY9ioFCpS2zC46k/P7o9IrUqCFtidJn/frlRc2OUmexEKenPM936/FMAwDEREREakwq9kBRERERFyNCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSh9kB3JHD4SAtLY06depgsVjMjiMiIiIVYBgGOTk5REVFYbWeeR+TClQ1SEtLIzo62uwYIiIicg727t1Lw4YNz7iNClQ1qFOnDlD6PyAwMNDkNCIiIlIR2dnZREdHl32On4kKVDU4cdguMDBQBUpERMTFVGT4jQaRi4iIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIm0hLS2P58uWkpaWZHUVExO15mB1ARKpGSkoKycnJAERFRZmcRkTEvalAibiJ2NjYk/4UEZHqowIl4iaioqIqvecpLS2NlJQUYmNjtddKRKQSVKBEajEd9hMROTcqUCK1mA77iYicGxUokVrsXA77iYiIpjEQERERqTQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKcqkCtWzZMi6//HKioqKwWCwsWLDgpNsNw2DatGlERkbi6+vLwIED2bFjx0nbHDlyhJEjRxIYGEhwcDBjxowhNzf3pG3Wr1/PhRdeiI+PD9HR0TzzzDPV/dJERETEhbhUgcrLy6Njx468+uqr5d7+zDPP8PLLLzNr1iwSExPx9/cnISGBgoKCsm1GjhzJpk2bWLRoEV9//TXLli3jtttuK7s9OzubQYMG0bhxY9asWcOMGTN45JFHeOONN6r99Yk4g7S0NJYvX05aWprZUUREnJbFMAzD7BDnwmKx8MUXXzB06FCgdO9TVFQUkyZNYvLkyQBkZWURHh7OnDlzuPbaa9myZQtt2rTht99+o1u3bgAsXLiQSy+9lH379hEVFcXrr7/Ogw8+SHp6Ol5eXgA88MADLFiwgK1bt5abpbCwkMLCwrKfs7OziY6OJisri8DAwGp8F0Sq3vLly0lOTqZZs2b07t3b7DgiIjUmOzuboKCgCn1+u9QeqDPZtWsX6enpDBw4sOy6oKAg4uLiWLlyJQArV64kODi4rDwBDBw4EKvVSmJiYtk2ffr0KStPAAkJCWzbto2jR4+W+9zTp08nKCio7BIdHV0dL1GkTHXuJYqNjaVZs2bExsZW+3OJiLgqtylQ6enpAISHh590fXh4eNlt6enphIWFnXS7h4cH9erVO2mb8h7jr8/xd1OmTCErK6vssnfv3vN/QSJ/8fcSk5KSQnJyMikpKVX+XFFRUfTu3ZuoqKhqfy4REVflYXYAd+Dt7Y23t7fZMcSNnSgxUFpwoqJj2JdjJ8e7Pj+v20F+3jEKc7MwLDY8/ILw8q2Dt38ggb5eNK7vTz1/r7M8w+md2BN14k8REVMdS4WcDGjQBaw202K4TYGKiIgAICMjg8jIyLLrMzIy6NSpU9k2mZmZJ92vpKSEI0eOlN0/IiKCjIyMk7Y58fOJbUTKk5aWRkpKCrGxsWV7b6pCXkExWcfzceTsIzPxNxYvfYqooj1cZskkwFJw2vs5DAvZ+LHbiOBXa0Oy/GMortsMv8ZdaNe2Pa0jArFaLWd9/qioqCp9PSIi5+WP9+Hnp6Hj9XDl66bFcJsC1aRJEyIiIli8eHFZYcrOziYxMZGxY8cCEB8fz7Fjx1izZg1du3YF4KeffsLhcBAXF1e2zYMPPkhxcTGenp4ALFq0iJYtW1K3bt2af2HitP5emP6+l+h87EnLZHvit1h2/kiLnESGWE4u/n8/+F6CBwVWP6zY8XHkY8WB1WIQTB6dLDvpxE7I+xnygH2w95dQvrS25XBIHP6t+nFht040CPY9r8wiIjVi50+lfzbuZWoMlypQubm5ZR9QUDpwPCkpiXr16tGoUSMmTJjAf/7zH5o3b06TJk2YOnUqUVFRZWfqtW7dmsGDB3Prrbcya9YsiouLGT9+PNdee23ZB97111/Po48+ypgxY7j//vvZuHEjL730Ei+88IIZL1mc2N8L0/ke6iooLGL14vl4Jc2lS+FqGlvspTdYoBgP0n2akV+3OZ7hrakX04Gghq3Aty5418HDw5uAEw9kGFCcD4U5cPwQhRnbydq7iaKM7Xge2U793O1EWw8SzVI4tBSWP03Ssqb8EDiAgC5Xc1H3joTV8Tmv90ZEpFrkH4X9a0r/u2l/U6O41DQGS5cupV+/fqdcP2rUKObMmYNhGDz88MO88cYbHDt2jN69e/Paa6/RokWLsm2PHDnC+PHj+eqrr7BarQwbNoyXX36ZgICyjx/Wr1/PuHHj+O233wgJCeGuu+7i/vvvr3DOypwGKa6rqg7Z7UvdRfIPr9Ni3+dEcbDs+kxbBIci+lC34yVEdLwYi3edqogNhbnY96zk8MbFGLt+ITRnM1YcQOlhv9+MlmwMHULz/qPp3Tq6Qof5RERqxKYv4NPRENoKxiVW+cNX5vPbpQqUq1CBkorITN/Ljk8foduhBXhbSgDIxp9dDf5B44F3EBzTESw1UF5yM8le8yn5a+cRnpVUdvURI4DvvAfjE38bg3t1xd/bpXZYi4g7+vIuWPsu9LwTBk+v8odXgTKZCpScSfaxQ2z69D902Pch/pbSCVh3eLWhqNMoWg24CZu3n3nhju3laOIHWNbMJriodNqOYsPGj5Y4Dne5m6EJFxOgIiUiZjAMeKEdZO+DkfOh+cCz36eSVKBMpgIl5TEcdtZ8NoPmm18miDwAtnu05Fi3uykKiKnys/fKU+HDjvYS8jd9RdZPrxBxrHS8gcOw8L31ArLjJnPFgD74eJp3+rCI1EIHt8Or3cHmDffvBq+q/7JZmc9vfZUUqQEZuzZy7KPb6Fa0CYDd1miO9byfjgNH8uuKFScNRq+u6RDg1IHvp2XzwLfDlfh2uBLH/iQOfDudBvsXcomxnJKVK/hmdT+46H4uu7AHNo2REpGasHNx6Z+N46ulPFWWCpRINTLsxaz/9AlabZlJuKWYPMOHpFb3Enf1JGL+nCbj72fvVeV0CH93LmcKWht0osGtn1CyL4mML6fRIPNnrnAspuCnZXySeA3thk+jQxPNkSYi1ezP6QuyQruzYfnyGtlrfyY6hFcNdAhPAI7t38GRuSOJLdoGwB9eXag/4nUaNW11xvtV5x6oqlC0exWHF/ybyD8P7e0xwvi5yUQuHz6Guucx47mIyGmVFMLTMVB8nI+bv8iHewK5pHU9xl556pn556NWLiYs4kz2JP4X65t9iS3aRrbhx9JWD9Ph/sVnLU9w6lp0zsYrpieR9ywma8j/ccwjlMaWTG7a/QAbZiTww4rV6DuZiFS51JVQfBwCwllW3JL12T7sLvQ3NZIKlEhVcjjYMu9hor8dRSC5bLY25+CNS+l77URsNjf662axENT9WoLvSyKt7W0U40Ef1hL//T/44LXHOJRTcMoCyCIi5+zPw3eO2H4k7i09CeeKbuauz+lG/6KLmMuen8X2V4bSevOLWC0GPwUMocGEpTRt1tLsaNXHO4Co4TNg7K+kBXagjiWfGw4+z47nBvH10uUkJyeTkpJidkoRcWFpaWnkrvsSgN3BPTmcV0QdHw+6N6lnai4VKJEqUHBkP2kv9KXF0Z8pNDz4tskULpr4AUGBAWe/sxvwDG9F1ISlpPecSiFexLOOa7fdTcHBbYQ3aGR2PBFxYXu3/E5A7i4Avskr/UJ6UYtQPE3eq68CJXKejqcnk/XqAKKLUsg0glnV930uHfWA6af3V+chtHIf22ojYvBkLHcsIy2gLYGWfO7Ie43dH4xn624dxhORc9PCth+AopA2fJVcDMDA1uFmRgJUoETOS07qegreuJhw+wFSjXD2XbmAi/pdYnYs4H/TIVTHIbQzPbZXRGuiJv7Cvi6TKcHKxSU/4z27H/M+/4xffvlFY6JEpFLqHvkDgIKYAWzPyMVmtdC3ZajJqTQPlMg5y9r+K9aPrqGekcsOoim4bj5dWjnPeKdzmfOpyh7baqPhP6aS3bIvxfNupok9nah1tzPbNoKCkmud9gxDEXEyDkfZAPJfjQ4AdG1cl2A/86dMUYESOQdHty7D5+Ph+FLAOlrgM3o+7WOca6xPVFRUtRWVij52YMsLcdybyJ45o2l8aBl3OD5g8fJU9rZuQ3RESLVkExE3kr4O8g6CVwAfp0cBWQxsHWZ2KkCH8EQqLXfPWjw/uRZfClht6Ujgbd/Q0snKkzOxBtSn8bgv2dtjKiXYGGD/hbxZA1iTtM7saCLi7Lb/AEBxzEWs2J0NwAAnGP8EKlAilVKYvo2SuVcSYOSxltaE3zafJlHO8W3IqVksRF86mazhn3HMEkQrdhPzxRAWfjVPE2+KyOnt+B6ALf49KbYbNAnxp2moc5zdrAIlUkElR1LJffMygh3H2Gw0wXf0pzSONH8goyup37Y/PuN+Ya9PC+pbchj4++38981HKbY7zI4mIs4m9yDsXwvA5zltABjQynm+sKpAiVSAkXuQI7OGUN+eSYoRyfFrPqF1TLTZsVyST0hjGk5cSnL4JXhYHAxNe4GfXryF3PxCs6OJiDNJXgQYGBEd+G9K6ZcsZzl8BypQImdXXMCBWVcQVpRKmlGffZd9SLe2znO2nSuyePnT7I6PSO4wGYCEnC9Y//w/yDh8xORkIuI0tpcevjsQ1oejx4sJ9PGgW0xdk0P9jwqUyJkYBnvfvZWo3E0cM/xZ13cOfbp3MTuVe7BYaHbVVPb0m0khnvQqXsXhmRezc5eWfhGp9ezFZdMXLCrpBEDflmGmzz7+V86TRMQJHVg4g+i9X1JiWPmu9dNc0q+P2ZHcTuOLbuTY1Z+RZalDGyMZ77mDWPfHarNjiYiZUldBYTb41eeDvfUBGOAk0xecoAIlchpZ678hPPFJAN4LvJUGDWI0i3Y1CW/XF8Ys4oAtioYcJHrBVfy+YrHZsUTELDtKpy/Ije7H9oP5pbOPt1CBEnF6xRlb8fzin1gx+NpjEFGdLyNl585qWRZFSgU1bE3du5ayy6sF9Sw5tPr+elb8+IXZsUTEDH8WqFW2rgDEx9YnyM/TzESnUIES+bv8Yxx76yr8jOOsMVrSasws2rdqRrNmzaplWRT5H5/gcBpO+JHtfp0JsBTQ9Zd/suzL2WbHEpGadHQPHNwKFhuzM5sCkNDWec6+O0EFSuSvDIP9791GaPF+9hkhrGk9hWaR9YmKiqJ3795aw60GePoF0WzCd2wOuhBvSwkXrLmXpR8/b3YsEakpf+59Korqwa/7SgAY1DbCzETlUoES+YvDv7xFg7TvKTZsfBo+mcv6xJkdqVayevnS+u4vWB96OTaLQd+tj7LwrYfNjiUiNeHP6Qs2+Jf++9u5UTDhgT5mJiqXCpTIn0rSNxPw04MAfFxnFHfdfnuV73FKS0tj+fLlGoxeARabJx3ufI9lgZcBMHjfiyyd+6jJqUSkWhUdh92/ADAvq3T28QQn3PsEKlAipYoLOPrujXhTyAo60O+Wx/GohvlGUlJSSE5OdrvB6NVWDC0Wmo14hqWBVwLQd9fzLJs9VevnibirXcugpABHYDTz95aueacCJeLE0j+bTOjxZA4ageRdOpOG9apnscrY2Fi3HIxencUwqkED+t47mzUxtwHQZ8/LLH/nAZUoEXe0fSEAu+pdQIkDWobXoUmIv8mhyqcCJbVe3rr/ErHtPQD+23gqF/foWG3P5a6D0auqGJ52T5bFQtfRM/g99k4ALtw7ixXv3H9ezyUiTsbhgG3fAfBVQSfAOc++O0EFSmq3vMM4vrwbgE88h3LdyFtMDuSaqqoYnm1PVrebpvNb83sAuGDv/7Fy7oPn9Xwi4kTS1kJuOoZXAG/vbwBAQjvnPHwHKlBSy6V9cjd17MfY5oimzQ0z8Pf2MDtSrVaRPVndRz5GYuxdAMTvmkni+4/UUDoRqVZbvwEgPawPOcU2Gtb1pU1koMmhTk8FSmqtvA1fEZX6NXbDQmKHx2jf2LmWCagN/n7IrqJ7suJu+g8rG91e+t/JL/Dbx09We1YRqWZ/FqhFjm5A6eBxi8ViZqIzUoGS2in/GCX/nQDAJx5X0DA0VFMLmOB8Bp/3vPlpVjS4GYDuW59mzWczqjqeiNSUQ8lwaBuG1ZNZaaV7oAc78eE7UIGSWirjs/sIKjlEiiOCwnbXk7pL69yZ4XwGn1ssFuLHPM+v4SMB6LrxP6z/5vWqjigiNWFb6d6nY+FxpBV4ERLgRZdGdU0OdWYqUFLrFG77kfCd83AYFha3mEZCXHu3nFrAFZzv4HOL1Uqv22eyJGgoAG1W/5vNP31YhQlFpEb8efhumbV09vGL24Rjszrv4TsAjZiV2qUwl/z54/AG5tsGc+3V11DHx9PtphWoTSxWK7aut/DDkkMMYjnNfr6LHX6BNO95mdnRRKQicjNh72oAXj/QAoBL20eamahCtAdKapXMb/5DcFE6+4wQwq+cTh0fT7MjSRVo1qw5Xn3uY5VXPF6WEhosvIVF8/5P49pEXMG27wCDnPod2Hq8DnX9PImPrW92qrNSgZJaw5G5nbrr3wTg24YT6dO+icmJpKpERUXRt19f2t8znz88O+NHIXGbHmFL4iKzo4nI2fx5+G6FZ+nhu8HtIqtlKa2q5vwJRaqCYXDw0wl4UsLPRmeuuEYTZrojf39/Yu78go3WlgRajtNx3cNkpSWbHUtETqcwB1KWAvBGRmsALuvg/IfvQAVKaon8jV8RfvBXCg0P9sc9THiQb408b7UtsiunVbduXUJv/5KdlkaEcJTct/9B/tEMs2OJSHmSF4O9kPyAxqzJD6e+vxdxTeqZnapCVKDE/RXnU/B16bppn3pdwbBBfWrsqatzkd3aqiKlNDw8AssN80kjhAb2/aS/fjkl+dk1mFJEKmTbtwCs9okHLAxuF+ESh+9ABUpqgSOLnqVuYRoHjHpE/+MhvD1sNfbcVbXIrvxPRUtpbNMWHB76MUeNOjQp2kbKq1dhlBTWUEoROSt7MY6tpYsHv3Ww9PDdEBc5fAcqUOLmjKN7CPjtZQAWhN7BRe1rtshU1SK78j+VKaXtO3Vna/+3OW540yL3N9Y+fzVp+/fVQEoROatdP2MtyibXUodfC5sSEuBNXBPnP/vuBBUocWuZ8/+Fl1FEoqM1g0eMMzuOVIHKltL4ixJY2e0Fig0bXY8vY/f8qdWcUEQqZNMCABK943Fg5dL2EU4/eeZfqUCJ2yrZk0j4voXYDQsbOz5Ik9AAsyOJSQZcPpKvGk4CoNeRz9n57csmJxKp5ezFsPVrAD4s6AnAEBeYPPOvVKDEPRkGhxdMAeBra19GXHZJ2U06M652Gjrm33xTv3Tx4ZjEaexb9fkp2+h3Q6SG7FoG+Ucp8q7H0oLmhNXxpltMPZf6O6gCJW6pcMv3hB9dQ6HhSWHv+wnw/t+qRTozrnayWi0MuP1ZFvsmYLMY1F94B0e2rzxpG/1uiNSQzQsA+N2vN3ZsXNo+EpvV4lJ/B1WgxP047OR88yAAn9ouJcyz5KRvMzozrvby8fKgy9jZJNq64Esh1o9GcDz9fxNtlve74UrfiEVcgr0YtpQevnvnaEfgf2ffudK/z1pMWNxO3u8fEpKXTJbhx+GmwyhJ2YmH1VI26DgqKkpnxdVidQP9ifznx2z5vwRaG7s48PZQvCf8gs2/brm/Gye+EQP6vRGpCrt/gfwjFHnVZUl2CyICfejaqC7gWv8+aw+UuJfiAkp+/A8An/ldw7C+3Vzm24zUnEaR4RSN+IQ0oz6RxXvZO+sqKCkqd1tX+kYs4hI2/xeARJ8LsGPjik5RWF3o7LsTVKDErWT98jpBRekcMOrR7LJJNGzQQPMwSbk6tm7J9gFvk2P4EpOzlpTZY8AwTtlOc3mJVCF7CWz5CoC3j5QevhvauYGZic6ZCpS4j/xjeCx/DoD5ASPp0yba5EDi7Pr26ceP7Z6ixLASu/9L9ix4zOxIIu5tz3I4fpgCr7r8UtKKluF1aB0ZaHaqc+JWBeqRRx7BYrGcdGnVqlXZ7QUFBYwbN4769esTEBDAsGHDyMg4eZHR1NRUhgwZgp+fH2FhYdx3332UlJTU9EuRc3D4p5fwd+Sww9GAOi37YbG43i5hqXlDrx7F5+H3ANB43fNk/Pq+yYlE3Nifk2f+6tETOzaX3fsEblagANq2bcuBAwfKLsuXLy+77d577+Wrr77i008/5eeffyYtLY2rrrqq7Ha73c6QIUMoKipixYoVzJ07lzlz5jBt2jQzXoqcxUlnRxVk4bvmDQC+9B/Oxd1am5xOXIXFYuEft07lS98rAai76B6yt/9qcioRN/SXw3dzjnUC4B+dXPfQuNsVKA8PDyIiIsouISEhAGRlZfH222/z/PPP079/f7p27crs2bNZsWIFq1atAuCHH35g8+bNvP/++3Tq1IlLLrmExx9/nFdffZWiovIHmIp5/jpfyJElr+DnyGW7owGDb5ig8SpSISdK+JGDGfQa+xrLrD3wogTj4+spPrzb7Hgi7mXPr3D8EPmewaxwtCGuST0aBPuaneqcuV2B2rFjB1FRUcTGxjJy5EhSU1MBWLNmDcXFxQwcOLBs21atWtGoUSNWriydTG/lypW0b9+e8PDwsm0SEhLIzs5m06ZNp33OwsJCsrOzT7pI9TtxdlTThuH4/DYLgKXho2jboK7JycRV/LWEhwT6EX7zu2w1GhPkOMbhN6+EwhyzI4q4j01fALDU0sPlD9+BmxWouLg45syZw8KFC3n99dfZtWsXF154ITk5OaSnp+Pl5UVwcPBJ9wkPDyc9PR2A9PT0k8rTidtP3HY606dPJygoqOwSHa3ByzXhxNlRPtvm4+fIYacjkrjL/ml2LHEhf5+ioGV0JJmXv0umEUxEQQr73roOHHaTU4q4gZIiHBtLl096P7crXjYrl7ZzrbXv/s6tCtQll1zC8OHD6dChAwkJCXz77bccO3aMefPmVevzTpkyhaysrLLL3r17q/X55C8Kc/Fc/RoAi0NvpGPj+iYHEldS3hQFfbp14peuL1NgeNLw4C/sn3efiQlF3ETyj1gLszhqCWKloy39WoUS5Odpdqrz4lYF6u+Cg4Np0aIFycnJREREUFRUxLFjx07aJiMjg4iICAAiIiJOOSvvxM8ntimPt7c3gYGBJ12kZhxbNosAexa7HOF0vew2s+OIm7jq8n8wr+G/AWiw9W0O/vyGyYlEXNyGTwH4xrgAB1aGdnLtw3fg5gUqNzeXnTt3EhkZSdeuXfH09GTx4sVlt2/bto3U1FTi4+MBiI+PZ8OGDWRmZpZts2jRIgIDA2nTpk2N55ezKDqOR+IrAPxQ/0a6Ngk1OZC4C4vFwjWj7+Ej/5EABC+ZQt72nwGtjSdSaYU5sO07AD4u7EUdHw/6tQozOdT5c6sCNXnyZH7++Wd2797NihUruPLKK7HZbFx33XUEBQUxZswYJk6cyJIlS1izZg0333wz8fHx9OzZE4BBgwbRpk0bbrzxRtatW8f333/PQw89xLhx4/D29jb51cnfZS1/g4CSY6Q6QumivU9SxXw8bQy4/Tl+tPbCkxIcH9+I/chul1otXsQpbPkaSvLJ9GrERqMJl7aLxMfTZnaq8+ZWBWrfvn1cd911tGzZkmuuuYb69euzatUqQkNL90y88MILXHbZZQwbNow+ffoQERHB559/XnZ/m83G119/jc1mIz4+nhtuuIGbbrqJxx7T7MROp6QIy8rSvU/f1b2e7k3Dz3IHkcoLC/Ql/KZ32Gg0oY4ji8NvDaNpw3CtjSdSGRtKxyF/UtATsHBVF9c/fAdgMYxyFn+S85KdnU1QUBBZWVkaD1VNclfNJWDh3aQbdUm5fgW9WmreJ6k+369cQ+eFVxFmOcaBiP5E3jYfrG71/VOkeuRkwPOtwHBwUeHzWOrFsmRyX6ddKaIyn9/6F0Bcj2FQsOxFAL7zH0p8C9c+FVacX0J8V75r9xyFhieR6T+R+d+pZkcScQ2bvgDDwQ7PVuwxIri6a0OnLU+VpQIlLqdo2w+EHE8h1/AhvN8dbvOXUZzbDcOGMTd0EgBh62aS/dvHJicScQF/Hr57/3gcFgtc1aWhyYGqjgqUuJwji54D4CuPQQzq0sLkNFJb2KwWrv3nZD7yKl0/0/ubuyne+0e52+pMPRHg8E7YvwYHNr629+TC5qFEufDSLX+nAiUuxbH/DyIOJ1JiWLHEj8XDpl9hqTmBPp70GPMivxid8aaQ4+9eA7mZp2ynM/Wktin3S8Ofcz8lWjpwmCCGd3WfvU+gAiUuJuP70r1P31t6cdmFPUxOI7VR0/AgjGFvstMRSVBxJgffvgZKCk/a5u9LxIi4u1O+NBgGrP/z7LvCeAJ9PLi4jXudLa0CJa7j2F7CUr8BILPdbQR4e5gcSGqrPh2asypuJtmGH6FH/+DgvLtKPzD+VN4SMSLu7JQvDfvXwJGdFFm8WeToytDODdxi7qe/UoESl5G56AVsOPjV0Y5LLk4wO47UctdfOoB3G0zFYVgI3f4J2cteNzuSiGlO+dLwx3sAfGvvQR6+DO8abWK66qECJa4h/xiBmz8EYFPMKCKCfEwOJLWdxWLh5lG38Y7vaAD8ljxEUfLP5oYScQZFx2Fj6STVn5T0oVVEHdo1cL85EVWgxCUc/fUdfIx8tjqi6XPJCLPjiADg7+3BoH8+wXdcgAd2ij66EePoHrNjiZhry1dQmE26NZxVjtYM7xbtltPNqECJ83M4MH57C4Bf6w+jVWSQyYFE/qdRiD+BI2ax0RFDgD2Lo+9cU/oNXKS2SnofgA8LL8RmtTG0k3uOBVSBEqdXuO0H6hXuJ8vwI7b/aLPjiJzigtaNSLrgVQ4ZgdTL2crhD289aVC5SK1xdDfsWoYDC/PtF5LQLoL6Ad5mp6oWKlDi9A7/NBOAhZ4D6NM2xtwwIqcxctAFvBf9GMWGjfq7vyZn8bNmRxKpeUkfAbDKaMd+QhkZ18jkQNVHBUqcmnE4hYiDywFwdB2Dzep+x9HFPVgsFm6/6UZm+d0GgP/yJyja9v1pt9ds5eJ2HA5IKj3Z5+PiPsSG+BMfW9/kUNVHBUqcWsZPr2HFYJmjI4P7XGB2HJEz8vPy4IoxU/mMAVgxKPnkFoxDyeVuq9nKxe3sXgZZqeRa/Pne0Z3r4xq55eDxE1SgxHkVHSdwS+nu4B0x15OfdUjf2MXpNQrxJ2zEy6xxNMfPkUvWnGugMOeU7TRbubidP0oHjy8o7onh4cPVbrZ0y9+pQInTyvn9Y/wcuaQ6Qom7+Bp9YxeX0ad1QzZeMJN0oy7BuTs5+sEtpYc3/kKzlYtbyT9WOn0B8Kn9Ii7rEEmwn5e5maqZCpQ4J8Og4NfSmZ1/CvwH7aLr6Ru7OK3yxjPdNCiOdxv9h0LDg7qpP5C7aLqJCUWq2cb5UFLAdqMh64ymjIxrbHaiaqcCJU6pZM8qQvO2U2B4EnrhGEDf2MV5lbd31GKxMO6Ga3nF704AAlY+Q/Hmr82KKFJ9DAPWzAFgXslFtIoIpEujYFMj1QQVKHFKmYtfAWCh9UIGdm1lchqRMzvd3lF/bw+uHvMAHzIYAPtnt8LB7WZEFKk++9dC+nqK8GS+/UJG9mzs1oPHT1CBEudz/Aihe38AILvdTXh7uNcK3uJ+zrR3NCbEn6gRz5PoaIWP4zjZc4ZDQZYJKUWqye9vA/C1PY5Cr7puO/P436lAidM5vPI9PClmgyOGdu06mx1H5Lz1bd2Ajb1eZr9Rn8C83WR9MPqUQeUiLun4kdLxT8D7JQO5olMD6vh4mhyqZqhAiXMxDBy/zwXgJ9uFHD+4z+RAIlXj5kE9mBP9HwoMT4L2/kTeD4+ZHUnk/K37CEoK2OJoxFqjOTf2dP/B4yeoQIlTKdn7G6H5O8k3vPBsmaAz7sRtWK0W7rnxGl7wHQ+A/6oXKN743zPeR7OVi1MzDPj9HQDetw+kZ2x92kQFmhyq5qhAiVNJX/IGAD9Ze/LPq4fojDtxKwHeHlwzZjJzjcsAcHx+O2RsPu32mvtMnNquZXA4mTx8WGC/gFsuaGJ2ohqlAiXOozCXkN2lp3kfbXkdXh769RT3cWJvkm9xNg2HP8Nye1u8Hfnkzh1eOo6kHJr7TJzan4PHvyi5gHr16jGgdbjJgWqWPqHEaWT9Pg8fI58URwTx/S83O45Ilfrr3qQB7RqwsdeL7HWEEnB8HzkfjAJ7ySn30dxn4rRy0jG2fgPA+/aLGd2rSa1b7F0FSpzG8cTZAKwIHELTsDompxGpWn/fm3RbQnfebvgExw1v6uxfxvHvppmcUKQS1r6HxVHC744W7PVswvBu7r3uXXlUoMQpONI3E5m9nmLDRlD8jWbHEalyf9+bZLVamHTTVczwvRsAv99fpWTdPDMjilSMvaRs5vH3SwYyvFs0gbVk6oK/UoESp5C+9E0AltGFAd3bm5xGpGbU8fFk5C0TeMsYCoCxYDwcWGduKJGz2fYNZO/jiBHAd0YPRvWKMTuRKVSgxHwlhQTu+AyA/bHD8fPyMDmQSM1pFhZA4+HTWWrviKdRSN67IyD3oNmxRE5v5atA6dQFvVs2pEmIv8mBzKECJabL2/AVAfZsDhj16NzvarPjiNS4i9tFsbnXC6Q4IvDPP0Du+yPBXmx2LJFT7VsDexMpNmy8V3Ixt/SuXVMX/JUKlJjuyIp3AfjZdwDtouuZnEbEHHckdGF29JPkGL4EpCeS/+V9ZkcSOdWq0r1PXzp64VOnPjG+hSYHMo8KlJgr7xCRB5cD4Nn5ulqxgrdIeaxWC/+68R887TcRh2HBd91sSla/Y3Yskf/J2oexaQEAb5dcQveAY+zatcvcTCZSgRJTHVz1ER7Y2eBowkUX9DY7joip6vh4csstdzKTEaVXfHcfpK4yN5TICavfwGLYWWFvw9E6Lbiic8MzTvLq7ksRqUCJqUr++AiADfUHExLgbXIaEfPFhgbQ7tpH+dbeAw+jhIL3r4MsLaotJivMxfi9dK6+t+2XMLZfcy7qc+EZJ3l196WIVKCkxp34VpK+aTmRuZsoMazU73m92bFEnEb/1hHsu+g5tjga4VN0pPTMvKLjZseS2izpQyyF2aQ4IkjyiWN41+iz3sXdlyJSgZIad+JbyYFlcwFYSUcu6tLW5FQizuXWAe35IPYpDht18D+8kfzP7gDDMDuW1EYOB0bi6wDMtg9m9AWx+HrZzno3d1+KSAVKalxsbCzNmjal0eGfAdgbfTk+nmf/yyhSm1gsFqZcl8D0Ov+m2LDhu/2/FP/8nNmxpDbavhDLkRSOGf58Z+vHTfExZidyCipQUuOioqLo3sBK/ZIMcgxfml44wuxIIk7J39uDe24ZzdPWMQDYlv6nbAFXkRphGPDrSwB8ZO/PlXEtCPKrfcu2lEcFSkyRvmwOAMs84unevIHbn60hcq6i6/kx4IYHeM9+MVYMij/9J2RuMTuW1BZ7foW9qyg0PHnXcQljervneKZzoQIlNa+4gJDUbwHIaTEMq9Xi9mdriJyP+Kb1YfB0Vtrb4GU/TtZbV5CessnsWFIbLHsWgHn2i2jRIJSIIB+TAzkPFSipcTkbvsbfkUuaUY9ufS8H3P9sDZHzdUOvZvzY/hn2OMIIKsrA+sVtUFJkdixxZ/vXQMoSSgwrb9gv585+zcxO5FRUoKTGHV35HgAr/PrTLDwIcP+zNUQq4kyHsi0WC/dfdQEzgqeSY/gSlrORwi8n6sw8qT7LSk9a+K/jAuK6dCaujb7g/pUKlNSs/GNlS7fYOl1rchgR53K2Q9leHlYevW0Ej3pNwmFY8F7/HvZVs2o4pdQKGZth2zc4DAuz7Fdwd//mZidyOipQUqMOrfkcT0rY5mjIhRf0MTuOiFOpyKHs+gHejLnldp41RgJg+f7fkPxjTUUUN1PeXs+0tDQyv5gCwHeO7nTpEkej+n5mRXRaKlBSo/LWfgbAhuD+WrpF5G8qeii7dWQgHa95iHklF2HFQdHHoyFza82EFLdS3l7PtI3LCUkvnafv/xxDGd9fY5/KowIlNef4ERocKV0Y1a/z1SaHEXFtCe0iOdzvKVY7WuJVkkPBu1dD3iGzY4mLKW+vZ+sj32PF4Cd7J9p160N0Pe19Ko8KlNSYzNWf4YGdzY7G9IqLNzuOiMu7o39rFrR4mlRHKD65e8l//zooKTQ7lriQU/Z6HtuL7/b/AvB/xlDG6cy701KBkhqTn/QpAJvrDSDYz8vkNCKuz2KxMG1EH54NeZxswxffA6sp+mK8zsyTc/fzU1gdxaywt6FFt4tpEOxrdiKnpQIlNcLIzaThsd8BCOh6jclpRNyHj6eNqTdfxcNe/6LEsOK1aR4lP88wO5a4okM7MJI+AuBF41ru7NfU5EDOTQVKakT6qnnYcLDBiOWC7t3MjiPiVkLreHP7mH/ypHEzAB5Ln8DY+LnJqcTVOJY8icWws8jehQ49LyYySHufzkQFSmpE8fr5AGytfzF1fLQQpUhVaxURSO/r72d2yWAA7J/fDntXm5xKXMaB9Vg3lZbuWbbrdOZdBahASbUzsg/QMPsPAOp21+E7kerSv1U4RsITLLJ3wcNRRNF718ARrS8pZ2df/DgA/7X3IqG/xqlWhArUabz66qvExMTg4+NDXFwcq1frm9y5Slv5MVYM/jBa0KtrJ7PjiLi1m3s3ZVWnp9ngiMGr6CgFc4bB8SNmxxJnlroKW/IPlBhWPvQdyU3xMWYncgkqUOX45JNPmDhxIg8//DBr166lY8eOJCQkkJmZaXY0l+TYULpbeGfYxfh5eZicRsS9WSwWRsU14LnAKew36uOTnULB+9dqegMpn2FQ/MMjAMyzX8R1l/TDx9NmbiYXoQJVjueff55bb72Vm2++mTZt2jBr1iz8/Px45513yt2+sLCQ7Ozsky5SynF0L9G563EYFjxaDDI7jkitkLp7F/H1CnjQ8wGyDV980hJJ+7/hpO3fb3Y0cTY7f8Jz30oKDU9+CLmJf3TUgu4VpQL1N0VFRaxZs4aBAweWXWe1Whk4cCArV64s9z7Tp08nKCio7BIdHV1TcZ3e/pXzAFhjtCDQS99qRGpCbGwsbVs0495rBvGQ530UGzaiDv5M8Q/TzI4mzsRhp3DhQwC8bx/IbZf1wWq1mBzKdahA/c2hQ4ew2+2Eh4efdH14eDjp6enl3mfKlClkZWWVXfbu3VsTUV2CY/OXAGwJiKdVc80pIlITTswu3bFFDHfccisPG7cC0HjPZzgS3wTKX0RW3N9J/9//eA/vQ5vJMvz4I2YMvZqFmB3PpWhAShXw9vbG21sL4/6dkZtJw9z1ADTuN+qsC6SKSNVrExXI4Bsm88K7h7nX41Ms390HgRGkHK5LcnIygP5u1iInFg+2leQRsvJRvICX7Vdz9+U9zY7mcrQH6m9CQkKw2WxkZGScdH1GRgYREREmpXJNaYmfY8PBRiOWHh07mh1HpNbq0yKU6KEP82FJPywYlHw6hpZ+WacsIivu78Tiwa0PfYdX4RF2OiKx9biVFuF1zI7mclSg/sbLy4uuXbuyePHisuscDgeLFy8mPl4L4FZG4YbSw3c76/fFV+OfREx1dbdojvabzo/2zng4CglaeCe9W4Zp71MtExUVRe/WkdTZ9B4Ar3jezF2DWpucyjWpQJVj4sSJvPnmm8ydO5ctW7YwduxY8vLyuPnmm82O5joKsml4LBGAgM5XmhxGxH1VZizTnf1b8UvHZ0hyNMWr6BiFc66ALJ2ZV9sc/2YKNqOEpfaO9Lv8Bq0OcY5UoMoxYsQInn32WaZNm0anTp1ISkpi4cKFpwwsl9NLX/MVXpSw04iie3ftuROpLifGtKSknH3GcYvFwtQruzEn5ml2OiLxzkujcM5QTbRZm6QsxS/le0oMK1+G36lpC86DCtRpjB8/nj179lBYWEhiYiJxcXFmR3IpOUlfALAlqA+B+nYjUm1OjGmp6FgmD5uV6Tf0Z0bYdNKNungf3U7hu1dDUV41JxXT2UvI/e99AHzguJjbrx6CxaJpC86VCpRUveICGhxcDoBXuytMDiPi3k5MWVCZsUy+XjaevuUyptV5nGOGP97payj68AawF1djUjFb8YpXCcjazjHDn4Nd76VlhAaOnw8VKKlyh9Z/jx/5pBn16BLf3+w4IlKOID9PHr9tOP/yfoh8wwuv3T9RPP92cDjMjiZV5KTxcUf3YCx5EoCZHjdx++BuJqdzfSpQUqXS0tLYs3QuAOv9exNSx8fkRCJyOuGBPky5bRT/sk2m2LDhuXk+JV9PBMMwO5pUgbLxcTt3kj3/LrwcBaxytKb7lfdo4HgVUIGSKpWSvIOmOaVn39H6MnPDiMhZNQnx5/Yxd/BvxpWuWbl2NvbvH1KJcgMnxse1tG8hcN/PFBoeLGo6hYR2kWZHcwsqUFKlGlgPEkwuR40AOlxwqdlxRKQC2jUIYtioCUx1lC75Yls1E/vSp01OJecrKiqK3l3a4PfrdADesQ7jzmGDTU7lPlSgpEoV7SidgHStT0+i6mmAooir6Blbn4tvuI8n7DcCYPt5Oo5fXzE5lZyvo19Owb/4CNsdDWh0xb+pH6Blx6qKCpRUHcOg/r4fAShsrr1PIq6mb8swuo54iOdLhgNgXfQQxm9vm5xKzlVJyi/U3foxAAsa3selHRubnMi9qEBJlclLTSLEnkm+4UWrC/5hdhwROQeD20UQe9UjzCq5HADLNxMxfp9jaiY5B4U55M27HYBPuZjR112nOZ+qWKUL1KhRo1i2bFl1ZBEXt2/1AgD+8OhIbGSouWFE5JwN7dKQoMuf4J2S0vEylq/vwVgzt1LLxoi5Dn02kaCC/ewzQvC59HHCdEZ0lat0gcrKymLgwIE0b96cJ598kv37tY6SlPLZ+QMAxxpq7icRV3ddXGM8L32K2SUJpVd8dQ+5v7xe4WVjxDx5SV8QsmMeDsPC/MbTuKx7K7MjuaVKF6gFCxawf/9+xo4dyyeffEJMTAyXXHIJn332GcXFmsW2trJnZxBdsAWA8O6afVzEHdzYqwkelz7NnJJBWDBotuUV4n13VXjZGKl5RnYaxpd3A/CB51Xccv31OnRXTc5pDFRoaCgTJ05k3bp1JCYm0qxZM2688UaioqK499572bFjR1XnFCeXmrgAKwabaULH1q3NjiMiVeTGXk2wXvoM75ZcjBWDFlteIvLAIrNjSXkcDtLfHUOAI5uNjiZ0uOEpTZhZjc5rEPmBAwdYtGgRixYtwmazcemll7JhwwbatGnDCy+8UFUZxQUUbv4WgNT6ffCw6dwEEXdyU68mcOkM5pZcjAUDy1d341j5utmx5G8yf3qFyEMryDe82NjzWTrGhJkdya1V+pOuuLiY+fPnc9lll9G4cWM+/fRTJkyYQFpaGnPnzuXHH39k3rx5PPbYY9WRV5xRSSGNjq4CwK+9Zh8XcUc39WqCdciz/F/JEACs3z+AY9nzFbqvBp9Xv4K9SQQt/w8AH9S5hWsGDzA5kfvzqOwdIiMjcTgcXHfddaxevZpOnTqdsk2/fv0IDg6ugnjiCtLX/0gEBWQYwXSKu8jsOCJyDtLS0khJSSE2NpaoqKhyt7kxPobPPJ/m5QXe3O3xOdafHsVefBxb/wfhDONsTqzJBpz2seXcGcePkPvutYRQxFJHJyI6XorVqnFP1a3SBeqFF15g+PDh+Pic/pTI4OBgdu3adV7BxHUcXvslEcAm/57099UstyKuqKIl5+pu0Xzr/SQz5nlzn+0jbL/MoKQwB4/B08Fa/kGNE4PONfj83J224Drs7H3rehoVH2CPEcaejvdxcdvm5gWtRSpdoG688cbqyCEuKm3/furvL12+xd5cayyJuKrKlJxL20fi6/kYj3/gzVTbHDxWz6I49yCeV80iLfPQKR/0UVFR2vN0nk5XcHd/9hAxR1aSb3ixoddMRiUkmBWx1ql0gRL5q5S1S+htHKTQ8KRV/OVmxxGRc1TZktOvVRjeo6fywLsBPM7reG6eT2HeYfY0GUfy7rSyxzxXFTmk6K7Ke+3lFdwDifOJ2fwaAF82eoBrBg2q+bC1mAqUnBffIxsA+MPWnp4RISanEZGa1KtpCIG3/YuJbwfzlH0G/nuW0j47E2v7B4k+z8N1tXncVHmv/e8FN2f/Fup8Nx6Ab3yv4MpR92q+pxqm883lvASnLwcgq9FAk5OIiBnaNQjivnHjmOz3Hw4bdQg4upmOSQ8S5Z1/Xo8bGxtLs2bNauW4qbO99sKsDPJmX0UAx/nD0oYet7+Gl4c+zmuaxTAMw+wQ7iY7O5ugoCCysrIIDAw0O061Kc45iPW55tgwWDf8Vzq2bWd2JBGpQpU5jHY4t5CH3l7Ag0f+TUPLIYq8gvC6/iOIuaCG0tYO9oJc9r4wgJjCrew3Qske+R2tW2jQeFWpzOe3Kqucs92rFmDDYCsxtGvd1uw4IlLFThxKOtPadyfmeCrMPsxzY4fxbPRrJDma4lWUhX3uPzD++KAGE7s3w17MjleHE1O4laNGAAf+8YHKk4lUoOScFW4tXTx4X/0LsGnOERG3U5HDaH8tWX5eHjx3yyC+7foWX9vjsBklWP57JyU/PAIOR80Fd0eGwcb/u4VWOSsoMDzZ1PcNunWNMztVraYCJefGYSf6yEoAfNpo+gIRdxQVFUXv3r3PePju7yXLZrXw7yu6kD3kDV61DwXAY8ULFH54PRRk10Rst/THe/fTPvNL7IaFlV2fpXe/IWZHqvVUoOScHNyeSJCRQ47hS7seWjJApLY6Xcm6vmcMnUc/x4OMp9DwwDv5O/Jfuwgyt5qU1HWt/WAqnVP+D4Cfmz9Av3+MNjeQACpQco4OrPkagI0+nQmu429yGhFxRr2ahvDP8f9mUsBTpBn18M1Oofj/+mJs/MLsaK7BMPhtzv102fEyAEuibqPfyPtNDiUnqEDJOfFLXQrA8eh+5gYREafWJMSfp+++mZnN3uFXe1s87flYPhtN0XcPgr3Y7HhOy3A4WPX2RLrvngXAz43upO+tz2iuJyeiAiWVVpRzhCYFmwGI6qbj8CJyZv7eHjxxQ192JrzLG/bSFQu8EmdyfNZAOLwT+N/ZfGlpaWZGdQqGw8Gq/xtHz33vALA89l4uumX6SeVJ75f5VKCk0nb99g02i8FOGtKyRRuz44iIC7BYLNzUuxndbn2FBzz+xTHDH7+DSRS91hvHHx+QsnPnWadMqA0KCwtY9coo4jM+BGBVywfofdMjp2xXkSkmpHppKRepsBOT6vmsLx3/tLdeL5pq+gIRqYQujerS5N77eHpeF67Y9Sg92QL/vZM2jQZja3IzjWvhzOMnHDqYQdqb1xBflITDsLC2/UP0vHpyudtWZvFnqR7aAyUVlpKSQvKOHTQ+lgiAVystXCkilVfX34snRw9m7+Uf86LjWkoMK/VSF9Ip8S4is/84r8euyKGt6jr8dT6Pu33TH+S91pcORUkcx5vNF71Ot9OUJ6jYFBNSvVSgpMJiY2NpVNdGKEfJN7xoHZdgdiQRcVEWi4Xh3WO48p7n+Xe9Z9nlCMe3IBPLx9eT98GNkHvwnB63Ioe2quvw17k+7qofPyd83hAaG2lkWEI5MuJr2vW/rkqzSdVTgZIKi4qKol7BLgA2eXekbpD7rvMnIjWjcX1/nhx/Mz9c9DlvOi6nxLDiv+NLCl7sSsnaD6GSy7VWZPb06lqouLKPm3c8n8WvTaDbL2MIsuSxw6sNvuN+pmHrHlWaS6qHFhOuBu68mPDWp/vSKv8PlsROpt9NU82OIyJuZM/hPN785HOuT59BG+seALJCuhA09Flo2NXkdFVr4/rfsS24g9aOHQCsD7mUtre9g83L1+RktZsWE5ZqUZyfTdPj6wEI73KZyWlExN00ru/P42NvYPsV/+Vly0iOG94EHVoLb/Un68NbINv1T9kvKrbzw9wniZ1/Ka0dO8jGn20XvkSH8R+pPLkY7YGqBu66B2rbz/NoueRW9hJOg6lbsdrUv0WkehzNK2LOwhU0XvcsV1l/AaDI4kNR9zsI6HsP+NUzOWHFnDh7uUmTJuxLTcbzx4foYi/9IrrdrwuRo+dQJ6yxySnlBO2BkmqRt3khALuD41WeRKRa1fX34t5hfely9yc8Hf0avzta4GUUELD6RQqfbcOxL6ec80DzmpSSksIf69axYfZddFt4BV3s6ynEky0dHqDF5MUqTy5Mn4JSYZEHfwXAs+XFJicRkdoiJsSf+8eMxHLLQp4NfohNjsZ4O/IJXvsaRc+15dBn95bNZl4eM2fs3p2WzpG18xmd+TiDSxZjsxhsrjeAojsSaX3VFLDqI9iV6RBeNXDHQ3iH926j/ts9KDZsZN+zg/r16psdSURqod92HebXbz+gb8ZsOln/N11Aev04gi68Hd/2/wCbZ9n1y5cvJzk5mWbNmtG7d+9qz2cYBuvWr+Pg4pfpmfUtdSz5AOzxboHPkKcJ79C/2jPIuavM57dmIpcKSf39O+oD2zxb0k7lSURMkJaWRuH+FK658mqOGaN49buPaZP6IRdZ1hFxOBEWJJL9VT2ym/2DsB5X49WkV43N2H3wWA4bln+F1/r3iS9cgc1igAXSPBtREHc3sf3HaI+Tm1GBkorZ9TMAR8N7mRxERGqrExNVAvTu3Zs2/7ydgzmj+XjFahxr5jKocBFh9iMEbpsD2+aQYw2iIKo/7br8g+CgVlWe58Chw2z9ZQG27V/T6fgq+luOl95ggR0B3fHvew9RXYaoOLkpFSg5K8NhJyb7dwAC22j8k4iYo7y9SaF1vLk+4UKMQb1ZuzuThUvnUz/1ey5w/EawI4s6+76AfV8AkOkRxdF6nbA16k5gdHuCo5riVbcheHid8XntdgdHjhwmfc9WjuxIxHIgidCczTR17KafxV66kQWOWOqSFjWQ6IvvonlMx+p5E8RpaAxUNXC3MVB7Nq2i8acJ5Bo+eEzZg4+Pj9mRREROy+Ew2LTvMNtWf4938re0Ov4Hza37y98WC0csdcn2CKHE4oHDYsOOBw6LFe+SHAJKjlLPOIaPpbjc+2daw0hvMIjwuOGEt+mjvU0uTmOgpEplJC2kMbDdtyNdVJ5ExMlZrRbaNwqhfaORwEhyCor5bfc+Dm5ZAftWU+/YBsJK0ojiED6WYkKMI4QUHzn9A1pK/8jGn33ezSgM64Rfk+40bNuLsLBYwiyWGnld4lxUoOSsfPeWTmKX3/BCk5OIiFReHR9PurdqAq2aACOB0rPljuYVsSdjPznpKRRlpWNxlIBhx+IoxuIowTsgmIB6kQSHNmDLzr3s3LO/xs7mE+enAiVnVFSQT7P89WCBsI4JZscREakSFouFegHe1AuIhaZnP0OvqUcgFk/faj+bT1yHCpScUfLan2hjKeIQwTRt083sOCIipoiKiiIqKsrsGOJENNpNzih78yIAUgK7a/kWEXFL5zpbeVXNcm7mbOly7rQHSs6obvqK0v+IucjcICLiNk4ssBsbG3tee3Wq6nH+Or9UZR7nXO9XXY8jNUsFSk4r6+ghmhVvBws06n6J2XFExE04W/E419nKq2qW85qaLV2qlgqUnNbO1QvpYjFItTagUXQzs+OIiJtwtuJxruObqmpclMZXuSYVKDmtoh2LAThQL45GJmcREfeh4iHuwK1GBcfExGCxWE66PPXUUydts379ei688EJ8fHyIjo7mmWeeOeVxPv30U1q1aoWPjw/t27fn22+/ramX4FSiDicC4N1ygMlJREREnItbFSiAxx57jAMHDpRd7rrrrrLbsrOzGTRoEI0bN2bNmjXMmDGDRx55hDfeeKNsmxUrVnDdddcxZswY/vjjD4YOHcrQoUPZuHGjGS/HNGl7kmlk7MduWGjafbDZcURERJyK2x3Cq1OnDhEREeXe9sEHH1BUVMQ777yDl5cXbdu2JSkpieeff57bbrsNgJdeeonBgwdz3333AfD444+zaNEiZs6cyaxZs2rsdZgtdc13RAE7vVrQIjjE7DgiIiJOxe32QD311FPUr1+fzp07M2PGDEpKSspuW7lyJX369MHL638rbyckJLBt2zaOHj1ats3AgQNPesyEhARWrlx52ucsLCwkOzv7pIurs+wuXb7laHi8yUlEREScj1vtgbr77rvp0qUL9erVY8WKFUyZMoUDBw7w/PPPA5Cenk6TJk1Ouk94eHjZbXXr1iU9Pb3sur9uk56eftrnnT59Oo8++mgVvxrzGIZBdPZaAOq07GdyGhER91FVc1eJ+Zx+D9QDDzxwysDwv1+2bt0KwMSJE+nbty8dOnTgjjvu4LnnnuOVV16hsLCwWjNOmTKFrKysssvevXur9fmq256dm4niIMWGjdgu/c2OIyLiNk7MXZWSkmJ2FDlPTr8HatKkSYwePfqM25xuDpC4uDhKSkrYvXs3LVu2JCIigoyMjJO2OfHziXFTp9vmdOOqALy9vfH29j7bS3EZaUmLiAFSvFvS0j/Q7DgiIm5Dk2a6D6cvUKGhoYSGhp7TfZOSkrBarYSFhQEQHx/Pgw8+SHFxMZ6engAsWrSIli1bUrdu3bJtFi9ezIQJE8oeZ9GiRcTH156xQNY9vwKQEx5nchIREfeiuavch9MfwquolStX8uKLL7Ju3TpSUlL44IMPuPfee7nhhhvKytH111+Pl5cXY8aMYdOmTXzyySe89NJLTJw4sexx7rnnHhYuXMhzzz3H1q1beeSRR/j9998ZP368WS+tRjnsDhrnlI5/Cmyjw3ciIiLlcZsC5e3tzccff8xFF11E27ZteeKJJ7j33ntPmuMpKCiIH374gV27dtG1a1cmTZrEtGnTyqYwAOjVqxcffvghb7zxBh07duSzzz5jwYIFtGvXzoyXVeNSkjcRySGKDRu+4a21QriI1EppaWn690/OyOkP4VVUly5dWLVq1Vm369ChA7/88ssZtxk+fDjDhw+vqmguJS3pR5oBu3xakZmWoRXCRaRWqqqFisV9uU2BkqrhsffP8U8RPTXYUURqLf37J2ejAiVl7HYHsbml45/qtumvwY4iUmvp3z85G7cZAyXnb8e2DURwmGJsNO6kCTRFRERORwVKgNIBkxt/+hiAXd6tsXn7m5xIRETEealACVA6YDL48B8A5EX1MjmNiIiIc9MYKAGgUaMYvBzbwFI6/klEREROT3ugBIDsrINEWI5QhAeNOvQxO46IiIhTU4ESADLXLwJgj09rrBr/JCIickYqUAKA974VABxvoPFPIiIiZ6MCJRQV22l2PAmAkHYa/yQiInI2KlDCtm0bCLccpRgPotpq/JOIiMjZqEAJmRuXAJDq0wKLl5/JaURERJyfCpTgsa90EebjET1MTiIiIuIaVKBqObvDoFHOOgACW+rwnYiISEWoQNVy25N30sRyAAcWGnbQAHIREZGKUIGq5fZv+Kn0T88YbP51TU4jIiLiGrSUSy2VlpZGSkoK9pTlAGSHdjM5kYiIiOvQHqhaKiUlhe07kmmYux4Av+a9TU4kIiLiOlSgaqnY2FgCQ8NpxW4AGnQcYG4gERERF6ICVUtFRUURzDFsFoNMWzhe9aLNjiQiIuIyVKBqsZJdvwJwuF5Xk5OIiIi4FhWoWsowDEKPrAXAq6nGP4mIiFSGClQtlXrwKG0d2wFo2FHzP4mIiFSGClQtlZy0HB9LMdmWQLwjWpkdR0RExKWoQNVSBcml8z9lBHcGi8XkNCIiIq5FBaqWCj60BgBrTC+Tk4iIiLgeFahaKO1oHm3tWwCI1Pp3IiIilaYCVQttXb+aYEse+fjg16iL2XFERERcjgpULZS7YxkAB+q0B5uWQxQREaksFahaKCCjdP4ne8MeJicRERFxTSpQtUx2QTFNizYDENqmj8lpREREXJMKVC2zcdsOGlsycWAhuHm82XFERERckgpULXNoc+n4p3TvJuATZHIaERER16QCVctY9/8GQF6Yzr4TERE5VypQtUix3UFUznoAAppdYHIaERER16UCVYts3XeQtuwCIFwDyEVERM6ZClQtsnvjKrwtxWRbg7CGNDU7joiIiMtSgapFinatBOBw3U5aQFhEROQ8qEDVEoZhUPfwHwDYGmkCTRERkfOhAlVL7DtynDaObQCEt73I5DQiIiKuTQWqlti8dRMRlqOUYMO7UVez44iIiLg0FahaImv7cgAy/FqAl5/JaURERFybClQt4X1gDQDFUd1NTiIiIuL6VKBqgeyCYmILNgJQt6Um0BQRETlfKlC1wLqUNFpbUgEIatHb5DQiIiKuTwWqFjiw6Vc8LA6OeoRCUEOz44iIiLg8FahawNibCEB2iBYQFhERqQoqUG6uxO4gPKt0AWGf2HiT04iIiLgHFSg3ty09m45sByC09YUmpxEREXEPKlBuLnnreupacinCE2tkB7PjiIiIuAUVKDeXu3MVAIfqtAIPL5PTiIiIuAcVKDfndzAJAHukBpCLiIhUFRUoN3Y0r4gmhVsAqNeil8lpRERE3IfLFKgnnniCXr164efnR3BwcLnbpKamMmTIEPz8/AgLC+O+++6jpKTkpG2WLl1Kly5d8Pb2plmzZsyZM+eUx3n11VeJiYnBx8eHuLg4Vq9eXQ2vqPqt351BG8seAPxj40xOIyIi4j5cpkAVFRUxfPhwxo4dW+7tdrudIUOGUFRUxIoVK5g7dy5z5sxh2rRpZdvs2rWLIUOG0K9fP5KSkpgwYQL//Oc/+f7778u2+eSTT5g4cSIPP/wwa9eupWPHjiQkJJCZmVntr7GqpW1NxMtiJ9cWBHVjzI4jIiLiNiyGYRhmh6iMOXPmMGHCBI4dO3bS9d999x2XXXYZaWlphIeHAzBr1izuv/9+Dh48iJeXF/fffz/ffPMNGzduLLvftddey7Fjx1i4cCEAcXFxdO/enZkzZwLgcDiIjo7mrrvu4oEHHqhQxuzsbIKCgsjKyiIwMLAKXvW5ee/FB7jx2OvsC+1Dw3FfmZZDRETEFVTm89tl9kCdzcqVK2nfvn1ZeQJISEggOzubTZs2lW0zcODAk+6XkJDAypUrgdK9XGvWrDlpG6vVysCBA8u2KU9hYSHZ2dknXczmcBjUO7oBAK/G3U1OIyIi4l7cpkClp6efVJ6Asp/T09PPuE12djb5+fkcOnQIu91e7jYnHqM806dPJygoqOwSHR1dFS/pvCQfzKWtsQOA+hpALiIiUqVMLVAPPPAAFovljJetW7eaGbFCpkyZQlZWVtll7969ZkdiU3IKMdYMAGzR3UxOIyIi4l48zHzySZMmMXr06DNuExsbW6HHioiIOOVsuYyMjLLbTvx54rq/bhMYGIivry82mw2bzVbuNiceozze3t54e3tXKGdNObq9dALNwz6Nqe8bbG4YERERN2NqgQoNDSU0NLRKHis+Pp4nnniCzMxMwsLCAFi0aBGBgYG0adOmbJtvv/32pPstWrSI+PjSRXa9vLzo2rUrixcvZujQoUDpIPLFixczfvz4KslZUzzT1wJQGN7Z5CQiIiLux2XGQKWmppKUlERqaip2u52kpCSSkpLIzc0FYNCgQbRp04Ybb7yRdevW8f333/PQQw8xbty4sr1Dd9xxBykpKfzrX/9i69atvPbaa8ybN49777237HkmTpzIm2++ydy5c9myZQtjx44lLy+Pm2++2ZTXfS6yC4pplL8ZgMBmPU1OIyIi4n5M3QNVGdOmTWPu3LllP3fuXLpnZcmSJfTt2xebzcbXX3/N2LFjiY+Px9/fn1GjRvHYY4+V3adJkyZ888033Hvvvbz00ks0bNiQt956i4SEhLJtRowYwcGDB5k2bRrp6el06tSJhQsXnjKw3JmtSz1KR8tOAAI0gaaIiEiVc7l5oFyB2fNAvfvVj9y0ZhjFFk88H0zTIsIiIiIVUCvngZL/KdidCMDRwNbg4UVaWhrLly8nLS3N5GQiIiLuwWUO4UnFGIZBncPrACio3w6AlJQUkpOTAYiKijItm4iIiLtQgXIzuw7l0caxA6yQ69sA+N9UEBWdEkJERETOTAXKzazblcEQyx4A6rcfBJTuddKeJxERkaqjMVBu5uCO3/Cy2MnzqEt4S62BJyIiUh1UoNyMJW0NALkhHcFiMTmNiIiIe1KBciOFJXbCcjYB4BOjvU8iIiLVRQXKjWw5kEM7UgAIjO1hchoRERH3pQLlRjbv2kdT6wEALA26mJxGRETEfalAuZGjyb8BkO0dCf4hJqcRERFxXypQbsQj4w8ACsI6mJxERETEvalAuYnsgmIaHN8GQEATDSAXERGpTipQbmLDvizaW0oHkPs17mZyGhEREfemAuUmtqTsobE1s/SHqE6mZhEREXF3WsrFTeTuKh1AnuUbTZBvXZPTiIiYy263U1xcbHYMcTKenp7YbLYqeSwVKDfhnbkOgJKITuYGERExkWEYpKenc+zYMbOjiJMKDg4mIiICy3mu1qEC5eLS0tL4fVMyTYp2gA3qxGoAuYjUXifKU1hYGH5+fuf9ISnuwzAMjh8/TmZm6XCXyMjI83o8FSgXl5KSwq9b93G3tXQAuVe0BpCLSO1kt9vLylP9+vXNjiNOyNfXF4DMzEzCwsLO63CeBpG7uNjYWGxeXjSwHMaBBSI1B5SI1E4nxjz5+fmZnESc2Ynfj/MdI6cC5eKioqKoV5QGQE5AE/CuY3IiERFz6bCdnElV/X6oQLk4h8PA9/B6AIzIzianERERqR1UoFzcrsN5tLQnA1AntofJaURE5Fz07duXCRMmmB0DgAULFtCsWTNsNhsTJkxgzpw5BAcHmx3L6ahAubh1qUfp+OcAclvDLianERERZ7R06VIsFkuFpne4/fbbufrqq9m7dy+PP/44I0aMYPv27WW3P/LII3Tq1Kn6wroInYXn4nbvSuYqSxYObFjD25kdR0REXFhubi6ZmZkkJCQQFRVVdv2Js9fkf7QHysUVpv4OQE5Qc/DSmSciIn9lGAbHi0pMuRiGUamsJSUljB8/nqCgIEJCQpg6depJj1FYWMjkyZNp0KAB/v7+xMXFsXTp0rLb9+zZw+WXX07dunXx9/enbdu2fPvtt+zevZt+/foBULduXSwWC6NHjz7l+ZcuXUqdOqUnIvXv3x+LxcLSpUtPOoQ3Z84cHn30UdatW4fFYsFisTBnzpxKvU53oT1QLqyoxEHQsU1gBWsDDSAXEfm7/GI7baZ9b8pzb34sAT+vin/Mzp07lzFjxrB69Wp+//13brvtNho1asStt94KwPjx49m8eTMff/wxUVFRfPHFFwwePJgNGzbQvHlzxo0bR1FREcuWLcPf35/NmzcTEBBAdHQ08+fPZ9iwYWzbto3AwMBy9yj16tWLbdu20bJlS+bPn0+vXr2oV68eu3fvLttmxIgRbNy4kYULF/Ljjz8CEBQUdH5vlItSgXJh2zNyaGeUDiAPaKIZyEVEXFl0dDQvvPACFouFli1bsmHDBl544QVuvfVWUlNTmT17NqmpqWWH1iZPnszChQuZPXs2Tz75JKmpqQwbNoz27dsDpfMEnlCvXj0AwsLCTjsg3MvLi7CwsLLtIyIiTtnG19eXgIAAPDw8yr29NlGBcmEb9x0jwboLAEuU9kCJiPydr6eNzY8lmPbcldGzZ8+T5iiKj4/nueeew263s2HDBux2Oy1atDjpPoWFhWWzrt99992MHTuWH374gYEDBzJs2DA6dNDkytVFBcqFpe7eTl1LLnaLB7bwtmbHERFxOhaLpVKH0ZxVbm4uNpuNNWvWnLL8SEBAAAD//Oc/SUhI4JtvvuGHH35g+vTpPPfcc9x1111mRHZ7GkTuwkr2/QFAbmBz8PA2OY2IiJyPxMTEk35etWoVzZs3x2az0blzZ+x2O5mZmTRr1uyky18PpUVHR3PHHXfw+eefM2nSJN58802g9PAclK4XeL68vLyq5HFcnQqUiyodQL4ZAFuDTuaGERGR85aamsrEiRPZtm0bH330Ea+88gr33HMPAC1atGDkyJHcdNNNfP755+zatYvVq1czffp0vvnmGwAmTJjA999/z65du1i7di1LliyhdevWADRu3BiLxcLXX3/NwYMHyc3NPeecMTEx7Nq1i6SkJA4dOkRhYeH5v3gXpALlorZn5NCa0vFP/o01gaaIiKu76aabyM/Pp0ePHowbN4577rmH2267rez22bNnc9NNNzFp0iRatmzJ0KFD+e2332jUqBFQundp3LhxtG7dmsGDB9OiRQtee+01ABo0aMCjjz7KAw88QHh4OOPHjz/nnMOGDWPw4MH069eP0NBQPvroo/N74S7KYlR2ogo5q+zsbIKCgsjKyiIwMLBanuOj1an0/+ZCwi3HYMwiiNYyLiJSuxUUFLBr1y6aNGmCj4+P2XHESZ3p96Qyn9/aA+Widu3aSbjlGA6soAHkIiIiNUoFykUV7UsCIK9OLHj5mxtGRESkllGBckGFJfbSGcgBa1RHk9OIiIjUPipQLmh7ei6t2Q2AX2NNoCkiIlLTVKBc0Pr9x2h3YgbyyE7mhhEREamFVKBcUMqeVBpaDpX+ENHe3DAiIiK1kAqUCyrYmwRAnn8j8A02NYuIiEhtpALlYv46gNwSqQHkIiIiZlCBcjHb0nNo9ecAcl/NQC4iImIKFSgXs35fFm0tuwHtgRIREfPMmTOH4OBgs2MwevRohg4dWuPPqwLlYnakptHUeqD0BxUoERFxUrt378ZisZCUlOSUj3e+VKBcTP6fA8jzfSPAP8TcMCIiYpqioiKzI1QJV30dKlAupKDYTp2jm0t/0N4nEZGzMwwoyjPnYhgVjpmTk8PIkSPx9/cnMjKSF154gb59+zJhwoSybWJiYnj88ce56aabCAwM5LbbbgNg/vz5tG3bFm9vb2JiYnjuuedOemyLxcKCBQtOui44OJg5c+YA/9uz8/nnn9OvXz/8/Pzo2LEjK1euPOk+c+bMoVGjRvj5+XHllVdy+PDhM76mJk2aANC5c2csFgt9+/YF/nfI7YknniAqKoqWLVtWKOfpHu+EZ599lsjISOrXr8+4ceMoLi4+Y77z5VGtjy5Valt6Dm0spRNoFgc3w9fkPCIiTq/4ODwZZc5z/zutwmuVTpw4kV9//ZUvv/yS8PBwpk2bxtq1a+nUqdNJ2z377LNMmzaNhx9+GIA1a9ZwzTXX8MgjjzBixAhWrFjBnXfeSf369Rk9enSl4j744IM8++yzNG/enAcffJDrrruO5ORkPDw8SExMZMyYMUyfPp2hQ4eycOHCsgyns3r1anr06MGPP/5I27Zt8fLyKrtt8eLFBAYGsmjRogrnO9PjLVmyhMjISJYsWUJycjIjRoygU6dO3HrrrZV6DypDBcqFrN+fRfc/B5Dvs9enjblxRESkCuTk5DB37lw+/PBDBgwYAMDs2bOJijq1+PXv359JkyaV/Txy5EgGDBjA1KlTAWjRogWbN29mxowZlS5QkydPZsiQIQA8+uijtG3bluTkZFq1asVLL73E4MGD+de//lX2PCtWrGDhwoWnfbzQ0FAA6tevT0RExEm3+fv789Zbb51Ugs7mTI9Xt25dZs6cic1mo1WrVgwZMoTFixerQEmp/Lxsmlv2AVCvXX+T04iIuABPv9I9QWY9dwWkpKRQXFxMjx49yq4LCgoqO7T1V926dTvp5y1btnDFFVecdN0FF1zAiy++iN1ux2azVThuhw4dyv47MjISgMzMTFq1asWWLVu48sorT9o+Pj7+jAXqTNq3b1+p8nQ2bdu2Pem1RkZGsmHDhip7/PKoQLmQ21oWwi8Ghl8oEc06mR1HRMT5WSwVPozmCvz9K/9aLBYLxt/GY5U3PsjT0/Ok+wA4HI5KP19FlPc6KpqzPH/NfuKxqiv7CRpE7koOrAPAEtmh9B8FERFxebGxsXh6evLbb7+VXZeVlcX27dvPet/WrVvz66+/nnTdr7/+SosWLcr2yISGhnLgwIGy23fs2MHx48crlbF169YkJiaedN2qVavOeJ8Te5jsdnuFnuNsOSv7eNVNe6BcScEx8PDVGXgiIm6kTp06jBo1ivvuu4969eoRFhbGww8/jNVqLdsTdDqTJk2ie/fuPP7444wYMYKVK1cyc+ZMXnvttbJt+vfvz8yZM4mPj8dut3P//fefssfmbO6++24uuOACnn32Wa644gq+//77sx6+CwsLw9fXl4ULF9KwYUN8fHwICgo67fZny1nZx6tu2gPlSi6cBP/eX/qniIi4jeeff574+Hguu+wyBg4cyAUXXEDr1q3x8fE54/26dOnCvHnz+Pjjj2nXrh3Tpk3jscceO2kA+XPPPUd0dDQXXngh119/PZMnT8bPr2Ljs07o2bMnb775Ji+99BIdO3bkhx9+4KGHHjrjfTw8PHj55Zf5v//7P6Kiok4Zq/V3Z8tZ2cerdoaL+M9//mPEx8cbvr6+RlBQULnbAKdcPvroo5O2WbJkidG5c2fDy8vLaNq0qTF79uxTHmfmzJlG48aNDW9vb6NHjx5GYmJipbJmZWUZgJGVlVWp+4mIyLnLz883Nm/ebOTn55sd5bzl5uYaQUFBxltvvWV2FLdzpt+Tynx+u8weqKKiIoYPH87YsWPPuN3s2bM5cOBA2eWv6+Ps2rWLIUOG0K9fP5KSkpgwYQL//Oc/+f7778u2+eSTT5g4cSIPP/wwa9eupWPHjiQkJJCZmVldL01ERGq5P/74g48++oidO3eydu1aRo4cCWD+XhY5LZcZA/Xoo48ClM1IejrBwcGnzA9xwqxZs2jSpEnZLK2tW7dm+fLlvPDCCyQkJAClu1FvvfVWbr755rL7fPPNN7zzzjs88MAD5T5uYWEhhYWFZT9nZ2dX6rWJiIg8++yzbNu2DS8vL7p27covv/xCSIiW7HJWLrMHqqLGjRtHSEgIPXr04J133jnplMiVK1cycODAk7ZPSEgom66+qKiINWvWnLSN1Wpl4MCBp0xp/1fTp08nKCio7BIdHV3Fr0pERNxZ586dWbNmDbm5uRw5coRFixbRvn17s2PJGbhVgXrssceYN28eixYtYtiwYdx555288sorZbenp6cTHh5+0n3Cw8PJzs4mPz+fQ4cOYbfby90mPT39tM87ZcoUsrKyyi579+6t2hcmIiIiTsXUQ3gPPPAATz/99Bm32bJlC61atarQ452Yyh5K23xeXh4zZszg7rvvPq+cZ+Pt7Y23t3e1PoeIiFSMUYlFfKX2qarfD1ML1KRJk866Vk9sbOw5P35cXByPP/44hYWFeHt7ExERQUZGxknbZGRkEBgYiK+vLzabDZvNVu42pxtXJSIizuHEnEHHjx/H11fLrUv5TkzOWdm5sP7O1AIVGhpatjhgdUhKSqJu3bple4fi4+P59ttvT9pm0aJFxMfHA5QN3Fu8eHHZ2XsOh4PFixczfvz4asspIiLnz2azERwcXHbWtJ+f31knopTawzAMjh8/TmZmJsHBwZVaJ7A8LnMWXmpqKkeOHCE1NRW73U5SUhIAzZo1IyAggK+++oqMjAx69uyJj48PixYt4sknn2Ty5Mllj3HHHXcwc+ZM/vWvf3HLLbfw008/MW/ePL755puybSZOnMioUaPo1q0bPXr04MUXXyQvL6/srDwREXFeJ44WaOoZOZ0zna1fGRbDRQ4Wjx49mrlz555y/ZIlS+jbty8LFy5kypQpJCcnYxgGzZo1Y+zYsdx6661Yrf8bK7906VLuvfdeNm/eTMOGDZk6deophxFnzpzJjBkzSE9Pp1OnTrz88svExcVVOGt2djZBQUFkZWURGBh4zq9ZRETOjd1ur/BCtFJ7eHp6nnHPU2U+v12mQLkSFSgRERHXU5nPb7eaxkBERESkJqhAiYiIiFSSCpSIiIhIJbnMWXiu5MSwMq2JJyIi4jpOfG5XZHi4ClQ1yMnJAdCaeCIiIi4oJyeHoKCgM26js/CqgcPhIC0tjTp16lT5JG7Z2dlER0ezd+9eneF3FnqvKk7vVcXpvao4vVcVp/eq4qrzvTIMg5ycHKKiok6aAqk82gNVDaxWKw0bNqzW5wgMDNRfsgrSe1Vxeq8qTu9Vxem9qji9VxVXXe/V2fY8naBB5CIiIiKVpAIlIiIiUkkqUC7G29ubhx9+uGyBZDk9vVcVp/eq4vReVZzeq4rTe1VxzvJeaRC5iIiISCVpD5SIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSLeOKJJ+jVqxd+fn4EBweXu43FYjnl8vHHH9dsUCdRkfcrNTWVIUOG4OfnR1hYGPfddx8lJSU1G9QJxcTEnPJ79NRTT5kdy2m8+uqrxMTE4OPjQ1xcHKtXrzY7ktN55JFHTvkdatWqldmxnMKyZcu4/PLLiYqKwmKxsGDBgpNuNwyDadOmERkZia+vLwMHDmTHjh3mhDXZ2d6r0aNHn/J7Nnjw4BrLpwLlIoqKihg+fDhjx44943azZ8/mwIEDZZehQ4fWTEAnc7b3y263M2TIEIqKilixYgVz585lzpw5TJs2rYaTOqfHHnvspN+ju+66y+xITuGTTz5h4sSJPPzww6xdu5aOHTuSkJBAZmam2dGcTtu2bU/6HVq+fLnZkZxCXl4eHTt25NVXXy339meeeYaXX36ZWbNmkZiYiL+/PwkJCRQUFNRwUvOd7b0CGDx48Em/Zx999FHNBTTEpcyePdsICgoq9zbA+OKLL2o0j7M73fv17bffGlar1UhPTy+77vXXXzcCAwONwsLCGkzofBo3bmy88MILZsdwSj169DDGjRtX9rPdbjeioqKM6dOnm5jK+Tz88MNGx44dzY7h9P7+b7bD4TAiIiKMGTNmlF137Ngxw9vb2/joo49MSOg8yvt8GzVqlHHFFVeYkscwDEN7oNzMuHHjCAkJoUePHrzzzjsYmuarXCtXrqR9+/aEh4eXXZeQkEB2djabNm0yMZlzeOqpp6hfvz6dO3dmxowZOrRJ6V7NNWvWMHDgwLLrrFYrAwcOZOXKlSYmc047duwgKiqK2NhYRo4cSWpqqtmRnN6uXbtIT08/6XcsKCiIuLg4/Y6dxtKlSwkLC6Nly5aMHTuWw4cP19hzazFhN/LYY4/Rv39//Pz8+OGHH7jzzjvJzc3l7rvvNjua00lPTz+pPAFlP6enp5sRyWncfffddOnShXr16rFixQqmTJnCgQMHeP75582OZqpDhw5ht9vL/b3ZunWrSamcU1xcHHPmzKFly5YcOHCARx99lAsvvJCNGzdSp04ds+M5rRP/9pT3O1bb/10qz+DBg7nqqqto0qQJO3fu5N///jeXXHIJK1euxGazVfvzq0CZ6IEHHuDpp58+4zZbtmyp8ODLqVOnlv13586dycvLY8aMGW5ToKr6/apNKvPeTZw4sey6Dh064OXlxe2338706dNNXzpBXMMll1xS9t8dOnQgLi6Oxo0bM2/ePMaMGWNiMnEn1157bdl/t2/fng4dOtC0aVOWLl3KgAEDqv35VaBMNGnSJEaPHn3GbWJjY8/58ePi4nj88ccpLCx0iw++qny/IiIiTjl7KiMjo+w2d3M+711cXBwlJSXs3r2bli1bVkM61xASEoLNZiv7PTkhIyPDLX9nqlJwcDAtWrQgOTnZ7ChO7cTvUUZGBpGRkWXXZ2Rk0KlTJ5NSuY7Y2FhCQkJITk5WgXJ3oaGhhIaGVtvjJyUlUbduXbcoT1C171d8fDxPPPEEmZmZhIWFAbBo0SICAwNp06ZNlTyHMzmf9y4pKQmr1Vr2PtVWXl5edO3alcWLF5ed3epwOFi8eDHjx483N5yTy83NZefOndx4441mR3FqTZo0ISIigsWLF5cVpuzsbBITE896BrbAvn37OHz48EnlszqpQLmI1NRUjhw5QmpqKna7naSkJACaNWtGQEAAX331FRkZGfTs2RMfHx8WLVrEk08+yeTJk80NbpKzvV+DBg2iTZs23HjjjTzzzDOkp6fz0EMPMW7cOLcpnOdi5cqVJCYm0q9fP+rUqcPKlSu59957ueGGG6hbt67Z8Uw3ceJERo0aRbdu3ejRowcvvvgieXl53HzzzWZHcyqTJ0/m8ssvp3HjxqSlpfHwww9js9m47rrrzI5mutzc3JP2xO3atYukpCTq1atHo0aNmDBhAv/5z39o3rw5TZo0YerUqURFRdXKKWnO9F7Vq1ePRx99lGHDhhEREcHOnTv517/+RbNmzUhISKiZgKad/yeVMmrUKAM45bJkyRLDMAzju+++Mzp16mQEBAQY/v7+RseOHY1Zs2YZdrvd3OAmOdv7ZRiGsXv3buOSSy4xfH19jZCQEGPSpElGcXGxeaGdwJo1a4y4uDgjKCjI8PHxMVq3bm08+eSTRkFBgdnRnMYrr7xiNGrUyPDy8jJ69OhhrFq1yuxITmfEiBFGZGSk4eXlZTRo0MAYMWKEkZycbHYsp7BkyZJy/20aNWqUYRilUxlMnTrVCA8PN7y9vY0BAwYY27ZtMze0Sc70Xh0/ftwYNGiQERoaanh6ehqNGzc2br311pOmpqluFsPQee4iIiIilaF5oEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKROQsDh48SEREBE8++WTZdStWrMDLy4vFixebmExEzKLFhEVEKuDbb79l6NChrFixgpYtW9KpUyeuuOIKnn/+ebOjiYgJVKBERCpo3Lhx/Pjjj3Tr1o0NGzbw22+/4e3tbXYsETGBCpSISAXl5+fTrl079u7dy5o1a2jfvr3ZkUTEJBoDJSJSQTt37iQtLQ2Hw8Hu3bvNjiMiJtIeKBGRCigqKqJHjx506tSJli1b8uKLL7JhwwbCwsLMjiYiJlCBEhGpgPvuu4/PPvuMdevWERAQwEUXXURQUBBff/212dFExAQ6hCcichZLly7lxRdf5L333iMwMBCr1cp7773HL7/8wuuvv252PBExgfZAiYiIiFSS9kCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVNL/A7HAAmZTKmL3AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -744,7 +744,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/ZUlEQVR4nO3deVxU5f7A8c+ZYd9F1gEUEBUXBFfEpbQsNLMsM9tts65pXbP9Vrbd8ravlr9bt6zbvmmLZZpp5ZILCpIri4rIorgAIuvM+f3BZXKGAQYEZuH7fr14KTPPOeeZ4Szf8zzP+T6KqqoqQgghhBDCahpbV0AIIYQQwtFIACWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0koutK+CMDAYDBQUF+Pr6oiiKrasjhBBCCCuoqkp5eTk6nQ6Npvk2JgmgOkBBQQFRUVG2roYQQggh2uDQoUNERkY2W0YCqA7g6+sL1P8B/Pz8bFwbIYQQQlijrKyMqKgo43W8ORJAdYCGbjs/Pz8JoIQQQggHY83wGxlELoQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIYQQQrSSBFBCCCGEEK0kAZQQQgghRCtJACWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACeEkCgoKWLduHQUFBbauihBCOD0XW1dACNE+cnNzyc7OBkCn09m4NkII4dwkgBLCScTGxpr8K4QQouNIACWEk9DpdNLyJIQQnUTGQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIYQQQrSSBFBCCCGEEK0kAZQQQgghRCtJACVEOykoKGDdunUUFBTYuipCCCE6mEwmLEQ7yc3NJTs7G0Am9RVCCCcnAZQQ7SQ2NtbkXyGEEM5LAigh2olOp+uwlqeCggJyc3OJjY1Fp9M1+r291iuEEMI6EkAJ4QDMuwfbq7tQuh2FEKJtJIASwgGYdw+2V3ehdDsKIUTbKKqqqrauhLMpKyvD39+f0tJS/Pz8bF0dIYQQQlihNddvSWMghDAh6RiEEKJl0oUnhDAh46KEEKJlEkAJIUzIuCghhGiZdOEJYWcyMjL48MMPycjIaLKMdLMJIYRtSQuUEHYmMzOT/Px8ABITEy2W6chuNunCE0KIlkkAJYSdSUhIMPnXko7sZjNft6Vkm5KAUwhhK/Zy/pEASgg7k5iY2GTLU4OOzHpuvm5LLVLSSiWEsBV7Of9IACWEnbH1NC3my1lq7ZKB5kIIW7GX848EUELYmHnA0pHTtFgTVKWnp5OVlUVZWZmxNcq8bEe2gAkhRHPs5fwjAZQQNmYe6HTkNC3WBGcVFRVUVVVRUVFxVtsXQoiOIGOghBBA40CnrXdX5icVS+uxJjjz9vbGw8MDb2/vVtfhbNnLiVEIYb/MW8ltRQIoIWzMmoDJmsDCmtYla7YVERHB8ePHiYiIsKL27cteBocKIexXRUUFlZWVNm8ll0SaQrQTa5JbtjUBZkNgkZub2+R6fH19cXFxwdfXt8ky1iTpLC8vp66ujvLycqs/R3sl9oyNjSUuLs7mg0OFEPbL29sbT09Pm7SSn0laoIRoI/NWIUvNyu01QNy86239+vXk5ORQWFjI9OnTgcaBj6VtbdmyhaKiIqqqqppMlWBNN5/5utur5cheBocKIeyXLVvJz+RQLVC//fYbU6ZMQafToSgKy5YtM3lfVVUWLFhAeHg4np6eTJgwgaysLJMyx48f59prr8XPz4+AgABuueUWTp06ZVJmx44djB07Fg8PD6Kionjuuec6+qMJB2TeKmRJeno6aWlppKenA9a1sFhqzdHpdIwZM8YYXJSWllJXV0dpaamxjPm6zVukoP4YMRgMqKra5PbNt2WpPubbkpYjIURnsaaVvDM4VAtURUUFiYmJ3HzzzVx++eWN3n/uued47bXXeP/994mJieHRRx8lNTWVXbt24eHhAcC1115LYWEhq1atora2lptuuonbbruNjz/+GICysjIuvPBCJkyYwOLFi8nMzOTmm28mICCA2267rVM/r7AflsYgmbfUJCUl4efnd9ZBhDUDJIcPH05mZqZJtnLz1pvDhw9z7NgxDh8+bGxtUhQFjUaDoihW18dS65L5tqTlSAjRWSQPVBtMmjSJSZMmWXxPVVVeeeUVHnnkES699FIAPvjgA0JDQ1m2bBlXXXUVu3fvZsWKFWzZsoVhw4YB8Prrr3PRRRfxwgsvoNPp+Oijj6ipqeHdd9/Fzc2NAQMGkJ6ezksvvdRkAFVdXU11dbXx97Kysnb+5MLW2hpEmAdV7ZVGwJps5ZbExcVRWVlJXFyc1ctYaskSQghbsZcbNofqwmvO/v37KSoqYsKECcbX/P39SU5OZuPGjQBs3LiRgIAAY/AEMGHCBDQaDZs2bTKWOeecc3BzczOWSU1NZe/evZw4ccLithcuXIi/v7/xJyoqqiM+orChtnZRmXeHWVqP+cDu9kojkJSUxNChQ0lKSjK+dvr0aQwGA6dPn25yOfMuO0vN5e01aFwIIRyVQ7VANaeoqAiA0NBQk9dDQ0ON7xUVFRESEmLyvouLC4GBgSZlYmJiGq2j4b1u3bo12vZDDz3E/Pnzjb+XlZVJEOVkOvKOJzMzk/z8fKC+ZclSV2BLaQxq6gycrqlDq1HwdnNBo1HaXGdrEnu216BxyfskhGiJvZ4nnCaAsiV3d3fc3d1tXQ3hACwFHg3jmM4cz3QmVVVZsWE727IL0f5Zim/AQaqPZKEtO4S2rgLXutN4qJV4KVUY0FChelCn9aJW60GV4okmMIaAHv2JCgnENzCWuIE+JPVrugvPmsSe5mUsneDaK3eVEKJra3Se2P8b7P4eBl4OPUbarF5OE0CFhYUBUFxcTHh4uPH14uJiYxdGWFgYR44cMVmurq6O48ePG5cPCwujuLjYpEzD7w1lhLDEmoDBUmuO+XimnJwcNu0+wOqD1VQY9qLs/51+NZlcq+QTU1lIWJFZV3JTR7H6v58SMBxVKCSQg4ZQ9qpRvL15EJqeI+nbuy/DYwKJ7u5lHFhuTcuVeRlLA9+tCY7sZTCoEMJ+mZ8n1MwvUba9D6gSQLWHmJgYwsLCWL16tTFgKisrY9OmTcyePRuAlJQUTp48SVpaGkOHDgXgl19+wWAwkJycbCzz8MMPU1tbi6urKwCrVq2ib9++FrvvRNdlTR4oc5aCk4b1eAZFsPFwDfs2pZF4+g8ma3bST5NXX8jsSK12C6TOvwd4BKBx90br4ceBw8WUlZ4kwNsdXXAAVaeOoy8/il9NMe76CiI4RoT2GKPYBdU/wT7I3xvEFkNfPvQaic/AixifFMegCH80muaf0jP/7JYGvlsTHNnLYFAhhP0yOU8YDFRmfo8XsLSsL5fZsF4OFUCdOnXKeEcL9QPH09PTCQwMpEePHsybN49//vOf9O7d25jGQKfTMXXqVAD69evHxIkTmTVrFosXL6a2tpa5c+dy1VVXGf8411xzDU888QS33HILDzzwAH/++SevvvoqL7/8si0+srBj7TEfU1WtnvfW7mHPvt0k1/2bqdr1RColJkfm6YA+uPUeh0vkUOjeG7rHsmdfnjGNQUPrVfYPP5CVlUXv3r2Ju+givBpWoKpw+jgcz4Vj2VTnbaVm/wa8T+whUikhUlvCZdXrqdn6Chs2D+Q5t5G4DryES0cnEhfia7Flzbx1yZqB7/Y6jkEI4UAKtuNVe4xy1ZO1x4MlgLLW1q1bGT9+vPH3hoHbM2fOZMmSJdx///1UVFRw2223cfLkScaMGcOKFSuMOaAAPvroI+bOncv555+PRqNh2rRpvPbaa8b3/f39WblyJXPmzGHo0KEEBQWxYMECyQElWtSaPFAV1XV8/McBsn77lKtrl/KwJtt4NNa4+EL/S3DrMwGix+LlE9xo+czM5SYDzy1tv1HA4t0doobjnnQ17gDV5ZRk/ER55o90O7aFgNMHGafNYJw+g9r0d/h52xA+C7oUl5B4AisPA391xZm3LlnKDGxNtnIJqoQQrVG3ezkuwK+GQfQPsm0I41AB1Lhx45rNoKwoCk8++SRPPvlkk2UCAwONSTObMmjQIH7//fc211N0DeYBS3Pdcw0BQmllLR/8nk3xxg+ZqV/KLM1h0IABLTUx5+Ex9Brc+k4CV89m19PSwHOwYgySuy97asLI1o4lbtRNjOkbQu2u7yhP+4LAst1M0m5h0okt5B8PYpk6jo3eEfSvqCHQ263RZ7WU6sA8f1RHPs0nhOgaKnd+jy/wh3Yos0cn2bQuDhVACWFPrBm/09DNd7K0lN/za8hcvpjb1S+J0hwFTX1rU0nsZWyo6UfvpNEkDkz8X7CUZtIqY013oTXpB8yZBDnBfXA99x7+qOjH8T3rGO6WTc+TG4msK2Gu8iVVu77hq53ncXTQbZybEEfF0XxjHS1tyzyosvR9SZJOIURLGm4gewe7E3pyL3pVoTxkeKtmVOgIEkAJ0cGKatz5c/t+/lbzGDM0WaDAKcUXr/HzcRtxK798+S35RflUZWaSmJhoVauMee4oaNsTbU3NKXVMG0pO7Bj6XvA+hl3fUrb2dQJOZHKt8hN1mav4LmMUazxSuaDKYAyMWkp1YIml6WaEEOJMDefE8LxdhAJb1b74qJXk5ubatOVaAigh2qil8TvlVbWsOqRnSOkqrtWuRqNRqVE8yOyWiuvoOQwaWv/kp3l3nKXAw3yMkaUuPPMgZv369eTk5FBYWMj06dOB+qznZw4+t7Qtk65JV08yiScz8HZG9q+le86XdCtaz2XadVxSs55lv53D/1XCeQNjKD580OS7kCfshBCtZem82tBS7XN0KwC/MowJCT1snv5EAigh2qi5lqJteSf44sPFPFK9iO4u9a07VX0vw2PyMwz1My1rzbx25i1F1ixTWlpKXV0dpaWlxtfMW66OHj3KgQMH8PX1bTLw2bJlC0VFRVRVh3Hr336Aw9so+vYJworXMk35laqtG/ho6yR2+Y9nikFt1QDx9pqAWQjhHCydV8vLy1Fqyul+on66q8LuIzl86CCBAX7SAiWEvWlrUky9QeXfP/+J3++Ps1D7MyhwxEVH2cgHiJtwo1XbtnQCactYoeHDhxtbmxqYt1xZ6go05+/vT0lJCf7+/vUvRAwhO+E+tipJDC77iYjTu7mFbzlR+gsfrL8G36h4hsYEW9UVKa1UQogzWTqvxsbGElT8Oy7UkWMIR9G4k5+fCzR93uoMEkAJYUFbLv7b9x7g30tXMP/0a/TW1j/2fyDycn7TjibWI444rJvyxFKw1NRYpeZYaqUyfy0yMpITJ04QGRnZ5Hr69OlDdXU1ffr0Mb4WGxtLLhegxNxGXVk6p75/hG4Vufy9+t+kv/czr/f5BxNSko1lhRDCGk3dVHkX/QHAz4ahTB0RR15WTbNPIXcGCaCEsMA8iGmpRWpb3gmWf/Qqrygf4K6po9I9CI/pb+PmFU/s/5YDy4GZ+WuWgqWOmvKk4TO6uDR9Kmg2eFMUXPpNJqDvRCrW/x+aNf8kiVwSsmbxWdaF7Ay8iOk+Pla3MkleKCGEudzsLAaXbAYgP/hcbk8eAslDbFwrCaCEsMj86bDmWqS+3XaQ0mX38ajmJwBO6M6l27XvgncQFBSYlG2qebq5fxu22REBhTWBmVX5mzRavMfeAUmXc2zp/XTP/YZr+Ini45tY9N2N6HrFU5i7t1H2dPOAyZpkmxJkCeE8rDm+471O4K2e5rjqQ+Sgc21c479IACWEFSwFEYcPH2bRj1u58OCLXKKtH9xYM+5Rup17D/wvP4l5QNCWiXo7UlvrY/59mJz0bviAuuy1nPzsDkJrD/Ok/hWWvZjBZr/JeJ0upqqqyhhAmX8/lrovrcloLoRwTNYc335H6luf1hgGc/4A+znmJYASwgLztAHmQUR1nZ5nP/+FOSf+RV9tPrUadw4NfYQN+YEk7NjRqtxMzhAQmCf6dIkbR83137Pnh8fpU/QtU1nDiNIMXjFcQ5S3v3E58+/Hmu7LjurOFEJ0vhaPb1WlOvMb3IDt7slcHuxji2paJAGUEBaYX8jPbGEJDA7lmXc/Y8HJfxCkKaPCLQjvG79kwy87Gz3RZk0LT3tl425L11Zbu8PMg76KigqqqqqoqKj4q0xeAdke51E5ZBTRu95AV3WI57Rv8OneiaRlj2FoXHij9VrTfSlP7gnhPFo8vo/uxbcyn2rVhVPdB9k8+/iZJIASwgLzC3lDwFCtV/l12c/cU/wA/sppjnrGor/8Xbx1g0lI0ADNz09nSVuesLPEmule2mMZaPz9eHt74+Hhgbe3d6MyobGxdJt4PbvfmUW/I8u5ihXs/CCVj5JfIsrPndycHMD6Lk4hRNdh2PUtGmCdIYEJQ+NtXR0TEkAJYQVfX1/0igs/bspgQcU/8VMqKfKOZ3X3m+hZXEFYb8tpA9qaT8qcNQMtKyoqqKysNGkFaklbloHGd4ktJsR088Z/6gts3ziMuJ0vM4CDRG++hnf97iAm8TzpjhNCWFSZsRRv4DftSB4Z2tvW1TEhAZQQFpi3zGQfzCct+yDPa17FW6mmPCwZddIieh4qbvbib00LjzWtLtYMtPT29sbT09OkFaglbVnGWuafXafToZs2H/WCqyh+fyahxzZzZ/nLLF+/jcLot7C23UmewhOiizi+H+8Tu6hTNah9J+Gq1di6RibsqzZC2IkzW2Yqa/T8vi2DFzWv1AdPujH43rwM1bX1QUdBQQHr1q2j4Iz0BpZeM2c+Tio2Npa4uLhGc9gNHTqUpKQkq+vTlmUs1bkhoMvNzW1xWcVPR+icFRwbcT96NExWf8Xzg0ksXb0OVVUblc/IyODDDz8kIyOj1dsSQjgudfd3AGwy9GNskn1134G0QAlhUUPLjIeXFy8u+YSn1VfwVGrIdu1H3E1fgqsnubnbWnx6zrxry5pEmpaYj5Oy1GrVlvFDbR1zZF7nFiclNqfR0v2ihzncvR/eK+bRX3OQiN+ms2jfQ/TvP5j43r2M9TLOxfe/9AftNeheCGF/zmxh9v9f990vSjL39Q6yddUakQBKCAsiIiI4duw4f+SVMr/oQbyVanLd+nF64uvg6glY9/SceYBiTSJNS+zt0X3zz97WgG5/bQiHdfNJKfmIHtX7uKNoAf8pnkp59Y1c+r9l3dzcTP5t66B76foTwv413Jy5VR9Dd2QbAJVxk/Bw1dq4Zo1JACWEBeXl5WwpqOTeimfprimnNGAAsbN/Avezm5/Oko5KrtmRAUN7ffaGgNCl51QKf3uW8KyPmcVSVm84TGZcHxJidQQFBXHixAmCgurvQNvaAuUM+baEcHYN54Q+pzcCkGboTXyPCNatW2d3Nz8SQIkuz1KgsatUy+0Vr9NDc5RyrygqL15M5pYMkzJtuZB35kW8I7fVXi1iJoHhtW+x4R0fhh16l/OVzfz5/kWsnrykUVdgW4M3e2vFE0I01nBOqHj7GQBWqSMYynGys/9Kd2IvJIASXZ7502Jrd+UzYNM9DNAcpMI1EN9bvyVjV0GjYMSaC7l5cNaZ43faGjBY03JlTYuYNakXzF87qRvPFycMXFzxGQOV/QQtn8pvQ19n+pSLjQn02vq5JMeUEA6i4hieh/8A4GTPVAb06YWni2J3Nz8SQIku78ws2vtLKjj6+d+ZrtlJtcYTr5u+hsBYfH3LGwU+zc4H18QAcfNJijtSew0Qb69s5dYMoK+fQmcwh6InUL3uH4RV5TIl7WbeP/II19x4J24uGgmEhHBiBQUFVPy+mN7o2WnoydCkIbauUpMkgBJOzZqLf0MWba27F8ve+Sd38zMGFDRXvo+iGwxYbm0yv5BbChAcsduoqSzs0Lrmc2vmsGtqLryT+DJw3q8cfudqIkrWccOhx/j4jQKmzn4aH/fGpy1rWruEEPYvNzcXXe7PAPxkGMFN/ULZuX2zXY5flABKODVrLv5JSUn4+vrya8Zu7q/8P1Dg9JiH8IlPNZaxdPE3v0hbM49bixm77YA1Tw62ZT2t3paHHxGzv+HwZ/OI2Pdfrju5mK9fLmLMHW8R4udlsh5rWruEEPavV2QIwdV7ASiKuJBu3m52m7pEAijhsNprmhSdTsdPGQe47ejTuCl6TkRfRLfz729Uxnwb5hfpjnqariO113gna7Rp3j2tC8q5D5FWoWHo4fe5vGoZP79aQsysD+gV1t1YzPwEa68nXCGEKfNzkEfer7hQR7ZBR8LgZKD9nvptbxJACYdlTSuDNRf/tTsPkbjxTkI0JznpE0e3q98Gsxm/LQUajtg9Z87eWmosjpPav59s1yHo44IYnP0qE/Tr2Lr4YnZc+wmDekcDjU+w9nrCFUKYMj/mK9O/ohvwk2E40/uHAvZ7rpUASjis9jioCksrOfrF3YzTZHNa60vAzV+Au0+jcpYu7PbWmtQWnXlisqb7srlxUpGxF3J6cAouX97AMHUXez68hM1XfMaIhH4Wp7oxX48QwrZavBGtKiPkRBoAe7uNJ8TPA7Dfc60EUMJhtfWgajiIe0bH8OVXH3M3qzCgkD98AX0CLV9wnfWC3JZ0BJ1dH5PXdDryqj+g+rtbiecgB76cyq+VH1FRcqTFpxtlYLkQttVii/feH3BRa8g26Bg0/JxOrl3rSQAlnJqli2bDWJxVGbncffxlUGANKezP19CnifXYW6DRmdqrm6+91pN32pOCsLmMK/4/og1FeCy/gi90D7W4LWu276x/QyHsgaUb0TPHRgYe/RwP4Dt9Clcl2v/xJwGUcGqWBi5XVFSQV2bgytpFBGgqyHOJIU07hhh//7Palr2NJ2ov7dX61l6JPRuWrx13PkVf30xY9X6uK3iSzyMfJSkpqcltWbN9Z/0bCmEPmrsRda0tx+3ArwAcCE8l3N/T+J693thIACW6HK27FzE1O0jW7qFK8cTt8jcZddzQbIoCa3Tlbr72Wo81yUjPXI/hztUcfvNiIk7v4tr8x1i9JZBLL72yzZMby9N7QnSuhrGRA2vS0Kh17DL0ZOjQZJMy9npjIwGUcGqWBi7nFBZxt2YZAIZJLxDWfxRhZsu15YC114GOjsTS995cUKPx6Y7u7yvJe3MqPUq3cuG2OSytreGyK66zanvmAVtnZooXQvx13qz6z78A+N6QwoDTeRQUuNn9E88SQAmnZh7UrNqexYzDC3HRGCjQpaIbfq3F5ez1gHV2lr5386DGPOhR3H05ee5CSn+YT0JdJhdlzuNrfQ2XXXmTcf68ptjrna0QXcqpI7gdWg/AXr9RhBzKJdddY/dPPEsAJbqM0tO1lH37D3pojnJECeJgn1vQKYrd9q93RdacKC0FPZu37eCoOoE6rYbB+gwu3nUvX31cw7RrbjcGUdbk8nKETPFCOJ1d36DBQLqhF/FxvXE5nWvS4myv52iNrSsgRGf5+POPmKauBCAt7Fq8utV33DVckHNzc41lLb0mbCMpKYmhQ4caB4hb6tLz9/dH4+ZJTt/Z7A+9ADdFz9R9D/HR2y+gqipQ/0BBWloa6enpxuWOHj3KgQMHOHr0KFAfkI0ZM8auTtJCOLvK7Z8DsNwwioSAukZJcO31fCwBlOgS1u/OY1LuMwBk+p/PvqruHD58GKhvfYiLi2v0xJb5a8I+WMoy3qdPHyIiIujdtz8xt31Khu+5uCgGrjr8DEs/WmQMosxlZmaSn59PZmZmk9srKChg3bp1FBQUtPtnEaLLK83Hs3AzAMd6TmJQfJzDnI+lC084vYrqOg5+9QijNcWUuQaTHX4pVQeLqKioAKxI3ihsyrzLztI4KZOgSutC8IxFpH82l6TytVyS9ShLP1JIHj+1UfdcQkKCyb/WbF8I0X7UnUtRgE2GeEYPSXSo87EEUMLpfbx0KTfXfgsKuE19jbpdFU22SIjO1V4TQpuX0UVGobv7a3LeuYFeBd9zSdYjfFFdTWSf4SbLJSYmtvi0nTxQIET7sHS8V23/Ak/gR3UU8weE2u14J0skgBJOxfzg25ZbzNhdT6DVqBRHX0LogIvwPvgDnp6eeHt727q6XZ6lRKfmzO8+LS1j8Q5Vo6XXrR+Q8/YN9Cr8nivy/smbR2YBFxvLZmRkkJmZSUJCQpOBlL3e/QrhaBq15h7LwfNoBnpV4VTsJPw8XNnhQC2+MgZKOJUzBxvW6g38+dljxGsOcUobQOj0V4DGg5KFY6moqKCystLYBdssjZZesz4gO2wyroqeO6re5sCuTca3N2zYQG5uLhs2bOjAGgshoPFYJjXjUwDWGRI4d8hAi2XsmQRQwqmc+YTWstXrmFH1JQDKRc+Bd3eLy8gg4c5h6XtuSzDr7e3dYguiybY0WuJu+y/p3mNxVfRcWbCQH5d+CGDsypUuXSE6nslTrqpKzbZPAPhOOZfz+4XYuHatJ114wqk0JF3cvT+f0O0v4q7UUhiUQviQK41lzJuRrelGEmfP0mDstnSPWcrVZN512+hvqtGiTHiCrcvvY1hdGuPT57HS1Y3Ro0cbu/CEEB3L5DitPYj7qUOcUj3Q9LsYL7f6cMSRHtqQAEo4lYbunf27t3KVkkYdWkKufBXOyEgtg4Jto72+d0tBlzUn3fKKSnJ01+B+RCGhaitjtszlD7e3ue66v6Z9sWZMlCMNchXCnpx5nIYe+xwt8KN+BFOG9TKWcaTzswRQwql4e3tzSuPNrafeBQ0cS7iV0JC+JmXML8CSfbpzdORgbPOTbllZGadOnaKsrKxRmcDz3yb7q9uJK9vM8PW387urO2PHTwT+ygsFGAMo84DJke6QhbAnxuO0RwSGX79GC6x2G8c1RXso8K5tNFm4vZMASjiVcJ2OqM1fEa0pptSlO4ahs1i3bl2zrQWOdMA6u7a27pj/DfPy8qirqyMvL8/4WkPWcV9fXwbNXUbuq5OJrdhOwtqb+anm36SmXmwxL5Q1eaiEEC0zHqc7l0FtOYfV7mhDB5Kbk4NGURzuPCwBlHAY1lxcV23awVz1O1BAufCf5OQXS2uBA2mv1p1+/fqxe/du+vXrZ3zNvHUp+s7vyHp+PL31WQzeMIftoeEMThraqOuuUY4pCbiFaJOGc3jinvfwBb7Rj+aqlDiUMm+HvCGRAEo4jJYurqWnaxl0+CO8NNXkusUTO/xqfHfsaDRvmjkZ02I/2qt1Z8qUKUyZMsXkNfPWJY2HLx5Xf8D+j68ixnCQ2qUz2O3xLf3i+5ssZx4wyf4iRNvk5uZyaG86Kfm/A5AROJE7BvUC/hoD5UjHl1OlMXj88cdRFMXkJz4+3vh+VVUVc+bMoXv37vj4+DBt2jSKi4tN1pGXl8fkyZPx8vIiJCSE++67j7q6us7+KMKClvKDfPft50zU/IEeBc+LngFFMT6V1zDvHTR+nN5eJ6rsijpyMt/ExESuu+46kxamqLj+hN/5E4XaCCKUo3h8Oo3c/fubXY+lSYmFEC3z9fWlV2U6WvTsMMQwfHhKozKOdD52uhaoAQMG8PPPPxt/d3H56yPefffdLF++nC+++AJ/f3/mzp3L5Zdfzvr16wHQ6/VMnjyZsLAwNmzYQGFhITfccAOurq4888wznf5ZhKnmuk4OnzjNoN0vggK7AlPpHtLPYjmQMS3O6GzuWj26heN3+w8cXTyBGEMBez+4jPzbfiQyPLyDaitE11ReXk6v0vpEtssMY/hbYuNj1ZHOx04XQLm4uBAWFtbo9dLSUv7zn//w8ccfc9555wHw3nvv0a9fP/744w9GjhzJypUr2bVrFz///DOhoaEkJSXx1FNP8cADD/D444/j5ubW2R9HNOPMi+YvP3zG9UoOp/HgT6/RROXmotPpiIiI4Pjx40RERBiXkzEtzudsx055h0RTd/N3HHsnlb7qfrb/32V4/P1Hgrp1a1TW0j4lhGhZEMcJr82jTtVwpOcUQvw8GpVxpPOxU3XhAWRlZRlbFa699lrjUzhpaWnU1tYyYcIEY9n4+Hh69OjBxo0bAdi4cSMJCQmEhoYay6SmplJWVsbOnTub3GZ1dTVlZWUmP6LjNXSl/Pj7FsYeeguAwr43EBU/xBgclZeXU1dXR3l5uXG5juwmErbRHtM/+Ef24+fwOZSpngxmNzlvTqe84nSjcpb2KSFEY+bDJbyyvwPgV0MiFwwfaMuqtQunCqCSk5NZsmQJK1as4K233mL//v2MHTuW8vJyioqKcHNzIyAgwGSZ0NBQioqKACgqKjIJnhreb3ivKQsXLsTf39/4ExUV1b4fTABNT7lSm72aaKWYMm03vEbdZvKeI82rJNquvYLi0L7JfO1zA1WqK8m1W0h/41qqampNypw5XZAQomkm45n0dYQUrgHge87lwv6Ne4ocjVMFUJMmTWL69OkMGjSI1NRUfvjhB06ePMnnn3/eodt96KGHKC0tNf4cOnSoQ7fXVZkPLkxKSsI/qjdX1CwFoGbM/eQcKnaYAYjC/ri4uEBwfzb0eZA6VcPYyl9Y/8Ys6ur0xjLSAiWEdUxuYLN/xqP6KMdUX9wGTsHTTQs49lykTjcG6kwBAQH06dOH7OxsLrjgAmpqajh58qRJK1RxcbFxzFRYWBibN282WUfDU3qWxlU1cHd3x93dvf0/gDBhPnYpPDwcz+wnCVLKKHGPIuicWcQWHzUpI1mjRWv8tY9dyP6QbvReP5/zy5ay8t+BXDD7RRRFsTjI1ZEevRais5w5nqnuo/m4AF/rxzJ1WIyxjCOfo52qBcrcqVOnyMnJITw8nKFDh+Lq6srq1auN7+/du5e8vDxSUuofpUxJSSEzM5MjR44Yy6xatQo/Pz/69+/faP2ic5l30/yyZQdTKr4GwPXCx0Hr2qiMdOGJ1jhz/+l9wS3sTnoEgAuP/Ifv33miyeUc6dFrITpdeRGa7JUArPOdxMjYQONbDa25jpguyKlaoO69916mTJlCz549KSgo4LHHHkOr1XL11Vfj7+/PLbfcwvz58wkMDMTPz48777yTlJQURo4cCcCFF15I//79uf7663nuuecoKirikUceYc6cOdLCZGf0BpWKVc/gpVRT4JuAbsg0W1dJOKF+U+9jTe6fjC9bxkX5r7B2WSQuQfGN7pjNx0VZ0yIlrVbC2TXs44PKVuOn6tlq6ENYaASFhYXGfT4/P5+KigrjLAGOxKkCqPz8fK6++mqOHTtGcHAwY8aM4Y8//iA4OBiAl19+GY1Gw7Rp06iuriY1NZU333zTuLxWq+X7779n9uzZpKSk4O3tzcyZM3nyySdt9ZFEE1Zv3MKkmlWggH70PaAoFss5cvOw6HyWgprKvleyeusRzmcDKdsf5NfBrzRq1TQfF5Wenk5WVhZlZWVN7neybwpnl5ubS3ZWFolFHwPwuX4cUXX55Oa6G/d5S/NPOgqnCqA+/fTTZt/38PBg0aJFLFq0qMkyPXv25Icffmjvqol2pDeo1Kx9HldFz5/a/pysC6bhuUfzC6AjJWUTtmcpqEkaPJgcnwfYsflZBlVsIGX7veRc/IVJ0GO+n5WUlFBeXk5JSUmT25J9Uzi72NhY/I/vwPdgEeWqJyeiLuSSeE+TfT4xMbHR/JOOwqkCKOHcMjIyyMzMpM7Nm2trVoMCpxNuNDkYzS+AjpSUTXQ+awLuhn1In5LMvpcupE/VDiK+v44s3+X0jrecy6ampsbkX0vbkn1TOBNLrbc6nY7Qmm0AfKdP4cKESFCP2bKa7UoCKOEwtmzZQkFhEQNrt+Cq0ZMXMIIRU283KSN39aI1WhNwa9086THnGw68eh7Rdfup/PQKCmatRBfRo9F6hg8fTmZmpkm3hHTZCWdmcf+uPAG7vgVglUcqN+pLyM7NMSnjyGMBJYASDsPf35+sgiNMUepn8g6avKBRGbmrF61hTcBtfoKvu+wdir6YQQ8K2f2faXjdtbLRIHJL3RIS3AtnZnH/zvwSraGa3YYeDBw+jt5xfmg1SrO9Bo5EAijhMEamjMJ11ye4KvWtTy7evdi2bp1D3rmIztdUF8OZ+46lMuYn+KITVeSG3M4lR16ln2EfaW9Opyzl4RaTa0pwL5xZo/1bVanZ/B5uwKf68dw6vAe6QK9Gx4Aj31hIACUcxt5DBUw2rAUFuk9ewHYLdy6O3BwsOpY1d7qWypjnqWk40R+si8N97e0MrdnC2j9eRRMxrVXTu8i+Kpza4TTcSnZSrbpS1HMKUYFeFos58o2FBFDCIRgMKlW/PG9sferReyyx3vWp/52lOVh0LGvudC2VaSpPTXCfkeRpFtFr9e2Mq17D1we9KIuJbnLdDQ9BJCQkkJiYKPuqcGqGzf9GA3xvGElCmA9g+abBkW8kJIASna4tSQbXbk4jteZnUOBkv+voARw9epQDBw7g6+trknn8zH+FaGDpTteaJ+MiIyM5ceIEkZGRgGmQPuacK9lxsphB2x7hcv1yftrXG8aOtbiPZ2ZmGoOwxMRE2VeFUzHZ5/3d4M/6WSI+0Z/PxSdzgBSLNw2OfCMhAZTodNYcMOvXrycnJ4fCwkKuuOIKTq99BVdFzw61N5sP1TKIxhekhvW1NKZFiAbW7IsNg8NdXOpPl+aBz6BL7mRDcQ6jDr/HhLxX+eOHXtT5xTZaryMnDBSiJSbHkroZjaGWdEMsnoE9GJwYBzTO2A+OfdMrAZTodJYOInMlJSXU1NRQUlLC1l3ZnF/5Eyiw3XU4/v7+gHUXJEe+uxEdry3depZaqQzx01hdlMP5+t9I2jSfLSlvNcpWHhwcTHR0tHFmBEv7pgT8wlEZj5PontR+ehuuwH/1F/LMzZOM45/MM/aDjIESolUsHUTmgoKCKC0tJSgoiPyVrzFcqeGQexy9xlxDbK9egHUZbB357kZ0vPY6efv6+bG/5xVsz69gcE0aCRvn8dug50z2O/PpXSztmxLwC0dlPJb2LIdThzmu+lARd4nJ4HFnOx9LACU6nTUH0ejRowkPD0fxCqDfn/NAAfdx9zAmZayxjDV36458dyPsg3lQY2m/Ky8vR29QKRv5EFkbH6Z37V6G7FjADo+X0OkuBaCiooLKykoqKiqM62rpkW5pkRKORv/Hv9ECn+vHc/XoPibvOdv5WAIo0emsOYgayny1+DFGK6cocQknZMSVJmXkbl10BvOgxtJ+d2YZn0HfkL9oPJEUcnrrY5SOHot/QCAAShOTXjcwPzasmZRYCHtQUFBAQebvDDuwFoOq8KvfFG6LC7J1tTqUBFDCbhUcL2dE4UegQNXw2RQUH5GJgkWnMw9qmpsvr0He5Lfx+u4a+rCfjLeuIH7+D3h7e+Ph4YG3t3fnVV6ITpKbm0u3Pz8CYLVhMBNGjaCoqNCpW1A1tq6AEE354/t3iVKOUqbxJ3L8LOOdf25uLlB/0RozZoxTHpjCsRQUFLBu3ToKCupzk52sUvg26HZOq+4kVqeR/uZMEgcNYujQoSQlJQH1eaE+/PBDMjIymlxvUlKSyTJC2Avzfb5XVBhxp7cC8BmpXDE0stE529lIC5SwS6UVNcTnvAsKHBswEz83L2lxEnbBmlw2Dfto+vEwRqTdR3LpCjb8qGPMrJeN67GUhsMaMi5K2APz7mXP7O9x11ew3xBKSNJE/D1dnf6cLQGUsEs/fr2Eq5QDVOJO9MR5gPMNQBSOydJFwXy6l7/21TFsrS1nWObjjDr8Ln98EcnI6fcAbU/DIWP/hD0oKSmhvLyckpISMBjQbn0HgA/1F3BdStMpP5yJBFCi07V0B11TZ6Bn9gegQIbvOEZ6d7dBLYWwzNJFoanpXgCGTbubTSfzST70DsP/fIr0bhEkTbiqUV4oSywFa85+Vy8cQ01NzV//Zv+Mb+UhylRP0rtdyKM6PxvXrnNIACU6XUt30Os2/M55SiZ6VeFIyLhOrp0QpqzpMmupNWnETc+z5bUChp/8gT6/38W+wHCOnNa2mEjTUrDm7Hf1wjEMHz7cOLejfv3DaIFP9eeRGPRXWOHs3c0SQIlO19IddM3GxQCkaRJw6R7d5Hqc/eAU9sGaLrOWkroqGg1Jdyxhx0sXMahqK0HfXkfR6EWNMvJbsy3Z74U9MO7zhRlw8HdqVS1fqOdz1xkNqs7e3SwBlOh0zd1B78w5yDmnV4MC+gFXNfv0kbMfnMI+tFeXmaubO7F3fEn2q+cTp88hZv19ZOvuNMnIb822rEnsKURnUTe8gQIsNyST3DeaoYP7Gd9z9u5mCaCEXWi4CBSlLWOAUk2Beywp0+6AMxIPml8onP3gFPahLV1mTQU1Pn7dCLh1GQX/Pp8otYiUwvfwnPBpq9Ztvt9Lsk1hM6X5qH9+hQJ8pEzhth5utq5Rp5IAStiF9PR0duzO5pqyZaBA3bBZJsETNL7zlrEgwl411zoaFN6DAzM+5+SnF9NPzSbjy7vQz/8WrYurVa2qst8Lu7FpMRpVz0Z9f0J79ObwgRw8XZQu88SoBFDCbrhUHKKHcpRyxQfXvqmsW7fO5A5e5gkTjsJS6+iZ+2t0/GA2jHyZIRvvIPH0BrYsnsWwO961qlXVfL9PSkrCz89PWmJF56oqQ79lCVrgP4bJzD2nN6eOenapJ0YlgBJ2YWBCIt03Pw1AYa8rOZJX2OjOxfzO29nvboRzMd9fTxp8eN/tWmbVvM/wkqVs+SiC4dc/3eK+LC2xorNZvFnd/l+0teVkG3T4J1xEUt9o6Bttspyz75sSQAm7kL5jG5fwJ3oUek78Oz419X3pzd25OPvdjXBcLU043KDKJ5al+huYVvY+w3PeYPt3EQyeckez65b9XnS2RuPs9LXUbViEC/CO/iJuOSfO4nLO3ksgAZSwD2nvAbDDfRiDg6LR0XKrkrPf3QjHZc2Eww1dbzExV7DumzrGHPmIgVsfYU83HfFjpja5btnvhc1lfolL+WGOqn4URV9K/yYSZzr7Aw4ymbDodOaTUO7ef5AJ+nUAHA4ab7GMEI7OfJ9umAw7IiKClNtfZ5PP+bgqeqJ+vp28PzfYuLZC/CUiIoLu3bsTEREBBj36X58H4D91F3HJgBAb1852JIASHc78wmE+Q3fuqnfwUqrJVXVU+ve2WEYIR2Jp/21un9ZqtSTO+ZAdrol4U4X3l1dTkreHjIwMPvzwQzIyMjqz+qKLMz9nN8zzWF5eDjuXoj2RwwnVh+XKObifyGlyPUlJSQwdOrTZfH6OTLrwRIczHw/i6+trzMBcUVVL/OGvQIHNmmFo/5e6QMZ5CEfWljnsPDy9cL98Mfs+u4o+HCR/yWXsiPw7h4+cBGg203lLnH0simhf5l1vxn03Jhr9snvRAu/WTSTBtwrlf+dsS/uYs3c3SwAlOpz5hePMu5k/fl3O+cphKnHnuN9Aor29Aec/8IRza+scdkePHWdX6Cy8i14h0lDAiMPvsCVqdpNz7IF1wZE8sSrOhnHf3f0dHN1NmerJSs/JXBtxur5bD+cf72SJBFCiw5lfOM4MqPa+/wIAu/zPxS84wngwCtEV+fr64uXbjZ09nsN781301WdRV/IF/Qfe0OQy1gRH0qIrWsNibjFVxfDr82iA9/WpjOsXgKGqzGQqoq5GAijR6RoCqj25BxlVtQ4UqIxJpe5kXZc+GIVoaJ318g8l94L/0H/VdQw4tZGMxTeReMd/G2XnB0y6xJsiLbqiNSzuL1mr0BRlUKG6s9L3chaN6UveATdjkNUVE7pKACU6XUOXQ0nG98QrtRxyjyN2+CTYv79LHXyia7PU9XZmS5FOp2PdyZdI2XIXiUe/I+OD+0ic+UKj9ZgM8BWiI6gqhl+fRQN8qJ/AteMH0yMygh6Rf/UYdMUgXZ7CE50uNzeXXXuzGHjkWwCqB91g8c5aCGdmzZOmYy6+gV/7/AOAxP1v8+fSFxuViY2NJS4uTm4+RIfJ+fk9NIe3UqW68r33NC4fEtmoTFdMPSMBlOh0sbGxeHCauP8NHo8dP1PSFginZ36BsRT4mB8HBQUFuPZIYUVg/Rio/ulPsfeX/7Z6W0K0hsn+o6r4bH0dgE/147ly3FDcXBqHDl3xHC5deMImwgpWAHAgbCL9vAKsGschhCOzZg67hq64uro64zI5OTnEJk3n160nOLfsO2J+m0eefwg9hqYClp9+kqfuhLUsdSWb7FPlOwitzqVSdeMj7aV8NyzK4nJd8UEFCaBEp9uwdTsX120EBULPux2QcRzC+VlzgcnPz6eiooL8/PxGywQmv8umly4luXoD3b6dya6aJfRPmUhFRQWVlZVUVFS0aluSG0pAC+kHVAOG1f80PnmX3CccD1ctIJNagwRQohOYn6hd8tfhodSS5xpDj96jAHnMWjg/ay4wDfmeLOV98nB3I37O52x/+QIGs5vQn27jZNQqvL298fT0xPt/OdSs3Za0UommREREcPz4cQaoe9Ac2UmZ6sWnLpfw3ri+xjLSayABlOgEZ56ouweHMODIdwBUJc40Dh7vincvQpgLDg4mOjqa4OBgoHHrgL+fL9rL32bvV9fSl4MUvnsJ/ad/2ujxcWtal9rrpkVashybpfQDhw8f5kTJEbof+jcA/1d3MbOnjiSmx1+Dx6XXQAIo0QnOPFFv2biGMRyiCjd6nXejbSsmhJ0xbxWy1D03KCGB/b5LObRkElGGIg5+fTPJ837B1bubscz69evJzc2lsLCQ6dOnW9xWe920SEuWY2tqPxhQsw2f6mKOqv6s6XY535o9eSe9BhJAiU5w5gG6+5MHAcjtfi79vbo1t5gQXY75RclS9xxATHQvdl7xOUe/uISetblkL7qU2L+vQOPuBUBpaSm1tbWUlpZ2ep2F44sM7U6vtN8AeL1uKnNTk3DRmj55J70GEkCJTnT0RBlDylaDAgEpN9q6OkLYHfOLkqXulYyMDDIzM0lISODApA/w+PEq4k5nsPfN6fS5cymKixvDhw83loGO7WaTC6nz8d39Md76Ug4ZgskMvYwnBobZukp2SQIo0WkyfvmMCcopjmm6oxsyydbVEcLuWQpOMjMzjU/pXXfddfxWvpgR626lb+k69vz7BuL/9jGJiYkkJiYal5FuNmG1yhNE5X0NwMt105g/aSCKJDq2SBJpig7XkJTNa9dnABT2vAQ0WhvXSgjHlJCQQGRkpLF1KW7ACL4Iv49aVUv8kR/Zs2QOqKrJMvLElLDa2mdxqSljjyGK4uhLGBMXJIlZmyABlOhw6enp/L5hAyPq0gDocd6tNq6REI4rMTGR6667ztjClJubi94jlE+634lBVYjP+5i9nz1ssoylJ6bkotg1Nft3P7oXdXP9k3dP1V3HfZMGoCgK6enppKWlkZ6e3rmVtXPShSc6RWjlHlwUA/vd44mJGmjr6gjhNBrGR8XEXMDyHzRMOfwSffcsIvvbAOIuud+kjKVpY0C69bqS5v7u6k//QFH1rNIPxX/ABSRFBZzVtpw9xYUEUOKsmB8gZw5wbbhDDg3XEWvYAgpUD5hh4xoL4TgsXYDMXztznFT4LQv4/s2TXFzyLnHbnmZT2WmSr3vc4lgq8249Z7/YiXrmwXTD372fyyG6Z/9MjarlOfU63p3Uz7iMl5cXGo0GLy+vVm3L2YN06cJrwqJFi4iOjsbDw4Pk5GQ2b95s6yrZJfMJJBsGuGZmZhrL7NuZRrySR43qQq/zZkrXgRBWsjRBa3PdKRqNwoW3v8AXSv1DGsOzXuHQrx9YPObMu/Usbct8OTl2nU9ubi65WXvw+O2fALynn8jowYM4uGub8e9sPsUQWLcvWJow25lIC5QFn332GfPnz2fx4sUkJyfzyiuvkJqayt69ewkJCbF19eyK+d2MpakoAovq84ns8UthkE93ctPXOfVdiRDtpS05ltxctfiPvo2lv1dymbKW8DV/Z0323ew65W8y35n5ui0NNDdvQXD2FoWuwPxvGBsbi+7gUrxP51Oi+vG551U81L2S7OwcYxlL53Vr9gVnT3EhAZQFL730ErNmzeKmm24CYPHixSxfvpx3332XBx980Ma1sy/mB4j549Mny08xvLw+95P/6JsBeSJICGtZugCZ54ay1G1eV1NFlv94fiqvI1Vdx7l5r1LkdQPQu8l1Wxpobh5kSdJMx2d+/tVUHicq9xMAnq+bwZ1Th9I/VMHDRTH+nc3P6yD7AkgA1UhNTQ1paWk89NBDxtc0Gg0TJkxg48aNFpeprq6murra+HtZWVmH19NemY+jSF/zJeOUco4rAfQcfgkgcygJcTbMA58z80KdeZFz1yqUJd7Ouj/1jKnbyBWVH5HvO6bJ9Vq6IJpvy9lbFLqCw4cPc+zYMQ4fPkxiYiKnv3+IMH0FOw09ydFdwr+SdCiK0uLfWfYFCaAaKSkpQa/XExoaavJ6aGgoe/bssbjMwoULeeKJJzqjenbPvFnXdVd9Qrb8iIsI1NbvbnLnIkT7sdS9cmYrlcs5n7Fp0VSS9duIXH0Hx4NDCIwf22g9bb0gyuBzB3ZwA7En6odYPF47k0cvGYSiKPI3tZIEUO3goYceYv78+cbfy8rKiIqKsmGNbOfM4KjoaAlDKjeCAmFjbzCWkTsXIdqPpe4V82Ps8OVvsemLW0jmTwyfXknptV/j3zulXbYv46IcizG47hmJ+s2VKMAndeNRA+NI/F/aAvmbWkcCKDNBQUFotVqKi4tNXi8uLiYszPJ8QO7u7ri7u3dG9ezemSfuXz5/g/OUGgq1OsL7jLRxzYRwDta0DpiXqThRwrawm9AWvcMwdlP+8TTKr/8G39jhZ73tjmpRllaQjmE8R699Fkr2clT141Xlat6emmQsI70E1pE0Bmbc3NwYOnQoq1evNr5mMBhYvXo1KSntc8fWVfhmLQXgSPQUkLmUhGgXltINtFTG19eXQB8PSs59nnTi8VUrUP97GacObm92W+aPqluz7fbSmdtyRGeVUqIkC/W3FwB4svYG5k1JIaF3T+PbOp2OMWPGSODaAgmgLJg/fz5vv/0277//Prt372b27NlUVFQYn8oTLTt4KI+kmvqTs1f/iyR3jBBWaK/cOuZPWjUMHDZUluNzy1Iy6Y2fWo7+vSkcTFvV5HrMgxhL2+6oaT6cPYfQmdoSDLU1wCw4fJiTH96IYqhhrT6RIz0mM2N41xxycrakC8+CGTNmcPToURYsWEBRURFJSUmsWLGi0cBy0bSctR/RU9FzwDWOrOLTZGVlmeSgEUI01l65dZp70jUuSsfumV+zY8mlDFJy4bsbqQj6Du+eQxqVNe/K6czxi11prGRbxhy1tZut5OdXGHTyT06r7jxpuIW3p9UPHBetJwFUE+bOncvcuXNtXQ2HpKoqQQe+BaCs91QqKiqorKykoqLCxjUTwr6119gT8/WY547qF9ODd/s+hLpnIYmaXMqXTKFi5jd4Rw9r9bbM1y1jl1qvLX93SwFmi999eRHxeR8B8HLdNKaeN4pewT5tr3gXJwGUaFcZGRls3LCOv+l3ARA77nr2/rql1Xc4chIWXZE1rS7WHBvW5G+aOG4Mv3k/DdsWkEgW5e9fSsXMZXhH/zWw3LxlxNK2zdctT3C1Xnu1tjX73asqfDMXN30Ffxqi+cXvMn48t5fF9cj51zoyBkq0q8zMTDyK/gBgn8cgfEKi8fb2xsPDA29vb6vXIwNIhbCsPY+NyO5+lF78Dun0wVc9hWHJpeRtXm5833wckjXb7kpjl+xNs7M8bH0XsldRrbpyd+0dPDtjGG4ulkMAOf9aR1qgRLvSRUQQlpUBQE2/y4HGTfzWkMdohbCsvY6NhotkXFwcbjOXsW3JZQxR9qL94WbK/T7FN358o5YRa7bdlcYu2Zsmx76VZKOufAQFeLbuKkanjGFYdCDQuakpnI0EUKJdFRzM4jzlILWqlrhx1wKNT6ht6YIQQtRry7Fhab68My+SOp2Ob8e+QPVvD5Ki2Un1p1dSNu0D/BImtXrb0v1jO+aBT0FBAbnZWYzIfBi32tOs1w/g98BpfDcp3rhMenp6o4d85PxrHQmgRLvyKaqfLzDTNYEh/iEWy8gYCSE6V1Pz5Z0p0EPDBt2t1BZ+wDnKdpSvruPA0RfId+ttDIasCY7k+LYdS+PRvLe9hdvJTMpULx7Uz+atq4bg4aq1YS2dR6vHQM2cOZPffvutI+oiHJxeb2Bw5QYAynqmNllOxkgI0bkSEhKIjIw0mS/PPH9TbGwsyQP74H7F/7FaScGNOiJ/m0952mfGsTCWcj6Z5zBqdhyO6FQhdfkknvwJgEdqb+KqC1IYGOFvUiYpKYmhQ4eSlJRkgxo6tla3QJWWljJhwgR69uzJTTfdxMyZM4mIiOiIugkHszN9A4OUIqpVV7QRQ42vm9+1SvOwEJ3L0nx5TYnq7kvdHZ/z4+LrmaRfy6QTH7AzzxcYY7G8eYtTczmohHXa2g1qslw3T6L+WIAGA9/pR1IYNZmXLTx1J+fjtmt1C9SyZcs4fPgws2fP5rPPPiM6OppJkybx5ZdfUltb2xF1FHYsIyODDz/8kIyMDE5s+RKATPckesX/dacrT3QIYX/MWx7OPE57BPuROPdjPlUvBGDAvkUc+eZRInQ6unfvbnLTbN7iJC3MZ6+t50xjC+H2bbD0b3hWFXPIEMw/1Vt4acZgtBqlUYvhWU0J08W1KY1BcHAw8+fPJyMjg02bNhEXF8f111+PTqfj7rvvJisrq73rKexUw9iKjB2Z9CiqnxLCc8iMRk/uyAlVCPtmfpzqunlTHD6RN+umAhCy/TXcfn8GfW2NSeuSeYuTzKN29s72nNmr8FvYt4Jq1ZW/1c7j0gFBRAV6AY2DM7nBbbuzGkReWFjIqlWrWLVqFVqtlosuuojMzEz69+/Pc889x913391e9RR2qmFMRaCvGzHkU6O6EDfmCpMy0kQshP0x73qzdJyOSxnGlnR33igM5Y7Kf9Pv2E+41Jbh3eMtYxmLT37JU3hnpa3nzKSkJKLqcumz/QsAHq27EXd/HZP7dzeWMf97ScqCtmt1AFVbW8u3337Le++9x8qVKxk0aBDz5s3jmmuuwc/PD4ClS5dy8803SwDVBTSMrfj13/cAsM9nOAN9utm4VkKIllhz4QwODia+VzQR48fxf9+HcnPxM/Qu28iRpTfDrK/AK1AykduIxazw3irhe15GUQ18VjeOjZ7jmeqRw+HDHsYxcNZkqRfWaXUAFR4ejsFg4Oqrr2bz5s0WR+6PHz+egICAdqiecASqqhJZuBKAUz3PZ926dXL3KYSds+bCeWYwNOv2u3njbW9uLnyCkBPbOP7auXSb9Q1Kd9MATJ7C6xyN8jfVVVPz8TW4nS5hp6EnL7rcytx+cCJftXVVnVarA6iXX36Z6dOn4+Hh0WSZgIAA9u/ff1YVE45j759pxKt51Kpajrn2IDstzSQpmxDC/rWUbNNFq2HogAH8q/R+7jj9BpFVeZS/OZ5TF71JTqW/8aaprU/hSdffXyx9F81+Pw3z3BWnU6Z6Mbt2Hs/emExf3zpyc/2le66DtDqAuv766zuiHsKBFW/6gnhgn/dQFHdfoMjWVRJCtJKlZJvmrVS9evXiIkXhl5NvM2TzfAayH7fvZrKj+/XkMg2dTmcMnurq6lq1fen6+4ul78K8xclkiqw1z0Dm59SqWu6o/TujB/RmfN8QebKug8lkwuKsqKqKrqA+UVtd/CWSlE0IB2Up2WZTJgyJ5/iVS1mrDsGdWlKPvUtY7hdgMJCfn09FRYUxGAPrHpWXrr+/tOa78Nz7Nfz2HAAP191MsWcfJvWsf0+esOtYMpWLsJqlJuTsPTvobdhPnaohbuwMvLuFdPm7RyEckTXJNs9sGTlnzBgy/b7kw//M4TrlR+Jyl3D8/WISB80DaJT13Hy+NXNdJQGnNd1zlr6LiIgIjh8/bszBlZubS0XmcvyP/B8Ar9dNJT3wIh4Y6kpcr/qEmfKEXceSAEpYzdJJsHDjZ/QG9nkNpn83y3PfCSHsjzVjjszLmF+QE3p0R3/Nv3j2ix7cXfsOgQd/RDmxn4Sbv4SAKON6KioqqKyspKKiosn6dJWLvaXzqPlrlr4L86CqT0AdgSVL0Kh6lulH8an3DXw9axShfk2PTxbtSwIocVZC8uu776r7TLFxTYQQrWE+zsZSQGVNrqikvtH0vX8hr3/Qn5mHHiWobA+n3hiL59Xvo+11rtX16SqP01sTTFr6Lky69UqyCF5xG4r+NJsM8TypncOnN49oFDzJuLKOJQGUsJrJoEVgf9Yu4g3Z6FWFuHNm2Lh2QojWMG/lsHSxtbZVyNNNy903z+Q/P8QyavNcBtQdxPDfqVSM/Qfe4+/B29sbT09PvL29O+rjOAxL34X5udWSw4cPc+zYMU7kpKH+/BzKqWJ2G3owR38Pb8wcSZ9Q3xZbDEGedmxPEkAJq5nfFeVv+IwYYJdLf7pXgwz9FMJxmB/Pli625mWau/hqNAqzLj6HH3RL2ffN3Vym/Ir37/+k9OAmBo9/qsUAoauwFCxZ0/pWUVGBW0UBI3Z9hlJ3gr2GSK6t+QczR0YyqlcQ0Lgr0NJ6rRmPJqwjT+GJNgs8VD/3Xbo+jvXr19u4NkKIs2FpDjvzp+esearroiG9GDD7Q150n0O16op/3ip8Pp/G6Fhvk0HT5k/l2duktu1VH/P1tHWuwO4up7m29hO86k6QbdBxbc3DDPQso/upv/4W1nQPVlRUUFVV1WwZYR0JoESbFBcdJr52FwCFSgSlpaU2rpEQ4mxYChjMAyZrJrktKCjgSPYOLrlqNi9EvcYhQzC+lYfR/3sCVb++DAYD6enppKWlkZ6eblzO0mvt9Tnaor1SAJh/LmuCx0ZljucyOmshfmopOYZwrq55mCuG9eTCXt4mTzta01Xq7e2Nh4eHdKe2A+nCE22Ss+4rQhWVbE00utgBVuWOEULYL2vGQFnT1dTQRdS7rIx/3HI1763uR8Sv95Gq3YLLmscp3/sz7iFXt1iftjwl2NTnaIu2PBVoTZ0t1W/9+vXk5uZSWFjI9OnTTcsYClE/vhL30yUcMIRyTc3D3HXpGM7v6UZurkpwcLBx3eapDiyxZryVsI4EUKJN3HNWAHAi6kKuu+46G9dGCHG2rBkDZUlzQYOiKNw8YTA/+i/in8v/zXz1v/gWrGNk8Q40wVcRGDHOWNb8wm5prI75ts5m4HtHsFQf889lqX6lpaXU1tYaW/Ib3uunPYj6/r0otafJNERzc839XH/uQK5PieaHH35o9P1Yk0urqzzt2BkkgBJWa5grq3fvOBJObwUFQkZMs3W1hBDtoK0XVvOgwVILh2/1UbpHDeKh0me59eQrJHCA8UX/Zv+anRD3X/Du3urJjZt6yqy9AoS2tGRZyiBuXh9L9YuLi6OyspK4uLi/yhSuRP3+bhTVwK/6Qcyt+zv3Tx3O9SPr04xbGu9k/n1Ymt9QtB8JoITVtmzZQlFREdWFmSQr1RQpwfToN8LW1RJCtIO2Pt5uTTdfw3uXxMSw/tA5bFz+GLdovifm5HqqXh2G+yUvUtgtmdz9+43btxSIWbOt9npM33xb1mQQb0g1cPjw4VYFLKdPn8ZgMHD69GnQ18EvT8L6V1GAL+rO4QnlNl6+fgQX9A81LmNpvJP592FpfkPRfiSAElZzc3MDoEflTgAOBY8jTCPPIQjhDKxpcbEURLSmxUdRFK4c2YuNvk9y17cjubNyMfE1h+DLmyBwJIe9LjJZp/l6rUmr0F5joMy3ZalLsb0TVbrXHIcPLoGD9U81v1p3GR+4XcOHN40gKSrApKw1Y5kaxqbKGNWOIQGUsFpQUBDHjx1jyMkMUMA36VJbV0kI0U6sGTvU1oDBPPhIGRDLiH5zeP/3C1i1+ln+pixDd/wPpp5Ip1I3B+pGgItbi+u19Rgo821ZM4jbkqSkJKLqcum/ewFUHuOU6skDtbPYHXg+S28aQY/uXo2WsSZwtWZ+Q9F2EkAJqyUlJVF7/CDdS8sow5u4YRfaukpCiHZizQXZmuCkNU/PTewdS1X/13jgk/O5ruQlhmiycd/8IlV7vsZjygvQe0Kr69NRg6StafFp04TI+jp0+/5L+LaFKKjsNvTgjtq/E9Erga+uHkw375YDyaZI1vGOJQGUsJpOpyO4PBOALP9RDHVzt3GNhBCdqS0DvaFxy8yZLVIXXXQRz8+9ho//SOHrlW/zd/Ujgsv2w0fTqI69EPfUJyC0f5vr09Ygwnw5S9sy/6yWBpE3u/2C7fDtXVC0AwX4pG48T+pncv3InowJrKCytIRu3m0PfGQuvI4lAZSwmqqqRB5ZA4Cm32Qb10YIYY8stQq11DKj1ShcPyqWY4Me57XlU4jIfIObtCtwz12J+tYq9AOm4XLePyio9jQJRqwZ2N3WsV3WTLZsHjBZ+pyW1nMgaxeDjn2Pd+b7KKqBk6o3j9fOZI3LGN67eSTH92xi+7YsTpWXN/m52vq3EO1HAihhtQN70olRC6hRXeg7eqqtqyOEsEPNPYXX8K+XlxcajQYvL9OxPd193Hlixii2p/Tjrq9XcPGxd5ms3YzLzi8x7FqKEnY+RZqRxu1YCo7Mx1u1dWyXeXBkaRC5ecBkqQXKZPuqysk/PiJh15v41B0H4Ft9Ck/W3oC3uwv/GAwjY7vzRVrjFAVtmcNOcj51LAmghNUKN39JDLDXazAJvt0A6WMXQrTM/EKenZ1NaWkp2dnZjBs3rlH5wT26seiuq/huxzncuuJHrqn4L+dp0wkvXMnlrOKk4Rzo6WYxYGlp25a0pdXM0nKW0hjodDp04eGQsxrevob+BdsByFeDeKT2JnZ4JjNnXDh93E7Qq1evZusp7IsEUMJqgYd+BqAqdqLxNeljF0K0lr+/PyUlJfj7+xtfM78Z02gULk2KYNLAm/ls6wXcsuo7ZtZ8yjnaTAILf4X//EpP376c8BjJqdK/nnozH+zd1mSS1rSatRicqSocWAdrnoG8DQCcVt15Vz+RN+su5eJhcaye1K/RQHFLOZ7MP5fcvNqeBFDCKiXFh+lTuxcUiBn1V/Zx6WMXomtry4V89OjRhIeHm5w3mhtzdP3Inkwb8jee+KgvL2fv5WplJZdq1xNQvpdx5Xup/X0plE2HxKtBY1qHhgTAVVVVxgDKvM6WusesaTUzX09DkNMrIgg2/R+kLYEj9ZOuV+PKf+sm8FbdJXj5duP5C2KZPKKvxe/HUjoE8/rIzavtSQAlmnTmySF/8zcEKSo52l70ioixddWEEHaiLRdya8ZJma/Xy82F6KpsPNxO8KvXNJZqb2Hk8aVcqf2V8NrjsPU/sPU/+Hvq8HPrT8mJC9CF3mqxtcua8UTmwZGl9ZjUMaQ7usq96Eq+gLVfQ10lAJWqG1/qz+GNuqn4h/bgssBT+JzYh1KiApYDqLZ0H4rOJwGUaNKZJwePnJUAHA0/lzN76dsysFEI4Tza60JuHlRZWq+qqmgVlQHeFcyefQO/ZY3iiT9yOb13LZdqfmOSZgvelQUMqiyAtJ8x/Pk0F0eMIj+mD/7xQfXTpGgbX/Ys5XgyD+AatZqpKoHa08RXbKLfzi/h121Q+9eg7z2GKD7Wn8cy/RhcXFyZGu/GIzecw4oVP5J1svnvwprvVAaI254EUKJJDQdvj6goAn7eDEC3JNP0BZYmtBRCdB2deSEfPXq0cTyToiic2yeYc/sEU3IqiWXbp3PN1ix6Hl3Ledp0ztHsoFt1GZ65K+jNCtj9Guo3HihhCZzr15u+wb508/eH/DR0fjp0o1JAozVuq/6pOT1x4f5wZDduBXsJKUjHr/g4nNoPRX/Sv/K4Sf2OqAH8ok/ic/04/tT05cIBYdyoFqI5mk2fkN5oNIpVCTklOHIMEkCJJjUcxLs2/kgPKjiBH3FJ40zKWBrsKIQQZ2v9+vXk5ORQWFjI9OnTAQgODiY6Oprg4GCTskE+7tw6NpZbxsTwza+BfLttKG/V+eB5cg/jNBkka3YzQDmAb10l5G/Bmy31Len7TLepoqBoXEDjgk6jRVdTAaj12/jfz5nqVA2Zaiy/6JP4xTCYXWpP+oUHMG1oJO8MjiDQ2+1/XYH+zU6ALByTBFCiRWU7lgOQ45fMMBfTXcaauykhRNfWloHmpaWl1NXVUVpaanytpeSWiqJQkp1BzOkiUsLCuHT2bNbsPcLnOcfIOHQcw7FcEpRcBmoOEKEcJVw5TphynFBOoFVUFFQw1Nb/nOGE6sNx1Zcjajf2qFHsUnuy29CDLDUSrdaFoRHe3JTch3N6BxHi59Hu34WwTxJAiRaFFv9W/58+qY3ek7spIURL2jLQPC4ujsrKSuLi4oyvtTTQHOpTJBw7dgx/f3+Cfd0Zo9OiqzrFvWPj8Q4Yy47DJ/li9Wa+KS6jzt2Paq0XRSdO4Wk4hQsGtOhxUQy4UMcp1YsT+GBQtPi6a/FxUekT6ktidAjjw3wJUCqpO3GYuF69mvxc5i1pbX16TgIv+yMBlGhWUV4WMYaD6FUFv14jWbdunRzAQohWactA84YEmS5ntHqb37BZSqRpPtj7zIBlzBgdY3sH08t7sEkw8v3y5ezcV0KP6FjGnDueGr2Bpd98x7HiQmIjQ7nl+mvYsGE92dnZxMX5MmZMHwDWrVtHbk4OGkVp8pxo3pLW1kH3krbA/kgAJYCm727y/lhKGLDPrT/HjpXKASyEaDVrWqrNE15aCjTMz1OWHve35mk+8zIaRcFDY8DfXSEqsD5R5gXD+5OZqSchYSAajWJxPeavWUraOXz4cONr1n4XlkjaAvsjAZQAmr67cd9fn338ZOR4OYCFEB0mMzOT/Px8ABITEy0GGubnKWvOSUePHuXAgQP4+vo2OTGvpbGc5gPWLdXH/DXzz9Dwb2syoDdFhkvYHwmgBGD57qbq9Cn6nN4OCgQPmSIHsBCiTawZvxMZGcmJEyeIjIxscj1tuYnbsGEDR48epby83BjImOevsyZYs0ZDK1PDv5bIWCbnIQGUACzf3WRtXkGCUkMx3ek1YISNaiaEcHTWBCPmY54sBRptmc5EVVWTf63VlmCtqTQLZ5KxTM5DAigBWD5ZlaV/A0CWXzKhGo0tqyeEcGDWBCPmZayZ5cCa9Z6ZfLNBRyWztCY4sjTwXTgmp7oqRkdHoyiKyc+//vUvkzI7duxg7NixeHh4EBUVxXPPPddoPV988QXx8fF4eHiQkJDADz/80FkfwWYaDvzc3Nz6F1SV6JMbASjw7Ff/b0EB69ato6CgwFbVFEI4IJ1Ox5gxY0zGIHXWuSQxMZHrrrvOZBySeX3ayvxzxMbGEhcX12xgZs08d8IxOF0L1JNPPsmsWbOMv58Z5ZeVlXHhhRcyYcIEFi9eTGZmJjfffDMBAQHcdtttQH1/+dVXX83ChQu5+OKL+fjjj5k6dSrbtm1j4MCBnf55Oov5XVF+VjqRHKVadUXv33TOFSGEaC1L5xLz16xpJbLmnGTNmKO2jksy3741rVbyMI7zcLoAytfXl7CwMIvvffTRR9TU1PDuu+/i5ubGgAEDSE9P56WXXjIGUK+++ioTJ07kvvvuA+Cpp55i1apVvPHGGyxevLjTPkdnM78rKtjyLZHAdrUPLq7ugDQ9CyHahzUpASwFI+aBjjXBiDVBlqVpY6wJqtoSDMnDOM7DqbrwAP71r3/RvXt3Bg8ezPPPP09dXZ3xvY0bN3LOOefg5uZmfC01NZW9e/dy4sQJY5kJEyaYrDM1NZWNGzc2uc3q6mrKyspMfhyNedOz16G1AGS79DHOcydNz0KI9mCpC82abjXzoQbWLGNNt1pz08Y0bMtSt6M1229Ld6UMl3AMTtUCdddddzFkyBACAwPZsGEDDz30EIWFhbz00ksAFBUVERMTY7JMaGio8b1u3bpRVFRkfO3MMkVFRU1ud+HChTzxxBPt/Gk615l3RdWV5fSuzAQFAgZMICkpCZCmZyGEbZmfg6xpJbKmxcc82aWlbbV1CENblpPhEo7B7gOoBx98kGeffbbZMrt37yY+Pp758+cbXxs0aBBubm7cfvvtLFy4EHd39w6r40MPPWSy7bKyMqKiojpsex0tZ+sq+iu1FNGdyZddg/K/J/Ck6VkIYUttSWNgDUvJLq3JaG6NtiwnN6uOwe4DqHvuuYcbb7yx2TJN7WTJycnU1dVx4MAB+vbtS1hYGMXFxSZlGn5vGDfVVJmmxlUBuLu7d2iA1tkqdq4E4ID/SMIkfYEQwk51ZqDR1hvItiwnN6uOwe4DqODg4GaTkjUnPT0djUZDSEgIACkpKTz88MPU1tbi6uoKwKpVq+jbty/dunUzllm9ejXz5s0zrmfVqlWkpKSc3QdxICFH1wNQqZPJg4UQ9qu9Ag1LXYGSMVy0xGmaFzZu3Mgrr7xCRkYGubm5fPTRR9x9991cd911xuDommuuwc3NjVtuuYWdO3fy2Wef8eqrr5p0v/39739nxYoVvPjii+zZs4fHH3+crVu3MnfuXFt9tE51vHA/PfV56FWFWv9eprmhhBDCjrTXYOtGefCaeE2IM9l9C5S13N3d+fTTT3n88ceprq4mJiaGu+++2yQ48vf3Z+XKlcyZM4ehQ4cSFBTEggULjCkMAEaNGsXHH3/MI488wj/+8Q969+7NsmXLnDoH1JkObv6OQCDLpQ+h4ZEcKTkhaQuEEHapvcZAWZNWQQhzitraCYJEi8rKyvD396e0tBQ/Pz9bV6dV0l+aSlLZGtZF3EJZxASysrLo3bs3F110ka2rJoQQJtra9ZaRkWF86s588PjZbl84ttZcv52mBUqcPVVfR0zZFgD8B1xI2UmDjWskhBBNszQGyppWqczMTPLz8wHOKoCSdANdmwRQwujgn+uJ5hRlqhd9ho2ne8mxFqdSEEIIe2JN11tDvqcz8z511Laklcp5SQAlgPqDPGvNx0QD+7yHMMzNXR6lFUI4JfO8T20Ncqw5R0orlfOSAEoA9Qd52MltAFT1GGfbygghRBu1ZYLhjgxyZDC685IASgAQGdadSDUbFIgYOhmQpmchhONpywTDHRnkSEu+85IASgBQcXAbLoqBg4qO6Lh+gDQ9CyEcjzUBi3nAJEGOaAsJoLoo89alk+nfApDtNZieigJI07MQQgjRFAmguijz1qWeZdtAgTxtjLGM3JUJIZyRtK6L9iABVBd1ZuvSsfx9RCpHqFW19BkpCTOFEM5NWtdFe5AASnAo7Ue6A/tc+jJ61Ogmy8mgciGEM5DWddEeJIDqos5swvbJ/RWAYyEjrV5GTj5CCCG6MgmguihjE3ZMDB4/bwXAp9/51i0jzd5CCCG6OAmguqiGJuyifWkEUspp1Z0+w84zKWPeZSfN3kIIIUQ9ja0rIGyrMP0nAPa6D8THy8vkvYYuu9zcXFtUTQghhLBb0gLVRTW0LvnuX1P/u88gdn74IQkJCcY5oqTLTgghhLBMAqguKjc3l+x9e7nidCYocFjRcTw/H8AYQEmXnRBCCGGZdOF1UbGxsUT61OGjVHJC9WHwqAlERkaSkJBg66oJIYQQdk9aoLowpWg7AFleSYwYOoThQ4fYuEZCCCGEY5AWqC6goKCAdevWUVBQYHwtNzeXoBP1AdTpyDEWywghhBDCMmmB6gIsJcCsqzpFP0M2KBCamCpJMoUQQohWkACqC7D0NF3x7vW4KXUUqoH0jk/E/0hxozJCCCGEsEwCqC7A0tN0OrW+q26vRyLhLlp54k4IIYRoBRkD1UVFnNoBgBLX/PQtQgghhGhMAqguqKb8ONHVWQB49BwOWB5oLoQQQgjLJIDqgg6m/YRGUclRddRU1wIybYsQQgjRGjIGqgs6tbd++pY92ngi/fwAmbZFCCGEaA0JoLqgwKObASj0iMO/vByQaVuEEEKI1pAuvC6muuwoPev2AxAUP0ZanIQQQog2kBaoLiZv+2p6AzlEcumUS1AUxdZVEkIIIRyOtEB1MRV71wJw2H+IBE9CCCFEG0kA1cUE/G/8kxo9xsY1EUIIIRyXBFBOqKmcTrWnjtOjpj5NQUTiBFtUTQghhHAKEkA5oaZyOh3c/jMaRSWXCGKjZfC4EEII0VYyiNwJNZXT6dT/xj8d8htCrEbGPwkhhBBtJQGUE2oqp1NA8SYADD1Gd3aVhBBCCKciXXhdRF3FCXrU5ACgSzpf5r4TQgghzoIEUF1AQUEBv379NhpF5QDhxMX2lrnvhBBCiLMgXXhdQG5uLnV59ekLDvoOIVqjyNx3QgghxFmQAKoL8PX1JaQuC/hr/JPMfSeEEEK0nXThdQGFB/bRy3AQgLBBkv9JCCGEOFsSQHUBVQU70CoqB9RQ+vTuY+vqCCGEEA5PAqguwKdsHwC7tf3QSv4nIYQQ4qxJANUF9KiuD6BKfPvbuCZCCCGEc5BB5E6ooKCA3NxcYmNjCevmQy/9flCg54iLLJaRweRCCCFE60gA5YQacjwBGDxKiVRUDqvBpIwcbbGMBFBCCCFE60gA5YTOzPFU8ssrRAK5XoOI0GoslhFCCCFE60gA5eQ8CrYAUKUbYfK65IESQggh2s5hBpE//fTTjBo1Ci8vLwICAiyWycvLY/LkyXh5eRESEsJ9991HXV2dSZm1a9cyZMgQ3N3diYuLY8mSJY3Ws2jRIqKjo/Hw8CA5OZnNmzd3wCfqOOnp6aSlpZGxbStRp3cCENjvHBvXSgghhHAeDhNA1dTUMH36dGbPnm3xfb1ez+TJk6mpqWHDhg28//77LFmyhAULFhjL7N+/n8mTJzN+/HjS09OZN28et956Kz/99JOxzGeffcb8+fN57LHH2LZtG4mJiaSmpnLkyJEO/4ztTSndjyfVnFB96DtwmK2rI4QQQjgNRVVV1daVaI0lS5Ywb948Tp48afL6jz/+yMUXX0xBQQGhoaEALF68mAceeICjR4/i5ubGAw88wPLly/nzzz+Ny1111VWcPHmSFStWAJCcnMzw4cN54403ADAYDERFRXHnnXfy4IMPWqxTdXU11dXVxt/LysqIioqitLQUPz+/9vz4Vml4ws5j/48My3mDP1yTGfnwyk6vhxBCCOFIysrK8Pf3t+r67TAtUC3ZuHEjCQkJxuAJIDU1lbKyMnbu3GksM2GC6VQmqampbNy4Eahv5UpLSzMpo9FomDBhgrGMJQsXLsTf39/4ExUV1Z4frdV0Oh1jxozBu2QHAGUh0vokhBBCtCenCaCKiopMgifA+HtRUVGzZcrKyqisrKSkpAS9Xm+xTMM6LHnooYcoLS01/hw6dKg9PtLZUVV0ZekAePcea9u6CCGEEE7GpgHUgw8+iKIozf7s2bPHllW0iru7O35+fiY/tnaqYDf+ahlVqiu+ob1Zt24dBQUFtq6WEEII4RRsmsbgnnvu4cYbb2y2jLV5isLCwho9LVdcXGx8r+HfhtfOLOPn54enpydarRatVmuxTMM6HMXhjF/oC+zW9qHiWJEkzRRCCCHakU0DqODgYIKDg9tlXSkpKTz99NMcOXKEkJAQAFatWoWfnx/9+/c3lvnhhx9Mllu1ahUpKSkAuLm5MXToUFavXs3UqVOB+kHkq1evZu7cue1Sz85St389AEcDhzJQkmYKIYQQ7cphEmnm5eVx/Phx8vLy0Ov1pKenAxAXF4ePjw8XXngh/fv35/rrr+e5556jqKiIRx55hDlz5uDu7g7A3/72N9544w3uv/9+br75Zn755Rc+//xzli9fbtzO/PnzmTlzJsOGDWPEiBG88sorVFRUcNNNN9niY7dZ0PHtALjGjJKkmUIIIUR7Ux3EzJkzVaDRz5o1a4xlDhw4oE6aNEn19PRUg4KC1HvuuUetra01Wc+aNWvUpKQk1c3NTY2NjVXfe++9Rtt6/fXX1R49eqhubm7qiBEj1D/++KNVdS0tLVUBtbS0tC0f9axVH89X1cf81LoF/mr2ocM2qYMQQgjhaFpz/Xa4PFCOoDV5JDrC/rX/JWbtXHYTQ/xj21EUpdPrIIQQQjiaLpkHSvzlxK7VAOR5JUjwJIQQQnQACaCcUEDJNgAK3aJtWxEhhBDCSUkA5WTUypP01OcBYAjqa+PaCCGEEM5JAignU7jzd7SKykE1lEH9BwKQkZHBhx9+SEZGho1rJ4QQQjgHCaCczIk9vwGwS4mj6vQpADIzM8nPzyczM9OWVRNCCCGchsPkgRLWcSvcCsDJgIEk/i9xZkJCgsm/QgghhDg7EkA5E30dERW7AeiZPMWYPDMxMZHExERb1kwIIYRwKtKF50TK83bgRSVlqid9Bg6zdXWEEEIIpyUBlBMp3PkrAHtc+hLk62nj2gghhBDOSwIoJ1J3cBMAx7sl2bYiQgghhJOTAMqJdD9Rn6bApWeyjWsihBBCODcJoJyEoayY0LoCDKpCRMJYW1dHCCGEcGoSQDmJwp31+Z+yiaR3VISNayOEEEI4N0lj4OAyMjLIzMyk98k1RACHvAfSRytxsRBCCNGR5Err4BqyjPseqx//VB0u6QuEEEKIjiYtUA4uISEBjVpHr5wDAHTrM9rYKpWQkCAJNIUQQogOIC1QDi4xMZEpo+Jxp5YTqg99BwyRue+EEEKIDiYBlBMo+t8A8j0u8QT6uBMZGYm3tzeRkZEAFBQUsG7dOgoKCmxZTSGEEMJpSBeegysoKODU7jUAHA9MAsDFxQVfX19cXOr/vLm5uWRnZwMY58cTQgghRNtJAOXgcnNz6V25BwC36JEAxMbGNvuvEEIIIc6OBFAOLjbIg1COU6dqiBw4BqhvZTqzpcn8dyGEEEKcHRkD5eDUkr0A7KMHfaLCbFwbIYQQomuQFigHV7KzPoHmQc/+9Ncotq6OEELYBb1eT21tra2rIeyMq6srWq22XdYlAZSD8zm6HYCjXr1tXBMhhLA9VVUpKiri5MmTtq6KsFMBAQGEhYWhKGfX6CABlCOrraJH3QEAgvqdY9u6CCGEHWgInkJCQvDy8jrri6RwHqqqcvr0aY4cOQJAeHj4Wa1PAigHdurgdnyoo0T1Y2TKWFtXRwghbEqv1xuDp+7du9u6OsIOeXp6AnDkyBFCQkLOqjtPBpE7sKJd6wDYrcRRVXbMxrURQgjbahjz5OXlZeOaCHvWsH+c7Rg5CaAcmP7QFgAOaHuSm5tr49oIIYR9kG470Zz22j8kgHJg3U7sAOCkRzS+vr42ro0QQgjRdUgA5aDUU0cJqSsEoNJLR3l5uY1rJIQQoq3GjRvHvHnzbF0NAJYtW0ZcXBxarZZ58+axZMkSAgICbF0tuyMBlIMq2bsRgBw1nGBfL2mBEkII0aS1a9eiKIpV6R1uv/12rrjiCg4dOsRTTz3FjBkz2Ldvn/H9xx9/nKSkpI6rrIOQp/Ac1ImsDQQD2dreKIY6aYESQghx1k6dOsWRI0dITU01mQKs4ek18RdpgXJQ2oJtAJR3H0RcXJxMFCyEEBaoqsrpmjqb/Kiq2qq61tXVMXfuXPz9/QkKCuLRRx81WUd1dTX33nsvEREReHt7k5yczNq1a43vHzx4kClTptCtWze8vb0ZMGAAP/zwAwcOHGD8+PEAdOvWDUVRuPHGGxttf+3atcbejPPOOw9FUVi7dq1JF96SJUt44oknyMjIQFEUFEVhyZIlrfqczkJaoBxMQUEBuTk5JJX/CUBA/DmMGTPGxrUSQgj7VFmrp/+Cn2yy7V1PpuLlZv1l9v333+eWW25h8+bNbN26ldtuu40ePXowa9YsAObOncuuXbv49NNP0el0LF26lIkTJ5KZmUnv3r2ZM2cONTU1/Pbbb3h7e7Nr1y58fHyIioriq6++Ytq0aezduxc/Pz+LLUqjRo1i79699O3bl6+++opRo0YRGBjIgQMHjGVmzJjBn3/+yYoVK/j5558B8Pf3P7svykFJAOVgcnNzKdy9kTFqBdWqK9H9R9i6SkIIIdpBVFQUL7/8Moqi0LdvXzIzM3n55ZeZNWsWeXl5vPfee+Tl5Rm71u69915WrFjBe++9xzPPPENeXh7Tpk0jISEBwKRnIjAwEICQkJAmB4S7ubkREhJiLB8W1niCek9PT3x8fHBxcbH4flciAZSDiY2NRZNTH/XvVmIYFBpg2woJIYQd83TVsuvJVJttuzVGjhxpkqMoJSWFF198Eb1eT2ZmJnq9nj59+pgsU11dbcy6ftdddzF79mxWrlzJhAkTmDZtGoMGDTr7DyIskgDKweh0Osr19ekLCn0GkKSRhHFCCNEURVFa1Y1mr06dOoVWqyUtLa3R9CM+Pj4A3HrrraSmprJ8+XJWrlzJwoULefHFF7nzzjttUWWnJ4PIHZDX0XQA6sKH2LYiQggh2s2mTZtMfv/jjz/o3bs3Wq2WwYMHo9frOXLkCHFxcSY/Z3alRUVF8be//Y2vv/6ae+65h7fffhuo756D+vkCz5abm1u7rMfRSQDlYAry9hNWmQVAQO9RNq6NEEKI9pKXl8f8+fPZu3cvn3zyCa+//jp///vfAejTpw/XXnstN9xwA19//TX79+9n8+bNLFy4kOXLlwMwb948fvrpJ/bv38+2bdtYs2YN/fr1A6Bnz54oisL333/P0aNHOXXqVJvrGR0dzf79+0lPT6ekpITq6uqz//AOSAIoB5O/fRWu6ClR/ejbd4CtqyOEEKKd3HDDDVRWVjJixAjmzJnD3//+d2677Tbj+++99x433HAD99xzD3379mXq1Kls2bKFHj16APWtS3PmzKFfv35MnDiRPn368OabbwIQERHBE088wYMPPkhoaChz585tcz2nTZvGxIkTGT9+PMHBwXzyySdn98EdlKK2NlGFaFFZWRn+/v6Ulpbi5+fXruveuuQBhh1YzG8M4ZzH17TruoUQwpFVVVWxf/9+YmJi8PDwsHV1hJ1qbj9pzfVbWqAcjFJUP4HwIbdeNq6JEEII0XVJAOVgIqqzASjzibNxTYQQQoiuSwIoR1JRQph6BIDYYRfYuDJCCCFE1yUBlAM5sW8jADmGcHrpQmxcGyGEEKLrkgDKgRzbtwGA3cSwb1emjWsjhBBCdF2On561C1mvHc53tdModQ2lYQa8goICcnNziY2NNc6PJIQQQoiO5TAtUE8//TSjRo3Cy8uryYkQFUVp9PPpp5+alFm7di1DhgzB3d2duLg4lixZ0mg9ixYtIjo6Gg8PD5KTk9m8eXMHfKLWG3vuhbifM4+IwakkJSUBkJ6eTlpaGunp6TatmxBCCNGVOEwAVVNTw/Tp05k9e3az5d577z0KCwuNP1OnTjW+t3//fiZPnsz48eNJT09n3rx53Hrrrfz000/GMp999hnz58/nscceY9u2bSQmJpKamsqRI0c66qNZLTbYh6kJQfTrLg2HQgghhC05zJX4iSeeALDYYnSmgIAAk3mBzrR48WJiYmJ48cUXAejXrx/r1q3j5ZdfJjW1frbul156iVmzZnHTTTcZl1m+fDnvvvsuDz74oMX1VldXm6SyLysra9Vna4309HSysrIoKytDp9ORlJSEn58fsbGxHbZNIYQQQphymBYoa82ZM4egoCBGjBjBu+++y5mJ1jdu3MiECRNMyqemprJxY/3TbTU1NaSlpZmU0Wg0TJgwwVjGkoULF+Lv72/8iYqKaudP1TSdTseYMWNk/JMQQohOtWTJkiaH1HSmG2+80aS3qbM4VQD15JNP8vnnn7Nq1SqmTZvGHXfcweuvv258v6ioiNDQUJNlQkNDKSsro7KykpKSEvR6vcUyRUVFTW73oYceorS01Phz6NCh9v1gZ0hKSmLo0KHGMVAFBQWsW7eOgoKCDtumEEII0VoHDhxAUZR2G6Pb3us7WzbtwnvwwQd59tlnmy2ze/du4uPjrVrfo48+avz/4MGDqaio4Pnnn+euu+46q3q2xN3dHXd39w7dRgOdTmfS2pSbm0t2drbxPSGEEF1DTU0Nbm5utq7GWXPUz2HTFqh77rmH3bt3N/tzNmN7kpOTyc/PN45PCgsLo7i42KRMcXExfn5+eHp6EhQUhFartVimqXFVthYbG0tcXJyMgRJCCEtUFWoqbPNzxhCSlpSXl3Pttdfi7e1NeHg4L7/8MuPGjWPevHnGMtHR0Tz11FPccMMN+Pn5cdtttwHw1VdfMWDAANzd3YmOjjaO822gKArLli0zeS0gIMA4prihZefrr79m/PjxeHl5kZiY2GjoypIlS+jRowdeXl5cdtllHDt2rNnPFBMTA9Q3aCiKwrhx44C/utyefvppdDodffv2taqeTa2vwQsvvEB4eDjdu3dnzpw51NbWNlu/s2XTFqjg4GCCg4M7bP3p6el069bN2DqUkpLCDz/8YFJm1apVpKSkAODm5sbQoUNZvXq1sT/VYDCwevVq5s6d22H1PBvmLVJCCCHOUHsanrHROfIfBeDmbVXR+fPns379er799ltCQ0NZsGAB27ZtMw7XaPDCCy+wYMECHnvsMQDS0tK48sorefzxx5kxYwYbNmzgjjvuoHv37tx4442tqu7DDz/MCy+8QO/evXn44Ye5+uqryc7OxsXFhU2bNnHLLbewcOFCpk6dyooVK4x1aMrmzZsZMWIEP//8MwMGDDBpZVq9ejV+fn6sWrXK6vo1t741a9YQHh7OmjVryM7OZsaMGSQlJTFr1qxWfQet4TBP4eXl5XH8+HHy8vLQ6/XGPtC4uDh8fHz47rvvKC4uZuTIkXh4eLBq1SqeeeYZ7r33XuM6/va3v/HGG29w//33c/PNN/PLL7/w+eefs3z5cmOZ+fPnM3PmTIYNG8aIESN45ZVXqKioMD6VZ2uSOFMIIZxLeXk577//Ph9//DHnn38+UJ+Sx9I5/rzzzuOee+4x/n7ttddy/vnnG4ew9OnTh127dvH888+3OoC69957mTx5MlD/5PuAAQPIzs4mPj6eV199lYkTJ3L//fcbt7NhwwZWrFjR5PoaGki6d+/eqBfH29ubd955p1Vdd82tr1u3brzxxhtotVri4+OZPHkyq1evlgAKYMGCBbz//vvG3wcPHgzUR53jxo3D1dWVRYsWcffdd6OqKnFxccaUBA1iYmJYvnw5d999N6+++iqRkZG88847xhQGADNmzODo0aMsWLCAoqIikpKSWLFiRaOB5bYiY56EEKIVXL3qW4JstW0r5ObmUltby4gRI4yv+fv7G7u2zjRs2DCT33fv3s2ll15q8tro0aN55ZVX0Ov1aLVaq6s7aNAg4//Dw8MBOHLkCPHx8ezevZvLLrvMpHxKSkqzAVRzEhIS2nXc04ABA0w+a3h4OJmZHTvlmcMEUEuWLGk2B9TEiROZOHFii+sZN24c27dvb7bM3Llz7bbLrmGsk4x5EkIIKyiK1d1ojsDbu/WfRVEUk5Q+gMXxQa6uribLQP0wlo5g6XNYW09Lzqx7w7o6qu4NnCqNgRBCCOFoYmNjcXV1ZcuWLcbXSktL2bdvX4vL9uvXj/Xr15u8tn79evr06WNskQkODqawsND4flZWFqdPn25VHfv168emTZtMXvvjjz+aXaahhUmv11u1jZbq2dr1dTSHaYES9aQLTwghnIuvry8zZ87kvvvuIzAwkJCQEB577DE0Go2xJagp99xzD8OHD+epp55ixowZbNy4kTfeeIM333zTWOa8887jjTfeICUlBb1ezwMPPNCoxaYld911F6NHj+aFF17g0ksv5aeffmqx+y4kJARPT09WrFhBZGQkHh4e+Pv7N1m+pXq2dn0dTVqgHIykLRBCCOfz0ksvkZKSwsUXX8yECRMYPXo0/fr1w8PDo9nlhgwZwueff86nn37KwIEDWbBgAU8++aTJAPIXX3yRqKgoxo4dyzXXXMO9996Ll5d147MajBw5krfffptXX32VxMREVq5cySOPPNLsMi4uLrz22mv83//9HzqdrtFYLXMt1bO16+toimre4SjOWllZGf7+/pSWluLn52fr6gghRJdQVVXF/v37iYmJaTHwsHcVFRVERETw4osvcsstt9i6Ok6luf2kNddv6cITQgghbGz79u3s2bOHESNGUFpaypNPPglg81YW0TQJoIQQQgg78MILL7B3715jUufff/+doKAgW1dLNEECKCGEEMLGBg8eTFpamq2rIVpBBpELIYQQQrSSBFBCCCGcijwbJZrTXvuHBFBCCCGcQkPOoNYmiRRdS8P+0dpcWOZkDJQQQginoNVqCQgI4MiRIwB4eXm1mIhSdB2qqnL69GmOHDlCQEBAq+YJtEQCKCGEEE4jLCwMwBhECWEuICDAuJ+cDQmghBBCOA1FUQgPDyckJMTqiWhF1+Hq6nrWLU8NJIASQgjhdLRabbtdKIWwRAaRCyGEEEK0kgRQQgghhBCtJAGUEEIIIUQryRioDtCQpKusrMzGNRFCCCGEtRqu29Yk25QAqgOUl5cDEBUVZeOaCCGEEKK1ysvL8ff3b7aMokrO+3ZnMBgoKCjA19e33ZO4lZWVERUVxaFDh/Dz82vXdTsb+a6sJ9+V9eS7sp58V9aT78p6HfldqapKeXk5Op0Ojab5UU7SAtUBNBoNkZGRHboNPz8/OcisJN+V9eS7sp58V9aT78p68l1Zr6O+q5ZanhrIIHIhhBBCiFaSAEoIIYQQopUkgHIw7u7uPPbYY7i7u9u6KnZPvivryXdlPfmurCfflfXku7KevXxXMohcCCGEEKKVpAVKCCGEEKKVJIASQgghhGglCaCEEEIIIVpJAighhBBCiFaSAMpBPP3004waNQovLy8CAgIsllEUpdHPp59+2rkVtRPWfF95eXlMnjwZLy8vQkJCuO+++6irq+vcitqh6OjoRvvRv/71L1tXy24sWrSI6OhoPDw8SE5OZvPmzbaukt15/PHHG+1D8fHxtq6WXfjtt9+YMmUKOp0ORVFYtmyZyfuqqrJgwQLCw8Px9PRkwoQJZGVl2aayNtbSd3XjjTc22s8mTpzYafWTAMpB1NTUMH36dGbPnt1suffee4/CwkLjz9SpUzungnampe9Lr9czefJkampq2LBhA++//z5LlixhwYIFnVxT+/Tkk0+a7Ed33nmnratkFz777DPmz5/PY489xrZt20hMTCQ1NZUjR47Yump2Z8CAASb70Lp162xdJbtQUVFBYmIiixYtsvj+c889x2uvvcbixYvZtGkT3t7epKamUlVV1ck1tb2WviuAiRMnmuxnn3zySedVUBUO5b333lP9/f0tvgeoS5cu7dT62Lumvq8ffvhB1Wg0alFRkfG1t956S/Xz81Orq6s7sYb2p2fPnurLL79s62rYpREjRqhz5swx/q7X61WdTqcuXLjQhrWyP4899piamJho62rYPfNztsFgUMPCwtTnn3/e+NrJkydVd3d39ZNPPrFBDe2HpevbzJkz1UsvvdQm9VFVVZUWKCczZ84cgoKCGDFiBO+++y6qpPmyaOPGjSQkJBAaGmp8LTU1lbKyMnbu3GnDmtmHf/3rX3Tv3p3Bgwfz/PPPS9cm9a2aaWlpTJgwwfiaRqNhwoQJbNy40YY1s09ZWVnodDpiY2O59tprycvLs3WV7N7+/fspKioy2cf8/f1JTk6WfawJa9euJSQkhL59+zJ79myOHTvWaduWyYSdyJNPPsl5552Hl5cXK1eu5I477uDUqVPcddddtq6a3SkqKjIJngDj70VFRbaokt246667GDJkCIGBgWzYsIGHHnqIwsJCXnrpJVtXzaZKSkrQ6/UW95s9e/bYqFb2KTk5mSVLltC3b18KCwt54oknGDt2LH/++Se+vr62rp7dajj3WNrHuvp5yZKJEydy+eWXExMTQ05ODv/4xz+YNGkSGzduRKvVdvj2JYCyoQcffJBnn3222TK7d++2evDlo48+avz/4MGDqaio4Pnnn3eaAKq9v6+upDXf3fz5842vDRo0CDc3N26//XYWLlxo86kThGOYNGmS8f+DBg0iOTmZnj178vnnn3PLLbfYsGbCmVx11VXG/yckJDBo0CB69erF2rVrOf/88zt8+xJA2dA999zDjTfe2GyZ2NjYNq8/OTmZp556iurqaqe48LXn9xUWFtbo6ani4mLje87mbL675ORk6urqOHDgAH379u2A2jmGoKAgtFqtcT9pUFxc7JT7THsKCAigT58+ZGdn27oqdq1hPyouLiY8PNz4enFxMUlJSTaqleOIjY0lKCiI7OxsCaCcXXBwMMHBwR22/vT0dLp16+YUwRO07/eVkpLC008/zZEjRwgJCQFg1apV+Pn50b9//3bZhj05m+8uPT0djUZj/J66Kjc3N4YOHcrq1auNT7caDAZWr17N3LlzbVs5O3fq1ClycnK4/vrrbV0VuxYTE0NYWBirV682BkxlZWVs2rSpxSewBeTn53Ps2DGT4LMjSQDlIPLy8jh+/Dh5eXno9XrS09MBiIuLw8fHh++++47i4mJGjhyJh4cHq1at4plnnuHee++1bcVtpKXv68ILL6R///5cf/31PPfccxQVFfHII48wZ84cpwk422Ljxo1s2rSJ8ePH4+vry8aNG7n77ru57rrr6Natm62rZ3Pz589n5syZDBs2jBEjRvDKK69QUVHBTTfdZOuq2ZV7772XKVOm0LNnTwoKCnjsscfQarVcffXVtq6azZ06dcqkJW7//v2kp6cTGBhIjx49mDdvHv/85z/p3bs3MTExPProo+h0ui6Zkqa57yowMJAnnniCadOmERYWRk5ODvfffz9xcXGkpqZ2TgVt9vyfaJWZM2eqQKOfNWvWqKqqqj/++KOalJSk+vj4qN7e3mpiYqK6ePFiVa/X27biNtLS96WqqnrgwAF10qRJqqenpxoUFKTec889am1tre0qbQfS0tLU5ORk1d/fX/Xw8FD79eunPvPMM2pVVZWtq2Y3Xn/9dbVHjx6qm5ubOmLECPWPP/6wdZXszowZM9Tw8HDVzc1NjYiIUGfMmKFmZ2fbulp2Yc2aNRbPTTNnzlRVtT6VwaOPPqqGhoaq7u7u6vnnn6/u3bvXtpW2kea+q9OnT6sXXnihGhwcrLq6uqo9e/ZUZ82aZZKapqMpqirPuQshhBBCtIbkgRJCCCGEaCUJoIQQQgghWkkCKCGEEEKIVpIASgghhBCilSSAEkIIIYRoJQmghBBCCCFaSQIoIYQQQohWkgBKCCGEEKKVJIASQgghhGglCaCEEEIIIVpJAighhBBCiFaSAEoIIVpw9OhRwsLCeOaZZ4yvbdiwATc3N1avXm3DmgkhbEUmExZCCCv88MMPTJ06lQ0bNtC3b1+SkpK49NJLeemll2xdNSGEDUgAJYQQVpozZw4///wzw4YNIzMzky1btuDu7m7ragkhbEACKCGEsFJlZSUDBw7k0KFDpKWlkZCQYOsqCSFsRMZACSGElXJycigoKMBgMHDgwAFbV0cIYUPSAiWEEFaoqalhxIgRJCUl0bdvX1555RUyMzMJCQmxddWEEDYgAZQQQljhvvvu48svvyQjIwMfHx/OPfdc/P39+f77721dNSGEDUgXnhBCtGDt2rW88sor/Pe//8XPzw+NRsN///tffv/9d9566y1bV08IYQPSAiWEEEII0UrSAiWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIYQQQrSSBFBCCCGEEK30/yyB8TPq23AJAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAYUlEQVR4nO3deVhV1frA8e8+h3mWmQOoIM4iOKJppeZ1yGwys9nKJtPKbL6VNtyyObtl9auu2a1udRtvpZlmWqk4C+IsoiIgkyLzzP79QZzgsIEDAmfg/TwPj3LO3vusfdjDu9d611qKqqoqQgghhBDCbDpLF0AIIYQQwtZIACWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0koOlC2CPampqyMjIwNPTE0VRLF0cIYQQQphBVVUKCwsxGAzodM3XMUkA1QEyMjIIDw+3dDGEEEII0QYnT54kLCys2WUkgOoAnp6eQO0fwMvLy8KlEUIIIYQ5CgoKCA8PN97HmyMBVAeoa7bz8vKSAEoIIYSwMeak30gSuRBCCCFEK0kAJYQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIYQQQrSSBFBCCCGEEK0kAZQQQgghRCtJACWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQNysjIYOPGjWRkZFi6KEII0SU5WLoAQojWS0lJITk5GQCDwWDh0gghRNcjAZQQNigyMrLBv0IIITqXBFBC2CCDwdAuNU8ZGRmkpKQQGRkpNVlCCNEKEkAJ0YVJU6AQQrSNBFBCdGHSFCiEEG0jAZQQXVh7NQUKIURXI8MYCCGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJ0YFkyhUhhLBP0gtPiA4k4ywJIYR9kgBKiA5kD+MsyWjlQgjRmARQQnQgexhnSWrRhBCiMcmBEkI0y9PTEwcHBzw9PS1dFCGEsBoSQAnRhZmT5F5YWEhVVRWFhYWdWDIhhLBuEkAJ0YVt2rTJ+FPHNKiKjIwkKiqq2Twu6W0ohOhqJAdKCDtlTvJ3fn4+lZWV5OfnG19LSEjgyJEjFBQUGHO4Wsp9kjwpIURXIwGUEHbKnKBmxIgRJCUlER0dfU6fZQ+9DYUQtsFaegZLACWEDTLnAmJOUBMTE0NMTEyD12JjY/Hy8mpVMGQPvQ2FENYpMTHR+KAXExNjNTXeEkAJYYPMuYC0NaiRYEgIYU2SkpJIS0sDah/6rKXGWwIoITpRe1U9W8sFRAghOlpdisG5phq0NwmghOhE5tQcmRNkadUSmVZzt3XbbWEtOQlCCPtjmmogTXhCdAGmgYU5NUdaFwdzAhTTam5zt90erOWCJoSwf9ZSAy8BlBAdyHRIAHNoXRzMCVDCwsLIy8sjLCzM7G3bQpOi1G4JIayRTQ2k+fvvvzN9+nQMBgOKovDdd981eF9VVRYtWkRISAiurq5MnDiRI0eONFjmzJkzXH/99Xh5eeHj48OcOXMoKipqsMyePXs4//zzcXFxITw8nJdeeqmjd010EQkJCezcuZOEhIRWrWfOYJZ10604OJj/XFQXmKWkpBhfa8ugmAaDgbFjx3ZIgKNVRiFE12Ut1wSbCqCKi4uJiYlh2bJlmu+/9NJL/POf/+Tdd99l69atuLu7M3nyZMrKyozLXH/99ezbt4+1a9fy448/8vvvv3PHHXcY3y8oKGDSpEn06NGDnTt38vLLL/PUU0/x3nvvdfj+CfsTGhqKn58foaGhZq/T1ouDOUGW6ba11jFdRiugMn2tI0ciN2e/hBBdh7VcE2yqCW/q1KlMnTpV8z1VVVm6dClPPPEEl112GQD//ve/CQoK4rvvvuOaa67hwIEDrF69mu3btzN8+HAA3nzzTS6++GJeeeUVDAYDn376KRUVFSxfvhwnJycGDhxIQkICr732WoNASwhzmM4jpzXGkjl5UuY0BZomlms1fZlODKyVjG76+VrNh6avtTVvyxwyrIIQoj5ruSbYVADVnGPHjpGZmcnEiRONr3l7exMXF0d8fDzXXHMN8fHx+Pj4GIMngIkTJ6LT6di6dStXXHEF8fHxXHDBBTg5ORmXmTx5Mi+++CJ5eXl069at0WeXl5dTXl5u/L2goKCD9lJ0hI7MsTENRrROfNPgo60XB9P90ApqzJkY2PTzTYMurf1qa96WEELUZ0s5j3YTQGVmZgIQFBTU4PWgoCDje5mZmQQGBjZ438HBAV9f3wbLRERENNpG3XtaAdSSJUt4+umn22dHRKdrrxu91olvTjBkTmK3ac2V1pAFpvuhFdS0JdlbK+gy3S9zarJs6cIohLCM9hrqpTPYTQBlSY899hgLFy40/l5QUEB4eLgFSyRao716kLX1xDcNPrS2Y7qM1pAF5uyHOQGdaRm1aqDasl9t6ZEohOhazLmOfbX6V3akFjAyMpP5N13VWUVrxG4CqODgYACysrIICQkxvp6VlUVsbKxxmezs7AbrVVVVcebMGeP6wcHBZGVlNVim7ve6ZUw5Ozvj7OzcLvshOl97tae3dYwnc7aTkXaCU/viifCsxLcml4srtlJJMp45wD9fhfIiDBXFGHR62OoOTh64lVXTvRyqEiNgyATw6wV+UdAtAvS1p75W4GMa6JjT7CfNdUKI9mDO9dgz/XfeV7/hh+N/AySAOmcREREEBwezbt06Y8BUUFDA1q1bmTt3LgCjR4/m7Nmz7Ny5k2HDhgHw66+/UlNTQ1xcnHGZxx9/nMrKShwdHQFYu3Ytffv21Wy+E6KOWSe+GbU5BoMBQ3AwZO+DzV9DygaCUv7AUPNXnp1v3X/KNDZQXpuD5/PnDzkpsGad8e0qvStVIUNx6T2e3AIPjuXojZ+rxZzA0Jxl2jJJsRBC1KeqKgNqDuCsVGIItWxLj00FUEVFRcanXKhNHE9ISMDX15fu3buzYMEC/vGPf9C7d28iIiJ48sknMRgMXH755QD079+fKVOmcPvtt/Puu+9SWVnJ/Pnzueaaa4w3j+uuu46nn36aOXPm8Mgjj7B3717eeOMNXn/9dUvssrBibWmHb7Y2R1UhfRckfIJ64AeU4hzjW3qgRHXmqBrCUdXA0RoDJ9RgCnCjSHWhGFeKcEFPDe6U4UEZbkoZvhTSU5dJhJJJhHKKnkom7tWlOKRtgrRNDAYG6RwpV84HzzToM6VRoKMVGJruuznBo7X0nBFC2K7jGdnE1uwHBWKm3mLRsthUALVjxw7Gjx9v/L0u72j27NmsWLGChx9+mOLiYu644w7Onj3L2LFjWb16NS4uLsZ1Pv30U+bPn89FF12ETqdjxowZ/POf/zS+7+3tzZo1a5g3bx7Dhg3D39+fRYsWyRAGohHTZiutgMqsfKKiHNjzBTW7P0aXcxAABShWndla059NNYPYWDOI44qBYA8nBvUIwrW6COVsJsN6hNM3KgJXJz3xG3/nZPopugUaGDR0BAWlleQWVZCUU8R3OUWcOF1CdU01fZU0RuoOMFJ3iJG6gwTWnMX1xK9w4lfQOWLoNR5D9EwIHGH2vpvDWhI/hRC26+jWlUQoVWTqQwgO6WfRsthUADVu3DhUVW3yfUVReOaZZ3jmmWeaXMbX15f//Oc/zX7O4MGD+eOPP9pcTtE1tGW8pAY1UAUZqH+8hrpzBbqaSnRAmerITzUj+br6Ag46DmDMwHBGRfoxyaOKitPp9OrVC4PB8GcvvFSie7oRM7A2N+/Qb3lUcJZgnQtXD29ctV1ZXcP2A8dZv8edtIpYlmSWkn62hH7KSabqtzFVt5U+pMORNbU/qx+FITfC8FugW89m912LaU9ByZMSQpwr3dG1AOSGXEiwoli0LDYVQAlhTdoyXpKnpyeeFNH36AfU/PojuppKFCCxJpIvqsezw30co/oYmOZWzIsxUSYjmP8VrGj1whsxYoQxYNHiqNdx3qBIzhv013bS8krYcCiHVUlDeCPlKiJJ4xL9Fq7Wb8BQcho2LUXd9AZ5fsOoOe9e/IddprnvWkzLaC0TgAohbFNJeSX9i7aAAr6x0yxdHAmghGgv6enpnD59mvT0dGNQ0yDQqCjGd+dSLkv9HgeqANha04+3aq5CCR7M1SN78o/hfdDpWn6qqguS6gdLAQEB9OzZk4CAALPLHNbNjRtG9eCGUT3ILSpnzb4sfkiM4c2UK7hIt4sb9L9wgT4J39M74IebYM9YuPBhMpyjSDl2rNnmONMySg6UEOJc7Nm5mVHKGcpw4liRG2RkyDhQQtiruryf/voTeGx8jvDidKA2cHqXmfSJu5hXz48k0Mul0TrN5VLFxMQYg7Q65uRkaQ3AWcffw5nr4rpzXVx3juYU8emWKObtHI1f+Unm6H9iln4DTic2wr834uHdn2KX8aQwrckLmGkZJQdKCHEuCpJWAnDIKZojx9NQHVwkgBLC2rTlZq/VTT9t/zaCd76GX2li7e+qP0uUOUSNncHrYyPwcXMiMTGRNS3kCpmOzWTOPHda29Fq+tPSK8CDRdMH8ODkPrz61e+8cfAmlpVfxp0OP3Kd/le88g8wOf8AZc77oG8gGZUeLX5fkgMlhGiLjIwMjh49SkDm7wBURU4gKkwmExbCKrXHqNk1Sd8QEz8f5+piqlQdH1RPIzV6Pk9PG4K/x18Dr7YlV8icee60crK0mv5MmdZSXTrQjx7VGRR49+azo/N4O+tS7nb4nhscfsEl9TfUd0ZD6FROMrpBeUyZs19SSyWEMJWSksKuvfuZV3MIFBgw4TpcAy2fSykBlBDtpC7oKjqbS7etG3BN/BBnYHdNFO9738ecqy7hUscyDiZsbxAgmJMrFBoaypkzZ4xJ5ebMc6c15pRW058p04CusLCQmuoqYn2rufuSC/h5XyYv/BjIxwV/4zGH//A3dmE4+QNXOaynuOdDUHMe6HRtGitKaqmEEKYiIyM5mbgOB6WGNMcehFlB8AQSQAmhqa2jZntXn2ZI0nJcy48D8Hb15WRGXc+jFw2ke5gvGzdubBQgmCZ/a9XCmAZDWsGI6Wtt7fVmGtDV345OpzA1OoSchHWsS6nh/sqFxFTs4wmHT+hfdRKfPxZD6hqY/gYpKVmtDoakp54QwpTBYCC0aA8AeYZx6KykploCKCE0tKXHWF81mfEF/4crZZxWPXnF/QEGDxqKW/YxUo+70T0sVLNZbdOmTRw9epRTp04xc+ZMzVqYzmz+MqeWqnt4GMPPJnFNfw/2Vl/O5b8N5AZlNQ84fInbiU2o74yhV58bSNUPNu6rOeWTnnpCdG1a14misgoGlmwDBfyHTOeoldRUSwAl7Epbgghz1mlpmeLf3yRi+yJ0qGyr6cv6gUtYfOU4zuRkkZKib7ZZLT8/n6qqKvLz8wHtYKktzV9agZjpfpiz71r5YHVBoKeLIw+N7ceEHi784ycnJmWP4B8OyxlHIiEH/sUURwPHAx4HMwfSbI+/RVMkv0oI66d1ndi7fQOjlAKKcSUkehxqVu00V5auqZYAStiVtuTQmLNOk0nlNTWc/d8j+CS+B8BnNRNhwmIeGTfYuL2WmtVMB8Bsay2M6ba1Pst0P9qac2S67WH9evJN3x78tDeTh/4XyuiS9Sx2/Dd+lRn4bLsffAqJjJjeqDymzClPW8ss+VVCWD+t61ZR0ioATvjEMUDvaDU11RJACbvSlhyaNufdVJZx+pNb8DtRe3K/43AjE297nt7BXsZFzKn1aK/xkkwvKuZcZLSaFE0/XysfTGvbiqJwcXQIY3r588LqICZvG8SLju9xEbth9aMYIn/GcPk74BXSZHnM+Vu09e8l+VVCWD/Ta4uqqoTk1E6tpus7xVLF0iQBlLArbXkyMWcd015wlOWT+fZ0ggsSqVD1vOW1kBvveIgAT+cG67WlWU2rtqu9mp9MgyGt0dNNy2jO92M69MGSKwczwKOUhX8s5JLK9Tzh8AmuKetR3xmNcvm78OeFsC099drKWp5ahRBNM70mHD6azEC19nrUM+5SC5euIQmghDBDg9yl8kKy37mE4II9FKiuvOK6kL/f+wAujvpG65nTrGYasBQXF1NWVkZxcXGTy5ijrUFXW2pqtAboLE9N4lKnHHYpY5hWPICljssYXHoMPpsFY++H8U+0abwtaYoTwn6ZXhNObvmWvsAx575E+NY+wFpLPqMEUKLLacvJVxc8qWWFZL4zneD8PeSrbjyrv5dx0QM1gycwr1nNtBnN3d0dFxcX3N3dm1zGHFqBhulr5jbPtSQsLIy8vDzCwsKMrzk5OeGsVDOrewk+MdOY/U0I91R9zK0Oq2Hj65C2gyqnyyktLW0QLLZEmuKE6Dq8TqwBoKjnJONr1vIQJQGU6HLMmTPOVHJyMiVncwjc/BHBNUcoUN34v4BFdK+pwqNeoGPKnG2b9szTCmq0eu+1xJzBNturWasuuHNw+OuS4u/vT15eHv7+/lwcY0DNTuaVzdeyo7wPLzm+h8fxP/ibfg+F+kuAXoD299Xc/H1CCPtSP10iMzeXwRUJoEDYqBnGZazlIUoCKNHlmJ585jzN+Hq6MCptJX1JplB15YfBbxFSUkp6epqx6UqLOds2J6hprwtGR+UBaZXPNBDsGejNbZGp7K6eyKWHuvOO41L6ksY11Z9xoMgZmKnZpGfaPGgtT59CiPZX/2Exb9P3jFMqydIHE9Qz1tJFa0QCKNHltHrE7uoqYjM+JpJkilQXfhz8JtddeSV79uxBUZqfV86cwMecoKYtgU97jbtkznrmjIxeWFiIWl3FVVF6Lh4xnZu+DOSx6ne5XL+ZQSeWw0odinpho88ybR60lqdPIUT7q39+H41fCsBJv7Ec2bTJeL2xlocoCaCE0GBsNho0CK/Ed4jM30Kp6sSq6H9y7YyZQOMpWLSYE/h0VEKkOXlTbb0QtSX5u/6F0WAIpn/I35jxehWHKrvzkMMX6LZ/wARDEt2iF9C9X6xxPdPmQelNJ4T9qju/C0tKGVgUDwoU+g3hRL3rlLU8REkAJbo8rSBi+/btZGZm4pe+lpjS76hRFX6Iepqrr5plXK8tQYS5n98ezMmb0roQdVTOkWngE+7rxrPjfHlt4wQOl4fyhuMyPDK2ElfyGEr0f5stoxDCvu3d+gujlSLy8cS3z2jS9x0wPgxay0OUBFCiy9O6QXt7e+OUuY3JJf8DBb4NuIurrp/b7HY6c9iA9tqu1oVIa0gCU22dbNnU5IvGM2mCyju/HWXGmkDed3iF7mePU/X+RByu+xx6jrGai6UQovOUJf0AQKrfWAqLS1vdiaYzSAAlhIYYgzPd932DTlFZ7XYJQ6fPY/PmTQ2CI9Mgoq01SR0VILR1u3U5Xc3ldrVnmRVF4e5xUfQN8uTqT7xZxqsMqziC+u/LUa58lwzf0R02P54QwvpUVVUTeeY3AFwGXYKfldZCSwAlujzTwKco6xgBv9yDC5Vs0Q9j1N3vs/n3DY2a60yDiLaM1WSNTKeWaavWBjUX9Q/ieKwXdyU8zLPqe0xhO3x1K+W9byW54q+5BbVYS1KpEKJ1tCY43/j7L1xNJhU4EDnqUrLyiixdTE0SQIkur35Tl1pVTs7ya4hQz3KICMJu/wIfDzfN9UxzhdoyVpOtMic4aksvwKljhhDsm8xbiY+SceZ9bnVYTcSR5ZR7X0i5x9NNlkfypISwTVoTnFcnrwfgqMcw+rt6kbJzj1U+IEkAJbq8+jVJSe/fQXT5Qc6q7lRd/W/Cgmt72Gnl/JjmCmndxDuqacnSTVZtGd9Kq8xNzbs34fxq7vvch/RD/jzu8Cn98n8jO34xRH8NesdGn2VaG2jp70cI0TYeHh4MrNwDCtT0uRiw3gckCaCE+NOhXz4kOv0LAHYPf5HxAwcb39PK+dGavsRURzUtWbrJqi0J6lplbmo7rk563rlhGM+tdOPe+G687vg2gVm/oX52HZkXvMDR1FPnXPslhLA804naj584zqUcBSDivNrRx3Nycjh+/Dienp5WdT5LACUEkJWSSPjGRwH4xf9G/MOj+eSTT4zNc1o1GqbjE7UmQDhX1vpE1hytMjeXjK7XKSyaPoAPfG7l9p9cecdxKa7Ja3DKPEGS/spmh4+wxe9HiK7INPXBOXcPOkUl2bEPUf7hgHk9gy1BAihh18xpyikvKaD80xsIooxEh8GMvf1VvvryyxanDzG9Sbc2QDgXlu7a35k1PLedH4mv+2xmf+3GBw4v4Vd0iCuUf7Et/xHjMjJfnhC2yfS66XeqNv/pdMiFRP25jDk9gy1BAihh18y50e9//3aGVKeSTTf8b/4EF2fnRiesOcFRewU1tpC/05YannMJuq4cGoaP23Xc+KkrH+ieJ5hsLjz2MhRcDF4GmS9PCBtV/7qZlpFBbGUiKFAWMNS4THv1DG5vEkAJu6Y1tED9ACU3aS1D8lZTrSqkT1zGkLAeQOMTtjNrfGzh5t+W78OcoKu54HFCvyC85lzNDR84slz/HKEVmVQvn4r+5h8b5aPZy5ASQnQlyRu/JEyp5pgSTu9h44yvW+tDpQRQwq5pDS1Q120299QJxu17HIAthpsYc/40SxWzAXvN3zEn6GppepzhPX154upx3Pa1A/9X8yzdzx6nevlU3KOfapCP1pWGlBDCXrgnrwQgP/ISYlvogGINJIASdq2pmgi1RsVw4H18KOSILoLKPpeTkZFhPDktmVNj6fwma9fL35VbR/fk7u3P8M/Kp4ksOEnMrr+jDHkWQzP5aFqs9clWiK6i7hz07ubD4PKdoEDYmGsaLGOtD5USQAm7plUTUV1djVfBXkaqu6lQHTgyYCHZJ1JxcHT6azwoK+31Ye/MmWMvJSWF4sxjzImLZOHu53i5eBG9S9MZuP1RCsI+gXrjSbXEWp9shegq6mqd/ckiWqkiTR9OWETDa661PlRKACXsmtaTS8qhPcyp+QEU2N37HmLPm2ishahjrb0+bJk5tT3mXCjr/01Hx43k7vcceL7wCfpVnkT99gYI+gX8eplVpnPNyxJCtI8e+dsAyAmfTJiiWLg05pEAStg10xtyZWUl44v/h4dSxl5dP0Zc8wQ6B4dGN0Zr7fVhyzqitifY24X35k7lzrerWVL0JH0q06n6cBoOt64C35ar+80J2KSWSoiOExsbi85Bz/BNz4ICLv3+xsaNG23igUVn6QII0VYZGRls3LiRjIwMs9eJ/+JFBquHKMaFwNkfoXNwIDExkU8++YTExMQOLK2IjIwkKirqnPMYEhIS2LlzJwkJCQD4ezjz/rzpLPJZwpGaUByKTlG5fBrkHW9xW6bHkNYx1V7lFkI0ZjAYcC9JxUWp5JQuhNOV7iQnJ5OSkmLporVIaqCEzTKnZqB+Mng3b3eGHnkLFDgS/SCxPfoB2vlO0mzT/joyj6EsP5fZsd14bPszvFj8BL2KMqhcPg3HOT+BT/cm1zM9hrR6AVpr/oUQ9iAjIwN179cAnAqdTGSvXqAoNvHAIgGUsFnmTN5bFxypKvRJ/4zuSimHHfpSGDDS2OtOK99Jmm06hzmBqukyWonmKSkpZKWmMGdEJE8mLOEfZx8lsjCNyuXTcbxtNXiFaG7b9BjKzc2lsLCQ3Nzcdt5TIYTW+Z60by9jK3eBAsGjZtnUA4sEUMJmaZ1opjUIdQMsOpacJK5sI1WqjkM9byZldwKFRcUYDAYCAgLo2bMnAQEBxu1Ya7dZa9XWGjtzAlXTZbT+7vX/XnFxo5j7ViUvF/+d7gXHqVhxKU5zfgJ3/0bbNt1WRUVFg3+FEO1H63xXTh/GXSknUwnAMGC0JYvXahJACbvm4OCAo7MzF6QvBQX2dr8evW9POH3EuIzWSW16Y5Umvea1tcbOnEC1tcGsr7sTs4cHc89vj/Ku+hwhZw5TseIyTl/8L46m5zb7NxwxYoSxybeO/O2FaB9a57Jn6joAMgyTCbaR3nd1JIASdsW0eScyMpK8jf+HQcklSxfAwOuWEJhX2GAZc6b9kCa95rW1xs6cQLUtPeVi+0dxuwoPbnuKpeVPEJCzF+dvZnO8263GZbRo1UbK316I9mF6LucXFhJdHA8KBMbNtGDJ2kYCKGFXGt2QTx5laumPoEDJRS8Q5OoJeQ2n9zBn2g9p0mtee+UtaAUr5tQAaf19fFx0PDTjQh769ineKH0C38KDTNF9QkX3f7fq82VePSE6xt4NXzFGKSVH8Sds0AWWLk6rSQAl7FZ5ZRVOPz+Eg1LDAZ9x9B9zFdD4JmlOcGRLiY22xDQ40hz41IwaINO/T10uXO/eBTx7x7U88E4FSyuewj9/D4VrF8LNX4K+8eVP6/NlXj0hOobD/m8AOBk6lQCd7Y2qJAGUsFu/ffsek2oOUIoz3a//p/F105ukBEeWY05wdK61f+G+bjxx500seLOIZeqLeJ78lcr/3YPjFW+DSc5FSwnqQoi2q//A5OjkSExJbfNdyJjrNZex9uuyBFDCLmXnnWXgvtdAgZS+tzEwoIfxPQmYrIdpcNJe+UbV1dWUl5dTXV0NQE9/dy67aDwPriliqf4NHPf8hyrXbjhMea5RECWE6Bj1z++aU7u5QKnkpC6UE7lVqH8OK2NLOYcSQAm7tOOz57hYySFX50//Kx9v8J4tPeHYO9NgVqu2R2twS1Omf9Pk5GRKS0uNF2KAsqxjOLr48njZ7bzg8B4OW5dxttqJvT4Tmz0WzPl8IUTL6p/fmb8vAuCw91hOHj0KimJ2SoW1kABK2KymAqH9hw9zQda/QYHCsY/j7+zeYD1besLpatpaO2j6N/Xz86O4uBg/Pz/jMvn5+fhSSHlQNEuyb+Qx/cf47HgdfDNI4SY5FoRoZ01do3OyTzG4fDcoEDr2epxL9TaZUiEBlLBZWoGQqqqkf/skA5QyTrj0J2LczY3Ws6UnHNF4aAotpj3lJk6caLxw16k/xtNp58m8/Wkhd+u/47wzX5KnjAHGtvnzhRCNmV6j6373KthLjFJDimNvvEJ6k2sD895pkQBK2Axzemx9/+N3TC/5GRRwv+wl0OjZYUtPOMK8v5dpTzmtdeqP8RRjCKJoxvN8/lU+1zisx+uXByGsD/SwrZGQhbBmptfoun+9f30XgPxel5Fhwy0CEkAJm2Gai2J6kywtryJk58voFJXdbmMY0t/2xhURbdOWwVAvjQ3lvg3X4He6gL/pd1L+8Uycb18DQQOaXU8IYR6tB5kzuZmMrTlAjarQa/xNHMs82+K5a615q7Y38IIQTVj3w8eMZB/lOOJ/yVOWLo7oROYOhhoVFdWgxvLW8f352mcOO2r64FxVSOmHl8PZky2uJ4RovZSUFEr2rQLgiGs0XkE9SE9P5/Tp06Snpze7XnJyMilW1tRnVwHUU089haIoDX769etnfL+srIx58+bh5+eHh4cHM2bMICsrq8E2UlNTmTZtGm5ubgQGBvLQQw9RVVXV2bsiNMTGxjJs2DBiY2MbvZdfXE7U3tcB2O17CXqfsE4unbAkc4Icg8HA2LFjGzzBxsTE8M7C61gb8waHa0JxLcuiZPllUHKm2fWEEC3LyMhg48aNZGRkAFBZWUlsxXYASvteYfZ2rPUhxu6a8AYOHMgvv/xi/N3B4a9dvP/++1m5ciVffvkl3t7ezJ8/nyuvvJJNmzYBtWPHTJs2jeDgYDZv3sypU6e46aabcHR05Pnnn+/0fRENNZcLs+G797mMExThyq6qvpxJSMBgMJCYmGhMHI6JienkEovOYk6eVFPNAIqi8MgVo1lU9Bp3p8zFUHCUon/PwmPOD+DoYvZ2hBANmTZ/J+/fzXgllUpVT5/xNwDmddKw1rxVu6qBgtqAKTg42Pjj7+8P1HZh/te//sVrr73GhAkTGDZsGB9++CGbN29my5YtAKxZs4b9+/fzySefEBsby9SpU3n22WdZtmwZFRUVTX5meXk5BQUFDX5E58k+W0T04WUA7Oo2jUq9m/G9pKQk0tLSSEpKslTxhJVorhlAp1NYdP0kXvF9hgLVDY/MbRR/cRvU1LRqO0J0Vaa1TdC45iis/CAAe51jcfMJBGy7htfuAqgjR44Ye2hdf/31pKamArBz504qKyuZOHGicdl+/frRvXt34uPjAYiPjyc6OpqgoCDjMpMnT6agoIB9+/Y1+ZlLlizB29vb+BMeHt5Beyfqqzth1332OpFKBgWKF1GXPtygmS86OpqwsDCio6MtW1hhcS01Azg56Bgb4csjNfOoUPW4J/9AycrHWr0dIboirQeL+sFRZVUVMQW/AuA49PqmNmNT7KoJLy4ujhUrVtC3b19OnTrF008/zfnnn8/evXvJzMzEyckJHx+fBusEBQWRmZkJQGZmZoPgqe79uvea8thjj7Fw4ULj7wUFBRJEdYKUlBR27DvMjMyPQIEzQ+6mZ0RfDBF9jcvExMRI050AzGsGcHFQCO/mw9MFd/Ecy3Db+S7lPuE4nz+/k0ophG1qaXy9xI2rGE4ORbjRb9w1nVm0DmNXAdTUqVON/x88eDBxcXH06NGD//73v7i6unbY5zo7O+Ps7Nxh2++KzMkziYyM5Ej8t4QrOeTpfOk55b5OLqWwN3X5GI6+F/PGl/ncp36C47onqPQJxTG6NulVhjUQorGWHlAqd34CwGH/vzHUxb3J5WyJ3TXh1efj40OfPn1ITk4mODiYiooKzp4922CZrKwsgoODAQgODm7UK6/u97plROcwJ8/kWHYeU4u+BqBk1AJwcmtyWSHMUdfkEDcgknG3/INP1cnoUOGbO1BTa3Mltcac0sr/EELUyss7w+CCDQD4jplt2cK0I7sOoIqKijh69CghISEMGzYMR0dH1q1bZ3z/0KFDpKamMnp07ejDo0ePJikpiezsbOMya9euxcvLiwEDBjTavug45uSZHFq1jGAlj2zFn9AJczWXkRubqKN1LDR3fMR070boNW/wS81QHNUKSv99NZw+qjnmlCSWC9G0fb98grtSTrouhJ6xEyxdnHZjV014Dz74INOnT6dHjx5kZGSwePFi9Ho91157Ld7e3syZM4eFCxfi6+uLl5cX99xzD6NHj2bUqFEATJo0iQEDBnDjjTfy0ksvkZmZyRNPPMG8efOkia6TtVQdfDA1i0vLfwAFDhquJNDBSXM5aW4RdbSOBdPR7U2N6x/C1xe/S+Kqa4ipSqHgX5cTddXnQMPgXuZXFKKxulQMz4NfAHA85GKObdpkN0OA2FUAlZaWxrXXXsvp06cJCAhg7NixbNmyhYCAAABef/11dDodM2bMoLy8nMmTJ/P2228b19fr9fz444/MnTuX0aNH4+7uzuzZs3nmmWcstUuiCUk/vMlMpYAsXSBRU+9pcjm5sYk6WsdCcXExZWVlFBcXN7lelGsZH3rN58HC5wkrSaXif3eiG/p0g2WsdZwaISwpJSWFvYk7uKt6LzWqQrnhPFLt6IHWrgKozz//vNn3XVxcWLZsGcuWLWtymR49erBq1ar2LppoR0czzzAm+1NQoGbM/RjCuhvfM00+lxubaImqqsb/a3VeSEpKIqgyh5ddFvBs2fP45yeRvflZUnTPGJeRwTWFaCwyMpKzW/8NwCHXWPzCepORl9TsvHe2xK5zoITtai43Zcf/3sWgnCFP50uKQ78GyyQkJLBz504SEhI6sbTCFmjlKbm7u+Pq6oq7u3uTy0RHRxMeHsZNU87n7eCnqVD1DCjfTWT6t01uW3LvhIDAwCBiCzcAUBl9jVlzVtoSu6qBEvajqdylk7mFjMyoHfdpj/dEtmzZTkb2aWbOnAnUNsmUlpY22yQjuiatJjzTaSS0etjVH0us34BBLH09jYfL3sBwcDnF8YNwHz2n0bYl904I2BO/mqFkUYwL/cZfT+7Z2sDJXlIqJIASVqmp3KWN3/+La5VMinSeHNIPoLy8kJycHOP7pjUKQtQxpzm3pSdkd2cHBgyfyDu/pzJX9y0uPz9IhV9PDH0uarBtreNXmvmEPdM6vsu2/zn2k99FDHHzxODmaVfHvgRQwipp3ewSDh4j9vi/QAf5g2+jW2UYecUpxk4CYN7ElELUMa0pMifwGTogiuKKm/lhay7TlT+o+PxGau74BV3wX0OdaB2/Uisl7Jnp8Z1/9iyD89eDAt6j7Gfsp/okgBI2Y/3KT7lfl0oJLoROupcxZ8sICQlpcLOTpHHRGqYBk7mBT6iXAwVTlrD9p9sYwUHOLr8Cn3v/AI/aCVITExNJSkoiOjra2Pxn2jyo9cQutVTCVpke33vWfMj5SikZumAihk1sYW3bJAGUsAm5hWVcmP8d6CDRcxyj3XwxuDV+kje9AckNSTTHnIC7qfymqKgosqctJ2XllURWZJLz/hUEzP8FHF3ZvHkzOTk5FBYWGgMo0+ZBrTGozKmlkmNatKf2Op7qH9+qquJ/6D8AZPa6GoNO317FtSrSC09YJdNeTL+u/pahuiOUqw4UR05vcj3T3lAyQrQ4V/VnlAeMN4mqqiqmxQ1kc9w75KkeBOTvJevft0BNjXFohPpDJJg+oWt1eDBnBH45pkV7aq/jqf55cSBhE/2rD1Op6sn3H2G3vVGlBkpYpfpP4t38gwjc9wEAB30vYkBc01MBmNYWyECaor2lpaVRXFxMWloaANdfPJ7/y13CrSkLCDr5E9nfL2LMmJnGJrw6pjVQWh0e2lIjJsS5aK/jKTk5mfz8fJKTk3Eo/gOA3c4jOHHqDI7uKXZZWyoBlLBK9U/qtRs3cYm6ExSo6HtFs+uZ3oAkJ0q0t7qgqO5fRVG4eMJFvJVxJwvL3yYw4U0cA6OIueHmBuuZ3qhCQ0M5c+YMoaGhrfp8OaZFe2qv48nb25vc3FxcXV2IOfkzKKAbeiNRHj3tNtiXAEpYpbqTuqZGpebDB9ApKvudh7D5UDa9axLkBiI6jWmOSP1xoeqknjiGW2A/Pkq/gtk13+Kx5gGK/Xvi3meccRnTG5W9DSoouraAgAAyMzNxPbMXzz+Tx4dNuhbFTvOfQAIoYaXqblq5VY5MqlgHCpwOnwqnLV0yYc+0EmpNE7u1lql7wnYbcz5rv8jib+pmyj+/gcq71uMY2Fvzs6QpTtiTtLQ0ioqK6V22BhQ41WuW3SaP15EkcmGV6m5apzetwE0pJ8s1Cq9Bk/Hz82t1k4cQ5tJKqDVN7G4u6TbYywXDzStIUKPwqCnkzP9dilpyxuzPlylghK2Kjo4mwEtPtHKUSlVP78l3Njqe7e34lgBKWCVPT09yKxyYWrEaAOfz51FYVNSgycPeTkZheVq94Ex74WlN91I/qBrYI4ifAu4iXfUjqDqDjPdmQlVFo8/SCsRkLkdhqwICAuhRuB2A/d4X4OUfave9oqUJT1il9PR0KjN2Y1DOUKjvhs+I64jMqX2Sl/nGREdp63Qvps1xF58/khXr7uHe/BcJPbuDkx/fRfjN/wJFaXIdIWzZ/n37GFX6OyjgNnoO0HBoA7C/Y14CKGGV8spqmFqzHnRQEnMLno4ujW5u9nYyCtugddyZHpt1ieaffOzJtckPEn7ia9JW9ibsksea3bZMRSRsVU3GNjyVUtKVYKLiLgYaD/lhbz1IJYASVqmoMJdY3VEqcCRowt2ay9jbyShsQ2uOu2uvn8MXb6Vw3ZllGHa8SHyBQo9xN2EwGDRrUOWYFtaopdHKa6priDjxFQCZUbMI/TN5PCwsjLy8PMLCwszajq2RHChhdUorqul57HMAciIuA4+AFtYQwjrpdQqX3fkMPzpPQ4fKkEOvcmL7z4B5o46bk+cnuYCio7WUu5QQ/zO9a1IoUx3pe/E84+t1uYIODg5mbcfWSA2UsDq/bN3NVHUrKBA86X5LF0eIFmlNHlzH3dmBkXPfY9PSaYxREuiT8AwV5/8NgyGsxadwc/L8tObUE6I9aTVb169Nqtr8NgD7/acwtFtQk+vZW9qFBFDCKtQ/GQvjl+Og1JDhPQRDyCBLF02IFiUlJRnzPEwDKIBAHw9+G/oIh3c8RB9dGmnvXU7o/etRnD0bLVufvd1whG3SalquC+7zTmcytXjjnw+89zW7nr01UUsAJayCsWo3r5y/Ff8ECnidf5eliyWEWUynd9EyZngs60qexO/AQ4SVHSHlveuJnPcd6JrOpDDnhiOJ58IS6nrYBWSvx0Gp4aBLDP36jrB0sTqV5ECJTqeVs1HXTl6Qso0Q5QwFOm8SS4Ikr0PYhICAAHr27ElAQPP5ehFhYfwW/QLlqiORp3/jyH8eOOfPNh2nSojOkJaWRkFhAecV/wKAOvJOC5eo80kAJdqVOQmtWomEhYWFFJRXE3t6JQBHfC5kx+49MqCgsAmmx7TWebBp0yY2btxIterET72eAKB38nKO/fx2k9uVBHFhraKjo+mhz6KbUkSmEki/C2c1Wsbej18JoES7MqeXhVbvo8jISEpUHWN1SdSgkB92UaP17P1kFLbL9JjWGlE8Pz+fqqoq8vPzufSG+/ix200AhMU/Qcbu2hH3TY9xrfNJzgNhDXx9/YgrXQ9ARp8bUPSNM4LsrdedKcmBEu3KnKRXrbyO4OAQwjLXApAZMBa/XkPwK0lqMO+djDwurJU5uUojRoww9tTT6RQuuut1fnvtBBeW/4bn/27lrP8vpJw40+AY15o2RnrdCWuw7ddvmUEqJaoz/eoNXVCfvXeCkABKtKu29rLYeOAkkyvXgQJ+4+4m4UQ6p0+fJj093diryd5PRmG7TAcI1ErsrhudvE7e6WxKht9L0uZTRKuHObXiSsJnfQX8VZOlNW2MENYg5OQPAOz2HM8Yb38Ll8YyJIASVuHI+o+5QCnirFMwPv0nw4mfGy1jb11ghf0wrR0151hNSUkhKz2N8iFP0G3XA4RVn+LIt3M57/616JxcAO2HhtDQUM6cOdOgdlaIznT08F7iKreBAqcNE5pczt5bDSQHSlhcWl4JQ7K/AaCgz1Wg0xMbG8uwYcOIjY01Lie5H8JamTOquKm65rmIHj3JueTfFKqu9C7dw/73bgFVBeDw4cPs3r2bw4cPG9eTWilhaad+ehm9orKDATj4hDe5XFvOC1siAZSwuPUb1jFUl0yVquew40BAu2u2vSckiq6lfiA0ZPh5JIx6gypVx6DcVez57EmgdoDOvLw8kpKSjOvZ+01JWJ/6D68Z6akMP1PbWzqvz7UNHnJN2fsQG9KEJyyqukbFJelTABL1g6hw9GlyWcmBEtaqLU0Vpgni50+dxbqcFC5KeYHBh9/kwNoooqOjjYnndUybB+1tglZhfeof39V7v+RCpZKjjn3527X3gKJYuHSWIzVQwqI2HUzjb9W/A6CPntGln2aE7WpLrVB6+l8dJepMuPFRNvheXbvNjQ/iXXOGIUOG0KdPnya3IzWzoqPVHd9+/v7EnPoSgIpR93bp4AkkgBIWduT3L/BRisnT+7OvqBs5OTmWLpIQrdZewb2iKJx319vscBmFs1JJj9/uI2HLrw3Gk0pMTOSTTz4hMTER0A7eJF9QtKe64ztry+f4KMWk6wz0G3eNpYtlcdKEJzpcU00MZ4or6J3xP9DBAbeRnEzPQFV0mpOxCmHrzBnqoG6ZgCve4MgX19K7JoWLCz9jb1k/4zKmExc3N9Er2GfvJ9GxEhMTjU3HddfjktIS+h3/NwCnY+5CycpucDx3xaZkCaBEh2vqYr4mfidXK7XJsd1G3UjYsTPNTsYqhLUyvXlo3UzMGeqg/jKRN39F1vKJRCoZFB94k8qKS3F0cmk0cbHWZ0m+oDCX1vFjGqRnZGQQ/+3bzOA0p5VuDJx6Bz//sr7BgK5dMWiXAEp0ONOLeUZGBkePHqVk66foFJXMbsPxjoilp5rS4mSsQlgj05uH1s3EnKCmfmK5oXsvDl/xKR7fXEF05R62v30Lw+/9tNGAnFqfJWOmCXNpHT+mQfrOnTuJzf4aFEjtPRs/J9dG2+mKQbsEUKLDmV7MU1JS+D3pGDeUrwMdeJ13C7u64NOLsB+mN4+23kxMx3jqE3MeCbn/JPr3OxlxdhWbP/o7PSff26DGoCveuET70Tp+TIP0gtTd9FIyKFRd6T99AUCjJuiuGLRLACU6XWRkJJt2bKeHLpsynRtuMVfgeSC50ZxfQtgK05tHW/OSTIc2yMjIoMg5lD8i72fcsdc478Q7fPeDK2edezT4nK524xLtp6Xjp6qqmqG5/wNgX/BljPLsZtZ6XYH0whOdrpt/EP3yfgXgbOR0cHLX7NIthD0xZ6gD0xqouqDLoddFbAu+DoCpGf/ER1/SoEm8pR530itPNKWlY2Pb2s/pryZTijPRs54ye72uQGqgRKf7cv0OZrIFgMALbgOguLiY0tJSiouLLVk0ITqMOU/szTUFBo9+i8TXTxJT9Afjkp/jcEQfs5N3tZbpir2mRGPNHT9VVdX4bX8VgK1eU+lTpuJuxnpdhQRQosOZXqhzt/8XV6WCTL2B4PARALi7u+Pq6oq7u3sLWxPCfrXUFNhv3mccfHkc/WqSCVk7l4yIdZo5LKbnnNYycgMU0Hy+3pbVnzK25iglqjN71X6UJCRIT896JIASHa7+hbrG1YdxFRtABxkBFxL850i2WmPiCNHVtDQcgrOrJwUTXiZt7Z2EK9kc+NcMQu5by9ixYxtsx5whE+QGKKDpmtHKqmoCd74OwB+uEymu0jVoIZAcKMmBEp2gfu7HhvitDNUlU42CYeJdxmVkmhYhYNOmTWzcuJFNmzYB2tO0VODEuqA7OIsH/WsOc/jtaygrr2iwHXPyreScE83Zsurf9FFTKMaFqr6X4uLiIi0EJqQGSnS4uicVVVWp+uhZAI449qe8WCHYwmUTwprk5+dTVVVFfn4+oF1LVPf/E5URuP52FyPL41n16o1E3/gq4eFhAOTk5HD8+PHa8aQkQBKttGPnLgJ3vgYKHOl5PUPiLsA7IEVqK01IACU6XF0zRKV7EBeU/lo7dYvai+KkJJm2RYh6RowYYZxCA7SbSeq/dkgtpe/v87m4YjX//SKAsAfeRFGURiNJm0OSykWdhPX/5TYllSLVhX5X/p0zRRUtr9QFSQAlOlxdM0RmURLjdZmU40R593EybYsQJkwHMGxJ3wk3siklkTFp73N10ces/rwvU669p9FI0uaQnnpdQ0t/0/LKSi4sWgnA7sArON/Ln4SNqxpM2yJqSQAlOlxkZCQ1qorTurcByAy6kLDIfjJtixDtIN8wgZ8zDjO55jcmHFzMr6uCmXDxzFbX7ra1p54EWbYlISGh2WBo87fvMp5UCnGl+6R7mtyO/N0lgBKdwGAwcLRQ4W/qRlCgIGi0dJ8Woh0d9BqPX2k5w8u3MGLrPfyEM55evs3e3ExvgG3tqSfDIdi2+seBm4cHffcvBWCDy2S6ZeXRo7d2L2n5u0sAJTrJ/k0/cL5SQLHeG7+RVxF1/KQkJArRBqaBT93NLST8Mo5+cQu9ShIYsvVePvN/AGjd4Jqm2jL4p7BupsFQ/eOg7OAqJpJLtuJHt1E3NjvPnfzdJYAS7SwxMdGYBFvXhFBSUUXwie9BgeLe0zGE9cAQ1sPCJRXCNjU3xlPVvO9IXzqO0MrjXJr7NplOHwPazS3tdQOU8YBsi+nfq+7v7+buzuCTH4ICeXGPMHbcxFZtpyuSAEq0K63eP7/uOcZEtgEQcN5NFiubEPagucDHwb0bfnd9T+6yCfSqyaBk1V2cCP+JfRp5L6Y3QMlp6dpy1y1lqFLCCcdI+k66rcF7cmxok4E0m7Bs2TJ69uyJi4sLcXFxbNu2zdJFsgnR0dGEhYU16P1z7I8vcFfKOeMUghI+0oKlE8L2tTQApotfD5xv+R8FiifRHCHj/avJL6tscbtag3YK+2M6CfCmTZvYsOEXxhX+AIAy6VnQ6RusI8eGNgmgNHzxxRcsXLiQxYsXs2vXLmJiYpg8eTLZ2dmWLprVi4mJ4YYbbjDWPuUWlTPwzC8AnAq4AP6cukUI0XEK9b4kDV5EGU6MrtmF/75/0XdQDLGxsU2uY87o5cL2mQZDZ8/mE1f+B05KNYc8RtJ9xCWN1pFjQ5sEUBpee+01br/9dm655RYGDBjAu+++i5ubG8uXL7d00WzOLzv2cYEuEQD/MbMtXBohuoaUlBSO5Duxs/9jVKHjb9W/Ubj5PUrKq5pcR6Z2sT+mtU0AVVVVFBYWUlVVeyz4eTrwN/0OalQFv8tf0FxPjg1tEkCZqKioYOfOnUyc+FcCnU6nY+LEicTHx2uuU15eTkFBQYMfUatw19c4KDXkePYnaMAYSxdHCLujdZOsqzGIOP8acsa/BsDM6pVs/M9zlFVWA7UdPj755BMSExMtUm7R8bSa3tLS0iguLiYtLY3S8kr6HFoGwP7AafhHDQMaz8kotEkAZSI3N5fq6mqCgoIavB4UFERmZqbmOkuWLMHb29v4Ex4e3hlFtXqZ+WUMOvsrAE6xMy1cGiHsk9ZNsn6NQciFt3Bo4AIAbq78nK/efYrK6hpjh4+kpCQLlVx0NK2mt/p5qr998TqD1MMU40Kva14wLpOTk0NFRQU5OTmWKLbNkF547eCxxx5j4cKFxt8LCgokiAI27EziauUAAN7DJIASoiOYMxxB35lPk6arIizpLa7LfZN/v+9J974jyMvLIywsrLOKaiS9ulqvLd+Z1lADddMFHTt5ku5H/wkKnBx8H/38/rpnBQQEUFhYKLNFtEACKBP+/v7o9XqysrIavJ6VlUVwcLDmOs7Ozjg7O3dG8WxK4e5v0Skqp9wHcHRvKpGRDnKxFKKdmTseT9iV/yCtLJ+wIx9zw6kl/LPkYXy6heDgUHsb0BrDzfSm3V6Bj4xi3Xrt+Z2pqsrRzx9lolLIScee9L30wQbv9+nTh/Lycvr06XNOn2PvpAnPhJOTE8OGDWPdunXG12pqali3bh2jR4+2YMmsk1b+BUDG2VKi82ub784EjGrQxNDUOkKIjpGYmMgnn37K6YFzSO9+KQ5KDXfnv8qZgjwiIiIANJv0TJsH26s7u/Tqar32+s4SExN5642XmPDnhMGO019DcXBqsExdknlhYeE5fZa9kxooDQsXLmT27NkMHz6ckSNHsnTpUoqLi7nlllssXTSr09RT0fode7hWOQiA0ncKDkdz8PT0bHYdIUTHqD/A7Q2zl5Px3lUYsjYw98wSvtxoYPbVVxMWFtaoSc+0edCc5kKtWipz5t0TzWuv72zn7kTGnfkMnU7lQMBUvP37s3Hjxg4Zpd7eSQClYdasWeTk5LBo0SIyMzOJjY1l9erVjRLLRdMnWnFCbfNdtvdgzlS7U1V1yvg0IyenEJ2rbmDb6Oho0DtiuO0LTr17GSGnt3Dl/gX8+xtnIgP98PT0NDbpaTHnJq71gCQPTZ3DnCZWj8IDROuOUYQrEde9xo59jf82EuCaRwKoJsyfP5/58+dbuhhWT+tES8srIaZgPejANXaGBExCdDLTG2ld4rCRowshd35D1juXEJS3i0v3zGNF9yUEODsYa4qhbYGP1vku14DO0dLf60DyUSblfgQKZAx9gD7dDNT9SeRv03oSQIl2t2FHEtcphwDwHDIDT5+GQZY8jQrRscw6x5zcCbrzf2S/fTGBBUnckPo4Lzrcg6+vrzHYkgmHbUtdDWJdEFw/kPYPDCb3i3vorxRz0jmKPtPuB+Rvcy4kgBLtrjjxz+Y7nxgCfRoP5yBPo0J0LLPPMRcvAuf+QO6yyQQUHeLBqrd57+gTXPzn2225ucoDkuWYJn/X/1vs2vANl1RuohI9HrP+D/Ry+z9X8g2KdnXyTAmxfzbfucXOACSBVAir5toN/7k/kfPmBILLjnN77nN8+H1Pbp5+Eb/99ptxaINx48Zprm56fpvWgojO01Syv+roxOhDL4ACx/rdSZ/I4cZ1ZEyutpNhDES7+mLlWkb82XznMaQ2gJKZvIXoXK0+59z9CJj/C2fcIglRzjBl5+0s//4X9uxJIi8vzzi0gdYQJKafJV3gGzL9ztprGBet7WjNWVdZrVK9ZjF+SiFpTpH0uerpBtuR63PbSQAl2pWS/DM6ReWoLhK8a7tDy5gvQnSc5ubCqzvntJZp9JpHAL53ryHPvTaIunjXHeQ5eOHj083Yi09rjjTTz5LzvaGOGkvLnO2kpKSwd/MPjKveTBU6PGa9DyZjPkmNYdtJE55oN2l5JZyv7gAFcv1G0OvP16XJToiOo5VzZHrOmT20gEcA3eauIe+dSYQUp3Bn1mK+jv4/LrzwQgDy8/OpqqoiPz/fuG3Tz5LzvaG2jKVlDnMCnxoHZ64t+wwUON7vLqJ6DW+0jNQYtp0EUOKc1G8///1ABtcohwHo8bc7NZeRC6sQ7Uvrhmx6zrVqaIE/g6iz70wiuDiFq5LuYGnFP7n3mksZMWKEMSdKmKejAkytwKf+393LNwDWPoG/UkC6UyRRJk13daRTT9tJACXOSUJCAkeOHKGgoICiQ1vQKSo5ngMI7jPMuIz0yhGi42jdkE3POa1lmr2RewTgM3cNZ/9vKkGFR7jp0Dxe+aichTdd1XA8KWExWoFP3d9dVVUy//cuM6u3UIkDnte816jpro7UGLad5ECJdlFUqdL7zG8AOA66tMF7khMhROcyPecSExP55JNPSExMNC7TYjJzXRDlMwg/pZC5x+/j5Q8+pqyyusFiHZkULVqn7u+emZPFpZnLAMgc+Xe8IkdYuGT2qdUB1OzZs/n99987oizCBsXGxjJs2DCKnf04T7cXAJ8hVzRYRqtniBCi45iec+ZMFKwl42wZB2IXkeszGC+lhHszHubRJS8Tv2O3cZmEhAR27txJQkLCOZVZeoO1TlPf16m8QoYnPo6zUsUR7zGc8BzZICjVCqZF27Q6gMrPz2fixIn07t2b559/nvT09I4ol7ARdRfq8qN/4KxUkefaHQL6NlhGniyFsKywsDDc3d0bTRTcUs1wSkoKh46f4vCQxZwNGYOHUsYL1a/w9Y//I7uwrF3LKDXVfzHnmqmVRL7/UDLuO/5JhJLJaX0Ae4Nmsmnz5ga9JrWCadE2rQ6gvvvuO9LT05k7dy5ffPEFPXv2ZOrUqXz11VdUVlZ2RBmFlSsuryIs61cAavpOA0Vp8L7pk5IEVEJ0rrobbXMTBWupC2p69h6Az63fkOE3GhelkhfUN/jgzX9wLLcYNzc3dDodbm5u51RGqan+i1btkul1Mz09ndOnTxsrMVRVJWPvei5WaocscJj5L06XVFNZWdmg12R0dDRhYWHSEaAdtCmJPCAggIULF7Jw4UJ27drFhx9+yI033oiHhwc33HADd999N717927vsgor9ceBdC5Uaqv0fYdd2eh90yclSSoXomOZ0wvPnPOwUQ+yu3+g6Mu78Tj4X/5e8SZLl52lLGQMFBeTlpam+dltLXNX1pa/1w9r1nBV7jJQ4NSQ+wnvdyEjyn0a9ZpsNLG0aLNz6oV36tQp1q5dy9q1a9Hr9Vx88cUkJSUxYMAAXnrpJe6///72KqewAk1d4I7tWM0UpZQiRz88QlseZ0S6zQrRsczphdemART1jnjMeo+SVQG4bV/GAvVj/nXyNLudxjDQ21vzs9ta5q7MnL9XbGwsXl5eREZGsnnPQYZtvhs3pZzDrrF4DL8VkGCpo7U6gKqsrOT777/nww8/ZM2aNQwePJgFCxZw3XXX4eXlBcC3337LrbfeKgGUndG6wFVU1eCXtgaAkojJeOgatwqbBkzSbVaIjmXOQ0pbBlA0PkQNmY/eMxDnXxczR7+K7yryWXf0BqY38dmmD19aD2PyYNU8079X3XU0+VQuLl/fRKiSyyldCNv9ZtHj2HEMoWFSq9fBWh1AhYSEUFNTw7XXXsu2bduIjY1ttMz48ePx8fFph+IJa6J1gVu57SDj/hx93H/4DM0TVgImITqXOedcWwKWBg9RFyygyj0A5Yf5XK7fRMiZ07z4TU+uHdmj+fUMBrNGT+9MthBoaNUY5hWVc+iDO5imHKJYcaf6ivfpka8Y/6b1x+mz1v2yZa0OoF5//XVmzpyJi4tLk8v4+Phw7NixcyqYsD5aF7g98T9zhXKWElxxi7yAlC3bpBpeCBtgej6bE0SY3sQdhl1PbpUTHqvvJU53kICEW3ju6N8Z4vvXZ2itZ04tVWeyheZD0xqoiqoafvy/x7mxeh3V6KiesZywQecT1sJ2RPtpdS+8G2+8sdngSdgv014gNTUq4fk7AEhxHQwOTjIxpRA2ypxxmLSa/Q5WhrA65F4KHAOI1GWypOjvJGbk4ewX2ux6prQmKu4stnDdqj/MQ02Nynvv/ZPrCz4A4PSYxXgNmtJonbpx+rRaisS5k6lchNlMn9J2p+YxjtoA6qxvLNCwa60kLwphO8xp0mtuTr2S4ItxWD0f39w9LK16ln98kUXpdQu5oE9Ao/W0mpZyc3OpqKggNze3/XeuBdY2oW5zqRCqqvKvTz9lTtZz6BSVfb5/Y+DE+yxc4q5JAihhtkYXwV1bmKPLpEJ1IMdTxhQRwpaZk4PU4px6d/xM2X/n4JK8imd5mw//fZQDE54hzreM48eP4+npicFgoLi4mNLSUoqLi43b8ff3Jz8/H39//3bft5Z0ZgK7VnBk+lpTTYqqqvLh199x9ZEHcVUqOOA4iOrzH2009l4dre3YQr6XrZAASrSZcvgnAA7ro3D28gMgNDSUM2fOEBoa2tyqQggb0OqbrZMbZ8a/THmVDxHH/8MtDj8Tv/4kL7rcxQBdFoCxZloxuemPGTOGkJAQu++FpxXUmL7WVI7YJz+uYU76E3gppZxwHcCOgNlEFDc9Inxbx/8S5pEASpit/olX4+pDdMkW0IESOcHYxm5tVeFCiLZrSy+uhMQ9HMnvx5iohcQce5fR7Ce84hkeUe9jcFjtNE/u7u64uLjg7u5uXK8tSe3tVZuitZ/ttW3T7WjlW5lTA/bZTxu4Kf0p/JRCcjz74zTjIyLSsptNxNeqMZThItqPBFDCbPVPvI17DjFDOQLAwOnzwFvGchFC/CXbdwSOk2ZR9vEswgqPs5yneWHdjRQ4BxBtMLRYU21OTUlba1PMCY7aq6bGdDtaD5mmgU79dUJCQvh0zUZmnHiKYF0emQ5hBN+1Etz9COnZp9VllmFl2o8EUMJs9U+8vK9XoFdUsl17cTjpOJGRuiafeIQQtqktTfL1R8gm0IDL3b9R8fWdOCevZrH+Q1au2sfLXrcz2CEP32Y6m2g9jCUmJhqnJomJiTHrgU0rWNq0aRNHjx7l1KlTzJw5s2GZm/n8lrZtzgCh5my3LsCqqKzk/77+iUuT5mHQnSFT9WWd/61c7+6nuZ4t9Ca0JxJACbPVXRxCwnsQmvMH6CC321BpTxfCDmjd/M1pkm+x2cjVB6frP0eNX0bN2sVM028juvAYj9TcjfNZlYub2K7Ww1hSUpJxzr2YmBizHti0amXy8/OpqqoyTrLbYnK8mdtur4Erk5OTyTubz48bd/BE1VJ8lSIy9SF87XAlgX7dm1xPUig6lwRQwmx1F4vdp0q5SUkAIGD4FUSVeEuTnRA2TivQMK0t0QqyzGrqUhSU8+aj7z6a8s9vontRGh8p/+CNfTN45vswHpoyiLzcrBZrc8LCwsjLyyMszPzhIrVqZUaMGNFokt2WtHX6GXNGYTfl6unNmRNp/EP3Jh5KGWe8B8Jl7xOTkdfsZ0kNVOeSAEqYre7E3bV/P95KCcUOPgTETiFAp7dwyYQQrWUaEGgFA83l5rQmiGjwWfM2UfntPJwO/8hDjv9l945d3HFwIRP6h6KcPm7ctlZtTl1w4OBg/q1Lq1YmICCAnj17EhAQYPZ2zJl+RqvJ05xR2OtLyyvh2PHDvKh7C2elkjOBo/Cd8xU4exLcwnOq1EB1LgmgRKuoqorPqd8BKAobh7sET0LYJNOAwJwmK60aDnN6zzX4rLFjcbz2E0j8nKqVDzGkMpn3ihfw4pZrOeJ9Pn0HudOUtuQltVdXfnOmn9EKYJqaBFirzLn6bpz++WWe4FtQIK/7JHxv/BgcG8/+IRMyW54EUMJsKSkp/LHvBDOrd4EOfIdOl0HZhLBR5jTPmTKnhkMrOKlbp6qqqnYhRYHYa3GIOJ/Kb+fhenwDTzl+xNairbz4/a3McQom1IyeelpMa67M6cpvzr5rbcec8ZvMCWqSjx7lyy3JXFWwnMv1ewAoHHIH3S5ZAnrt27S1TcjcFUkAJcwWGRnJ7/uO01uXTjV6HHtPJGXnXkkiF8IGmdM8Z6qt072kpaVRXFxsTAA38g7DcfZ3sONfVKz6O3G6g3yhPsYH//2D5d4zGe2t0rNesGZOGbVGOTdluu9tTf423de2BDCni8r5fsdhHix8gR76bCoUZ7j0TTyHzGrVZ4vOJwGUaBXP7O0A5PoNI8jVR05iIeyEOedyW6d7qUvW1kzaVhQYcRt53rHo1jxOQO4W5jr8wPSieJ49exPZnn3oX1SOn4ezWTVH7u7uuLq6Nhiksy02bNhgTDQfN26cWfvamiR7VVX5PiGNQ9+/wrM1/8FVV0GeYxDd5nxNRo0fKRs3Njvdi9Q2WZ4EUMJsu/YnE1OxE/TgNqi287GcxELYh448l81J2g7qMxz6/AyHfqLqxwcJK0zj/xxfI37/auYdvIExF0xizvkRjK1Xxk2bNpGSkmIczwnaYeyqPyUlJZGXl0dSUhLjxo1r8xx2pnljGRkZ7NyfzIZDp5iV9SqX6Q6BAuneQ9FdtgyCB5CycWOL070Iy5MASpgtJa+CO3UHAPCMvsTCpRFC2IpWNZH1nYpDxAXw+8vUbF7GaPYzmr/z44b/ce3G64mOCOPmC/oQ1TOc/Px8KisrjeM5QeM8rbbmN0VHRzcY6kBrH8zJgapfnoqqGv7vl704H/4f/9D/F1ddBRV6NwpHPcQxlxFEuvgA2sn65tS+mTOwp2g/EkAJs5Udi8dZqSLHIZgAvyhLF0cIYa+c3MkYcAfp6mAGZH+H25HvuUS/lck1O/jq8AXcd2Q6F50/lmHRQ3Fx2d+gadA00DAneNMKNMaNG9eg6U4rt8o00GkqYb1GVTlc4cPXLy9lTulHDHI4XrvN0PNxn/k2B/am1gZiioLBYCA9PZ3Tp0+TXm+kdnNy1kz3VWqtOpYEUKJJ9S8q/oHBRBbtAB2cDTqPAJOZ1IUQoilaTWQtSUlJITm9gPKoOxh70cPUrF2M49FfuNZhPbPUDaz+YwRvqpfRd9iFDAn4a3Ru00BDK/AxDZjMCbK0cqtaqu2qqVHZm6fj+61HuDp/Obfqk0AHpbhwsu9t9LnmH6AoREbW3opb8/20NaFftB8JoEST6j+9HC9x5II/Rx8vDRhiwVIJIWyNOcnWphrc/IMN6G78Gk7Eo258Hd2Rn7lYv42L2Ub8rgH83/YJpAZN4IoRvbgs1oCPm5NxO1qBT1t63ZkzX17dNbOgvIb/HS5lV/wvTC/5lrf08aCHasWBov7XcsB/Kt37DalNoNf4fswJOLVqu0zXkxzVjiUBlGhS/YvD6s3xnKecpQxn/IddauGSCSFsmTlNSzk5ORw/fhxPT0/jMoln3UhSL2XERdfSJ+cn1KSvGa3fz2j9fvLPLOe7VWOYvXICAX1GclH/QC7qF2hWMNLWgKX+a2WV1WTr/FlfcJbA9au4Xvczc3Up8OdYwxUDrsLpb09SXOpEVUpKs99PWwMfCZg6lwRQokkNTsaj6wA4GzQaQ3hPyxVKCGHzzGla2r59O5mZmZSVlRnzgP56LZi+t71H9qA7KI9/n5CsDXiXZDLbYS2zWcvRoyGsOzKUe74dSlnICC7sF0xloQOuxRV0c3dql5oaVVXJyC/j98M5bNifTtXR37lA3c5r+i34OdQ26VXrHFEHXInDmPk4hQwGICF+VbtMOCwsTwIo0aLsgjL6FW0DPZz26EtNRoac+EKINjMnYHFycmrwL4C3tze5ubl4e3sDcCS7jGR1NFGjr2NsSBXs/pjq/T/QS3eKXrqV3OGwkvzTbvzxx2D++K03b9VEUthtAD38vfCijP7lpxlY6kyojyuBXs446nXodX/ld1bXqJwtqSCvpILTRRVk5Jdy4FQhB9PzKD11gB7lhxinS+AV3R489aXG9SrcDTiNug390Nng7t8u35n0qLM+EkCJFm06cIJpukMAHCwLICglRU5gIUSH8vf3Jy8vD3//vwKQMWPGEBIS0qgGKzIyEgwGiLqIdd9/ReWhn4lxOYWheB/eZWe4RL+FS/RbAKgq1nGoKJwUNYT0FH9Wq35kqH7kqD5UoqdG0YPOERQFp6pifJUC/JV8/CggXMnhYt1xFiqpuCiV4PhXeStdA3DofzFKv2k49brIOAWLaeCj1VxoTnAkPeqsjwRQokXZe37BSanmjFMIQf1HS48OIUSH0wo0TGuutGqyBg0/jxTfYHSRkeiCg0he/x+K9q0mwukMnoXJOBRnM1A5wUBOtFyIZuZKr3Z0p8QzkuOqAefBV9DnwllkZGbWBkIe2U2OFaVVZnOS2qVHnfWRAEo0q7pGxSf9NwCqIi9i7NixFi6REKIr0Ao0zKmpMU0+33JKIa0kmjDfMG6483ooyICM3XD2BOSnQX4aan4aanEOVFeh1lRBTTXVFaWUqU7UuHbDxxDF4Yyz5JTqKe/WmwnX3Y/eN5LCzEzy/ywPOp1mLVF7BT6SIG59JIASTcrIyGDtzsNcWJMAOvAbPNXSRRJC2ClzRtE2DVC0lklKSjJOWhwTE9NwHj5FAe/Q2p96lD9/6suqt20fg4HEL7/k6NGj9ArpBf5RmuXRCpbMCXzaMk6WsDwJoESTUlJS2HdgL7N1WVThgEOvCy1dJCGElWtrsrNpMGJObY7WMqYTF8fExBh78bWGaeBjmn+lVZ7Dhw+TlJREVVVVq/a9LbVLklRueRJACUD7ZIyMjCT8t68BOO07hCBnz+Y2IYQQbU521kwMp/naHK1lzJm4uC1aGgcKGk9ADB0X6EhSueVJACUA7ZPR3SeAAWW7QQ8u/SfJE48QokVtzfkxJ0G8pXXAsoGF6QTE5panLddWSSq3PAmgBKB9Mm4+lMEFuv0AeA+aQtJReeIRQjTPnMCnvR7Gmqo5r/+vOZ/V1vKYrmc6AbFWebS0ZWoZSSq3PAmgBKB9Mh7ZtoqpSjkFel+8gqOJVE8B8sQjhDg37VVLpLUd02uZOZ/V1vKYs55peRITE421VG3JzRLWQwIooUlVVbxObQTglFcMXooiTzxCiHbRXs1PWtsxrRWqqqqisLCQqqqqdi9PW9Yz7SUI0gvPVuksXYD21LNnTxRFafDzwgsvNFhmz549nH/++bi4uBAeHs5LL73UaDtffvkl/fr1w8XFhejoaFatWtVZu2A1DmcVEVezB4B8r/4WLo0QwlZkZGSwceNGMjIymlzGYDAwduzYc34g09pOXa1Qyp8T9qalpVFcXGwMWjqS1r6bvhYdHU1YWFiDPKn2+j5E57K7GqhnnnmG22+/3fi7p+dfPccKCgqYNGkSEydO5N133yUpKYlbb70VHx8f7rjjDgA2b97Mtddey5IlS7jkkkv4z3/+w+WXX86uXbsYNGhQp++PpexI2sf1ulRqVIXEAm9GWrpAQgib0JlJ3ObkQJkOa6ClvZrwtLZj+lpbh1UQ1sfuAihPT0+Cg4M13/v000+pqKhg+fLlODk5MXDgQBISEnjttdeMAdQbb7zBlClTeOihhwB49tlnWbt2LW+99Rbvvvtup+2HpZUeXAvAcV04vWNGWbg0Qghb0Zm9w8zJgdIKWEwDL3PKbE6wprUd6S1nv+wugHrhhRd49tln6d69O9dddx33338/Dg61uxkfH88FF1zQYHbvyZMn8+KLL5KXl0e3bt2Ij49n4cKFDbY5efJkvvvuuyY/s7y8nPLycuPvBQUF7btTnayiqobAnC2gg5LgOPr06WPpIgkhbERH5kq2JfDRYs78dC2tU3/dOuaMFWXOfsmQMbbBrgKoe++9l6FDh+Lr68vmzZt57LHHOHXqFK+99hoAmZmZRERENFgnKCjI+F63bt3IzMw0vlZ/mczMzCY/d8mSJTz99NPtvDeWs/vEGUYpewE4WOCOW0KCnMRCCItrS+CjpS01Th1Zk2ROU6CwPlYfQD366KO8+OKLzS5z4MAB+vXr16DmaPDgwTg5OXHnnXeyZMkSnJ2dO6yMjz32WIPPLigoIDw8vMM+r6Md3LudOOUs5TiR6RiOVDwLIaxBZ07Mazo2U0fWrJnTFCisj9UHUA888AA333xzs8s0dZDFxcVRVVXF8ePH6du3L8HBwWRlZTVYpu73urypppZpKq8KwNnZuUMDtM5WnbwegGyfGGKHj5KTWAhhFTpzKJXi4mJKS0spLi4+p+2Y0xzXllHYheVZfQAVEBDQ5jmNEhIS0Ol0BAYGAjB69Ggef/xxKisrcXR0BGDt2rX07duXbt26GZdZt24dCxYsMG5n7dq1jB49+tx2xMrVneRBoT3onr8ddOA5cDJjx461dNGEEKLTubu74+rqiru7+zltp6OmchGWZ/UBlLni4+PZunUr48ePx9PTk/j4eO6//35uuOEGY3B03XXX8fTTTzNnzhweeeQR9u7dyxtvvMHrr79u3M59993HhRdeyKuvvsq0adP4/PPP2bFjB++9956ldq1T1J3kCZllzFYOAOAzcKKFSyWEEE1rrylYtLTX4JbmNMdJzpNtspsAytnZmc8//5ynnnqK8vJyIiIiuP/++xvkJnl7e7NmzRrmzZvHsGHD8Pf3Z9GiRcYhDADOO+88/vOf//DEE0/w97//nd69e/Pdd9/Z/RhQdSd3wpFkPJVSSvReuAUPtnCphBCiaZ05BUtbmbMdyXmyTXYTQA0dOpQtW7a0uNzgwYP5448/ml1m5syZzJw5s72KZpVMn8Dqfo7+8SkA+UGjcNPpLVxKIYRomqenJw4ODg0GTDZHWwIWrVqr9mp6k5wn22Q3AZRoHa0nsOzCMvqV7gIdeA38myWLJ4QQLaqb466wsLBV67UlYDFnlHHRtUgA1UVpPYFtPXiSycoRANz7XWSRcgkhhLk6sunLnHGgpOmta5MAqovSegLLTFqPk1JNvlMw3r5yQRBCWLeObPrqzDwpYZskgBIAqKqKW/pGAErDxuKtKBYukRBCWI5p7ZI01wlTEkAJAI7lFhNbmQA68I2eZOniCCGERZnWLklznTAlAZQAYN2WndyuOwGAU+/xgAzuJoQQdaS5TpjSWboAwjqc3fsLAOkO4eBRO3J7XZV1SkqKJYsmhBBCWB2pgRLU1Kj0KE0CHeR4DiL0z9elyloIIYTQJgGU4EBmAXHsA8Cjz4XG16XKWgghhNAmTXhdVEZGBhs3biQjI4O9+/bSQ5dNNTpyXHtpLiOEEEKIv0gNVBdVv0tu8eHfAUh36kWPPoM0l5GaKCGEvZAOMqI9SADVRdXlNfWMiCD3l1cAcO57EUHSbVcIYefk4VC0Bwmguqi6/KZ9GfkMrdkLOsjWBVOdkWG8oEgOlBDCHsnDoWgPEkB1cXv37WWWLodqdPxxopKezgkSNAkh7Jo8HIr2IEnkXVzx4d8AOOkYSaXibOHSCCGEELZBaqC6sJoaFd+cbbW/9BjDsJ7DpEpbCCGEMIMEUF1URkYG63cf4fw/85/CR1xCz75jLV0sIYQQwiZIE14XlZKSwt4D++j+Z/6TvudoSxdJCCGEsBkSQHVRkZGRhFSnAZDrNQCcPS1cIiGEEMJ2SADVBWiNKB4cHEL30v0AKD3Pt1TRhBBCCJskOVBdgNagcQcyC4zjP/kNnGDJ4gkhhBA2RwKoLkBr0Lj4LfHcVi//SaY2EEIIIcwnAVQXoDVoXMmRP+e/c+5Fd2dPUlISZWoDIYQQwkwSQHVBNTUq4SV7QYGSwKGATG0ghBBCtIYEUF3QgcwChqn7QYEK3wGATG0ghBBCtIb0wuuC9u7baxz/KWDoNEC7p54QQgghtEkNVBdUl/+U5hyFo6M7oN1TTwghhBDaJIDqAur3sAsJCaFbznYAUmoMlCYkYDAYJAdKCCGEaAUJoLqA+rVLZY5eRFfvBx3kEIhSXAxIDpQQQgjRGhJAdQH1a5e2HTrM5bpTAKTrDIRZsmBCCCGEjZIAqguoX7t0dtVXAKTrw9G5+eLu7m7JogkhhBA2SQKoLsYtcxsA5SEjGdZvmOQ8CSGEEG0gAVQXkl1QRr+K2vnvgodOInLoWEsXSQghhLBJMg5UF7LzyEkGKscBcOt1vmULI4QQQtgwCaC6kNwDf6BXVPKcQsA71NLFEUIIIWyWBFBdiD5tKwDFQcMtXBIhhBDCtkkA1UUUlFUSUbIHAK++F1i4NEIIIYRtkwCqi9idksUQ5QgAXn0vlLnvhBBCiHMgAVQXkbY/HhelkmK9N/j3MY5OnpKSAshkwkIIIURryDAGXYR6PB6APP+huCtKo7nvZDJhIYQQwnwSQHUB5VXVhBQkgA5ce9WO/WQ6951MJiyEEEKYTwKoLmD97iOMUg4C4DtgnOYyMpmwEEIIYT7JgeoCErZswEcppgxnlJAYSxdHCCGEsHkSQHUBngW1tU8nnaJA72jh0gghhBC2TwIoO1dToxJRcRgAfcQYC5dGCCGEsA8SQNm5ozlFxFBbA+UeGWfh0gghhBD2QQIoO3fg4AFCldNUqToSsuXPLYQQQrQHuaPaufwjmwBIVUKp1rtYuDRCCCGEfZAAys65Ze0EINu1F6GhoRYujRBCCGEfZBwoO3a2pIJe5ftABwWu3akqLLR0kYQQQgi7YDM1UM899xznnXcebm5u+Pj4aC6TmprKtGnTcHNzIzAwkIceeoiqqqoGy2zYsIGhQ4fi7OxMVFQUK1asaLSdZcuW0bNnT1xcXIiLi2Pbtm0dsEcdLzElk4HKCQC69R8no4wLIYQQ7cRmAqiKigpmzpzJ3LlzNd+vrq5m2rRpVFRUsHnzZj766CNWrFjBokWLjMscO3aMadOmMX78eBISEliwYAG33XYbP//8s3GZL774goULF7J48WJ27dpFTEwMkydPJjs7u8P3sb3UTQycvOsXHJVq8h38GDHxShlpXAghhGgniqqqqqUL0RorVqxgwYIFnD17tsHrP/30E5dccgkZGRkEBQUB8O677/LII4+Qk5ODk5MTjzzyCCtXrmTv3r3G9a655hrOnj3L6tWrAYiLi2PEiBG89dZbANTU1BAeHs4999zDo48+qlmm8vJyysvLjb8XFBQQHh5Ofn4+Xl5e7bn7Ztm4cSPJycnUpG/l1sr/kBr0N7rP/arTyyGEEELYkoKCAry9vc26f9tMDVRL4uPjiY6ONgZPAJMnT6agoIB9+/YZl5k4cWKD9SZPnkx8fDxQW8u1c+fOBsvodDomTpxoXEbLkiVL8Pb2Nv6Eh4e35661WmRkJBGRvehRcQiAqsBBbNy4kYyMDIuWSwghhLAXdhNAZWZmNgieAOPvmZmZzS5TUFBAaWkpubm5VFdXay5Ttw0tjz32GPn5+cafkydPtscunZOTBdXEUjsCeb6zgeTkZFJSUixcKiGEEMI+WDSAevTRR1EUpdmfgwcPWrKIZnF2dsbLy6vBjyUlJCSQlLgdP6WQShzRG4bg4OCAp6enRcslhBBC2AuLDmPwwAMPcPPNNze7jLk9x4KDgxv1lsvKyjK+V/dv3Wv1l/Hy8sLV1RW9Xo9er9dcpm4btsK/Mg2AHM/+FJSUU1VVRaEMYyCEEEK0C4sGUAEBAQQEBLTLtkaPHs1zzz1HdnY2gYGBAKxduxYvLy8GDBhgXGbVqlUN1lu7di2jR48GwMnJiWHDhrFu3Touv/xyoDaJfN26dcyfP79dytkZYmNjKd32AQA1YSONQagMYyCEEEK0D5sZSDM1NZUzZ86QmppKdXU1CQkJAERFReHh4cGkSZMYMGAAN954Iy+99BKZmZk88cQTzJs3D2dnZwDuuusu3nrrLR5++GFuvfVWfv31V/773/+ycuVK4+csXLiQ2bNnM3z4cEaOHMnSpUspLi7mlltuscRut8np4koG1BwGHfj1Ox9Xg0GGMBBCCCHakc0EUIsWLeKjjz4y/j5kyBAA1q9fz7hx49Dr9fz444/MnTuX0aNH4+7uzuzZs3nmmWeM60RERLBy5Uruv/9+3njjDcLCwvjggw+YPHmycZlZs2aRk5PDokWLyMzMJDY2ltWrVzdKLLdmv+9MYq5S24TnGjnawqURQggh7I/NjQNlC1ozjkRHWL78XW5NfYRch2D8nzjU6Z8vhBBC2KIuOQ6U+Iv76SQAioOGW7gkQgghhH2SAMrOVFTVYCjcA4B71HkWLo0QQghhnySAsjP70s4QoxwBwK/fWAuXRgghhLBPEkDZmZQDO/FSSilTXFACBwJ/TS4sU7kIIYQQ7UMCKDtTcWwLALne0aCv7WSZkpIiU7kIIYQQ7chmhjEQ5vE6nQBAtlMPdBkZGAwGGUhTCCGEaGcSQNmR3KJyelceAh1k1XSjJCUFw5+DaMpAmkIIIUT7kSY8O7I3JY0opTbPybf/hVLjJIQQQnQQqYGyIzkHN6NTVM44BhN30XRLF0cIIYSwW1IDZUfU9J0AFPjFWrYgQgghhJ2TAMpO1NSoBOTXjkDu3HOkhUsjhBBC2DcJoOzEsdwiBqm1A2gq/n1l3CchhBCiA0kAZScOHzpAgJJPFXpSil1l3CchhBCiA0kAZScKkuMByHbrjbuPPw4ODnh6elq4VEIIIYR9kgDKTjhl7QagPGgIhYWFVFVVUVhYaOFSCSGEEPZJhjGwcRkZGRw8cpTwkn2gA6+oUThHyMjjQgghREeSGigbl5KSQvy+FAYpxwDw7XOehUskhBBC2D8JoGxcZGQk3RzLcVEqKdZ5oPhFyeTBQgghRAeTJjwbZzAY8K9MB+C09yDcdTqZPFgIIYToYBJA2biMjAzcsmtHICd0OIBMHiyEEEJ0MGnCs3EJB5LpX5MMgF8/yX8SQgghOoPUQNm4Cr0zvXSnAHCPiLNwaYQQwjpUV1dTWVlp6WIIK+Po6Iher2+XbUkAZWMyMjJISUkhMjISg8FA4Yna8Z9yHEIIcPe3cOmEEMKyVFUlMzOTs2fPWroowkr5+PgQHByMoijntB0JoGxMXQ87qM11Uk9uByDdMYKAP5cxDbKEEKKrqAueAgMDcXNzO+ebpLAfqqpSUlJCdnY2ACEhIee0PQmgbEz9HnaqqtK94ijooNirl3EZ0yBLCCG6gurqamPw5OfnZ+niCCvk6uoKQHZ2NoGBgefUnCcBlI2p38PuRG4Rg5SjAPj2Hm1cRoYxEEJ0RXU5T25ubhYuibBmdcdHZWWlBFBd1ZEjB5ioFFCFnjOOf1VFyjAGQoiuTJrtRHPa6/iQYQxsWH7yVgDSHXoQ0buf8fWMjAw2btxIRkaGpYomhBBC2DUJoGyYPjMRgCrDsAY1TjKVixBC2JZx48axYMECSxcDgO+++46oqCj0ej0LFixgxYoV+Pj4WLpYVkcCKBtVU6MSXLQfgORCJxITE43vRUZGEhUVJTlQQgghANiwYQOKopg1vMOdd97JVVddxcmTJ3n22WeZNWsWhw8fNr7/1FNPERsb23GFtRGSA2WjUnIKGUBtDdPJImdykpKIiYkBJAdKCCFE2xQVFZGdnc3kyZMb3Efqeq+Jv0gNlI06dngPXkoJ5ThS7tmDsLAwSxdJCCGsjqqqlFRUWeRHVdVWlbWqqor58+fj7e2Nv78/Tz75ZINtlJeX8+CDDxIaGoq7uztxcXFs2LDB+P6JEyeYPn063bp1w93dnYEDB7Jq1SqOHz/O+PHjAejWrRuKonDzzTc3+vwNGzbg6ekJwIQJE1AUhQ0bNjRowluxYgVPP/00iYmJKIqCoiisWLGiVftpL6QGysbUDZKZs38jUDuApruXDw4O8qcUQghTpZXVDFj0s0U+e/8zk3FzMv/a/NFHHzFnzhy2bdvGjh07uOOOO+jevTu33347APPnz2f//v18/vnnGAwGvv32W6ZMmUJSUhK9e/dm3rx5VFRU8Pvvv+Pu7s7+/fvx8PAgPDycr7/+mhkzZnDo0CG8vLw0a5TOO+88Dh06RN++ffn6668577zz8PX15fjx48ZlZs2axd69e1m9ejW//PILAN7e3uf2RdkouevamISEBI4cOUJofgIApQGDJd9JCCHsQHh4OK+//jqKotC3b1+SkpJ4/fXXuf3220lNTeXDDz8kNTXV2LT24IMPsnr1aj788EOef/55UlNTmTFjBtHR0UDDsQB9fX0BCAwMbDIh3MnJicDAQOPywcHBjZZxdXXFw8MDBwcHzfe7EgmgbFCNCj2qUkAH/v3GMnDsWEsXSQghrJKro579z0y22Ge3xqhRoxqMUTR69GheffVVqqurSUpKorq6mj59+jRYp7y83Djq+r333svcuXNZs2YNEydOZMaMGQwePPjcd0RokgDKxsTGxlKgujBw23EAVN9ebNy4Uea9E0IIDYqitKoZzVoVFRWh1+vZuXNno9GzPTw8ALjtttuYPHkyK1euZM2aNSxZsoRXX32Ve+65xxJFtnuSRG5jDAYDPq7gppRTqriSnKfKmE9CCGEHtm7d2uD3LVu20Lt3b/R6PUOGDKG6uprs7GyioqIa/NRvSgsPD+euu+7im2++4YEHHuD9998HapvnoHa+wHPl5OTULtuxdRJA2aCSY9sByPboR2Sv3pIDJYQQdiA1NZWFCxdy6NAhPvvsM958803uu+8+APr06cP111/PTTfdxDfffMOxY8fYtm0bS5YsYeXKlQAsWLCAn3/+mWPHjrFr1y7Wr19P//79AejRoweKovDjjz+Sk5NDUVFRm8vZs2dPjh07RkJCArm5uZSXl5/7ztsgCaBsTGJiIpysfUqpCoq1bGGEEEK0m5tuuonS0lJGjhzJvHnzuO+++7jjjjuM73/44YfcdNNNPPDAA/Tt25fLL7+c7du30717d6C2dmnevHn079+fKVOm0KdPH95++20AQkNDefrpp3n00UcJCgpi/vz5bS7njBkzmDJlCuPHjycgIIDPPvvs3HbcRilqaweqEC0qKCjA29ub/Px8vLy82nXbK/79CbHJrxGrO0rO5Hc4VN2d5ORkoqKiGCvJ5EKILqysrIxjx44RERGBi4uLpYsjrFRzx0lr7t+2n1nXxXiHRtL/6AkA/PuMorK89o8vTXhCCCFE55EAysa4VBfgrFRRpHji4RuBQVGk950QQgjRySQHysbkH94EQKZbH6g3XogQQgghOo8EUDbG48xeAE67Rli4JEIIIUTXJQGUDSmrrCay6igA/v3Os3BphBBCiK5LAigbcigthz7KSQAih0+ycGmEEEKIrksCKBuScXAbDkoN+bpuKN5hli6OEEII0WVJAGVDvM8kAZDmFEnGqVMWLo0QQgjRdUkAZUPOi/KnxMmffLxISEiwdHGEEEKILstmAqjnnnuO8847Dzc3N3x8fDSXURSl0c/nn3/eYJkNGzYwdOhQnJ2diYqKYsWKFY22s2zZMnr27ImLiwtxcXFs27atA/aoDeLuZEPsm+xwudDSJRFCCNHFrVixosn7cWe6+eabufzyyzv9c20mgKqoqGDmzJnMnTu32eU+/PBDTp06Zfyp/6UeO3aMadOmMX78eBISEliwYAG33XYbP//8s3GZL774goULF7J48WJ27dpFTEwMkydPJjs7u6N2rVVCQ0Px9Q8gNDTU0kURQgghmnT8+HEURWm3FpP23t65spmRyJ9++mkAzRqj+nx8fAgODtZ879133yUiIoJXX30VgP79+7Nx40Zef/11Jk+eDMBrr73G7bffzi233GJcZ+XKlSxfvpxHH320nfam7QoLC6mqqqKwsNDSRRFCCGFBFRUVODk5WboY58xW98NmaqDMNW/ePPz9/Rk5ciTLly+n/lzJ8fHxTJw4scHykydPJj4+Hqj9I+7cubPBMjqdjokTJxqX0VJeXk5BQUGDn44SGRlJVFSUzH0nhBDmUFWoKLbMT737T0sKCwu5/vrrcXd3JyQkhNdff51x48axYMEC4zI9e/bk2Wef5aabbsLLy4s77rgDgK+//pqBAwfi7OxMz549jZUEdRRF4bvvvmvwmo+Pj7FCoq5m55tvvmH8+PG4ubkRExPT6L63YsUKunfvjpubG1dccQWnT59udp8iImoHfB4yZAiKojBu3Djgrya35557DoPBQN++fc0qZ1Pbq/PKK68QEhKCn58f8+bNo7KystnynSubqYEyxzPPPMOECRNwc3NjzZo13H333RQVFXHvvfcCkJmZSVBQUIN1goKCKCgooLS0lLy8PKqrqzWXOXjwYJOfu2TJEmMNWUczGAwy950QQpirsgSet9A18+8Z4ORu1qILFy5k06ZNfP/99wQFBbFo0SJ27dpFbGxsg+VeeeUVFi1axOLFiwHYuXMnV199NU899RSzZs1i8+bN3H333fj5+XHzzTe3qriPP/44r7zyCr179+bxxx/n2muvJTk5GQcHB7Zu3cqcOXNYsmQJl19+OatXrzaWoSnbtm1j5MiR/PLLLwwcOLBBLdO6devw8vJi7dq1Zpevue2tX7+ekJAQ1q9fT3JyMrNmzSI2Npbbb7+9Vd9Ba1g0gHr00Ud58cUXm13mwIED9OvXz6ztPfnkk8b/DxkyhOLiYl5++WVjANVRHnvsMRYuXGj8vaCggPDw8A79TCGEEPahsLCQjz76iP/85z9cdNFFQG0+r9bD8oQJE3jggQeMv19//fVcdNFFxvtfnz592L9/Py+//HKrA6gHH3yQadOmAbVpMwMHDiQ5OZl+/frxxhtvMGXKFB5++GHj52zevJnVq1c3ub2AgAAA/Pz8GqXWuLu788EHH7Sq6a657XXr1o233noLvV5Pv379mDZtGuvWrbPfAOqBBx5o8Q98Lk1VcXFxPPvss5SXl+Ps7ExwcDBZWVkNlsnKysLLywtXV1f0ej16vV5zmabyqgCcnZ1xdnZuczmFEEJ0EEe32pogS322GVJSUqisrGTkyJHG17y9vY1NW/UNHz68we8HDhzgsssua/DamDFjWLp0KdXV1ej1erOLO3jwYOP/Q0JCAMjOzqZfv34cOHCAK664osHyo0ePbjaAak50dHS75j0NHDiwwb6GhISQlJTUbtvXYtEAKiAgwBhRdoSEhAS6detmDG5Gjx7NqlWrGiyzdu1aRo8eDYCTkxPDhg1j3bp1xt57NTU1rFu3jvnz53dYOYUQQnQQRTG7Gc0WuLu3fl8URWmQDwxo5gc5Ojo2WAdq74EdQWs/zC2nlvplr9tWR5W9js3kQKWmpnLmzBlSU1Oprq42dmOMiorCw8ODH374gaysLEaNGoWLiwtr167l+eef58EHHzRu46677uKtt97i4Ycf5tZbb+XXX3/lv//9LytXrjQus3DhQmbPns3w4cMZOXIkS5cupbi42Ngrz9IyMjJISUkhMjJScqGEEMIOREZG4ujoyPbt2+nevTsA+fn5HD58mAsuuKDZdfv378+mTZsavLZp0yb69OljrJEJCAjgVL3ZK44cOUJJSUmryti/f3+2bt3a4LUtW7Y0u05dDVN1dbVZn9FSOVu7vY5mMwHUokWL+Oijj4y/DxkyBKhNHBs3bhyOjo4sW7aM+++/H1VViYqKMg5JUCciIoKVK1dy//3388YbbxAWFsYHH3xgHMIAYNasWeTk5LBo0SIyMzOJjY1l9erVjRLLLSUlJYXk5GQACaCEEMIOeHp6Mnv2bB566CF8fX0JDAxk8eLF6HQ6Y01QUx544AFGjBjBs88+y6xZs4iPj+ett97i7bffNi4zYcIE3nrrLUaPHk11dTWPPPJIoxqbltx7772MGTOGV155hcsuu4yff/65xea7wMBAXF1dWb16NWFhYbi4uODt7d3k8i2Vs7Xb63CqaHf5+fkqoObn57f7ttPT09U//vhDTU9Pb/dtCyGELSstLVX379+vlpaWWroorVZQUKBed911qpubmxocHKy+9tpr6siRI9VHH33UuEyPHj3U119/vdG6X331lTpgwADV0dFR7d69u/ryyy83eD89PV2dNGmS6u7urvbu3VtdtWqV6u3trX744YeqqqrqsWPHVEDdvXu3cZ28vDwVUNevX2987V//+pcaFhamurq6qtOnT1dfeeUV1dvbu9n9ev/999Xw8HBVp9OpF154oaqqqjp79mz1sssua7RsS+Vszfbuu+8+4/ummjtOWnP/VlS1FQNVCLMUFBTg7e1Nfn4+Xl5eli6OEEJ0CWVlZRw7doyIiAhcXFwsXZxzUlxcTGhoKK+++ipz5syxdHHsSnPHSWvu3zbThCeEEELYq927d3Pw4EFGjhxJfn4+zzzzDECjHnbCekgAJYQQQliBV155hUOHDhl7hP/xxx/4+/tbuliiCRJACSGEEBY2ZMgQdu7caeliiFawu7nwhBBCCCE6mgRQQggh7Ir0jRLNaa/jQwIoIYQQdqFuzKDWDhIpupa646O1Y2GZkhwoIYQQdkGv1+Pj40N2djYAbm5uLQ5EKboOVVUpKSkhOzsbHx+fVs0TqEUCKCGEEHajbuL3uiBKCFM+Pj7G4+RcSAAlhBDCbiiKQkhICIGBgWZPRCu6DkdHx3OueaojAZQQQgi7o9fr2+1GKYQWSSIXQgghhGglCaCEEEIIIVpJAighhBBCiFaSHKgOUDdIV0FBgYVLIoQQQghz1d23zRlsUwKoDlBYWAhAeHi4hUsihBBCiNYqLCzE29u72WUUVca8b3c1NTVkZGTg6enZ7oO4FRQUEB4ezsmTJ/Hy8mrXbdsb+a7MJ9+V+eS7Mp98V+aT78p8HfldqapKYWEhBoMBna75LCepgeoAOp2OsLCwDv0MLy8vOcnMJN+V+eS7Mp98V+aT78p88l2Zr6O+q5ZqnupIErkQQgghRCtJACWEEEII0UoSQNkYZ2dnFi9ejLOzs6WLYvXkuzKffFfmk+/KfPJdmU++K/NZy3clSeRCCCGEEK0kNVBCCCGEEK0kAZQQQgghRCtJACWEEEII0UoSQAkhhBBCtJIEUDbiueee47zzzsPNzQ0fHx/NZRRFafTz+eefd25BrYQ531dqairTpk3Dzc2NwMBAHnroIaqqqjq3oFaoZ8+ejY6jF154wdLFshrLli2jZ8+euLi4EBcXx7Zt2yxdJKvz1FNPNTqG+vXrZ+liWYXff/+d6dOnYzAYUBSF7777rsH7qqqyaNEiQkJCcHV1ZeLEiRw5csQyhbWwlr6rm2++udFxNmXKlE4rnwRQNqKiooKZM2cyd+7cZpf78MMPOXXqlPHn8ssv75wCWpmWvq/q6mqmTZtGRUUFmzdv5qOPPmLFihUsWrSok0tqnZ555pkGx9E999xj6SJZhS+++IKFCxeyePFidu3aRUxMDJMnTyY7O9vSRbM6AwcObHAMbdy40dJFsgrFxcXExMSwbNkyzfdfeukl/vnPf/Luu++ydetW3N3dmTx5MmVlZZ1cUstr6bsCmDJlSoPj7LPPPuu8AqrCpnz44Yeqt7e35nuA+u2333ZqeaxdU9/XqlWrVJ1Op2ZmZhpfe+edd1QvLy+1vLy8E0tofXr06KG+/vrrli6GVRo5cqQ6b9484+/V1dWqwWBQlyxZYsFSWZ/FixerMTExli6G1TO9ZtfU1KjBwcHqyy+/bHzt7NmzqrOzs/rZZ59ZoITWQ+v+Nnv2bPWyyy6zSHlUVVWlBsrOzJs3D39/f0aOHMny5ctRZZgvTfHx8URHRxMUFGR8bfLkyRQUFLBv3z4Llsw6vPDCC/j5+TFkyBBefvlladqktlZz586dTJw40fiaTqdj4sSJxMfHW7Bk1unIkSMYDAYiIyO5/vrrSU1NtXSRrN6xY8fIzMxscIx5e3sTFxcnx1gTNmzYQGBgIH379mXu3LmcPn260z5bJhO2I8888wwTJkzAzc2NNWvWcPfdd1NUVMS9995r6aJZnczMzAbBE2D8PTMz0xJFshr33nsvQ4cOxdfXl82bN/PYY49x6tQpXnvtNUsXzaJyc3Oprq7WPG4OHjxooVJZp7i4OFasWEHfvn05deoUTz/9NOeffz579+7F09PT0sWzWnXXHq1jrKtfl7RMmTKFK6+8koiICI4ePcrf//53pk6dSnx8PHq9vsM/XwIoC3r00Ud58cUXm13mwIEDZidfPvnkk8b/DxkyhOLiYl5++WW7CaDa+/vqSlrz3S1cuND42uDBg3FycuLOO+9kyZIlFp86QdiGqVOnGv8/ePBg4uLi6NGjB//973+ZM2eOBUsm7Mk111xj/H90dDSDBw+mV69ebNiwgYsuuqjDP18CKAt64IEHuPnmm5tdJjIyss3bj4uL49lnn6W8vNwubnzt+X0FBwc36j2VlZVlfM/enMt3FxcXR1VVFcePH6dv374dUDrb4O/vj16vNx4ndbKysuzymGlPPj4+9OnTh+TkZEsXxarVHUdZWVmEhIQYX8/KyiI2NtZCpbIdkZGR+Pv7k5ycLAGUvQsICCAgIKDDtp+QkEC3bt3sIniC9v2+Ro8ezXPPPUd2djaBgYEArF27Fi8vLwYMGNAun2FNzuW7S0hIQKfTGb+nrsrJyYlhw4axbt06Y+/Wmpoa1q1bx/z58y1bOCtXVFTE0aNHufHGGy1dFKsWERFBcHAw69atMwZMBQUFbN26tcUe2ALS0tI4ffp0g+CzI0kAZSNSU1M5c+YMqampVFdXk5CQAEBUVBQeHh788MMPZGVlMWrUKFxcXFi7di3PP/88Dz74oGULbiEtfV+TJk1iwIAB3Hjjjbz00ktkZmbyxBNPMG/ePLsJONsiPj6erVu3Mn78eDw9PYmPj+f+++/nhhtuoFu3bpYunsUtXLiQ2bNnM3z4cEaOHMnSpUspLi7mlltusXTRrMqDDz7I9OnT6dGjBxkZGSxevBi9Xs+1115r6aJZXFFRUYOauGPHjpGQkICvry/du3dnwYIF/OMf/6B3795ERETw5JNPYjAYuuSQNM19V76+vjz99NPMmDGD4OBgjh49ysMPP0xUVBSTJ0/unAJarP+faJXZs2erQKOf9evXq6qqqj/99JMaGxurenh4qO7u7mpMTIz67rvvqtXV1ZYtuIW09H2pqqoeP35cnTp1qurq6qr6+/urDzzwgFpZWWm5QluBnTt3qnFxcaq3t7fq4uKi9u/fX33++efVsrIySxfNarz55ptq9+7dVScnJ3XkyJHqli1bLF0kqzNr1iw1JCREdXJyUkNDQ9VZs2apycnJli6WVVi/fr3mtWn27NmqqtYOZfDkk0+qQUFBqrOzs3rRRRephw4dsmyhLaS576qkpESdNGmSGhAQoDo6Oqo9evRQb7/99gZD03Q0RVWln7sQQgghRGvIOFBCCCGEEK0kAZQQQgghRCtJACWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIUQLcnJyCA4O5vnnnze+tnnzZpycnFi3bp0FSyaEsBSZTFgIIcywatUqLr/8cjZv3kzfvn2JjY3lsssu47XXXrN00YQQFiABlBBCmGnevHn88ssvDB8+nKSkJLZv346zs7OliyWEsAAJoIQQwkylpaUMGjSIkydPsnPnTqKjoy1dJCGEhUgOlBBCmOno0aNkZGRQU1PD8ePHLV0cIYQFSQ2UEEKYoaKigpEjRxIbG0vfvn1ZunQpSUlJBAYGWrpoQggLkABKCCHM8NBDD/HVV1+RmJiIh4cHF154Id7e3vz444+WLpoQwgKkCU8IIVqwYcMGli5dyscff4yXlxc6nY6PP/6YP/74g3feecfSxRNCWIDUQAkhhBBCtJLUQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIYQQQrSSBFBCCCGEEK0kAZQQQgghRCv9P6+YL/oWMIDTAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -776,7 +776,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVv0lEQVR4nOzdeXhcZdn48e85M9nXpkmzp2lJ0400Kd0oLVCkUhZ52URWWURQXlChoOKrguCr+JNNVBQ3qAqy+ILIJnTRgl2gpW1K6N6maZomaZJmTyaTzJzz+yPMsXNykswkM5lMcn+uK9eBmbM8k05m7vM893M/iq7rOkIIIYQQwmdqqBsghBBCCBFuJIASQgghhPCTBFBCCCGEEH6SAEoIIYQQwk8SQAkhhBBC+EkCKCGEEEIIP0kAJYQQQgjhJ3uoGzAWaZpGdXU1CQkJKIoS6uYIIYQQwge6rtPW1kZWVhaqOnAfkwRQQVBdXU1ubm6omyGEEEKIITh69Cg5OTkD7iMBVBAkJCQAvf8AiYmJIW6NEEIIIXzR2tpKbm6u8T0+EAmggsAzbJeYmCgBlBBCCBFmfEm/kSRyIYQQQgg/SQAlhBBCCOEnCaCEEEIIIfwkAZQQQgghhJ8kgBJCCCGE8JMEUEIIIYQQfpIASgghhBDCTxJACSGEEEL4SQIoIYQQQgg/SQAlhBBCCOEnCaCEEEIIIfwkAZQQQgghhJ8kgBJCCCGE8JMEUEKEWHV1NRs2bKC6unpMXUsIIcYye6gbIMR4V15ezsGDBwHIysoaM9cSQoixTAIoIUJs6tSpXtuxci0hhBjLJIASYgRVV1dTXl7O1KlTjR6grKysEesNGslrCSHEWCYBlBAjSIbQhBBibJAASogRFKghNKueLCGEECNHAighRtBQh9DMAVNpaSkHDhygtbXVr/MNJfCSYE0IIfqSAEqIEPMlQBlKwGR1Xl+GEM3HybCjEGI0GS03dRJACRFi5gBl/fr1lJWVUVRUxLJlyyyPKSkpITExccChwI0bN3Lo0CFqamq48sorAd+GEM3BmszcE0KMJqPlpk4CKCFCzByglJWV0dTURFlZmRFAmQOm+vp6KioqSEhI6PcDpKGhge7ubhoaGvq9ti93cjJzTwgxmiQkJGC320lISAhpOySAEiLEzAFKUVGR0QPlYQ6Ytm7dSm1tLV1dXRQXFwN9g6HU1FRaWlpITU01zmPuXbK6kzMHa6Olu1wIIQCOHTvGiRMnOHbsmPH5FwoSQAkRRObgwyoYMT82YcIE48ejrKyMqqoqAIqLi0lKSqKhoYGkpCRjH3NwtGTJEjIzM72G3jo6OnA4HHR0dADWQ3rmgG6oCetCCBEMDQ0NtLW1Ddi7PhIkgBIiQHxJ2rbq8TEHKBs3bqShoYHW1lbj7srTG+XZFhYW4nQ6KSwsNK5/+PBhmpubOXz4MGA9zBcXF0dMTAxxcXEBf61CCDESuru7vbahIgGUEAFiFRyZe3isenw6Ojro6uoyeoW6urrQdZ2urq5+r9XW1obL5aKtrc147MSJE15bq0AsOzubxsZGsrOz+22zOTiySliXXikhRKikp6fT2NhIenp6SNshAZQQAeLLcFh/dF3v898nP/bee+/R1NREY2MjxcXFNDU1UVdXx8SJE/s9p8vlQtd1XC6X8diWLVuoqanB4XBQXFzMrl27qK2txel0snTpUqBvUCVJ5EKI0eTo0aN0dXVx9OjRkLZDAighAsQq0Ni5c6eREF5cXMzatWuprKykvLycG264AQCHw4HL5cLhcAAQGxtLR0cHsbGxxnk8PU2e7a5du3A6nezatYuLL74YgIkTJ9LQ0GAEVVaBWHV1tde2trbWawt9A0Gr4TpfyigIIUQwtLa2ous6ra2tIW2HBFBCBJF5ttyJEydwu93GMBv0Hc8/44wz+szCMwdDTqfTawsQGRmJoihERkYC0NLS4rW1oqoqmqahqqrxmDl3aiSrngshxGBGSw6UOvguQoihSkpKwm63G7PlJkyYgKIoXjPsFixYQH5+PgsWLACgsrKS6upqKisrjX00TfPaWjl+/Di6rnP8+HHAugfKEyh5tp5gy7MF2LRpE+Xl5WzatAnonTLc0tLCsWPHjH08w3zl5eX9tqe0tJRt27ZRWlra7z5CCDGY6upqNmzYYPScjxbSAyVEEJlLCTQ1NaHrOk1NTcY+TU1Nxg9YD89ZBUNmbrfba2vFHIhZ3cnV1dV5bRsbG9F1ncbGRmMfTwL7yflVQggRDOZecF8+D0eC9EAJEUT79+9nx44d7N+/H+jNU7LZbF7J3ydXHvfsoyjKgAnigRITE+O1tWL1YbVt2zYaGxvZtm0bYH2HWFJSwrx58ygpKQlCy4UQ44W5ft1oIQGUEEG0Y8cOGhsb2bFjB9A3TwkgLS0Nm81GWloa0Pthoev6iHxYeK4x0LU8vUwn9zaZc7A2btxo/HhkZWWxdOlSr/IIo7EbXggxugWqfl2gyRCeEEFkDjT279+PrutGjxT0BhYul8sILHxJ/h5JVj1QWVlZVFZWGsFRfX09TqeT+vp6Yx9zEvloWQBUCBFeRuusXwmghAgQq1ln5gDKKhgxlygYbaKionA4HERFRRmPnThxAl3XjdmEuq4bPx7mgMmqTpaZzNwTQpiN1lp0MoQnRIBs3LiRDRs2eA1jjQVWJRM6Ozu9tlZBYFVVFceOHTPW8POURzi5l8rMl9l9QojxZbQO/0sPlBBDZO4tqaiowOl0UlFRYeyTnJxMc3MzycnJIWvncFmVUDA/ZrPZvLbQGwy5XC4jGDIviGzFl14qIcT4MlqXjpIASoghMv9Rm3tlAKO6uGc7VlmVUIiIiKCnp4eIiAigtyZWdXW1URPLymjtqhdChI5VLbrRQIbwhPCBVRdyQ0MDbW1tNDQ09Huc1fDXWGT1Oj1L0Xi2Bw4cwOFwcODAgX7PM1q76oUQodPS0oKu66NmYo2HBFBC+MAqN8dchNJqGGs8a29v99r6UjJh7dq1rF+/nrVr1wa/gUKIsDBp0iRsNhuTJk0KdVO8SAAlhA8SEhKw2+0kJCQYj6WnpxMZGUl6enoIWzZ69fT0eG2jo6O9tlas1goUQoxveXl5JCUlkZeXF+qmeJEASggfHDt2jBMnTniNwR8/fpzu7m5j7TlfllIZT8y/j/T0dGw224AB59y5c0lJSWHu3Lkj0kYhxOi3YcMGGhsb2bBhQ6ib4kWSyIXwgVW+U3NzM263m+bm5tA1LIykpqbS1NREamqq8dj69espKyujqKiIZcuWUVhYiN1ul1l4QgjDaL05lR4oIXxgFSz5ktMj/sPtduN0Or0+BDdv3kxjYyObN28Gemc2btu2jdLS0n7PI4nmQojRQAIoIXzQ1dXltRX+2759Ow6Hg+3btxuPme8sfZnZKMU2hRCjQVgFUO+//z4XX3wxWVlZKIrCa6+95vW8ruvcf//9ZGZmEhMTw/Lly/tMmW5sbOS6664jMTGR5ORkbrnlFmOWkMfHH3/MmWeeSXR0NLm5ufz0pz8N9ksTIeRLj4bVEixi+HJyclAUhZycHKDvzEbo++8zdepUCgoKZJhPCBFSYRVAdXR0UFxczFNPPWX5/E9/+lN+/vOf8/TTT/Phhx8SFxfHihUrvHoNrrvuOnbt2sWaNWt48803ef/997ntttuM51tbWznvvPOYPHky27Zt45FHHuEHP/gBv/3tb4P++kRoWPVomL+04+PjvbYiMFwuF6qq4nK5ACgoKCApKYmCggJjH/OwXlZWFkuXLvUquCnDekKMDeH0txxWSeQXXHABF1xwgeVzuq7zs5/9jO9973tccsklAPzpT38iPT2d1157jauvvpo9e/bwzjvvsHXrVubPnw/AL37xCy688EIeffRRsrKyeP755+nu7uaZZ54hMjKS2bNnU1payuOPP+4VaImxw2r5kLVr11JZWUl5eTk33HCDZZVxMXyenChPAc4DBw7Q1NTEgQMHWLZsmeUxVgsOj9alHoQQ/jEvQj6ahVUP1EAOHz5MbW0ty5cvNx5LSkpi0aJFRoLq5s2bSU5ONoIngOXLl6OqKh9++KGxz1lnnUVkZKSxz4oVK9i3bx9NTU2W13Y6nbS2tnr9iPBh1aNhrkckAVRweHKdPNv6+np0XfdacDg2NhZVVY2K5pIDJcTYZVVzb7QaMwFUbW0tQJ8aM+np6cZztbW1fSqZ2u12UlJSvPaxOsfJ1zB7+OGHSUpKMn5yc3OH/4LEiLHqMjYvQyJGRlxcnNcWYM+ePTQ1NbFnzx6gd9ivra3NGPYDKCkpYd68eZSUlIxoe4UQw2P+/N25cycVFRXs3LkzxC0b3JgJoELpO9/5Di0tLcbP0aNHQ90k4YeNGzeyYcMGNm7caDzmWXPJs1UUxWsrgsOqNERbWxu6rtPW1gbAwYMHaWlpMbr5wboXUQgx+pl7lGtqanC73dTU1PR7jKK7UHRXv8+PlLDKgRpIRkYG0FsdOjMz03j8+PHjxl1pRkYGdXV1Xse5XC4aGxuN4zMyMozK0ief4+RrmEVFRREVFRWQ1yFG3tGjR3E6nV6Bb2RkJA6HwxjKDfUsPFXvJk5vJ05v44M/rGSJeycTaSaGbo4++CLRehcrdQduVBxEceShl7nSbaOTaBpIZvOz3yZi4hTi3I10qgnoSkRIXsdgzMu/QN/fva7raJomMyKFGAPMOagRERF0dXUREdH/Z1SudpirlXd5QztrRNrYnzETQE2ZMoWMjAzWrVtnBEytra18+OGH3H777QAsXryY5uZmtm3bxrx58wD45z//iaZpLFq0yNjnu9/9Lj09PcY/4Jo1a5g+fToTJkwY+RcmAs6chOxwOACMLfTtgRpRuk6E7mCiXs/Wn19PevMOvk8VKPT+HMW779gTR3zaOZZMB2iN3vsc+RCOwPxPHzvszmDrE5+Q646iQUmjU0kM9qsasqioKLq6uoybFEVRUFXVqzfQKrFcCDH6ZWVlef3NJiQk0N7ePmAOVDH7iFG66dT6X1dzJIRVANXe3u7VbX/48GFKS0tJSUkhLy+Pu+66i//93/9l2rRpTJkyhe9///tkZWVx6aWXAjBz5kzOP/98br31Vp5++ml6enq48847ufrqq41/wGuvvZYHH3yQW265hW9/+9t88sknPPnkkzzxxBOheMkiCMyzPOx2Oy6XC7s9tH8O0VobW565ly9qbzBVre0NiBr/83y1PpFjeiraxOnsa3DRpiTQTQQrLvgckbGJ/PXV1wCw4ebC8z7DunffJgoniXorBRPtxHVWkeKsIlNpZIpay5SWWhZ8GlA16glsfXwXSuF5KHo3uhLZp32hYh7Ws9vtaJrm9e8ls/CEGBuseqFP1lB7lBKlt77jMTW0+cZhFUB99NFHnHPOOcb/r1y5EoAbb7yRVatW8a1vfYuOjg5uu+02mpubWbp0Ke+8847X6u/PP/88d955J+eeey6qqnLFFVfw85//3Hg+KSmJ1atXc8cddzBv3jxSU1O5//77pYTBGGLuMk5PT6eysnLARW6DpbmuimmuXSxUyihQq6ESUKFHt7FHn0x75mKiTlnC25v2oKm9PaIPfOMB3nnwQeMcsxb3lvbofm2t8dipSz7HK2u3AXAcuPauBwB48MEHUfVuErUmFubHoVds5FTlMClKGymta+CjNczVFUq1aWzjVFpbTorgQsSTLO7ZVldXo+u6V9J/R0cHDodDltURIsx1d3ej67pXMd2THXr/RVIVnU+0KbhsMSPcOm9hFUAtW7ZswLwHRVF46KGHeOihh/rdJyUlhb/85S8DXmfOnDn8+9//HnI7RXhpampC1/V+y1QEQ6zWwkc/v5Y5J97lWltvYNCt29gVs4APOnOpUzNBtfPA7b2Bz5ubHxzodH7RlEiabeks/tIDPPjgg6zRNeK1Jpbk6KTXvs8UrYJ5yn7msZ+ux9/gTL2IMmbSpKYFrA3DER0dTU9Pj9eNUVxcHDExMV6z98xkmE+I0W+w9Im4Q28CsF2fOWJt6k9YBVBCBIJ5CE/TNABjG0yJ7nqWspUF6t7e4TkFyrQpbOI0atUsHrjvf3n9wcAFSz5RVNptEzn9tt5g7UcP3Mdk7TCLlZ2cotbwGWU7n2E7R/U0PnjexqyL7hjZ9plkZWVx6NAhryDIvFCxVbC0ceNGysvLqamp4corrwxJ24UQQ2fTu5nR9TEocFTNC3VzpIyBGH/Ma6lZJZEHWozWxsc/XcHd6p9ZoO7FrSt8FHsWn5z/V15RL6XWNhlGycw4lxrDIfss/qxezcFL3uDv7jNp1uPIVeo5/cBj2J6YRYlrKxFaaIbLampqcLlcXtOcP/74YxwOBx9//DFgXWyzpaWFnp6e0EwMEEIMW7p2DLuisUfLw6WGvkaf9ECJcae+vp6KigoSEhKMJHK32x2UJHK73sVc9w5WqB9g69Rx6Spva4vZqc7h+9/6CQCvvLs54NcNBEVRKJh7Fs+//i926qeRpR1huX0b+dpRLrH9m4v0jaxzz6fq4Ccj2i6rBYfNeVJWy/MsWLCAsrIyioqKRqqpQogAKmIfANv0WSFuSS/pgRLjznvvvcehQ4d47733AIIyhKdrbra98ijf0J/hQttmbIrOtpgl/JRb2WFfhKaGNvnRX7pi45htKpO/9zGfnPsnNmuzsSsaK9QtZPz5TBa5NxKhjcwyN57FwU9eJNwT/Hq2niD55CVh0tLSyM/PJy1tdORyCSF8XzxY1buZp/QGUKNh+A4kgBJjjC9/jJ61Cj3bwabN+itS72DPTz/DvLIfEq90UaZN4RHtJuZ9+2161P6TnMOBoqqceuYlrLat4BH9S2z6NJA6X/2Qb/FbTnNtobFu5FdRNwfBW7dupaKigq1btxr7yBp6Qow+vv5dTtJqiFDclKv5dKvxI9S6gckQnhhTfFnJO2hJ47rOZO0gVyqriety0qlH8aK2gkrbKWNyCZhONZk1rCD14h9z4rX/YbG6i4ttG2h9ah6bC24DXQfFNiJtiYiIwOl0GsVvraqVWw3rCSFCy2ptSyunfjp8dzz3/N5yL6OA9ECJMcWcIG4lGOvatZ6o5QLtHW5S3yBOcfJJxKnUXb+Oo/aCMRk8nazwtGWstq3gce1G9mh5JCqdLD70M76k/4UUd/WILLnidDq9tub18/qzc+dOnnvuubBYuFSIsaiqqoqOjg6qqqr630l3sUDpXUw8a/FVI9SywUkAJcaUUCwqG6c10fnLpSxU9+DQI/m9+xJm3vc++dPGV7Jym20iL6uXs6X4f6lnArlKPV9TX+Sz2hqqK/aNaFusFiXeuHGj8eNRVlZGVVUVZWVlI9o+IUSvnJwc4uLiyMnJ6XefSVo1kYqbQ1omk2ecNoKtG5gEUGJMs8qJCuQQXo67nK/xZzL0eo5ok3iCmzhmPwWbbWSGrkYdRWXhZV8j7t5SXtbOpVu3sUT9hORnz2SKay/owa+1Bdb/xvX19TidTq/E8qKiInJycmRmnhAhUl9fT2dnp9ffpdmp7AfgI2aPVLN8IjlQYkwxF1AM1hppLqeDRe6NnK9+CMC2mMW84ViAosifFEBsfDJ7bMUc0k7hfO2fzFUPcoPtbfZpZfxdOS8kbfLkRw20yrsQYmRZ3dicrK2lkYWfDt9VKPkj2LLBSQ+UGFNGYqaVo62J/U9cwPnqh7h1hT+5L6Dk3rckeLLQrcbzunoxW+c8RJMex3T1KCt5ls1/uJeebueItsVcKwpkCE+IUBvsxmbPv14kSunhsJaBQ0kYyaYNSgIoEbashufMSeStra20t7cbJQuGy647qHnyXGZ17aBdj+ZJ/XoO22eO3yE7XygKCy7/Bk8pN/MvbS52RWPx0d9x5P8tJkobOMk7kDyz8k4e1vMl/0IIETwOhwNd1/tdCSJq76sAfKAXjboJOXLLLMKWVcmCrKwsr6G6AwcOoGkaBw4cGPb1orV2ruNVclwNNJLIb/Qv0G1LHPZ5xwu3Esn7tnPY7Z7GderbFLgPcTdHeNl1HuW26UG/vmex6JMXja6vr6ejo2PA/AshRPC0t7d7bU/WWFfNLMd2UKBCnTLSTRuU9ECJsGVVssDcKxWohPE4rYkv8wI5SgNVpNNy7VsSPA1Rgy0H11c2sTPmdKIUF1+0vc2F2j9oqD4S1Ot6Fhr2bAEaGhro7u6moaEhqNcWQlgbqJDx/vXPEaG42aPljZrimSeTAEqELauSBRs3bmTDhg1eU9WHq6JsE7fxEhOVNnZrk7HfupYphXMCdv7xKDVzMnO++Q9+p12GQ49kgboX9bdLSXYfH9F2mJeAkbpQQgSPr8u2eCQe+DsAW/VTg9msIZMASowpNTU1OJ1OampqAnK+OK2Z5FeuJFHppFQr4K/qJWRkj451mMKdoqpU26bwM25iv5ZDCq18Q32eOa5tI1buwJxYvnHjRsrLy70CcH8/9IUQ1vyZ5GPTupjV07tQ+VHb5GA3bUgkgBJjit1uR1EUo0dhOGK0Vr7EX0mmnTJtKn9XLwSZaRdw3Wo8L6hX8GHa5wG4zPYel2t/53jVoaBf2+l0ouu6UcG8q6sLXde9FiouLS1l27ZtlJaWAhJQCTFUvqwU4ZGn9Q7p74k8FZcyOhdflwBKjCm5ublER0eTm5s7rPNEa218iZdJUdrYbyvgVfVzEjwFk2Jj0R1/4OfaNbTosRSph4n8/TI++fffg3rZlpYWr61nNuXJsyo7Ojro6uoyqpqbAyohROAtUHpLi7QVXBrahgxAAigxphw4cACHwzGsWXf1R/dzE38lVWllr5ZLylfekuBphDTZMnmKG9ir5TKBVmauvZFTXLt7FyYeAeacKIC4uDiio6OJi4sbkTYIMVa99dZb/POf/+Stt94acL8IrYOZaiUuXaXwnOtGqHX+kwBKhC2roZSBpsT6oqO5Acezl5OuNHNAy+Zl9VJSJ2UEpL2+ClTFbFVVvbaBPHcw9aixvKRexpbkC7EpOtfb3uEz2joUfeDV2gPBU4vm5Jo02dnZTJw4kezsbABKSkqYN28eJSUlQW+PEGNJfX09uq4PWjYkXzsMwJ7YeSSnjdy6pv6SAEqELasZd/qnPRX6EHosFN1N5dOXk6cdpVafwIvKJejKyAcaVr0gvvAUmfNsU1JSvLYw8JThUUWxs+Drz7Pl1Adw6nbOVD/mWu3/OFa+Z8Sb0tbWhsvloq2tt+hnKBasFmIsSEtLQ1EU0tLS+t1H13UWKx8D0DPz8pFq2pBIACXCVktLCy6Xy8hfGQ5d1zlD28jMrp106NE8y+fR1OgAtNJ/Vr0g0dHRXtvU1FSvrRWrukfmICs2NtZrO5ooqsrCz6/k59xAnZ5MgVpN3J+Wk+AOXs2m7u5ury1AQkICdrudhITRtYyEEOEmIyOD6OhoMjL679WP1tuYotbSpUcwfdnVlvuYP8dCRQIoEbbS09OJjIwkPT192Oea6S5jufoRLl1lz5m/oFsN3Zel1YdDZGSk19ZqXTczqxmJvvRumYO1UOtUk/mtci27tHySaefrynPkug8GJS8qKirKawt9e6BkFp4QQ7Nz504cDseAddYKtN7Ztx/opxKXmGK5T0xMjNc2VCSAEmHD/MXV0tKCpmlePVBDuTPJdFdwlW0tAJtn/g/zl38hgK32X15eHoqikJf3n3pT5tcVGRmJoihGQAV9hy9nzZrFhAkTmDVrlrGPOQfKM33fs4W+PVej4W7PrUTzf+p/8VHicuyKxpfU1znNvRVXT/fgB/vBqgfKEzydXCsq0MVahRiLzJ/ZVr3iJ+vp6eYsdTsAn9D/8k5Ws2VDQQIoETbM08etFoL1Nweq8pON3Ki8AcBL7nNZetW9gW20iVUwYg5qXC4Xqqp69S6Ze5xycnKIjo72eu2ebnHPtr6+ns7OTq+EzdzcXOx2u1HmwWqpG3Oe1KjpkVLszLvrr/zJfSGarnCxbQO7Hr+IjtamwY/1kVUAtWfPHpqamtizpzf/ymroWHqlhOjL/Jk92M3YJ+//nUlKC016PI1q/8N8EkAJMUydnZ1omkZnZ+eQjrfpTiJeuYkopYd/a3PYY5sT8F4W80w4X/7wk5KSsNvtJCUlGY+Zu6yrqqro6uqiqqrK2Gf27NlMnjyZ2bNnA70BlNPp9Aqgjh8/jsvl4vjx3iVTzEODVgK1nmAgKKrKYfsMntKvwqFHUuzYQu2T52DXrVdyD4T29nZ0XTdmdhYUFJCUlERBQYGxjz8VloUYrwYLoFw7ngdgg1aCrvQfnkyYMAGbzcaECRMC30g/SAAlwoZ5Ovnu3btpbm5m9+7d/p9M1/is9i8y9Toq9Un8U10WlCEqc/BhlbtkDqqWLFnC0qVLWbJkibFPVFQUNpvNyM3p6elB13Wv2XTmKr9paWlERkZ6zXgx9y4lJiaiKAqJif9ZGNmcoD4aZ+412rL4JddzgiROcR/my/oLxGjDn0xgxZzUbxW4+1NhWYjxwvyZPeDNmO6iqG0DAPvUaQOeNzU1lYSEhAEn0YwECaBE2DAn83oqQ3u2/pipfcIidTcOPZLnuSSkhTIXLVpESkoKixYt6nefBQsWkJ+fz4IFCwDIzMwkKiqKzMxMYx/z9HqrQCwnJwe73W4M/S1ZsoSpU6d67XPZZZdx7rnnctlllwGjaAjPpFNNxnnTGirUXNKVZu7gOZLcdQG/jnlY2Cpw379/Pzt27GD//v2ADOkJAXDs2DFOnDjBsWPHBt03SztKtNLDIS2LDiV5wH1jY2NRVTXks4clgBJhI1B3+RPdNXxeWQfA9jn3j+iMO6viloWFhcydO5fCwkLAejiouLiY66+/nuLiYuOYnJwc4xhfNTU14Xa7aWrqzRtKS0sjPz9/wLos6enp2Gw2r9mOVq8jFLLypzPha+vZqs0gTnFyh/ICH73+66Be0ypwLysro6mpibKy3uUnZEhPiN6/EYfD4dNN7gJ6az9t0othkNGAgwcP0tLSwsGDBwPSzqGSAEqEjfr6eioqKgatYjuQhqoDXK+8jqro/N29lDMuvzOALexr+vTp2O12pk/vnVFiVQl848aNxg9YB4rmHg1zb5wVqy/x7u5udF03kqSt9jE/FhMTg91u95oyPHnyZGw2G5Mnh36V9KQJqbytns86bR4Ripv52+9jqmvviC3/AlBUVMSECRMoKioCpHaUEB6+pEbYtU5K1EO4dYWjtvxB97fKEw0FWeBLhI2tW7dSW1tLV1eX0RPjD93touHPNzND6aBMm8IO23wuCWDeU0REBD09PV7B0VlnnUVOTo4RDM2ePZs9e/Ywc+ZMYx9zsndWVlafKteeoMbzvOd8A/XGWe2TlZVFV1eXcX6rfcyPxcXFERMT47UWXGpqKk1NTSHPQTAoKhvUs2hxJ3C5bT1ftL3Na+42dtrmB/5SioKu615fDIWFhdjtduN3ZhXg7ty5k7KyMoqKiob0/hUi3DQ3N+N0Omlubh5wv6n6IVBgT8xp9DgHr+20ZMkSMjMzQ55zKAGUCBu6rqNp2pCWaQHY/uKDzHOW0a5H83flfJQBZnkMhVUAVVpayoEDB2htbTWCF03T6Orq8jru5K0Vc1BjFWRVV1dTXl7O1KlTjefN+5g/eKz2MT+WnZ1NY2OjkQgKfXMQYmJicDgcXr1UVo8FlaJQZj+NrFNO4/SDj3Op7d8kah30dHcRERm4/C2rUhnmf2erHqiysjJj1qQEUGI8aGxsRNd1Ghsb+91H13XOVHYA0FN0NXxUM+h5rT63QkGG8ETY8KX6dn/itWbm7H8KgD/rF+FWh/+lbs4Dspqi29DQQFtbGw0NvcuP1NfX093d7TUMqSgKqqoOexagL3k3Q1nHzao3xZyDMHPmTGJiYrx61oa6pt9wnX79A/xKu5Ie3cZn1O3seeJiujr7H+oMBHOuh9XvrKioiJycHGOYT4ixzpe6fPFaIzlKA+16NDPPuWakmhYQEkCJsOHpffK3HpGqu7hcf5sIxc3WmKUcV/MGP8gHniEtzzY1NRVFUbyGtTo6OtA0zfhijY+PR1VV4uPjjX3MM+ys+BIcBWsqvdV5zTkIVlXhQ1nsrt6Wyy/1a3DokcxxbKHiifNQ9eCVYThy5AhOp5MjR44A1jlQ5okAQowlVjNPB6s8DjCbfQBs0IuJjg2vnEEZwhNhw1N3x9/CmXO1bUxRa6lnAvk3/Rbl6d8HpD3mAKGpqQld140ZbtAbVLW0tBhBVUxMDBEREV7DWsXFxYN+qfqS8xSsbm2r8xYWFuJ0Oo1ZgHa7Hbfb7dXbZM63ssodCqZW2ySecl/LbcrLzOjZzRe0Nv6qXoxbCXw5BvPMvJOnb0vAJMYD8zA2DD5q0NbazJlKKQB7lOmcPyItDRzpgRJhYygVsSe6a/ic2ju7rWLpo6SlZw9yhO9iY2NRFMXIA4qPj0dRFK/eJXMtpri4OKKjo70Ssn0xlKE3K0OpT2R1jHmIqr6+Hrfb7TU0WVhYSHZ2thFk+bvMTiB02FKou+JVGkhmunqUL2r/h10LXtVy47p+TN8WYiwYynv+kzV/JF7p4qieRqsysd/9RsvSLWbSAyVGJasZS1YL3w6ks/UEX1D+AcCr7rO5fPnnA9pGh8OBrutGhers7Gw6Ozu9kq3NvTclJSUkJib2KVFwcvJ3MJln8w31GHOPWFFRkfHv5bFlyxZqampwOBwUFxdbJtmPhIKixRyNeYuqP1/CZLWOm/WXOXboerJPOTVg14iKisLpdBqV4h0OBy6Xy3hvCDHWWb3nB/ubT97zFwDe1+aBvf+e6YSEBJqbm0ddWRAJoMSoZDVjyd8hoD1/Xsk8pZkKLZ2PbSVcHrTW9vIlOPKlREEw+TIU6Msx5texbNkyli1b5nXciRMn0HWdEydOAL1FO2tqagYs2hksuQWn8r98geu1V8hXj9Pw54uovPqVgJ0/IiICp9NpfFGYC5b6aiSDaSECqbm5Gbfb7VWyYKBloA6UbWGmay8uXeWIbeDPo+Li4j43aKOBBFBiVMrJyaGpqclYcgT8G8JL1OqZV/8aAH/lAhQl8F2/MTExNDc3G/lMQw2OhhLUDNVQ8qSGmltlrnkVqNmGQ+VWo/mz/nmu0l6jUD1G84uXEqNfiUNNHva5zfl5VsmzvgRHIxlMCxFI/s6Srnvvt0wDNuun0qMOnJdYX19PR0fHsIooB4MEUGJUqqyspKWlhcrKSr+PVXU3l+mrQYE33EvotKcMuz02mw232+01Bm8OCKy+IEOZ/B1qF198MRdffLHx/wsWLOhzF5mUlERLS8uIVRTWlCheVC/jattqCt37+Sov8lvtKjrU4a3q7ktwv3HjRsrLy6mpqeHKK6+03EcqmItw5cuMOw9d15hd/w9QoJTBh9JrampwOp3U1AxeI2okSQAlRqW6ujrcbjd1df4vDjtTKyNfPU49E9humxeQ9lglQJsDAqveg7EaHA2F1WzDlJQU2tvbSUnpDXJHYqaerkSS8fV32f3LzzGrZxdf1V/gt+6rAnoNqxmjNTU1dHV1Dfgl4MsSPUKMRlZ18PqTplWTrLZzXEmlUZ006P6hmIDiCwmgxJgSq7VwifIeAIcW/AA+OhKQ81r9AZsDgpEcihsrPGvyebYj9UGZmJTC5K//g62PfJYF6j6+wovs2Ry4SdRWd+PmIY6h9lgKMRrl5ORw6NAhr7SL/iyiFIAjeZdD5eDFALKysnA4HKPuZlTKGIhRaShVxzWXiwv1dUQobtZrJSy68MaAtceT5zTQsiSBKjUwVlmVQzAXEfXnLna44hKS+Id6Ph9os4hTnOS/cyOJ7uDlWMTExKAoivEeKi0tZdu2bZSWlhr7yHtIhCtfJ07YtE7mq/vRdIWpn/2KT+c2l4MZLcZUAPWDH/wARVG8fmbMmGE839XVxR133MHEiROJj4/niiuu4Pjx417nqKys5KKLLiI2NpZJkybxzW9+c0hLhwj/mL9c8/Pzsdvt5Ofn+3yO0tceZ7ZaQasey/vKkoB+Cefn5xMdHe3VnqHUVBrPrKqpm6tzz507l5iYGObOnTsibdIVG++qn2WTdioxSje3Ky+S7D4++IFD4Ha70XXdpxyRgcj7ToxGnZ2d6Lo+aKHj6dp+AHbFLSA1p8Cnc4/WG4sxN4Q3e/Zs1q5da/z/yZWR7777bt566y3++te/kpSUxJ133snll1/Oxo29hRbdbjcXXXQRGRkZbNq0iZqaGm644QYiIiL48Y9/POKvZTwx5w8lJiYSHx9PYmKiT8e3NdZyyidPAvCSdh66PWpY7THn4qSlpVFbW+s1Bd/cZpmCPjBfhqfmzZvHhAkTRnYIS7GxWj2XmJgE5jo281Ve5mn3FwJ+GU85B8/WvCAzyEw9Eb586T3WdY1z1I96/+e0wI0QhMqY6oGC3oApIyPD+PEsodHS0sIf/vAHHn/8cT7zmc8wb948nn32WTZt2sQHH3wAwOrVq9m9ezfPPfccJSUlXHDBBfzwhz/kqaeeMnI0RHCY11s7duwYLS0tHDt2zKfj979wH0m0s1fLpco2JeDtMy+eC31nTPmyXt145stdZKh+h4piY9Zdf+M9rZgopYevKi/zyXuvBvQa5mrKW7dupbGxka1btxr7hHLNQyH8Ye4JNS9nZCXFfZxUpZUGPZFZZ/t+kzJae13HXAB14MABsrKymDp1Ktddd50xDX7btm309PSwfPlyY98ZM2aQl5fH5s2bAdi8eTNFRUWkp6cb+6xYsYLW1lZ27drV7zWdTietra1eP8I/5i/XmpoadF33adpqnNbM3LrXAHidc1GDkD+TlJRERESE13R784ypoX6xjdYPh1CwmsbvuQk6eZHmYIiKimG9eo4RRE37520BDaJUVfXaWs3UM79+q/fGaB3OEOOLOYfPl1Ieiz5d9269Pg9bRKTP1xqtN6djKoBatGgRq1at4p133uHXv/41hw8f5swzz6StrY3a2loiIyNJTk72OiY9PZ3a2loAamtrvYInz/Oe5/rz8MMPk5SUZPzk5uYG9oWNA+YvCl9nY+m6zmf191AVnQ/jzsFh87/mk6d69MnLDeTl5aEoCnl5eUDfdd2gb8A01C+20frhMJBgBX0nL8LrMWXKFJKTk5kypbdnMajrYikq69VzeP+kICpQOVHmqsyeZV88W+j7+q3eGxJwi3B04JOPWKTuwa0rHFSn97uf1VDgaO11HVM5UBdccIHx33PmzGHRokVMnjyZl19+ecDZU8P1ne98h5UrVxr/39raKkGUn3wpMmglUztKsXqITj2K7C88Aqv+4ve1rdZriouLIyoqylj016o+T6BqPIXj1PWRzMPJzs6msbHRWGMwKiqKzs5Or8AjoBSVf6nnEB8bz2mdG/kqL/Nr91W02AavV+OP6OhonE4n0dH/qcLc0dFBV1eXMQxi9d6QHCgxGrjdbpxOp8+TIur++ZRRedypxva7n9XN82itpzemeqDMkpOTKSws5ODBg2RkZNDd3e21Tg/A8ePHycjIACAjI6PPrDzP/3v2sRIVFUViYqLXj/BPS0sLPT09tLS0+HyMqvdwqdI7YeCjvC+RM3nakK7t+fc6+d+tvr4ep9NpLB0QzArR4TgkE6w7wpKSEubNm0dJSYnxmLlXxqrnJuAUldnfeIXtsUs+zYl6KeAlDjxD/eYhf/MXh/m9MVrvxsX4sm/fPhwOB/v27Rt8Z91FyYm3AdhG8YC7jtSQfSCM6QCqvb2dQ4cOkZmZybx584iIiGDdunXG8/v27aOyspLFixcDsHjxYsrKyryqX69Zs4bExERmzZo14u0fT8z1gHwxS/uEdKWZSi2NeVd/b8jX9tQtObl+iXlYTypEewtW0OfLeTMzM4mKiiIzM9N4LBjDelFRMcz+xits0IqI/jSI2rP57YCd3+pOOy4ujpiYGKPnU3KgRCj4MkzscDi8tgPJdh8hTunisJZBkzrwYuKXXXYZ5557Lpdddpl/jQ6BMTWEd++993LxxRczefJkqqureeCBB7DZbFxzzTUkJSVxyy23sHLlSlJSUkhMTORrX/saixcv5vTTTwfgvPPOY9asWXzxi1/kpz/9KbW1tXzve9/jjjvuCO7drrBc5mMgJ44d4nPKBgBe1c/jrrj4IV974sSJ1NTUMHHiROMxc75KOA6zhSOrafwlJSUkJiYav/vCwkKcTqdXPlqwKphHRcWwVv0MqqZzhvoJk9+5iXj9atptEwc/eAjMpQ1KS0s5cOAAra2tEjCJEePLMLGvi7trus5nlC0AvMeCkC0mHgxjKoCqqqrimmuu4cSJE6SlpbF06VI++OADo3bPE088gaqqXHHFFTidTlasWMGvfvUr43ibzcabb77J7bffzuLFi4mLi+PGG2/koYceCtVLGjfWr19vrCu3bNmyQfc/8sr3OE3pYZtWSPMwc1Muuugi40vbIy0tjba2NuO9M1rH4McaX9YT3L9/P8eOHSMqKsoIun39MB8KRbGxRj0XVdM4Xd3NV3iJ32hX064Of5Fqs507d9Lc3MzOnTtZtmxZn5woIUaCLzeMvq5bmaA1MlWtoYNoqtT8Qa8dTjl+YyqAevHFFwd8Pjo6mqeeeoqnnnqq330mT57M228Hrpte+GbHjh20trayY8eOQQOoWK2FkhO9K3mv4Sy/72jMSeNWwZG5l0OKZI4Mqw9u8+/enJ8GvflQTqcziInlvRXL4yIjKeou5Sv6izytXRPwy7S3t3ttHQ4HPT09Pg2TCBEo5s9Eq88/X3t9F3y67t2eSZ/DXR8x4L4Q3HzTQBvTOVBidLIaX4+Pj0dRFOLjBx+KW6J/iKro/Eubi9Pmf8K+uR6PFXPOUziWGghHVvk95t99WloaUVFRXlXhU1NTsdlswU08VWxM/fobbNMKiVe6uJWXKC/bFNBLmBchNi+2LEQoWK3b6Fnl4+TVPsxUrYulyscAZJ/3NZ+uFU75pmOqB0qEh+F00SZq9ZyhfoJLV9moLBrS9c1fUlbMPSGSAxU65t+91bI66enpNDY29qnjFmhx8Ym8qZ6PTXNToh5Cf+ULVNoDV2zTfFdfUFCAw+GgoOA/a4ZJb6gYaR0dHTgcDq+hZF8WfJ+u7cNm0/lIm878ghLg74NeK5w+ayWAEiPO6g+kvr4eXde9hmXMeotmbgAFPkz5HO7m/muJDMSXfBlzF7bkQPkvUF/05t99VVUVHR0dVFVVGY8dP36c7u5uo+yIr/kZQ6LY+bt6EXbtDU5VD+N+6fNE6VfhVIc+kaE/Bw4coKmpiQMHDhhD25JYLsJBe3sby9UPAdhCCfP72U9VVTRNM0YEwumzVobwxIizGqYxz3qzkq4d41T1MJ16FFOu+OGQr2+udCuVnYMjWMOeRUVF5OTkUFRUZDym6zqaphk9N1a1vQJKsfOK+jkO2qYykRa+xMtEaoFP9K6trUXXda+VEMyJ5fL+FcHW3NxsWUdxIKVvPk2K0s4xfSINama/+wVzAkiwSQAlRtxQPvA1Vw8X8B4Af9fPIisnf8jXLygowG63G8MiVuP7YviCVfCxuLiY66+/3qvshcPhQNd1I9nalzy3YVMimPCVtyhXJzNJaeZG/o8IvXPw4/zQ35fLyYm7kp8ngs0qkB+Iy+Uib98zAKzTT0dXxmaoIUN4YsQNJQdq55u/Zq56nEY9gX3qzGFdPycnh66uLnJycoZ1HjGwkeyKj4iIQFEUr+V4RsLESVlot75J+a/PY6pawxf1V2io/mpQr2kuthlOOSMiPOzcudMoK1NcXOx3L9G2tS+ySK+mVY/liDrw+zLoM2iDSAIoMeL8nabq7ukmY+cvAPi7djbKALM+fGH+wjEXahSjm1Vu1cyZM3G5XMyc2RtcZ2Zm0tnZ6VWtPFjSMvN4WrmcG/WXyVPqqfz957Dpl+BWgvOFYH6/hlPOiAgP7733Hk1NTTQ2NlJcXNwnT2kgug6xH/0agLX6IjR14Jua1NRUamtrw2LpFrOx2a8mRjVPIcT9+/f7tP/Hbz1Npl5HvZ7EEdspfl3LamVvM1kaI7xYDVl1dnaiaRqdnb1DaIWFheTk5HhVKw/msJ6mRvEnPk+1nkKeVsUXtL+j6sEpPVBfX09FRYUx4UJyoESgmctnpKSkeG0HEq21UuT6hG7dxj51xqD7FxQUkJSU5DXTNFxIACVGXGVlJV1dXVRWVg6+s+42ep/e0M5CUfxb68wqgPIlZ0S+lEYvX3KrrGrJeHo8g1Wgz63G8CxfoIFkCtUqrtDeQNX7nxQxVKtXr+bQoUOsXr0akBwoEXjz588nJSWF+fN7584pimL8DGaBvh2AXSmfpVuJGXT/yspKWlpafPs+GGVkCE8EnXnIxZ/igNnaETLVOhpIotI2FX8npVuN3fuSMxJOywmMN54emISEhH7Xy7P6NzZX+YbAlztwqbE0f/4V1JcvZZZ6hB7tbbo6vkV0XOBmA3p62TzbpqYm6urqvNZyFGI4CgsLsdvtxt+PruvGz0BUrYtl6g4AJq24F14afFWP48eP43a7jRIk4UR6oETQme+QfSlkCYDu5vxPFwzeM+Vmv3ufACMx8eQERV+G7II1g0wM39atW6moqGDr1q3GY+Z/U/MwF/SudXnyFnyrpuyvgtnz+S1X0aLHUqwe4tDP/wtnV/DWstu3bx8Oh4N9+/YZj0kPqhgO82f2iRMnvLb9OVX7BJuisytmPtkzFvh0rfT0dGw2W9CL4AaDBFAi6MxJ474GUNnaEXKUBk6QRPHlK4d07aysLGw2m9+9SJIXNXolJSURERFBUlJSv/uUlZVRVVVFWVmZ8djixYtJSUlh8eLFxmO+5MgNhVNN5Df61bTr0cx27mDfzy9D0Qe5YRiirq4ury3IsJ4YHvMNpC/r3um6i/M+LZwZcebXfb7W8uXLWbZsGcuXLx9Gi0NDhvBE0A1pbaOTep92T7mZMxP6/7IcSGpqKk1NTQPO8JClMcLLkiVLyMzMHLB30FNk8+Rim8uWLeuzUHVcXBzd3d1GSYBActiSedp9NXfyPHM6P6RJc7JeXQYBroljdUMipQ3ESJvqPkiczcl+LYfCxf/l83HhPItUAigRdENZXTtbO0KO2kCDnjjk3ifwrUSB5DuFF18+cIuLi70KbfZnypQpdHV1MWXKlEA1z0uHLYU9S3/N7Pe/wtlqKd1aBJvUpUG51sn2799PWVkZLpdL3tNiQFY3kGvXrqWyspLy8nJuuOGGQc/R0tLM59R/A/AeCykMxhJKo5AM4Ymg279/P1VVVT6XLdBcLs5Tele5f0M7i0Q/ep/MeS6S7yQ8du7cyXPPPcfOnTuNx44ePUpXVxdHjx4N2nXnnnslOxf/DJeu8ll1K/PdH6IHedmKHTt20NjYyI4dvQm9khMlPMzvBauVGE6cOIHb7R4058lj52s/I0Vp46ieRo2aF4xmj0oSQImgq6mpwel0UlNT49P+n6z7M3lKHY16vN91n4qLi4mJifGp98FD8p3GB6u8KJfLha7rxorywcqJWnD+DfxG/zyarnCRbRMf/e6O3oqDQWKe6So5UcLD/F4wr60IGBX9fansr+kaMw6vAmCNfobfy7aEc3AvAZQIOr+W2dB14rb+EoB/aGf4PfPOZrMRFRXlNdNKCLBehDg5ORmbzUZycjIQvAAKoMGWw+/0ywBYUPMXZmhlgxwxdOYASnpZhYc5pcLhcNDT02OsIwnQ2NjotR1ItruCSTRRo6dQpeYPuG98fLzXFsI7uJcASgTdzJkzmTBhgrHMxkCStXpOcR2kU4/ioG3wKrZmHR0dOBwOr7spMf5Y3dVaLUKcmppKQkKCMckgNzcXRVHIzc019glkqYNaWz5/cPcm2F6lruUU955hn9NKZGSk19ZKON/5i6E7duwYJ06c4NixY0DfYBt8v5HQdJ3Pqe8DsFpfgj7IDa/V31I4B/eSRC6CznO348sX0GI+AmC1tgiG8IVlXmhVjE++TgwwTzJwuVyoqmoM6UHve6qlpSVg76kqewEb8u5g6ZGnuF79B6vcgf8YNheQfeutt6ipqWHPnj3ceuutQG/uy4EDB2htbZXh6zHKKkHcPGSXnp5OY2PjkOowZWqVZKmNnGAClergEzGsZoyG8yw86YESQefrHUa81sxCdS8uXaVMnT3oeT2Vl0+uwBwbG4uqqsTGxg6v0SKs+fqeM+e/WfXceIKpk4Oq4Vpy0494UfssADepb7D9tZ8H7NzQN4Cqr69H13WvwqINDQ20tbXR0NAQ0GuL0aO/4bGT6zlZTaSwWsHBTNN1LqS396lyxi1oyuA3Av6sQhEOJIASQbdt2zY2bdrEtm3bBtzvNL20d/+Ec9DUwddQ6unp8doCVFVV0dHRQVVV1dAbLMLeUCcGxMTEYLfbiYn5z/svKSkJRVEGLNzpL0VR2KueyivuZQCU7Lif0rd/F7Dz+/IF2NzcjNvtprm5OWDXFaOLVQkZcy+9eSKFryZpVeSp9TTq8cz+r7t8OsaX92U4kQBKBN3OnTtxOBxe08fNovQOzlJ6p1wnnXuPT+e16i2wShQWwlcjOQSsKApltrm84V6Cquic+uG3SHUHJh/J/EVldbPhdDq9tmLsMec7Qd9eeqsljgbT3d3DBfTWfXpHX0JkrG81/oqKioiJiRkzn8+SAyWCzpe7jlO1T7CpOpu02Zwxdwm8vnbQ81otYeFrAUUhrFgVXj1x4gS6rvtcE8cfiqKwzbaQtMR4Tm99l1v5K0+7r6bJFth1wWw2G2632+tLMhhDk2L0O3jwIC0tLRw8eJBly5YZs+9OnoU3mA9ff5oz1Vqa9TjK1Wk+H3fxxRdz8cUX+93m0Up6oETItdZXs1zZAsBGfFuAEqzvoGVmkQg0z536cO7YB6IoCvO+9hxb45YRqbi5TXmZJHf94Af6wWotM/NMK/nbGXtKSkqYN28eJSUlxmPmnnur3smBdDo6mfJJb87eP/SluJX+Z3qOdRJAiaAbbCHKfW89SbTSwydaPh3qBJ/PazXVNpxriojQs3r/nH322ZxyyimcffbZABQUFGC32ykoKAjYdSMiIpnz9Zf4tzaHaKWH25SXOPDRmoCd36oX2NwDtXbtWtavX8/atYP3/orwYJULGBMTQ0REhJHn529i99ZXfkYOddTrSRxUp/vVnrEWpEsAJULK1d3FlIqXAFjPIr8KGKampqIoitdCweFcU0SEnlXSbVpaGvn5+aSlpQG9i2O73W7/Fsf2QVRUNP9UP8MH2ixilW4y3/wicVpTQK9xMvONTU1NDW632+cVA8To11/A0t/N7GA03c2sg78B4G39LJ9m3p1srN3gSg6UCCiruiMD2bXmTxTTxHE9mXo106+IPjk5mcbGRqOKNIR3TRERem1tbbhcLq/gyFxTyqokQMAoKu+qn8WuuZiv7ufLvMxvtatxqIGbAehhs9nQNM0YioyIiKCrq8u3FQNEWLCq9eVwOHC5XH7lPHlMdR8gzdZMjZLOEdX/m1TPje1YucGVAEoElF/F+XSduNLeqdurtdNR7f53iA71TkoIK1Yf8ObH0tLSqKmpMXqkAk6x8ZZ6AXF2lZmuvXxZf5nfaVcF/DLm3BeroXZ/b4hEaJn/vazWuWtoaMDtdvtd/0vTXVyqrgfgxIJ70LfW+t2+sXaDK0N4IqD8Kc6XoDdS0LMfpx5Buc33mRweUnVcjARzHsm0adOYMGEC06b5/571mWIj47/fYrc2mRSljVt4mWMH+y8DEghWs7FKS0vZtm0bpaWlQb22CAzzEJnVOneeYMrf5a5muPeQpHRSaZvM7BW3BK7RYUwCKBFQ/iQkztV7F1PdnrQclMGHDVRV9dpazTARYjh8ydE4eRq4hy9rz/lrQkoqf1X/i31aLqlKK5HPXUrN4V0BO7+Zp0ft5J61Y8eO0dLS4lVHSIxe5hxQq8/joRSz1LUeLvl0zbvOpfeh2HwbvArm4tyjgQRQIqDS09OJjIwcdF2lSN3BUqX3jjpp2Z1DutZQq00L0R+rJHKzpKQk7Ha7V2Vyc3AfMEoEL6mXclDLJo1G1D/9F5F6Z2Cv8ammpiavLfT2KOu6bvQoWyUlj7WZVeHM/Jno6+fxYEq0UmIVJ7u0fGYsu8bn4zzXHe71RysJoERAtbS0oGkaLS0tA+5XoO0nQnHzif1UZs5d4tO5ByuHIMRwWSWRmy1ZsoSlS5eyZMl/3rcpKSkoikJKSgoQ2DtvXYngL+qlVCpZpOsNfFH/PyJ0/xOAB2NVV828+KvVkN5Ym1kVzszB7N69e3E4HOzdu3fI59y9cwufUzcCsE5ZCn68pz1/R4GesTpaSAAlAionJ4e4uDhycnL63UfV3Zz7aeHMzrlf9vlLxpPrJDlPIlh8KYNh1fOZnJxMVFSUMSPUvB0uXYnC/qU3qVIyyFEauF5/JShB1GA6OjpwOBxe+TPm35n0SIWOOcDt7Oz02vpL18Hx5n3YFY0N2hya1El+HR+Moe3RRGbhiYCqrKykpaWFysrKfvfJ1CpJUduo1idS8tnrfD73vHnzKCsrGzPrKInRZ6izhOLi4oiOjjaC+5iYGJqbm70WJR5223JP4diNb1D17AXkKXVcp71KY+3tATu/L6wmbph/Z+ayD2LkWAW4wxHvrmce2+jWbWxST/f7+LPPPntMf2ZLD5QIqGPHjuF2u/tPOtV1zuQjANZoi/y6M+ns7ETTtCHfTQkRLNnZ2UycOJHs7Gygd+hOVdWAJ89m5xeyiiup1icyWT1Ox28vIELvGvzAITIvW+PLxA0pZhs6gZyZ7NZ1Lld6q+G/rS/BocQP+5xjjQRQIqAGm4V3eOf7TFeP4tQjOGw7ZSSbJkRAWA1RmXOnApW8a8WtxvAMX6BaTyFXO8bV2qvYgxREeXrQ/OlJk8kdI8PqfWgOcIeTi5frLmeqWksTiXyizhlSG8vKyqiqqqKsrKzfNoczCaDEiGp8/2kA1utzUXwoXXAy812+EKFglTRtnr13/Phxuru7OX78uLFPIBPLe4Ooq6hlIlPVWq7WXgtKEOWZDOLZbty4kQ0bNrBx40Zjn7H2pThamX/PVu9Dc/A61Ik3uu7iSrV3TcSjJSt9WjDYKt+pqKiInJwcYwhvrE04kABKjBib3s2sE71/lKWc6vfxvsyQEiLYrIaojh07xokTJ4yha13X0TTN64sr0LNI3WoMzute47iezClqNVdrr9FcVxWQc/enpqYGp9PptV6eFNscGebgw+p9uGrVKh566CFWrVo1rGvNce8kWenggJZN0cW+lZlZvHgxKSkpLF682HjMvI7kWBvelSRyMWJytQpi1G4OaNk41CT8vQ8fa+soifDkS6K5VQ5UVFQUTqeTqKgooDevyO12G/lFQzF52hx+xNXcor/EKWo1lU+fj/6Vfwz5fIMxL/8CUmxzpJg//6zeh0eOHPHaDsUnOzbxX+q/AXhHWcbXbL6NFEyYMMH48TBPKBhrS7lIACVGhq6zlO0AvKfPH3QYIzIyku7ubq/u4LH2xyfGjpKSEhITE40vt4KCAhwOBwUFBcY+SUlJ1NfXGwU4h1IR2opLjeUP2lXcor9EnnaUyt+cj13/L1xK9LDOa8Wz0PDJCw63tLSg67oxzLdz505j5lVxcXG/jwn/jMTnX3ePC+XNuz8tW1BEo833HL7169fT3NzMiRMnjH/jsX7TK0N4YkQk6I2colbTqUdRZcsfdP9TTz2VmJgYTj3V/6E+IUaaOffEasZoXFwcqqoaM6QCOaTnUmP5A1dxnInkaVVco70alNl5VuvlJSUloSiKERhu2rSJ8vJyNm3aZOxjTiYeqvGcb+XLa/f8G5xcJd8fG19+nNnuvXTo0WxQz/Dr2K6uLq8tjP0JBRJAiRFRpO8G4OPkc1GUwYcsbDYbUVFRwxreECJUrBbVjomJwW63B7Q21MlcaiyO616nllSmqrVcqwW+2KbVl2R2djZJSUnG5A6rwNCcTLxz506ee+45du70b4HksZaE7A/za+9vNujJW3/oWg+n7f8ZAH/TP4NT8a8Ugrka/3ggAVQ/nnrqKfLz84mOjmbRokVs2bIl1E0alXz5ILTpTs5SSgGIX3KrT+ft6Oigq6srYAXhhBhJHR0daJrm9f5tbm6mu7ub5ubmoF03f9qpOK9/nWp9Ivnqcb6o/x91Rw8E7XoAra2ttLe309raCvQudTN16lSvpW6Ki4u5/vrrjaEdX3qkrAKEsZaE7A/za7eaETnUYWFdh8XahyQpHRyOKKBcLfS7feZAejyQAMrCSy+9xMqVK3nggQfYvn07xcXFrFixgrq6ulA3bdTx5YMwT6sgSulhj5bH7PnLfDqvubKzEOEkNTWVyMhIUlNTjcfMuULBMrlgNs9wFZV6GrlKPdozFxCpBa/47IEDB3C5XBw40H+gZg6GzD1SVvuM594mK+bhsKNHj+J0Ojl69Oiwzx3rbmSFbQuarhBxyZPoiv+hgS9FVscaCaAsPP7449x6663cfPPNzJo1i6effprY2FieeeaZUDdt1ElKSkJV1X7H3HVN40y2AfBv5qH4uFr9ePxjFGOH1YLD5lyhQNaFMnOr0fyRKzmsZZCh13MzLxGltQf8OtC312Pt2rUcOnSItWvXGvuYgyHz9Harfax6m8ZzUGUOMIe7zp2HW9e5Sumduflx1pXknLp0SOepr6+noqKC+vr6YbUnnEgAZdLd3c22bdtYvny58ZiqqixfvpzNmzdbHuN0OmltbfX6GS+qqqro6uqiqsq6/szBj1YzRa2lXY+mWs3z+bxjPflQjD/JyclERkYaCwzb7XavbaBpajR/Vq6gQs0lQ2niy7xIjBb8zybPsOXJw5fmQqMbN240fjzMAZPVZ8B4GcKzGr5cu3Yt69evNwJTt9vttR2qGe5PmKwe57iezMzrfurzcRkZGV7bQE0UCCcSQJk0NDTgdrv7LMGQnp5ObW2t5TEPP/wwSUlJxk9ubu5INHVUOHHiBLquc+LECcvn2zY/C8B6/TSfkseFGAv66yk5ubdp6tSp2O32oAYDuhpF3G3vsFfLJVVp5TZeoLz0/aBdD6yTyM2FRisrK+nq6hpw0XEr5qBqrM7Ks3r/1NXV4Xa7A5pKsn3zOr6grgPgNf2zRMVPGOSI//D0NHm2VsOyY53UgQqA73znO6xcudL4/9bW1nETRA10F+Roa2ZG479AgV3MHOmmCREyVvVvzHl9LpcLm82Gy+UKalvSMnL4tXopl2lvUaSWY3/tC+zvXhW066mqiqZpqCcN15tnJVoFWeaii77w5Zjq6mrKy8uZOnXqsHq0A3UeX1i9f2JiYujo6AjYLE63rpHy7tewKxrrtbnU2vz7zjJ/9hcXF4+7Gl8SQJmkpqZis9m81rCC3rWtPF2VZlFRUUZ1YfEfe9f9ibmKk3ItA4ea6HflcSHClVXRQ3OxTc+d+kjcsetKBK+oF+PU/sF8dT95b13PBP0LNPlRKNFXVjPB2tvb0TSN9vbePKz58+cbhTU9zEGDLwGLL4UahxKYBfM8vrB6/wRqyM5jjnsn+bZj1OtJbPKz5hNYB8rjjQRQJpGRkcybN49169Zx6aWXAr0fBOvWrePOO31bE0j0itn9IgD/1k8LSqKsEOHE/KVodcduXu4lkBTFxpvqBdiik5nbtYWv8iJ/cF9BnS0n4NcyM1cwLywsHHT4srS0lAMHDtDa2tpvwOJLde5AVcMe6nnMgaAvgeH69euNAHPZsmUARm5tIHJso9xNXK6uB+Cv+gX0qP6/3yZPnkxlZSV5eb7nto414zd0HMDKlSv53e9+xx//+Ef27NnD7bffTkdHBzfffHOomxY2orV2ZnTvwq0rHFGnDLr/cCvoCjEWeArHBquArKLYmHnX62yNO5tIxc1XlL+S6z4UlGudrL6+Hl3XjXwZqxwf82NWxUhDmfM01Ikt5tdl9drN9fQ++OADGhsb+eCDD4x9AtUD5dbdXM8bqIrOzkmXUG8bWm9aXl4eSUlJEkAJb1dddRWPPvoo999/PyUlJZSWlvLOO+/0SSwX/TtF7+3qLouej+7D3U2gu6eFCEfm0gZWa88NV3R0DCV3vcKb2hmois6X1L/z0Z/+p7eaYpCYFyF2uVy0tbV55X81NTVRV1dHU1MT0HfYD4ZWxiDUpQ/Mr9VqJuHWrVupqKhg69atQO/M7pO3gaLrOvPdH5GjNlCtT2TGjU8O+VxVVVV0dHT0OwN7PJAAqh933nknR44cwel08uGHH7Jo0aJQNynkfF5+QddYquwAwFl0jU/n9ny4BDuhVojRbP78+aSkpDB//nygt/SBoihG6YNAiYiI4CN1ES+5e8u1zC9/ihJtW1CDqJNZ9bAcPHgQh8Nh5Bk5HA50Xfdad89cDsGXz6RQlz7YuXMnjY2NRhuterJ0XUfTtICsiziQ919/lv+y9ZaO+D8uICrO91l3ZuNx1p2Z5EAJn3nqfAADzraYoNWRoTbRrMcz5zPX8M62RwY9d2ZmJpWVlWRmZgasvUKEm2XLlhk5LwC5ubm0t7cHZVavoijssc3hGXcMX7K9wSXq+8RpnWxSlwx+8DBZ9bBERkZ6ba3qSe3fv5+qqiqioqIoLi5m69at1NbW0tXVNWpngJnXD7TKgWpra0PXdWMNu+joaLq6uoiOjg5YO/bv/Zi5278LCvxdO4sm26RhnW88zrozkx4o4TNf7ziK2AvA7tTziImN9ency5cvZ9myZV4FTIUYb8w5PsePH6e7u7vPrOBAURQ4ap/G5uIf06PbWK5+xPnau3S2NQblegMxB1We2V0nz/I6dOgQTqeTQ4d687aSkpKIiIjwyp0090oFaghvqPlXngkBnm1paSnbtm2jtLTU2Mf82gOd0uDWNbSXbyZR6eQTbQo71bl+HS85qtYkgBIBZdO7OUPprUQ74YybfD5OKo8L0ffLfqSGdhZfdge/1K+hQ49iobqX2ifPpbH2SFCvaWYOIqzyv8z7pKWlERsb67UkjDmfKFBDeFaBjy/M+V8dHR04HA6vnjVzVXrzMcOh61DsLmWGdpAW4nlTPQ/dz6LGhYWFJCcnU1jo/yLDY5kEUMJn7733HocOHeK9997rd58srZIopYf9Wg4z5p7p87nHakVhIfxhzvFRFAVVVb3KgFj1zARCq20Sv9Cvp0FPZKqrnO7fnEuM1hbQawzEHDRYzUg0B1VWicxWvVKBYBX4mFnlZPmSxxbMSTRJ7uNcYVsPQP3yJ3Eq/i/Q7na7cTqdXu2Tz2wJoIQffFm8ciEfA7BRL/F54WAI/UwZIUYD85In6enpREZGes0ADlYABeC0JfE011KpZJGh1/MVnidRaxj8wAAwVye3yoGKj4/32lqlFbjdblwul/Flv3HjRjZs2OC17p6ZVTBgDobi4uKIiYkxKslb2bhxI+Xl5V7Xys7OJikpiezsbACam5vp7u6mubnZ2CeQPU5etC6+rL7a+3rybqRg6eeHdBpzgj/IZzZIErnww8SJE6mpqWHixImWz9ccKuNUtQKXrnLUlu/XuQNV7E6IsaSlpQVN02hpaTEes1oGJZDcaiyxX13Hnt9dxkzXXu7Qn2eV+5KgXMtf5irnVonMlZWVuFwuY5296upqnE6nV3BkTuS2KtppnjSTnZ1NY2OjEQhB34KXLpcLXde9ZhPHxsaiqiqxn+aDNjQ0oOu6V32rYGg4cYKr9ddJUB2UaVOZc8OjQz5XfHw8bW1tRuAK8pkN0gMl/NDd3Y2u63R3d1s+X/X+HwHYqs9EVyL9OrfkQAnR98vWqofFXCsqGMU3U9OzyLtrLf90n0ak4uY29VW2/uGuEStz0B9zNe7169fzi1/8gvXr1xv7zJw5k5iYGGbO7F1/0/N5dfLnlrn3xGp4LikpCVVVjaFATy0nz0w56A2ympqaKCvrzfu0+rfYvn07jY2NbN++HbAu2WK1/M1wuHWd8t9ey3S1igY9kbfVz6LY/ftMPpm5Fw3kMxukB0r4wXMXfPLdsIeu62QdfROAHcwa8Dx2ux2Xy2UkTAoheplzeqx6WBISEmhqajLypFRVxe12B3xILy4+gfdtZ1OnpXC1upYFR5+lUyvhPfUsdCU0f7vm3rcNGzbgdrvZsGGDUf4hLy+PlpYWo0K2OeCEvrlmVsNzR48epauri6NHjwLWxT/N/xae4OrkIMv8WKCDJTNdh1nuj1no/ACnHsFzXErXEPKeTmZex1H0kh4o4TNznZaTxetNZGs1dOpR1Kvj945EiOEw9zhZ5eZMmTKFmJgYpkzpXSIpaPkz9AYd+2xz+LX2ebp1G2erpXxe+zsRumPwg0eAVfL1unXrOHToEOvWrQNg+vTpxMTEMH36dGOf/fv3c+zYMfbv3w/0Bgjz5s2jpKTE2Kerqwtd1436TQcPHqSlpcUrD6i6uhpd141/n9FQEDjVXcXVtt7X/mf9YlrU1GGfs76+noqKCmMpHtFLugCEzwb6oC7UD4ECm7RTwT7wUEKw78CECFfmHifPUBNgDJWYa0NFRETQ09MT0OVezOpseexd/jy5q7/MLPUIk/TnObhtOQXzRl/dNnOPjzkQAjh8+DBdXV0cPny43/OYSwtYlZQwB0yhXpIq0t3CbeorAHx8ylc4Vj68nicPX4sojzfSAyX6Zb77tcolAEDXOEPpnanyiTJj0POmpKR4bYUQ1qxqGCUlJWG3243cnKKiImJiYoK+pMacJRfwFNezX8shVWkl7/UvsP1vTwT1moFQXV1NV1eXVy+euZ6UVY2n5ORkbDabUX7g+PHj6LoetKKmw7W7bBtfUV4mUnHzb62YOdf9JGDnzsnJIS4ujpycnICdcyyQHijRL6uZKVYmaPWkqq00kkCzmobS7569Jk2aRFtbG5MmDW8pASHGuqysrD5/e0uWLCEzM9MIqrq6utA0zauHxWaz4Xa7A5pYDr0z9F7Qr+As7X3OUXdw2s4fUOM+g222BX4XZxwpVr1C5lyqhoYG2travGbGVVVV4Xa7jZ6XUPcuDeTggT1MeOVKUpQ29mh5vKeexZnDyIkzv388+WKSt+pNfhti2GbSm0ewL2U5StPgf7S+1FMRQlgzB1U1NTU4nU5qamqMx4I6TK7YeE9dRkTe6Zxx5Gkusm0iV6vlTXVF4K8VAFZ5SeYAqrq6Grfb7dVL5UtumaIo6LrulaA+0jTNRcTzl5PJCQ7rGfxN/RxuZXjDuXa7HbfbbQRMUrLAmgRQol++zLxQdReLP126JX7BtbB6c0DOK4Twjd1uR1EUr96B2NhYOjo6jHIIgaYoCku/9BO2rSlm2oaVzFHLydX/zJ73FwblesPhcDi8tlasFjc2i4yMpLu722sSTajzOd26m2v1vzFZqea4MomXuJQeZfgLENvtdpxOp/GesuoJFZIDJQbgS52PNK2GeKWLo1oasxf6llAq9UOEGDpzbuKSJUuYOnUqS5YsMfYZqS/2eZ+9hp9zA3u0PCYo7Uxf9yVmuneCPvYmiPSbAxoibl3jcu0tZqhHaVSSsd/8d5xKYAJmq5mLoi8JoES/fFnraA57ANhIMapN3k5CBJu5CGRxcTHXX3+91+yovLw87Ha7UQspmNxqLC+rl/OmewmqovMFdR0Xaf/APkpKHYxFDSdOcLH2D0rUg7TosfRc8woT8wauv+cPm81GVFRUwHPoxhq/v/FuvPFG3n///WC0RYwyg6111NZYywKlN4A6pJzS73kGqh8lhPCP1cw8s8TEROLj40lMTByZRikq2+yL+KDkJ3TqUcxX9/Hf+p8pW/eXkbl+EARzzcHhcGtu6p9awQJ1H+16NM/yedIL5w/5fOb1BYXv/M6BamlpYfny5UyePJmbb76ZG2+80au8uxg7Bksc3Pev55mvuNmj5dGj9p8QPmXKFA4dOmQU/jOvQyWE8J05H2U0/T2dfunt/HhHOZdr/2CGepQJ/76dj/a8i6Lnhax6+VCFOr/Jiqb1cL3+KoXaMZr1OJ7lSlrV4ZWDsUqWlzxV3/gdWr/22mscO3aM22+/nZdeeon8/HwuuOAC/u///i8olXDF6BWz/3UAtuinMtAklKamJtxuN01NTYCs4i1EIFnVMLKqrD1SetR4XlQv5//c5wAwv+E1vqi9TKzWPOJtGUt0rZub9ZcpVI/RoEzgD8pVww6ewLcEemFtSH2TaWlprFy5kp07d/Lhhx9SUFDAF7/4RbKysrj77rs5cOBAoNspQmDt2rWsX7+etWvX9nmupf4YM7p6i2ceVScPeJ7Ozk50XaezsxPwbQhCCOEbq4VwzRM1grHg8EAUxcYu+1xKz1lFHSlMUWu5m1XMcu+ku0tyo/xVuuV9vsJfyFePU6Wnot7yLu1KctCuJze5vhnW4G5NTQ1r1qxhzZo12Gw2LrzwQsrKypg1axZPPDH6K9SKgdXU1OB2u73qy3gcfO8FbIrOJ1o+bjVmwPOYu8JlFp4QgWNVV23nzp0899xz7NzZe5PjKWcQrLIG/Sk5+zJsd2zin+7TsCsaV6rrqPnpAuK0phFtR7jSdfjXq7+h8K3Pk6k0Uq5n8pzyeVJyAjc7LisrC0VRvD6P5SbXN34PSvf09PD666/z7LPPsnr1aubMmcNdd93FtddeayQs/u1vf+NLX/oSd999d8AbLEbOQDkAMQfeAGCbPnvQ84yGBTaFGKus8lXMa5dFR0fT3t5OdPTwawT5a2JaJu/blvGJu5Br1beZrB3lblbxd/fZfKLOGfH2hAtNhwL3Ls75+HFQYIs2gzXqubiUqIBeZ+HChZSVlXktBSR1n3zjdwCVmZmJpmlcc801bNmyxXKM/ZxzzjHWDxLhq7+6J3a9i+ldO0GBSnXwadJRUVF0d3cTFRXYP3whhLWcnByampqMtcuWLFnS50tyJCkKNNmz+LV+IysS9rCwbS2XK+tZrH/MztXTKP7sF0PSrtHKrWuco63nHFspAB/nXs87R1PRlcDPCGxra8PlchmLLwvf+R1APfHEE1x55ZUD3skkJycPuMq1CG+ZWhU2VWefbRqaNvDwHUBCQgLt7e0kJCSMQOuEGF88+SqA0WtgXrusuLjYq04UQEREBD09PUREDG/ZD39oSgQL73mFJ+//bz6vvEO2coLMTV+jbMefiNLm4lRlKv1Hm9byJe0F8tXjdOt2Di36X+ZceDt/e/DBoFzP8z6Rz2f/+R1AffGLcqcw3hWzF4CGyReCD3GyoiioqhrS9aKEGKusyo34snbZGWecEbJeqWZbOr/Xr2e6tovLlfUUObZSyA7ecJ/FbnXwtICxSNN1prr3UvLuz7CrGsf1CbzAxdx14e0BvY45cJYeqKELr8IcIuTsehclSu8sy7yl18LhlwY9ZsGCBSEdPhBiLLPKV/GlVtSECROMn5BQbOyzzaHmmvtpeeVu5ji38XnlnzTpW9jylyjQ3aCMj0rYitbFZfq7lNgOAfCeVsJG9YyArGtnNnXqVA4dOtQnyJaEcf9JACX8kmUM3xUyfeoMn45JS0sjPz+ftLS0ILdOCGHFapjPnGgeExODw+EgJmbwYflAmlxYjP7ttTz5gzu4mH8xVa1h4f5HydJTeUNbxnE1Z0TbM5La2tvZ8sKPuIc/EKc6adNjqDrjh6zffIwBi+sNQ3d3N7quG7mtkjA+dBJACb8Uf7r2XcPkC/F1Im1paSkHDhygtbVV/lCFCAGrXgZPj7Bnm5GRQWVlJRkZGSPePkVVabZl8Gf9arK0Ci5V15OjNHC78n9UaOls/VsqJRfdNuLtChZdhzh3A42PzudcakCBUq2Ad9Vz+faKW+GD4OQ7wcDlaYR/JIASPusdvuu9i81beq3lPjabDbfbLYtQCjGKWPUymHuGU1NTaWpqIjU1NRRN7KUoVNumELvySZ7/6W1cpP6bfPU4+Tu/R+3OJ8nVFnNUzYcwWxbGi9vBuWzkTNvHADQqybzmXsZRdUrQep1OFhERQVdX14hOHhirwvhdKEZalnYUVdUp06ZQNNW6/ykhIYHm5mavGR3Z2dk0NjbKmolCjCLmnuHRtP5ZXEISB+2zeFIvZIr7IBfaNpFBPV9SX6dZj+Nf2nyOHvg41M30ma6DXWvng59cxPeVjaiKTo9uY1fetcy6+n85+uiTI9aW3NxcDh06RG5u7ohdc6ySAEr4rOTT2Xfb9Fn0lw7uWa7FswU4duwYJ06c4NixY32mUgshQsO8BMz+/fspKyvD5XIZvVWqqqJpGqoa+PpDPlHsHLbPIP6bv+PDN35J9u7fkaM0cJnyHjx/JhdoM9hCCSfU9NC0bxAul5sodzNn8iFL1F3QBSiwUStis7qIe295bMTbtGTJEjIzM0dFoBzuJIASPmmuO0bxp8N3VQOsfecpVSAlC4QY3cxLwJSVldHU1ERZWRnLli0DICUlhYaGBlJShr9o7XBEx8az6Kr7+MEPHEzQ6pnPThYru1io7mUhe2nTY9j6xB7sRVeArkEQCk76Q9e6Wf+7bzHl2Ovcp/bmGrl1hV0pn2VNYw7ttuSQtc2XGZrCNxJACWDwP6KDG/7KfEVnt5aH29b/1NrZs2ezZ88eZs6caTw2moYGhBC9zH+XRUVFfcqNREZGoigKkZGRQOh7pBRFpdmWzlrOY8oNf2DTs99hibKDTKWJBS2rYcNqpuhxfKTN5BCTOVaxf0Tapek6e3ftINNVTrGyjwXKXtRjOgCdeiTv66fxsVrEt77xaNAKYlrxpViq1QxN4RsJoAQAa9eupbKykvLycm644YY+z0ceeBuAHfqsAc8zYcIEJk2a5FVbRqbJChFaVjdI5r/LZcuWGT1PHo2Njei6TmNjI9Cb49jS0jIqqlZnTZnBLlsJu/Ri4rQmzkxv55T6taQqzSxXPmI5H8GqV7hRS+cT/RRqlHR2fbiWnBnzh33tto5OKg+UkeI+Rj5HmavsJ+evTzDjpLkz+6KL6Sm6hr9vPYZLHZmEbXOAm5OTQ2VlpbGkjxWpAzV0EkAJAI4cOYKmaRw5cqTPc4ruYkbnNlDgyCBr38myAEKMPkPtZYiJiaGrq8uoDeV2u722o4Ki0GFLYdEdT+J2uXj8oZXkcIwZlDNLqeidxcfx3n3/8Te0txVu1CdRQypNJLDht3eT5W7CoUejobB19Qsoqp04dwOReg9RipP3n/kfZrt2k0wreUotUT99ktmKm9kndcT16DY+0aeyj6kcUfP59n0/BeCVj0aux8m8AHxxcTGqqg5YxFhucIdOAigB9P3DO1maVkuk6qJCS6dbjWOg7CZJGBdi9LHqZfAl9+Xss8/2GtbTdd1rO9rY7HbabBPZw0T2MIepd32NZx/7HzKpJYfjFKg1pCpN5CsnBVXVH7D05BHJTX8BYP7Jj1UCpsosHURzWMugnFyOks1XvvMIr//0iWC+PL/JMi3BJQGUAHoTSjs6OoyE0pNNp/fO9SN9liSHCxGGrHoZzL1SVgGVeRHi6OhoOjo6BlxMfjSJT0qh0ZZJI5nsAk5/4AFa64/x7C9+RBydxOkdTMuIp+v4QRLoQEUjJsqOqrvRurtwEE0bscSk5nGkoZ124mgmmS/+97dISp/CKw89ZFzLHpMYuhf6KfMQngzPBZcEUOOU+cPS4XAAGFsPRXezUNkNQLmSP+h5JWFciPBg/nL1ZZivpaXFaxuOEtOyabal0/zp/19zxwM8eFJi9wPffQDA+7GvP8DrJ/1/Usbo/HzLyMigpqYmJNXkxyMJoMYp84dlf0N4yVo98WoX9UygU00ecPjOcy4ZTxdi9DP/rfoyzJednU1lZaUUxR2lkpOTaWxsJDk5GZAZdsEmAdQ45WvXboF+GICDKWehNA0+fCc1RYQIT74M8xUUFAAYW+idONLW1mZMHImOjqarqytshvnClaIo6LreJ63i5Pw0GcILLgmgximfeop0jYXqLgBiii6B9z8Z9LxyxyNEeLK6+TF/AVvNsjUvDeLJvwlZ9fJxwm6309PTg93+n6/x5uZmuru7aW5uBmREINgkgBL9StCbSVVaadVjmbH4Qv5uEUDZ7XZcLpfxRyx3PEKEJ6ubH/MXsNUsW/PSIFb5lP31loihs5oR2d7ejq7rtLe3AzIiEGwSQI1TvvxhTdEPgwIf6rP4bHSM5T4ul8trK3c8QoSnQN38WAVL8fHxtLW1ER8fP6xzi/+w6ukrKChgz549xhCrecFoEVhjqo81Pz8fRVG8fn7yk5947fPxxx9z5plnEh0dTW5uLj/96U/7nOevf/0rM2bMIDo6mqKiIt5+++2RegkjprS0lG3btlFaWmq9g64z/9PZd3v1U0auYUKIkMjKymLp0qUDftGWlJQwb948SkpKjMc8PVfl5eWA9XqYqamp2Gw2UlNTg9P4ccBms3ltU1NTURTF63dqs9mIiooy9hHBNeZ6oB566CFuvfVW4/9PHqtvbW3lvPPOY/ny5Tz99NOUlZXxpS99ieTkZG677TYANm3axDXXXMPDDz/M5z73Of7yl79w6aWXsn37dk499dQRfz2hUrl3K3lKPU49gkZb/1Nik5KSaGlpISkpaQRbJ4QIBaseZnPPVVRUFJ2dnURFRY14+8Yy8+81OTmZEydOGDPurEhZmeAacwFUQkJCvzUwnn/+ebq7u3nmmWeIjIxk9uzZlJaW8vjjjxsB1JNPPsn555/PN7/5TQB++MMfsmbNGn75y1/y9NNPj9jrCLbB/rBqPnyVPGCrPgPU/u9mCgsLOXDgANOmTQtSS4UQo5k5qIqMjKSzs9NYgBigo6MDTdPo6OgIRRPHBPMyOg6HA5fL5ZVrZv5cl5SK4BpTQ3gAP/nJT5g4cSJz587lkUceMXJzADZv3sxZZ53l9Ye9YsUK9u3bR1NTk7HP8uXLvc65YsUKNm/e3O81nU4nra2tXj/hbkLVPwHYQ8EgewohxrPq6mo2bNhAdXU10LuguM1m81pQPC4uDlVVLVc6EL5xOp1e2+7ubq8t+DYMKwJnTPVAff3rX+e0004jJSWFTZs28Z3vfIeamhoef/xxAGpra5kyZYrXMenp6cZzEyZMoLa21njs5H1qa2v7ve7DDz/sVbU2HGzcuJFDhw5RU1PDlVde6fVcU10Vha59ANQqmQOeR7qIhRjfzLP3YmJisNvtxgLE0LsocUREhPFYTEwMDofDax/zMiRiYAsWLPBap1CMvFH/Tr3vvvv6JIabf/bu3QvAypUrWbZsGXPmzOGrX/0qjz32GL/4xS+MiD1YvvOd79DS0mL8HD16NKjXC4SKigqcTicVFRV9nju08VUAdmuT0dSBi+HV19dTUVFBfX19MJophBjlpk6dSkFBgXETFRcXR0xMjFdvU1xcHNHR0cZjVisfREREeG3HM6sZdtOnT8dutzN9+nQA0tLSyM/PJy0tLSRtFGHQA3XPPfdw0003DbhPf70fixYtwuVyUVFRwfTp08nIyOD48eNe+3j+35M31d8+A60tFBUVFXYJk/2tfQdgP7gagFJ9+qDn2bp1K7W1tXR1dXktOiqEGB/MeTZWvdLmxyIjI3E6nV7pFOYhqvHEXPohJSWFhoYGUlJSjH3OOusscnJy/Fq7UOpABdeoD6DS0tKGHGGXlpaiqiqTJk0CYPHixXz3u9+lp6fHuMtZs2YN06dPN8brFy9ezLp167jrrruM86xZs4bFixcP74WECUV3U9i+BRQ4quYNun9SUhInTpyQWXhCCMA6cdn8mLl6OfQtyjuexMXF0d7ebvTQtbW1eW2hb8DkS90uWRkiuMbMO3Xz5s18+OGHnHPOOSQkJLB582buvvturr/+eiM4uvbaa3nwwQe55ZZb+Pa3v80nn3zCk08+yRNPPGGc5xvf+AZnn302jz32GBdddBEvvvgiH330Eb/97W9D9dJGVJLWQKzqpI4UHErCoIsHm6sQCyHGN196PQoLC3E6nRQWFhqPmStrj6fq5ebeN6seOnPA5MsMO1kZIrjGTAAVFRXFiy++yA9+8AOcTidTpkzh7rvvZuXKlcY+SUlJrF69mjvuuIN58+aRmprK/fffb5QwADjjjDP4y1/+wve+9z3+53/+h2nTpvHaa6+NuRpQVssAAEzRjwBQPmEJSvPgH1wyTVYIcTJfej3a2tpwuVxePSyxsbG0tbURGxsLQF5eHpWVleTl/acnPCIiwmsEIRxZBYY9PT1e24SEBNrb273qGA6FfD4H15gJoE477TQ++OCDQfebM2cO//73vwfc58orr+wzM2080HWdeeoeACJmXgibD4S4RUKIcGO14LCZVc/Iueee6zWrrKqqCl3XqaqqMvax2Wz09PSEdaXtwsJCDh06xCmn/GeFB3NQpSgKqqp6BVkDzZwWoTHqZ+GJkROjt5GtnKBLj2DGGZ8LdXOEEGHIqndp586dPPfcc+zcuROwrldknlVmtSRMdHS01zYc1dfX43a7vWYue9YI9GwLCgpISkoy1rQDaGlpweVy0dLSMrINFv2SAEoYcrTeO729MacRF58Y4tYIIcKRuawBQFlZGVVVVZSVlfV7nHlNvUmTJqEoijEJyHPumJgY49xW0/1Hu8jISHRd98pvMq8V6OnBOzmhfsGCBeTn57NgwYIRb7OwNmaG8MTwnar0Dtl1TV1u+bwUuhNCDMYq78YzLDdQ0UfzsJ7VWm/Hjx+nu7vbKDUzbdq0PsNhZjabDbfbPSLDflafkeaioZ4epJN7ksyFRq2GQYuLi6VUzCgjAZQAwK47KVJ67/wmn3655T4ZGRnU1NQMWBNLCCHMfPnyNwdeVgU5k5KSaGhoMMqmNDY24na7aWxs7Pe8VosbByuoshp2NBcNnTlzJnv27GHmzJlex548ocdqGFRqOo0+EkAJAFK1WlRVZ6+Wy4w86/XvfFn9WwghAiE7O5vGxkays7ONx9LS0qitrTXypDo6OtB1fcBFiq3WjIuMjMThcBjDaL6UTLCaAWh+zLzgL/QtUZCXl0dLS4vX7EJPGzyskuylptPoIwGUAGA6hwAoZQYz+tnHavVvIYQIBqtemKqqKjo6OoyZeVY9PubeJZvNhsvl8uptMgc1MTExdHZ2eq3NZxYVFUVPT49XT1ZOTg6VlZXk5OQAvYFZd3e3V36TuUCoJx8M8OqVO7kHymoYVGo6jT4SQAlc3U7mKb2LB1eS2+9+VndyQggRCOYhKquAwZxLNX/+/D4L6k6fPt0rL2r27Nl9hsyioqJwOBxGMBQXF4fD4fAaLoyKisLpdBr7WK3fZ144efHixX3aM2fOHK/rW+WDWQ1XmklNp9FHAijBwe3/ZIbioFFPoFPtf0kWWf1bCBEs5iEqq4DBnEs1YcIE48fDPMxns9mIiory6oEyFxLOzc2lvb3da2mZ6OhonE6nUTLBangOvHu/CgsLsdvtXkGf+fpW+WBW6weK0U8CKEHLx/8AYJs+HUXtPwdAZoEIIYJlKENUVsNhu3fvpqmpid27d7Ns2TI6OjpwOBxeeVLm8gctLS1omuY1M669vd1raw6oPE4eeistLeXAgQO0trYawV9HRwddXV0D5mlJ71J4kgBqHBhs9kbq8d7K7AeZMqzzCCHEUA0liLAaDnO5XOi6jsvlAqyHx+Lj43E4HEbhyqSkJKqrq70WRTcvLWPOm4K+eaENDQ20tbXR0NBg7BMXF0d0dPSAw3MiPEkANQ6sXbuWyspKysvLueGGG7yes+tdnOIuR9MVGtT0Ac8js0CEEKOJVa94TEwMzc3NRl6S1fBYTk4ObW1tRvK3ub4U9F1aJiYmhq6uLq9Ec3NeaEdHB5qmefU2yfDc2CUB1DhQV1eH2+2mrq6uz3NpWi2osEfPQ1MjLY7+D1/WuBJCiFCyWkfOzBwwmetLWTn77LP75IAWFBTgcDiMJVdSU1NpaWkxKoqDDM+NZRJAjQOTJk2isrLSa0kEjwIqACijsM9z5honVtOKhRBiNDFPdrHqOTcHTNHR0aiq6pXftHXrVmpra+nq6jJ6usy9XZ2dnWiaRmdnJwBLliwhMzNTepvGCQmgxoHly5cbuUtedI3TPi1fUEVOn+MiIyPp6ekxappIHRIhxGhnDnSsPrfMgU5FRQVdXV1UVFQY+5iDrJ07dxqBWX+TaaS3aXyRAGocqK+vp6KigoSEBK8/7ni9hWSlgxbi6LAoX+BJjPRs5cNBCDEWmD/LioqK+gzPmYMsqxl/kt80vkkANQ6sW7eOtrY26urqvO6ccvSjoMCB+AXQ0XeB4JiYGDo6OgasziuEEKOZVWkBM6t6UlZB1slbq33E+CIB1DjgyVky5y6dSm9egDb1M1DW3Oe4yMhIOjo6vJYlEEKIsaa/5VVOZpUDJaVdxre+3Q5izLFcL0p3MlM5AsDkRZdYHuepo+LZCiFEuMnOzmbixIleixKbFRUVkZOT49W7VF1dzYYNG6iuru73uI0bNxo/YvyRHqhxwLxsAUCqdhxV1dmn5TI9O9/yuJMX4xRCiHDky+xhq94lX+retbS00NPT41XBXIwfEkCNU6d8Wr7gY6YxvZ99JkyYQFtbm1degBBChJOhzh725ThZH3R8kwBqHNLcbqN8QSW5/e5nXmlcCCHCzVATvc3HWZUxkPVBxzfJgRqHyss2MlFpo12Ppk3tv3fJvM6TEEKMV55E87KyslA3RYwS0gM1DjWU/oMCYLs+HUXtP4Zub29H0zRjNXIhhBjtgjUzzqqMgRjfJIAagwb7AEms3gDAAfIHPI9nCRfPVgghRrtgLXouw3XCTAKoMWigDxBHewsFzl2gwHElY8DzdHZ2ouu6sc6TEEKMdrLklBgpEkCNQQkJCdjtdhISEvo8d2DrauYobqr0VLqVWPpfr7y3kKaiKFJIUwgRNqQ6uBgpEkCNQQPVPencuxaAj/VpKOpA4ROcccYZMkVXCCGEsCAB1BjU1NREXV0dEydO7PNcev1mAA4PUL7AQ8b8hRBCCGsSQI1BBw8exOFwGHlQHna9iyn6ETRdoVGdFKLWCSGEEOFP6kCNQZ6cJXPu0kStDoBy+1Q0RfKahBBCiKGSAGoMioqKwmazERUV5fX4VCoBqJ90Rp9jZN07IYQQwncSQI1BBQUFJCUlUVBQYDym6zolyn4A4md9ts8xEkAJIYQQvpMAagyqr6+ns7OT+vp647FovZ1JSjNdegTT5i8PYeuEEEKI8CcB1BjU0tJCT08PLS0txmMZeg0AB6KLiI6J63NMYmKi11YIIYQQ/ZMAagzq6urC7XbT1dVlPFZIBQDtOWdaHuN2u722QgghhOifBFBj0IkTJ7y2iq5RrBwAIK34fMtjIiIiUBRF1r0TQgghfCB1oMaBOK2JONXJCT2BqbMXWe4jVceFEEII30kANQ7kcAyAUr2Qc/uZZSdVx4UQQgjfyRDeODCTcgAOMTnELRFCCCHGBgmgxrj21kZmKRUA1CvpoW2MEEIIMUZIABXmqqur2bBhA9XV1ZbPl3+0BruiUalPwqXGjHDrhBBCiLFJAqgwt3HjRjZs2MDGjRstn+/c9y8APtFPGclmCSGEEGNa2ARQP/rRjzjjjDOIjY0lOTnZcp/KykouuugiYmNjmTRpEt/85jdxuVxe+6xfv57TTjuNqKgoCgoKWLVqVZ/zPPXUU+Tn5xMdHc2iRYvYsmVLEF5RYNTU1OB0OqmpqbF8PrWht+0V5Ixks4QQQogxLWwCqO7ubq688kpuv/12y+fdbjcXXXQR3d3dbNq0iT/+8Y+sWrWK+++/39jn8OHDXHTRRZxzzjmUlpZy11138eUvf5l3333X2Oell15i5cqVPPDAA2zfvp3i4mJWrFhBXV1d0F9joKl6N1NdvQnkjeqkELdGCCGEGDvCJoB68MEHufvuu/utU7R69Wp2797Nc889R0lJCRdccAE//OEPeeqpp+ju7gbg6aefZsqUKTz22GPMnDmTO++8k89//vM88cQTxnkef/xxbr31Vm6++WZmzZrF008/TWxsLM8888yIvE5/ZWZmEhUVRWZmZp/nkrUTqIpOuZaJW4kKQeuEEEKIsSlsAqjBbN68maKiItLT/zPTbMWKFbS2trJr1y5jn+XLvRfSXbFiBZs3bwZ6e7m2bdvmtY+qqixfvtzYx4rT6aS1tdXrZ6RER0ejqirR0dF9nsvTqwDYJflPQgghRECNmQCqtrbWK3gCjP+vra0dcJ/W1lYcDgcNDQ243W7LfTznsPLwww+TlJRk/OTm5gbiJfmkoqKCrq4uKioq+jw3S+kdvqtUsvs8Z7fbvbZCCCGE8F1IA6j77rsPRVEG/Nm7d28om+iT73znO7S0tBg/R48eHbFrFxUVMWHChD5Dm6ruZJraW4G8UU3rc5yqql5bIYQQQvgupN0P99xzDzfddNOA+0ydOtWnc2VkZPSZLXf8+HHjOc/W89jJ+yQmJhITE4PNZsNms1nu4zmHlaioKKKiQpNjVFhYiN1u7/N7StHqQYVyNR9Nj+xzXFRUFN3d3SFrtxBCCBHOQhpApaWlkZbWt3dkKBYvXsyPfvQj6urqmDSpd8bZmjVrSExMZNasWcY+b7/9ttdxa9asYfHixQBERkYyb9481q1bx6WXXgqApmmsW7eOO++8MyDtDLSNGzdy6NAhampquPLKK43HJ3+a/1SXuhDq+x6XmppKZ2cnqampI9VUIYQQYswIm/GbyspKSktLqaysxO12U1paSmlpKe3t7QCcd955zJo1iy9+8Yvs3LmTd999l+9973vccccdRi/LV7/6VcrLy/nWt77F3r17+dWvfsXLL7/M3XffbVxn5cqV/O53v+OPf/wje/bs4fbbb6ejo4Obb745JK97MBUVFTidzj45ULM/zX+KnnZOCFolhBBCjG1hk0F8//3388c//tH4/7lz5wLwr3/9i2XLlmGz2XjzzTe5/fbbWbx4MXFxcdx444089NBDxjFTpkzhrbfe4u677+bJJ58kJyeH3//+96xYscLY56qrrqK+vp7777+f2tpaSkpKeOedd/oklo8WDofDawtg07uYotbi1hWmzD8PNh3oc1x7ezuaphkBqBBCCCF8FzYB1KpVqyyrhp9s8uTJfYbozJYtW8aOHTsG3OfOO+8ctUN2Zrque20BJmp1oMI+PY9ZE6yH6OLj42lsbCQ+Pn5E2imEEEKMJWEzhCd8l09v/tMe+k/AT01NJSEhQXKghBBCiCEImx4o4btTlUMAVJHV7z4lJSUkJib6PMtRCCGEEP8hAdQYU12xj1ylHpeu0qJO7He/rKwssrL6D7CEEEII0T8ZwhtjqnasBmC3no+uSHwshBBCBIMEUGNNxUYA9pMf2nYIIYQQY5gEUGNMdut2AI6RGeKWCCGEEGOXBFBjSO3RQ2Trx3HryoD5T0IIIYQYHgmgxpCjpesA2KvnSf6TEEIIEUQSQIWZ6upqNmzYQHV1dZ/ntMMbANgn+U9CCCFEUEk3RZgpLy/n4MGDAH3KEGQ0bwPg2AD1n4QQQggxfBJAhRlP4UtzAUxVdzJZ761A3mzKf7LZbLjdbmw228g0UgghhBjjZAhvjJignQDgsDoZTYn0ei49PR1FUUbtgshCCCFEuJEeqDBTWlrKgQMHaG1t9RrCy9F7c6LqUubBCe9jMjIyaGpqIiMjYySbKoQQQoxZ0gMVZo4dO0ZLSwvHjh3zenyGchiAiKln9jnm4MGDOBwOI3dKCCGEEMMjAVSYqaurQ9d16urqjMcUvYdCpTf/KW/uuX2OmThxIjabjYkTpTaUEEIIEQgyhBdmXC6X1xYgSWtEVXWOKlnkZk7uc8zy5cspLy/vk3guhBBCiKGRAGoMyKY3/6k2eS65Fs9nZWX1KXkghBBCiKGTIbwwo6qq1xagkCMAKPlLLI8ZqPimEEIIIfwnPVBhRtM0ry26i5lKbwCVM/ezlsf0N3NPCCGEEEMjPVBhLlFrIkJxU61PJCOvMNTNEUIIIcYF6YEKc5nUALBLn9LvAi4lJSUkJiZKErkQQggRIBJAhblpVAJwxDJ9vJckkQshhBCBJUN4YazL0cmpnxbQbFDSQtwaIYQQYvyQACqMlZdtIkrp4YSeQJcSF+rmCCGEEOOGBFBhrGXv+wDs1qegKEq/+0kZAyGEECKwJAcqjEXXbgXgsJ4z4H7l5eXGOniSCyWEEEIMnwRQYUrXdSZ3lgFQr6YPuK9n9p3MwhNCCCECQwKoMBWpd5KitOHUI+hQEgfcV2bhCSGEEIElOVBhaqJeD8BufTK6YvN6zmq5FyGEEEIEjnzDhqm8TxcQPkRen+eio6O9tkIIIYQILAmgwtQMKgCoJqPPc8nJySiKQnJy8sg2SgghhBgnJIAKQ6rezRS1FoAWNaXP8y6Xy2srhBBCiMCSACoMJWknADii5qIpkX2ej4uLQ1VV4uKkuKYQQggRDBJAhaEsvbf3qW7CXMvnnU4nmqbhdDpHsllCCCHEuCEBVBiaphwBQM1bbPl8c3Mzuq7T3Nw8gq0SQgghxg8JoMKNrjFDqQQga84yy10kiVwIIYQILgmgwkys1kKU4qJeTyJj8gzLfZKTk4mMjJQASgghhAgSCaDCTMan+U+79Sko/RTKjIuLIyYmRpLIhRBCiCCRpVzCzBSlCoAKsjm7n31KSkpITEyUte+EEEKIIJEAKoxobjezlXIA6pT+FxCWte+EEEKI4JIhvDBSsW8HE5QOOvVIOpWEfverrq5mw4YNVFdXj2DrhBBCiPFDAqgwcnzXewDs0fPBtIDwycrLyzl48CDl5eUj1DIhhBBifJEhvDBi72ygW7dziNwB9/PkPkkOlBBivHK73fT09IS6GWKUiYiIwGbrvwPCH2ETQP3oRz/irbfeorS0lMjISMsikYqi9HnshRde4Oqrrzb+f/369axcuZJdu3aRm5vL9773PW666SavY5566ikeeeQRamtrKS4u5he/+AULFy4M9Evy24IbH+Z/f2BHUdwD7ic5UEKI8UrXdWpra6WQsOhXcnIyGRkZljGDP8ImgOru7ubKK69k8eLF/OEPf+h3v2effZbzzz/f+P+TayEdPnyYiy66iK9+9as8//zzrFu3ji9/+ctkZmayYsUKAF566SVWrlzJ008/zaJFi/jZz37GihUr2LdvH5MmTQra6/OVW7ETRv9sQggxojzB06RJk4iNjR32l6QYO3Rdp7Ozk7q6OgAyMzOHdb6w+SZ+8MEHAVi1atWA+3kiSytPP/00U6ZM4bHHHgNg5syZbNiwgSeeeMIIoB5//HFuvfVWbr75ZuOYt956i2eeeYb77rvP8rxOp9Nr3bnW1la/XpsQQojhc7vdRvA0ceLEUDdHjEIxMTEA1NXVMWnSpGEN5425JPI77riD1NRUFi5cyDPPPIOu68ZzmzdvZvny5V77r1ixgs2bNwO9vVzbtm3z2kdVVZYvX27sY+Xhhx8mKSnJ+MnNHThHKZA8//iBGtMVQohw5cl5io2NDXFLxGjmeX8MN0duTAVQDz30EC+//DJr1qzhiiuu4L//+7/5xS9+YTxfW1tLerp3/aT09HRaW1txOBw0NDTgdrst96mtre33ut/5zndoaWkxfo4ePRrYFzaAnJwcFEUhJydnxK4phBCjmQzbiYEE6v0R0iG8++67j//3//7fgPvs2bOHGTOs13wz+/73v2/899y5c+no6OCRRx7h61//+rDaOZioqCiioqKCeo3+NDU1oes6TU1NIbm+EEIIMR6FtAfqnnvuYc+ePQP+DGcq/qJFi6iqqjLykzIyMjh+/LjXPsePHycxMZGYmBhSU1Ox2WyW+/SXVxVqEydOxGazyXi/EEKEsWXLlnHXXXeFuhkAvPbaaxQUFGCz2bjrrrtYtWqVLE5vIaQ9UGlpaaSlpQXt/KWlpUyYMMHoHVq8eDFvv/221z5r1qxh8eLFAERGRjJv3jzWrVvHpZdeCoCmaaxbt44777wzaO0cjuXLl1NeXi41n4QQQvRr/fr1nHPOOTQ1NQ0aDH3lK1/h5ptv5utf/zoJCQnY7XYuvPBC4/kf/OAHvPbaa5SWlga30aNc2MzCq6yspLGxkcrKStxut/EPV1BQQHx8PG+88QbHjx/n9NNPJzo6mjVr1vDjH/+Ye++91zjHV7/6VX75y1/yrW99iy996Uv885//5OWXX+att94y9lm5ciU33ngj8+fPZ+HChfzsZz+jo6PDmJU32kjNJyGEEIHS3t5OXV0dK1as8Ppu8cxeE/8RNknk999/P3PnzuWBBx6gvb2duXPnMnfuXD766COgt7roU089xeLFiykpKeE3v/kNjz/+OA888IBxjilTpvDWW2+xZs0aiouLeeyxx/j9739vlDAAuOqqq3j00Ue5//77KSkpobS0lHfeeadPYvloIeveCSFE/3Rdp7PbFZKfk2eB+8LlcnHnnXeSlJREamoq3//+973O4XQ6uffee8nOziYuLo5Fixaxfv164/kjR45w8cUXM2HCBOLi4pg9ezZvv/02FRUVnHPOOQBMmDABRVH6FJCG3l6qhITedVY/85nPoCgK69ev9xrCW7VqFQ8++CA7d+5EURQURRm0vNBYFTY9UKtWrRrwH+n888/3KqDZn2XLlrFjx44B97nzzjtH7ZCdWWlpKQcOHKC1tVV6ooQQwsTR42bW/e+G5Nq7H1pBbKTvX7N//OMfueWWW9iyZQsfffQRt912G3l5edx6661A73fT7t27efHFF8nKyuJvf/sb559/PmVlZUybNo077riD7u5u3n//feLi4ti9ezfx8fHk5ubyyiuvcMUVV7Bv3z4j79fsjDPOYN++fUyfPp1XXnmFM844g5SUFCoqKox9rrrqKj755BPeeecd1q5dC0BSUtLwflFhKmwCKGGto6MDh8NBR0dHqJsihBBiGHJzc3niiSdQFIXp06dTVlbGE088wa233kplZSXPPvsslZWVxs3yvffeyzvvvMOzzz7Lj3/8YyorK7niiisoKioCvNdDTUlJAWDSpEn95kBFRkYaK26kpKRYTp6KiYkhPj4eu90+aidXjRQJoMJcXFwcMTExxMXFhbopQggx6sRE2Nj90IrBdwzStf1x+umne9UoWrx4MY899hhut5uysjLcbjeFhYVexzidTmMW9te//nVuv/12Vq9ezfLly7niiiuYM2fO8F+IsCQBVJjLzs6msbGR7OzsUDdFCCFGHUVR/BpGG63a29ux2Wxs27atz8oT8fHxAHz5y19mxYoVvPXWW6xevZqHH36Yxx57jK997WuhaPKYFzZJ5MJaW1sbLpeLtra2UDdFCCHEMHz44Yde///BBx8wbdo0bDYbc+fOxe12U1dXR0FBgdfPyUNpubm5fPWrX+XVV1/lnnvu4Xe/+x3QOzwHvesFDldkZGRAzhPuJIAKc1OnTqWgoEDqQAkhRJirrKxk5cqV7Nu3jxdeeIFf/OIXfOMb3wCgsLCQ6667jhtuuIFXX32Vw4cPs2XLFh5++GGjFM9dd93Fu+++y+HDh9m+fTv/+te/mDlzJgCTJ09GURTefPNN6uvraW9vH3I78/PzOXz4MKWlpTQ0NBjFqscbCaDCXFZWFkuXLpUZeEIIEeZuuOEGHA4HCxcu5I477uAb3/gGt912m/H8s88+yw033MA999zD9OnTufTSS9m6dSt5eXlAb+/SHXfcwcyZMzn//PMpLCzkV7/6FdCb7vHggw9y3333kZ6ePqyZ5ldccQXnn38+55xzDmlpabzwwgvDe+FhStH9LVQhBtXa2kpSUhItLS0kJiYG9NwPPvig8d8n17gSQojxrquri8OHDzNlyhSio6ND3RwxSg30PvHn+1t6oIQQQggh/CQBlBBCCCGEnySAEkIIIYTwkwRQQgghhBB+kgBKCCGEEMJPEkCFGVVVvbZCCCGEGHnyLRxmMjIyUBRl3C/iKIQQQoSSBFBCCCGEEH6SACrMtLe3o+v6sMrwCyGEEGJ4JIAKMwUFBcTExFBQUBDqpgghhBjHVq1aRXJycqibwU033cSll1464teVACrM2Gw2oqKisNlsoW6KEEII0a+KigoURaG0tHRUnm+4JIASQgghwlB3d3eomxAQ4fo6JIAKM9nZ2UycOJHs7OxQN0UIIUY/XYfujtD86LrPzWxra+O6664jLi6OzMxMnnjiCZYtW8Zdd91l7JOfn88Pf/hDbrjhBhITE7ntttsAeOWVV5g9ezZRUVHk5+fz2GOPeZ1bURRee+01r8eSk5NZtWoV8J+enVdffZVzzjmH2NhYiouL2bx5s9cxq1atIi8vj9jYWC677DJOnDgx4GuaMmUKAHPnzkVRFJYtWwb8Z8jtRz/6EVlZWUyfPt2ndvZ3Po9HH32UzMxMJk6cyB133EFPT8+A7Rsue1DPLgKura0Nl8tFW1tbqJsihBCjX08n/DgrNNf+n2qIjPNp15UrV7Jx40Zef/110tPTuf/++9m+fTslJSVe+z366KPcf//9PPDAAwBs27aNL3zhC/zgBz/gqquuYtOmTfz3f/83EydO5KabbvKrud/97nd59NFHmTZtGt/97ne55pprOHjwIHa7nQ8//JBbbrmFhx9+mEsvvZR33nnHaEN/tmzZwsKFC1m7di2zZ88mMjLSeG7dunUkJiayZs0an9s30Pn+9a9/kZmZyb/+9S8OHjzIVVddRUlJCbfeeqtfvwN/SAAVZqZOneq1FUIIEd7a2tr44x//yF/+8hfOPfdcAJ599lmysvoGfp/5zGe45557jP+/7rrrOPfcc/n+978PQGFhIbt37+aRRx7xO4C69957ueiiiwB48MEHmT17NgcPHmTGjBk8+eSTnH/++XzrW98yrrNp0ybeeeedfs+XlpYGwMSJE/vULoyLi+P3v/+9VxA0mIHON2HCBH75y19is9mYMWMGF110EevWrZMASvxHVlaW5R+VEEIICxGxvT1Bobq2D8rLy+np6WHhwoXGY0lJScbQ1snmz5/v9f979uzhkksu8XpsyZIl/OxnP8Ptdvs14WjOnDnGf2dmZgJQV1fHjBkz2LNnD5dddpnX/osXLx4wgBpIUVGRX8HTYGbPnu31WjMzMykrKwvY+a1IACWEEGLsUhSfh9HCQVyc/69FURR0Uz6WVX5QRESE1zEAmqb5fT1fWL0OX9tp5eS2e84VrLZ7SBJ5mKmurmbDhg1UV4fojkoIIURATZ06lYiICLZu3Wo81tLSwv79+wc9dubMmWzcuNHrsY0bN1JYWGj0yKSlpVFTU2M8f+DAATo7O/1q48yZM/nwww+9Hvvggw8GPMbTw+R2u326xmDt9Pd8wSY9UGGmvLycgwcPAshQnhBCjAEJCQnceOONfPOb3yQlJYVJkybxwAMPoKqq0RPUn3vuuYcFCxbwwx/+kKuuuorNmzfzy1/+kl/96lfGPp/5zGf45S9/yeLFi3G73Xz729/u02MzmK9//essWbKERx99lEsuuYR333130OG7SZMmERMTwzvvvENOTg7R0dEkJSX1u/9g7fT3fMEmPVBhZurUqRQUFEgSuRBCjCGPP/44ixcv5nOf+xzLly9nyZIlzJw5k+jo6AGPO+2003j55Zd58cUXOfXUU7n//vt56KGHvBLIH3vsMXJzcznzzDO59tpruffee4mN9S0/y+P000/nd7/7HU8++STFxcWsXr2a733vewMeY7fb+fnPf85vfvMbsrKy+uRqmQ3WTn/PF2yKbh5wFMPW2tpKUlISLS0tJCYmhro5QggxLnR1dXH48GGmTJkyaOAx2nV0dJCdnc1jjz3GLbfcEurmjCkDvU/8+f6WITwhhBAixHbs2MHevXtZuHAhLS0tPPTQQwAh72UR/ZMASgghhBgFHn30Ufbt20dkZCTz5s3j3//+N6mpqaFuluiHBFBCCCFEiM2dO5dt27aFuhnCD5JELoQQQgjhJwmghBBCjCkyN0oMJFDvDwmghBBCjAmemkH+FokU44vn/eFvLSwzyYESQggxJthsNpKTk6mrqwMgNjZ20EKUYvzQdZ3Ozk7q6upITk72a51AKxJACSGEGDMyMjIAjCBKCLPk5GTjfTIcEkAJIYQYMxRFITMzk0mTJvm8EK0YPyIiIobd8+QhAZQQQogxx2azBeyLUggrkkQuhBBCCOEnCaCEEEIIIfwkAZQQQgghhJ8kByoIPEW6WltbQ9wSIYQQQvjK873tS7FNCaCCoK2tDYDc3NwQt0QIIYQQ/mprayMpKWnAfRRdat4HnKZpVFdXk5CQEPAibq2treTm5nL06FESExMDeu6xRn5XvpPfle/kd+U7+V35Tn5Xvgvm70rXddra2sjKykJVB85ykh6oIFBVlZycnKBeIzExUf7IfCS/K9/J78p38rvynfyufCe/K98F63c1WM+ThySRCyGEEEL4SQIoIYQQQgg/SQAVZqKionjggQeIiooKdVNGPfld+U5+V76T35Xv5HflO/ld+W60/K4kiVwIIYQQwk/SAyWEEEII4ScJoIQQQggh/CQBlBBCCCGEnySAEkIIIYTwkwRQYeJHP/oRZ5xxBrGxsSQnJ1vuoyhKn58XX3xxZBs6Svjy+6qsrOSiiy4iNjaWSZMm8c1vfhOXyzWyDR2F8vPz+7yPfvKTn4S6WaPGU089RX5+PtHR0SxatIgtW7aEukmjzg9+8IM+76EZM2aEulmjwvvvv8/FF19MVlYWiqLw2muveT2v6zr3338/mZmZxMTEsHz5cg4cOBCaxobYYL+rm266qc/77Pzzzx+x9kkAFSa6u7u58soruf322wfc79lnn6Wmpsb4ufTSS0emgaPMYL8vt9vNRRddRHd3N5s2beKPf/wjq1at4v777x/hlo5ODz30kNf76Gtf+1qomzQqvPTSS6xcuZIHHniA7du3U1xczIoVK6irqwt100ad2bNne72HNmzYEOomjQodHR0UFxfz1FNPWT7/05/+lJ///Oc8/fTTfPjhh8TFxbFixQq6urpGuKWhN9jvCuD888/3ep+98MILI9dAXYSVZ599Vk9KSrJ8DtD/9re/jWh7Rrv+fl9vv/22rqqqXltbazz261//Wk9MTNSdTucItnD0mTx5sv7EE0+Euhmj0sKFC/U77rjD+H+3261nZWXpDz/8cAhbNfo88MADenFxcaibMeqZP7M1TdMzMjL0Rx55xHisublZj4qK0l944YUQtHD0sPp+u/HGG/VLLrkkJO3RdV2XHqgx5o477iA1NZWFCxfyzDPPoEuZL0ubN2+mqKiI9PR047EVK1bQ2trKrl27Qtiy0eEnP/kJEydOZO7cuTzyyCMytElvr+a2bdtYvny58ZiqqixfvpzNm/9/e3cXEtXWgHH8eZVGKz9S1EYDRbOGJG0qceoiogTLiyjqwqLEIiLKkFKLiiTsw6hAhC7qMvAuuisKskEh0CSECYOKHBQLnansIrRvXe/FSwNxest9Tp412f8HwnY7zH5YLLYPe2bt3WUxWXR69uyZsrKylJeXp+3bt2twcNB2pKjX39+vUCj0zRxLTk6Wz+djjv0fHR0dysjIkMfj0b59+zQyMvKvHZuHCU8jp06d0tq1azVr1izduXNH+/fv1+joqGpqamxHizqhUOib8iQp8nsoFLIRKWrU1NRo2bJlSk1NVWdnp44dO6bh4WE1NzfbjmbV69evNT4+/t158+TJE0upopPP59PVq1fl8Xg0PDysxsZGrVq1So8ePVJiYqLteFHr67nne3PsTz8vfc/69eu1efNm5ebmKhgM6vjx4yovL1dXV5diY2On/PgUKIuOHj2q8+fP//A1jx8/nvSXLxsaGiLbS5cu1djYmC5evDhtCtSvHq8/iZOxq62tjewrKiqSy+XS3r17de7cOeuPTsDvoby8PLJdVFQkn8+nnJwcXbt2Tbt377aYDNPJ1q1bI9uFhYUqKirS/Pnz1dHRodLS0ik/PgXKorq6Ou3cufOHr8nLy/vb7+/z+XT69Gl9/PhxWvzj+5Xj5Xa7/7J6KhwOR/423fyTsfP5fPry5YsGBgbk8XimIN3vIS0tTbGxsZF58lU4HJ6Wc+ZXmjNnjhYuXKi+vj7bUaLa13kUDoeVmZkZ2R8Oh+X1ei2l+n3k5eUpLS1NfX19FKjpLj09Xenp6VP2/oFAQCkpKdOiPEm/drxWrlyps2fP6uXLl8rIyJAktbW1KSkpSQUFBb/kGNHkn4xdIBBQTExMZJz+VC6XS8uXL5ff74+sbp2YmJDf79eBAwfshotyo6OjCgaDqqystB0lquXm5srtdsvv90cK09u3b9Xd3f3TFdiQXrx4oZGRkW/K51SiQP0mBgcH9ebNGw0ODmp8fFyBQECSlJ+fr4SEBN24cUPhcFgrVqxQfHy82tra1NTUpPr6ervBLfnZeJWVlamgoECVlZW6cOGCQqGQTpw4oerq6mlTOP+Orq4udXd3a82aNUpMTFRXV5cOHTqkHTt2KCUlxXY862pra1VVVaXi4mKVlJSopaVFY2Nj2rVrl+1oUaW+vl4bNmxQTk6OhoaGdPLkScXGxmrbtm22o1k3Ojr6zZW4/v5+BQIBpaamKjs7WwcPHtSZM2e0YMEC5ebmqqGhQVlZWX/kLWl+NFapqalqbGzUli1b5Ha7FQwGdeTIEeXn52vdunX/TkBr6//gSFVVlZH0l5/29nZjjDG3b982Xq/XJCQkmNmzZ5slS5aYK1eumPHxcbvBLfnZeBljzMDAgCkvLzczZ840aWlppq6uznz+/Nle6CjQ09NjfD6fSU5ONvHx8WbRokWmqanJfPjwwXa0qHHp0iWTnZ1tXC6XKSkpMffv37cdKepUVFSYzMxM43K5zLx580xFRYXp6+uzHSsqtLe3f/fcVFVVZYz5360MGhoazNy5c01cXJwpLS01T58+tRvakh+N1bt370xZWZlJT083M2bMMDk5OWbPnj3f3Jpmqv3HGNa5AwAAOMF9oAAAAByiQAEAADhEgQIAAHCIAgUAAOAQBQoAAMAhChQAAIBDFCgAAACHKFAAAAAOUaAAAAAcokABAAA4RIECAABwiAIFAD/x6tUrud1uNTU1RfZ1dnbK5XLJ7/dbTAbAFh4mDACTcOvWLW3atEmdnZ3yeDzyer3auHGjmpubbUcDYAEFCgAmqbq6Wnfv3lVxcbF6e3v14MEDxcXF2Y4FwAIKFABM0vv377V48WI9f/5cPT09KiwstB0JgCV8BwoAJikYDGpoaEgTExMaGBiwHQeARVyBAoBJ+PTpk0pKSuT1euXxeNTS0qLe3l5lZGTYjgbAAgoUAEzC4cOHdf36dT18+FAJCQlavXq1kpOTdfPmTdvRAFjAR3gA8BMdHR1qaWlRa2urkpKSFBMTo9bWVt27d0+XL1+2HQ+ABVyBAgAAcIgrUAAAAA5RoAAAAByiQAEAADhEgQIAAHCIAgUAAOAQBQoAAMAhChQAAIBDFCgAAACHKFAAAAAOUaAAAAAcokABAAA49F8/nzFboHkByQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACVSUlEQVR4nOzdeXhU5dn48e85k30nK9kgQAibISAqsqgoVFS01VrrWpdardalSq1vfdtqtb/Wvq611b5arWJfW5cu2ioWQRSVRUQwGNkhhJCNJGTfJpk55/dHnCNzOEkmyazJ/bmuXIfMnDnnmWEyc5/nuZ/7UXRd1xFCCCGEEB5TA90AIYQQQohQIwGUEEIIIcQgSQAlhBBCCDFIEkAJIYQQQgySBFBCCCGEEIMkAZQQQgghxCBJACWEEEIIMUhhgW7ASKRpGlVVVcTHx6MoSqCbI4QQQggP6LpOa2srWVlZqGr/fUwSQPlAVVUVubm5gW6GEEIIIYbg8OHD5OTk9LuPBFA+EB8fD/T+ByQkJAS4NUIIIYTwREtLC7m5ucb3eH8kgPIB17BdQkKCBFBCCCFEiPEk/UaSyIUQQgghBkkCKCGEEEKIQZIASgghhBBikCSAEkIIIYQYJAmghBBCCCEGSQIoIYQQQohBkgBKCCGEEGKQJIASQgghhBgkCaCEEEIIIQZJAighhBBCiEGSAEoIIYQQYpAkgBJCCCGEGCQJoIQQQgghBkkCKCFCUFVVFevXr6eqqirQTRFCCL8Kls+/sICeXQgxJKWlpezfvx+ArKysALdGCCH8J1g+/ySAEiIETZw40W0rhBCjRbB8/kkAJUQIysrKOu7Kq6qqitLSUiZOnCi9UkKIEcvq8y8QJAdKiBHC1a1dWloa6KYIIYTPSA6UEMKSJz1JVvuYu7WH2iMlPVlCiGAmOVBCCEuefDhY7WPu1rbax5PgKFg+nIQQworkQAkhLHny4RAfH09YWBjx8fGDOk5xcTH79u2jpaWlz+DIWz1ZQgjhC8GSAyUBlBBBxpMPh9bWVhwOB62trX3uU1dXR1lZGfHx8cbx6uvraW1tpb6+HrAOjjzpyRJCiNFOAighgownPT5WvUvmx5WUlFBRUQFAUVERAE1NTTidTpqamgDPgqNg6S4XQohgIrPwhPCh7du389JLL7F9+/Y+9zHPKBnqbLoNGzawfv16NmzYAEBOTg6xsbHk5OQY+4SFhaEoCmFhvddOEydOJD8//7hA7Nj2uHqy6urqBtUeIYTwBZmFJ8QoYNULZGbuBfIkv8kql6muro7u7m4j0HEdwxUsAUyfPp2SkhKmT5/e57HN7fHkOQghhL94ksvpDxJACeFDhYWFblur4TlzwLR3714qKiqIjIw0Ahbz48y5TABpaWm0traSlpYGYORIORwOY5+6ujra29uNIGvDhg2UlpZSXV3NJZdcAhw/ZGd+Dn09DyGE8Aerz79AkABKCB8qKipy67WxunIyJ4TX19fT3d3t9uFgfpw5lwnA6XTicDhwOp0A7Nq1i8bGRnbt2sWiRYuA43upqqqq6OrqcusKNyeRm58DSGK5ECJwrD7/AkECKCECzNzj4xpyO3borb29nc7OTtrb2wFobm5220JvUONwOIzcqY6ODnRdp6Ojw9gnPDzcbesKtlxb8Kx3yZNhRiGEGMkkgBLCSzwJPLKzs2loaCA7O9u4zdzj4xpyO3borbOzE4fDQWdnJwCaprltAVRVddta7dPU1ISu68aVm67rblvoHdY7cOCAMaxn9bw8KaMgw3xCCF/o6upy2waKzMITwks8mT3nym/au3evcZt5pl5qaioRERGkpqYa+zQ2NuJ0OmlsbARAURS3LYDNZnPbWgVirt4o19bcIwVw+PBh7HY7hw8f7vN5mfOrrGbFyNp8QghfCJYASnqghPAST+olNTc343A43IbePvjgAxobG2loaKCoqIgFCxaQmZnpdhxXz5Nrq6oqTqfT6G2C44Ojnp4et62V6OhompqaiI6O7vM4Vs+roqKC9vZ2Y3aeVU6U1I8SQvhCTEwM7e3txMTEBLQdEkAJ4QFPhqM8qSAeFxeHoijExcUZt7mGwVzbvXv3UlJSgsPhMI5nt9vdtla5S2ZWw3NmR44cQdd1jhw50ufjrCqam2fmWeVEBctyC0KI0Gb+/O3u7gYwtoEiAZQQHvBkYV5PgqyKigocDofRcwPHD7Vt3LiRnp4eNm7caMye8xWrQCw6Opr29najV2rDhg3U19fT0tJizMYzz8zzJCdKCCGGwvz568kFpD9IACWEB6yGo8x/1FYlCtatW0dJSQmFhYUsWrTIo14hT4behkpRFHRdd8udMjMHdObEc+jN23I9r6KiIsseKEkiF0J4g/nz12qCTCBIACWEB6yGozzJ8dm8eTNdXV1s3rzZ571JnvAkgDN/OFkFdOZeKaseqGCpFiyECG3Bmg4gAZQQQ2T+o3Y6ndjtdrduZXPAYk4GD0bmgElVVTRNc0tYb29vR9d1oy6VVQ9UsFQLFkKEtmDtzZYyBkJ4SVlZGV1dXZSVlRm35eXlERYWRl5eHuBZD1CwsSqZYE5q3759O2VlZW6LJg8l0TNYFgkVQgSPYC2JIj1QQnhJXl4enZ2dRrAEvTWVHA6HUVMpFFklbJpvq62txel0Ultba+yTkZFBQ0MDGRkZgPVVpPk2WSJGCGEWrCVRJIASwku6urrQdd2tuJu5ptJo0tzcjKZpRs2rd999l/LyckpLS7n66quB4xPxg/WDUggROFu3bjXW9gymCysJoITwwJtvvsmuXbuYNm0aF1xwgeU+Bw4cwG63c+DAAT+3LvCscrtycnJobGwkJycH6C3h4HQ63Uo4mAOmYE0WFUIETnFxMZqmUVxc3OfnbyBIDpQQHigpKaGzs5OSkhLjtjfffJOHHnqIN998Ezg+L2g0sZpWXF5eTnNzM+Xl5cM6tnmpGyHE6BKsuaMSQAlhwZzMbLVm3I4dO+js7GTHjh0BaWOwO3z4ME6n08j/io2NddtC75Xl1q1bKS4u7vM4JSUlVFRUuAWvQojRIyIiwm0bLCSAEsKCedZHUlISiqKQlJRk7GMVVImvmBPNi4qKSE5OdqtgXllZSXNzM5WVlX0ep7CwkJycHGPZGCHE6OJa8y7Qa9+ZSQAlhIWJEyeSn59v5OZ0dnai67pbjo+5Yrdw56ob5doWFxfT0NDg1tvU0NCArus0NDQA1mUM0tLSyMvLIy0tzX+NF0IEjWAdwpMkcjHqWU2vNyczW/0BB8t6TKHCNRvPtQXrIMtcvVxKGwgxelh9HruWkTp2OalgIAGUGPU8+YIeM2YMra2tjBkzxrjNl2vWjQSeBJg2m81t297eTmdnp1HhHIK3BowQwvtC6YIppIbwPvzwQy644AKysrJQFIU33njD7X5d17n33nvJzMwkOjqaJUuWsG/fPrd9GhoauPLKK0lISCApKYnrr7+etrY2t30+//xzTjvtNKKiosjNzeWhhx7y9VMTAdTXQrhSEdv3zAFUbGws0dHRbonmZlb/N/L/JcTIYE6fCGYhFUC1t7dTVFTEU089ZXn/Qw89xO9+9zuefvppNm/eTGxsLEuXLnUrbHjllVeyY8cO1qxZw1tvvcWHH37IjTfeaNzf0tLC2Wefzfjx49m6dSsPP/wwv/jFL/jjH//o8+cnAqOvhXCPnR3W3t6OpmluPSNi+GJiYlAUxS1JVFVVt2RRc0K/1bIOwbrUgxBi5AqpIbxzzz2Xc8891/I+Xdf57W9/y89+9jO+8Y1vAPDnP/+ZjIwM3njjDS677DJ27drFqlWr2LJlCyeddBIAv//97znvvPN45JFHyMrK4i9/+Qvd3d08//zzREREMGPGDIqLi3nsscfcAi0xcngyRNTS0oKu67S0tPirWaNCTU0Nuq5TU1MD9NZ8ampqYvv27SxatAiAxsZGamtrSUlJAaz/v2SYT4iRQYbwAuDgwYPU1NSwZMkS47bExETmzp3Lpk2bANi0aRNJSUlG8ASwZMkSVFVl8+bNxj6nn366W72JpUuXsmfPHhobGy3PbbfbaWlpcfsRwcGT4Z6srCwWLlzo9seanZ1NSkoK2dnZAEYv5rG9mWL4zAU4Xb2Ax/YG7ty5k87OTnbu3Nnncaz+D4UQoUeG8ALAdQXrWrjUJSMjw7ivpqaG9PR0t/vDwsJITk5228fqGMeew+zBBx8kMTHR+MnNzR3+ExJe4clwz7p16/j973/PunXrjH0++eQTSktL+eSTT/zd5FHNKvHcXC5iw4YNrF+/ng0bNvi/gUII8aURE0AF0j333ENzc7Px46q8LALP6mrGfFtJSQmNjY1ula6rq6vRdZ3q6mq/t3moFF2DIKuT4g2Korhtm5ubcTgcbuUQJIlciJHBk3zGCL2LGD3w+aghlQPVn7FjxwJw5MgRMjMzjduPHDnCrFmzjH1qa2vdHudwOGhoaDAeP3bsWI4cOeK2j+t31z5mkZGRREZGeuV5CO+yWpy2rq6OsrIy4uPjycrKorCwkJKSErdK1+a6T6qqommaUa/In3RNI1JrI1ZvI4FmPnnqu5zj3EUqTUQrdpp/8UeidDv3Kr3lFDq0CBp/8Rzf0yNo16OoYwyfPlOFOiaPVGcV7WoCnfQ9yy3YmMtFxMXFoSgKcXFxxj6hlDchhOiba0JPfwWKx2kHuVxZxdvafD+27HgjJoCaMGECY8eOZe3atUbA1NLSwubNm7n55psBmDdvHk1NTWzdupU5c+YA8N5776FpGnPnzjX2+elPf0pPT4+xRMeaNWuYMmWKWw0gEbpca6tB7/IiixYtMhKWXeLi4mhrazO+pK0Wy/UVXdeI0VvI0I/w2cPnM679c36iNIPy5Q51HN93rHz1zxilmxi6GaP03l5ABVSXQDWc+OXjGvQ4vnh4I1Md8dQp6TSpKT5/Xt5SXV2Nw+Fw6x305ENXCBH89u/fT3NzM/v37z/uc9mliN2oik6VFtjVCUIqgGprazOuMqE3cby4uJjk5GTGjRvHHXfcwf/7f/+PyZMnM2HCBH7+85+TlZXFhRdeCMC0adM455xzuOGGG3j66afp6enh1ltv5bLLLjOuWq+44gruv/9+rr/+ev7rv/6LL774gieeeILHH388EE9Z+ICrp8m13b59u9ED5Vqnzd9FMnVdJ15rYPOT13GLvpY0V8D0ZS+1XQ+nVM+kWk8hMmcmX1S20k4sPUTwzUuvIDImgedf/D/QdWw4+fY3L+T1f7xKBHbi9Damj40msq2CuPZDTFIqSVbaSG7fzAm95Zfo0sPZ8dAn9ExaTLTeRqcS12dbAy0uLo7W1la3HqiKigra29uNwNiqmrEQIvjpuo6maX0u29Jae4gT1INoukKlGth845AKoD799FPOPPNM4/fly5cDcM0117BixQruvvtu2tvbufHGG2lqamLhwoWsWrWKqKgo4zF/+ctfuPXWW1m8eDGqqnLxxRfzu9/9zrg/MTGR1atXc8sttzBnzhxSU1O59957pYRBiLL6Ii0qKnJb0HbdunU0NTVx9OhR43a73e629ZXy/V9Q6NjGArWYDLUJ6gEFWvVoSvSJKJPOJGnqGbz6n/Uoam+0c9/37+Pd++83jjF5Ru+sUkUJAwU0wplSNBf7G6uwA62kc+Mt9wFw//3349R1orVWFhSMoXPPOgrVA2QpDczo2Awlm5kF7HPm8AmFtNaV+/T5D0VSUhINDQ1uCzvn5OTQ2NhITk4OYD2kZxUoCyGCS0dHB7qu09HRYXl/6YcvUwQU6/motsAu5B5SAdSiRYv6XUxQURQeeOABHnjggT73SU5O5q9//Wu/55k5cyYfffTRkNspgofVF6k5qHKVnfBX+Qld14nVGtn20HnMat/IOFvve7pVj2bPmDPY0JBMk5oOqsp91/QGPsqqTV47v01R6LYlcPpVP+P++51s1BcSpnVwel44Y6rWMb1nJ5PVCiZTgfPJVZynT6GYGdSo2V5rw3BUVlbS1dVFZWWlcduOHTtoaGhgx44dLFq0yHJIzzx0K4QIPq5ixX0VLY7e/xYAn+nT/NamvoRUACXEYFkVWHz33XcpLy+ntLSUq6++2m/5TbqmMcZRzWJlEzPUMugAFPhYm86nFHFUTee+Ox5g5TG9S/6gKgqaLZYzvtsbrN17371kOQ8zV/mc2ep+TlZ2czK7OarH89mLXUxedrtf22dmtShxQ0OD29Y8pAfHD90KIQLPfEHbX/pEpN5BfucXoMBhddyxqZ8BIQGUGNGsZuEdPXoUp9PJ0aNHgd6eS13XjWnyvhDlbGLnrxdyu20H0JtzVJJ6LmPPvpN3XnnTZ+cdCptq44iax7/0PGK+fSFbXv4VZ6lbyFIaSDn4R3p+/ycW6rPYrhTSqiYHurlAb89yfX09ycm97UlMTKSqqorExERjH/PQrRAi8IqLi9m3bx8tLS0D5itmahWoqs7n2kRQI/rd1x8kgBIjmlXeS35+Prt27SI/Px/wbQBl0zqZp21msW0bOHoDp7f009ijTuOnt/36y72CK4ByURSYMr2IV8JmsFefQbKzmiURxZzg3MViZSuL2coGZyHVu62XV/KncePG0d7ezrhx44De0iPd3d3HlSQRQgSX9vZ2urq6PFpntJC9AHyqT8eH17sek0KaYkRz5b0cWySzq6sLTdOMZVl8MYTX3d3NRy/8Nz/mWRbbtqHpClvHnMdjyvfYYZuFQwmtumE2BZrDMpnxs01sW/pP1jhPQtMVFqglZL7yNRY73yVOs17qyB9KSkro7Ow0/p/tdjtOp9NtEoAU2xQi+MTGxhIVFUVsbP+16SL0ToqUfQCUq+P90bQBSQAlRrTExERUVXUbyqmvr6e7u5v6+nqfnDNMa+fg/8zntENPEak42KJN5VG+y5wfvkyPEu2Tc/qLoiicOG8xG8NO5//pN7HaeTKarrBQ/ZwfKS9wmvMDmmsO+r1d5ryJ7u5uty14VuFYCOFf5nVH+5KpVWJTdHarkyBILkAlgBIjmtVQTnt7O7que9RlPBi6rjPBsZu7+BNTnPtoIZY/at/kbfVcOtTEgQ8QYnRbNJvCTmPXN1ezxtlbSuEsdSsRT5/CZy/+mDDdPzW0AKNUiWubn59PdHS0MUwL1sv6SK+UEIG1d+9eKioq2Lt3b7/7zfhy+K4m6+ygGL4DCaDECGdVlM1VX6SvOiNDUVleyje0N7na9jaRioOS2Hk4btpEtS2PoPlr95EZRaf09khpN/KpVkA03cw++Edu0P9MrvOgX9bncw3HurY2m43IyEhsNpuxT1ZWFgsXLnRLVJVeKSECq7q6Grvd3u+6o+F6F7OV3gAq49Rv+6tpA5IASoxoVlNiw8LC3LbDFeVsJPL5RcxW99Oix/BH7ZsU3vUfkscGxzi9vzhtcbypLuPD2Y9TQQbpSjPfVV/n69qb1B0sGfgAXrR3716amprcrmqtepvMvVLSIyWEf3lyQTtWqyJM0dij5TJ1xmx/NW1AEkCJkOXJl52u68aPi9PpdNsOla7r5Dr28SPlRVJpZq+Wwx+4alT0OvVFVRRO/8Z3SbxrGy84l9GpRzBb3U/SijOY4dyOqvtnrTqrWlHFxcVs3bqV4uJi4zZzr5T0SAnhX55M4pn+5fDdJ/oMn5abGSwpYyBCllWVcbPOzk63LXhn1l1razOnOT9ksW0rANvHnM2/G6eiKfInBRAfF0d52BQe0vJY7PyAhbYv+JaylkNaCW8oSwPSJqvp0q+88goHDhxg0qRJXHbZZZaFV4UQvpOQkMDRo0dJSEiwvN/e1sCJyh4ADip5fmzZwKQHSoSs+Ph4wsLCiI+P73OfxMREFEVxm4U3XHVHqjn827NZbNtKj27jRe18im5/TYInK2ok79q+xoezHuGInsR4tZbbeIni527FafdeDpqnzEtB7d+/H4fD4RaIm/OkZFhPCN9pampy25rtW/dXIhQn+7RsNDXGfw3zgARQImS51jprbW01bjN/2XV3d6Prutt09uFQNDttTy9hunM3zXoMT3EFZbaCUTtk5wlFUTj9whv4g3Itbznnoyo6syr+j6qHTiFBO+q3dhw6dAi73c6hQ4eM2+Li4ty2VmRYTwjvsLoYcU30OHbCx7FsO/8JwCZ9ZtB9zMolswhZVsMt5mG9xsbe4o6u7XDYtHa+x2uM1RupU1J4Ub+Q9hFYnsBXVEXlU9up7HZO4hr1TXKdh7mN/+MN5yJ2qjN9fn6rRUqzs7Pp6uoyatBYVa6XYT0hvGPDhg2UlpZSXV3NJZdcAkB0dDTd3d1ERx9fI6/9aCUF7dtAgYPqBH83d0DSAyVCltVwi6tHyuHoTVb2VpXxSGcTt/F/jFUaKbflYrthjQRPQ6Ao0B6WhuOmjWyMPpMwReNb6ntcqL1JU9WBALXpq8vadevWceDAAdatW2fcZvU+E0IMXl1dHXa7nbq6OuM2qwkfLvvXvYRN0SnRJqArUX5rp6ckgBIjyq5du2hsbGTXrl3AVzkv5tyXwfhswzvcqvyVRKWDEm0iKbe9T3LWJK+0d7TKzMxm3t2v84R2Oa16NDPVA6h/PI2xzsN+bUdTUxN2u93IvzDXkxJCeE9aWhoRERGkpaV5tH/s3jcA+EQvDLrhO5AASoww3giYjhXubCF/9TXEKV1s0abyL/V8YpM8++MX/VMUhSZbJo9zHZ9rE0mgne+rf2OucyOqn6qYNzQ0oOs6DQ0NACQnJ6MoCsnJyX45vxCjyYIFC1i4cCELFiwYcN8ovY18+040XQmate/MJIASI0pubi5RUVHk5uYO+1hhzlZuUf5KvNLJZ9pkVqln45SZdl6nq1H8Xf0G76deAcA56sd8W3uDo4f3+Pzcqqq6bYUQwWGc1jvZoyS8EFUND3BrrMmnhhhR9u3bR2dnJ/v27RvWcWzONm5WXiZR6WBfxHRWqucEtEyBK08nmIrIeZNNUTjz1v/lIec1HNXjmaIeJvxPZ7Jv/d/92g5zj5QQwnsGM6P1JHYA0DTp675u1pBJACVChif1eNra2ty2Q7Fv13ZuUl4hWWljpzae3NvexqkE9grIk6FJc2+Kq/aVN2tg+VpnWAq/5xq2fzmkN/nd65nhLAZ9eJMA+mJeRiI8PNxtK4TwHk9q9wHE6s1MVivo1m1MPvNKP7Vu8CSAEiHDfPWyfft2XnrpJbZv3+61c9TUVBD16rdJVVrYreXyunoBUfFjvHZ8b3FN+T126q95xqGrPtaxdbJCgaJG8E/1G3yQeCEA31Lf41ztHcJ0u8/PHR8fj6Iobh/wUkhTCO/Yvn07ZWVlA35m52kHAfg8ag5ZY4N39qsEUCJkmBd+LSkpoaKigpKSrxaqHU4SuaZrHH32W+RSQ5Wewj/VC3AoEd5p/DCZe5dchUH7KxDqrRIOgaAqCqffsYL3Z/yKTj2CU9RdXKn9nbqDX/j0vK7yF64tWK+hZyZBlhADO3z4ME6nk8OH+5ltq+ucQu/feWfBRX5q2dBIACVChrkeT2JiIqqqemWIStdhoXM9M5y7aCWGv3ARPQGqO+JJYrPVPmFhYW5bq7ypyMhIt635McFEURTOvORWHtWvo1JPIU89QtSLXyNVq/bZOTVNQ9d1t6Czvr6e1tZW6uvr+3ycVCsXYmBWFyhm8Xoj49RaOvUIpp95qeU+wZITKgGUCFlHjhyhu7ubI0eODOs4ug5TnJ/zNdundOs2as97jg7VemHLQDH3rFl9gJg/nAoKCggLC6OgoMDYJyIiwm2bnp6Ooiikp6f7+BkMndMWy7NcwWdaPvF0cBOvMNm5q/c/zsushj3b29vRNM2oYG7V22TuHRVCDE2+3ltQd4NWSEpyiuU+3i5XM1QSQImQYf7iMgcDQ5XuLOdy27sA7Jv7Kyadsmx4DR0kT3qczMGQuScJjk+Attlsxo+LJz1OwXJ1dyxFDecN9XzWx5+DTdG5Qv0P87QNaD3eWePQxWpo1PyaWQ3p1dXVUVZW5lZhWYjRbrBD27qzhwVKb37U50zrc79gKT8iAZQIGZ7kogzWZ5ve5Xr1DQD+pi1mxnk3e+3Ynpo8eTJhYWFMnjwZsA5gLrvsMn76059y2WWXAdb1rubPn09ycjLz588HepdGcDgcbkskmAMEq2n7wToTTVVU5t/xMs86v4FTVzhb/YS9jy2lq9V7JQesrmybmprQdd2oVt7e3k5nZ6fbmnpW+XhCjHaD/czev/FfpCgtHNXjabL1XbA4NzcXRVG8Uu9vOIIv8UEID9XX1+N0OvvNTemPpjkY+86NRCoOPtJm+mVBWyuHDh3C4XBw6FBv4ThVVXE6nQP2SNntdrfhuUWLFrFo0SLj94yMDBoaGsjIyDBuMy9VEh4eTldXl1uwFBYWRnd3t9HjEhkZid1ud+vtChTVplIVNonfOq7kJvVvTO3cRvlvzyBKP5cuJdYn5zSXOujs7MThcNDZ2WnsU1hY6LYVQvRebHR1dbldbPSn89OXAFinnYgtrO8e8LCwMCIiIgKeuyk9UCJkzJo1izlz5jBr1iwA4wvs2C8yT2m6znn6GjI5SpmWwQfq6fhisaWoqCi3rWs47dhhNfNsOaseIHPJBk+mAzc3N6NpmlsPlGsNKtc2NzeXyMjIgF/JDVZbWDq/1a+mljGMc5Zzvf4y8Zp/il9aDfOlpaWRl5fn8RpfQowGsbGxREVFERs78MVNmG5nStN6AHYrU/rdt7CwkJycnIBfsEgAJUKGOc9kOImEU5xfMFfdRSeR/E05H6ePyhWYgyOn0+m2BcjOzsZms5GdnQ1AXFwciqIQFxdn7GMeIjp69ChOp5OjR4/2eW6rD5nY2FgiIyOND7S0tDRiY2PdvvjNbfRWrpm3OWzxdFyzmv1KHqlKCzfxV1Kdvpuh5xIWFoamaW5XvzILT4jjZWdnk5KSYny29SdLO0yk0sNeLZsetf+Aq6ioiKuuuoqioiJvNXVIJIASIWPLli2UlZWxZcsWwDoY8USco5YrbGsAODjvQTpU31XqNrfRFbgce0VWVFREXl6e8WEwbdo0xowZw7RpXyVRmoOh/Px8oqOjyc/PN/YxJ2xa9YqYj1NRUUF7ezsVFRXGPllZWdhsNqNcRGpqKjabjdTUVGMfqyT2QMibUMCY295jkzaDGKWb7yuv8sVbT/n0nIcOHULXdWPIFWQWnhBWKisrOXr0KJWVlQPue9KXtZ826LODagJLfySAEiHDVZ9nOFNXD+z9ghvUfwLwlraA6Uuv91bzLJO/zbNF0tPTsdlsbmUDzB8yrqUOju3hMF9xjRkzhvT0dMaM+apKujlh06pXxBxUWfVSmQO61NRU4uPj3QKoGTNmEB0dzYwZM/p87v6SkpzCKvVs/uOcS5iiccKn/80U5xc+KXPQF09m4UmxTTHaeFJDDSBab6VQLcWpK5SpE/zUuuGTJHIRMlpbW9F1fchLk3TZu+l69XskKB2UaBP5TD2J873YPqshxcjISHp6eoyemra2NjRN63etPlcvRn+9GVb7mD+srPZxBVXQ29Nk1UvV2tqKw+EwXufs7GwaGhrcuuEPHjxIZ2cnBw/2LrkQExNDe3s7MTExxj6KoqDrul+CKlVR+Ng2n2ZnPJfZ3uUydTUrtTY+VU/x/rlUFU3T3JL8N27cSF1dHa2trX0OK5hfeyFGurq6OpxO54DlPSZqB0CF7ZEnovYE1+zf/kgAJUKG3W532w7Wpj//jDOdu2jTo3hb/RqaYhv4QcOUlpZGZ2enW/J2a2urW8Aya9YsEhISjEAnKytrSF+w5uRmq+OYg6ri4mL27dtHS0uLsa95n2N7yFzBgflc5tl90JvL1draauRy+TqgUhWF3baZvD9hFmeUPsoydSNxWgfOHju2cO8NNVotkeNJPp4ngbEQI4knS06h68z/svZTx7Rvw+fDK4zsTzKEJ4KS1XCH1Qw2T4U7W1lY8RwAr/poyrsrUDg2+dtswYIFxo+LeYkaK+bXw2p47uSTTyYvL4+TTz65z+N4ci5PhqNSU1NRFMUY1ktKSnLbwvEfnlb5X96mKHDmNT/nd9pldOs2zlCL2fP4eXR3eG9BZatZkq6eN9fWFwtdCxFqPCncm6TXkaUcpVWPpvCsKyz3CcbiviA9UCJIWQ13DPWPSNOdXM6bhCtOShLPpKI5z6ttdcnOzubAgQNuQ13mITurXqGqqipKS0uZOHFin4GN+fWw6s0oKioa9KwUq+E514w/1zHNPWRw/JInrp6lY3tgenp63LZRUVG0tbUZJR18qTkskyecV3ELrzC941P2/fZsbPpZXpltGRMTQ3Nzs9twZXl5ObquU15eDhz/GoJnQ3ievBeEGEmm6XtBgQ/02ZyfaL2Els1mw+FwDOni2ZekB0oEJVcSdXx8vHGbJwtRmuk6zHZuY4JaQ72SzKTvPuu1ek/mHrGKigocDofbjLa4uDhUVe23V8qTKfDmWV6e9CR5wmqWjCc1VgoLCxkzZoxbAcljf4fje2Vc1c6PrXruSx22FH6nX0WTHsvk7p1cqr1OhD74mmFmrrpax9bXMg/hWb2GnszUk3IIYiQZqFZfd0crC5TPAfiCqX0ex3zxHCwTMqQHSgQlcyIzDK0HKs5Zx4W2jwBoOef3pCZ6r9BheHg4TqfzuCGdY4d2UlNTaWxsdJvBZuZJbsxQ86KGwtyTZdVzYq567lqr79jnMGfOHEpKSowgwip3yNfstkQqv/FPut+4jMlqJVfpf+cvfNPn5x1qYU3JkxIjyUC5gXvWvkih0sUhLZ3OfsrJmMvBBMuEDAmgRFByBU/H9jaZh4QGUld7hO+obwLwb+00vj7Xm3PuenuXurq6jN6lRYsWuQUM0Nv7oqqq23CPmTk48ucwjtXwnJknX+pWyejl5eU0Nzcbw1pWs9f8YcasUzkQ8yZdL13EOLWOa/S/UVt2Del5M3x2znfffZfy8nJKS0u5+uqrAdiwYQOlpaVUV1dzySWXWD7On4GyEN40lM+t6JIvl27RT0Lt58I4KiqKjo4OY/g/WC40ZAhPBKWdO3fS2NjIzp07jdsG24Ox+6XlZChNlGkZbFdne72N5iFFq14Hq0KVA/HnMI63ksqtFtg9cuQITqeTI0d6Z9WMHz8em83G+PHjjX0SExPdtr4yqaCQF5RLOaBlkqk0YFtxHtV7t/nsfJWVlTidTreh0ebmZnp6etyG/oQIVeZhtMEuHFyzbxv53bvo0W0cVCf1u29GRgY2m81Y19NbKQzDJQGUCEoOhwNd1weV73SsSGcjp7W8BcC/lbPRlOF1tlotZ2LuVt6wYYPx45KTk0NsbCw5OTkenyvYqlqbl5GB4z88Y2NjiY6OdpthZ/7QW7JkCYsWLWLJkiXGPtnZ2URFRXm01MOwqRH8n/It9mg5pNBE9F+/TpzW5JNTWQX7GRkZREREGK+HJ3kcwZLrIYTZcC/0Kt97BoANeiGK2n/tp+joaMLDw4mOjh7SuXxFhvBEUEpKSqKlpcVtWrynNF3nUv4DwH+0eTTahp/3ZDWWb56ia9XDYFVVfCDBNoxzbKK4izkHwWoocMmSJUaXPnzVkxUfH288v6amJux2O01NTX55Looazsv6N7lM/Q9TtX3cyMs8p32bFjXFu+exyNerqKigq6vL6I30JI8jWHI9hDAzD6NZzejti6o7yK/uvcDdqg+8IPBgFiX2JwmgxIgzxfkFE2w11Ctj2KrO8coxExMTqa+vdxtqMgd5J5988nE5UMEyVj8cVuURzM/LKugz37Zhwwbq6+tpaWkxjtfW1oau6/1WZvc2RQkj/dZ3+OIPF3CCYwc36q/yrPZtr57DKl/PHIRbzTQ1GwnvHzEymf++rQru9iVDqyRRbaOaFFpsqQMOhXmSqxkIEkCJoFRfX4/T6RxwDSUzm7OdS9T3ADh6xoM4P9g7pPPHxMTQ0dFhJH+np6fT1tbmtoZddHQ0YWFhRreyVaARbL1J3jKU52U1LJuZmUlHRweZmZlA79I3drvd54sUJyenYLvtbbY8upST1d3coL/KgS3LfHrO6dOnU1JSwvTp0wHrmaZmI/X9I0aeyspKmpubPVw4uLd0wb7MC1FrBp5VHax/B5IDJYLSYGfcQe9adxeymnDFyUfaTKYsunzI5zfXMLLqQrbK+xF9y8zMJDIy0giW4PgeKH9WHE5MTGKlupSPtWnEKnayVn6HMVqtz87X0dGBpml0dHQAwZfrJsRw1NfXo+u6RwsHn6juQ9MVxi250U+t840RFUD94he/QFEUt5+pU78qztXV1cUtt9xCSkoKcXFxXHzxxcYMIZfy8nKWLVtGTEwM6enp/PjHPx5yIrMYOlcPxGB6Ij7+2yOcoB6kRY9mvbpg4Af0w/Ul59pmZ2eTkpLiNr4/a9Ys5syZw6xZs4Z1rtFiwYIFLFy40G0Zm8TERMLCwoyh0eGudzhYimJjlbqUjdoMounmRl4l2embtbgOHjxIU1OTsQCzECOJJ+tBAuRr+wAojpxD3qS+i2eGghE3hDdjxgzeffdd4/djk3fvvPNOVq5cyd/+9jcSExO59dZb+eY3v2nMmnI6nSxbtoyxY8eyceNGqqurufrqqwkPD+fXv/6135/LaDZQBVuz6upKZu17EhR4XV9Ctzq82RrmopiffPIJ1dXVdHZ2GsN0wdqtHErS0tKoqakxSj9kZGRQU1NjzFTzB0VReUf9GpGRccyxb+ZGXuOPTus6TcNhrmBuVTtLiJFM0Z2cofSWD7HP/E6AWzN8I6oHCnoDprFjxxo/rgrQzc3N/OlPf+Kxxx7jrLPOYs6cObzwwgts3LiRjz/+GIDVq1ezc+dOXnrpJWbNmsW5557LL3/5S5566qn+V5MWw2aerm0uETCQfa/8hCSlnb1aDmUD1BTxhPlq6ujRo+i6ztGjR4d97NHKatqzuU5WdHQ0NpvN79OVVUVl+h3/4kOtiEilhxuVv7FnwxtePYe5V9UqZ8S8CLGUMRDBwJP3oSdLbaVp1aQoLdTpicxafJnlPsNZNN7fRlwAtW/fPmOx1SuvvNKogrx161Z6enrcatBMnTqVcePGsWnTJgA2bdpEYWGh29Xv0qVLaWlpYceOHX2e026309LS4vYjBsf85eqqVu1J1eowZxsLmnorjv9HOROU4b+tZ8+eTXJyMrNn9xbgnDFjBtHR0cyY4bvq1SOdVc6Pec04c/FNwAimfB1URUdH8556lhFEjV/9Pa8GUa48L9fWKijfsmULZWVlbNmyBZC18URw8OR96MkQnit5/D3tJKKjrRcVz8jIQFEUv/ZCD9WIGsKbO3cuK1asYMqUKVRXV3P//fdz2mmn8cUXX1BTU0NERMRxdYVcQwaA5dCB63fXPlYefPBB7r//fu8+mVHGvHSLp0nkmq5zLu9jU3Q+T1pMU/Pgaz5ZLTFiXtttzpw5jBkzRhJ+h8FqyNM8czEjI4Py8nK3v0NzvS1fUhSF99SzQNM5Xf2c8au/xxj92zTavP9hHhERgd1udyvOai6XIWUMRDDwxvvwSOnnnKzuRtMV9qhT+txvKBOIAmVEBVDnnnuu8e+ZM2cyd+5cxo8fz2uvvebTq9d77rmH5cuXG7+3tLSQm5vrs/ONRPv376e5uZn9+/e7LVI7kGStmhPVfXQSwbhLH4U//nnQ5w4LC6O7u9vtC9pcwFAKGvqHufgm+P8DtTeIWkxsVAxzuj7mRl7jGeelNNnSB37wILiWvTl2+ZuoqChUVTXW/JI8OxEMrN6Hg137rmL178kA1uuF6Dbr3ifo7cFy/QS7ETeEd6ykpCQKCgrYv38/Y8eOpbu7+7iKx0eOHGHs2LEAjB079rhZea7fXftYiYyMJCEhwe1HDI7VUikD0XSNS5V3ANiTfwNJmROGdG6rISLzcJNMOfcPqzWuMjMzsdlsRvmDwQzvDpWiKEz/4RtsjTqVKKWHG5XXSNT6XgtwKKyWe9m/fz+dnZ1GsC5EsNqwYQPr1693W7qqL6rew5Sa3jSLzczqd19XCkwopMKM6ACqra2NAwcOkJmZyZw5cwgPD2ft2rXG/Xv27KG8vJx58+YBMG/ePEpKSqit/aoWzJo1a0hISDCK34ngMdW5g7FKIxV6Kidc8rMhH8dcsgCO/yIPlsUrRyPzGnq5ubkoiuLzXt7o6Gim3/4667VCopXeEgf7t6z26Tnj4uJQFIW4uDifnkeI4aqursZut1NdXT3gvrlaGXF0UqqNpX2AZZMGu2h8II2oAOquu+7igw8+oKysjI0bN3LRRRdhs9m4/PLLSUxM5Prrr2f58uW8//77bN26leuuu4558+Zx6qmnAnD22Wczffp0vvOd77B9+3beeecdfvazn3HLLbf4vDLyaNfU1ITT6fR4TbSDpXu5SF0HwFv6WYRFxgz53FazR8yzoazIDCn/MAevYWFhRERE+CUnKjomhnfVxWzSphOjdJO18iriNd/NxIyMjERVVfm8EUHF6rPOPCmiT7rO6XwKwHv63AGL5LqWNupviaNgMaJyoCoqKrj88ss5evQoaWlpLFy4kI8//tioMfP444+jqioXX3wxdrudpUuX8oc//MF4vM1m46233uLmm29m3rx5xMbGcs011/DAAw8E6imNGoMtoFj5+n1MUHoo1iZxRB148cpjxcbG0t7eblQQj42Npa2tza2ieElJiTG1vq91nSQvKjBycnJobGwkJyfHL+dz1YlSNZ256i5u5FWe0S6jTU32+rlqampwOp3GpJU333yTXbt2MW3aNC644AKvn08IT1h91nmam5ik1zNRraZdj+SwLW/AXpuZM2cet6ZosBpRAdQrr7zS7/1RUVE89dRTPPXUU33uM378eN5++21vN00MYDABlKp1MK/lP6DAOmUBDHLZD/O55syZc9wfrOvf/f0RywypwDAviQLWMym9SVFs/Ec9m5jwcAp7PucG/TX+qF3q9fOY35vFxcVomkZxcbEEUCJgrD7rFEVB1/UBe5Rm65+DAsXJ56A2DVzbybXAtj96mIcr+FsoxDF0HU7XN2FTddZrM2m2pQ76GOYx9rq6Otrb26mr+ypJ2GphYDOZIeUfnsz2MQdQERERdHd3D2pSwkAUxcb42/7NZ48sYba6n+/pr1G+8wrGTT/Fa+ew2WxommYUEfQkH2Sws6GEGCyrzzpP6j5F6h0sUHprP6WceSu8/p8Bz2UuaRPMRlQOlAhdni4iG6U1c4a6HaeusFEZ2heXedZdfX093d3dAy6CKQLDXMTPag1C8yzOwVay91RCwhj+rZ5HiTaRJKWduNcupnJvsdeOP5R2S7FN4Wvr1q3j97//PevWrRvU4yZre7EpOlu0KUyd6dnntXl1gmAmAZTwO6uERE+WAdB0naV8AMDn6V+nUx1auQjzl1RqaioRERHGsj8iuLi68/tLKjUv/+CrAAoAJYx/quezUxtPMi1E/vVCorQBEmk9ZO5xOjZPz8X89yMlNoSvlZSU0NjYSElJicePcdg7WKT0VtTfqJ/o8ePMqxMEMxnCE3431OTrRGcds2376dQjmPSt/wdPvzCk84eHh9PV1WUsFLxgwQIyMzPlCyhIubrzW1tbAev3j9/Xz1LC+Lv6da5U/80k7RDX8Dde0L9NtxI78GMHwWpRbfPzl6Fk4WsRERHouj6oIfEvVj3HLKWVaj2ZBlvfdRTNPEmfCBbSAyX8bihXzF12O19X3gPgbX0BCRnjhnz+1NRUbDab9DiFCE+KmmZlZREVFWUEEp4OCQ+HroQTf8NKDik5jFUa+Y7+D8L1zoEfOAhWOVCe9MgJ4U2NjY1u24HompPkz/8IwCptPqoP/w4DSXqghM+Zk1yHcsX8yb+e5nS1iiY9ll3q8Bb0jY6OJjw83MiBknIEwc38frF6/5h7EQsKCjhw4ACTJk3yadvSM3Opvv4tDv3xbMartVyuvU5j7a0+Pef27dspLy9H07SQuVIXoS0+Ph673e5x0L5n/etMdR6mVY/ikG0SIzN8kgBK+MFwA5Quu50JO3vrdb2tn4ZT9bwbOTw8nJ6eHmO4DnrzSaKiooy8EilHEPrMQVVOTg5dXV0D1orydCp2fzJzJvBL5Vtcr7/KBLWGg88sQ9XPR1OGPwPQZrPhdDrdhiarqqpwOp1GDtT27duNMhwSUIlgoG/8PQDvaPNQwvw0rB4AEkAJnzMHKIP9wP/k389wOjU06HEcUAsGde6IiAh6enrcxu5jYmJQVZWYmN7q5ZJDMvJ4GhR7MhXbE5oaxQvaJdygv8IEZxkXa2/yD/XraEr4wA/uh1UyvHnChSdFX4UYDPOogWuGsiczleO0JqZ1FdOj29ipjuwl0CQHSviceSmODRs2UFpa6tEilJquk7ejt/DpKn0hmjK4mL+7u9ttC70LtjY3N8uCrSOY1dqFvs6LcqgxPMelNJDAdPUQ39DeRtW9X8vGHFTl5OQQGxvrt8rsYuQrLi5m69atFBcXD/qxs/Xe5a+2xS9CVwdekiiUlm4xkwBK+F17ezu6rtPe3j7gvulaBeOooZGEQfc+AUYvk2sLkJiYSFhYGImJiYM+nggNVqUyXEU2j61W7u3Zez1qLPUXvUqTHstM9QDnaauwd3qnxEFfQqlysxjZIvQOTlc+AyD+zDs8eszixYuZNGkSixcv9mHLfEMCKOF3ni7bouk6y/gQgLIp1w+69wl6F2dVFMVtcdYFCxawcOFCFixYMOjjidBgdQVt1QM1ZcoUoqKimDJlitfOXVA0n2f0y2jTo5ij7mXP775JT3eX145vZlW5WRa6FsPR0tJCW1sbLS0tg3rcVG0XYYrG5+FFTDvxNI8eU1RUxFVXXRWSw88SQAm/8zTvJE2rJE89QiMJzPjG8iGdy6pIptXwjhj5rIYKzBMKvKXLlsjT+mV06hHM7NzMF7+7BPS+l2MZjs8//5yGhgY+//xz4zZzdXIJqMRglJaW4nA4BlXdXtV7+JqyGYDuk3/g8VB5KL83pc9X+F1ERARdXV39FmXTdJ3zv6w6XlbwXWbHDK3quBTJHJ1mzZpFQkKC2/97QkICTU1NJCQk9Luft7TbknnaeSm38DKz2z6kXutko7pw0ItfD8SqRo85iV5KdQhfm6DtJ07tYr+WxezFl3j8uFB+b0oPlPC7rq4ut62VVFfvkx7HjAt/NORz1dXVUVZW5rZQsBidamtr0XWd2tpav52zxZbG5/OfwKGrfE3dwknOzcOe8ecJcy+rLPciBqOnp8dtO5DuznaWKhsBeJd5g8opDKXFg80kgBI+N9iFKLt7HEbu03/0BUQMovfJlRju2rqmeA9mDScR+qwW2J02bRrR0dFMmzat3/287aSlV7Ftzm/QdIVlto0UadvQNd8M57m8+eabPPTQQ7z55puAXEgI3yp560nSlGaq9BRq1NxBPTaUFg82kwBK+Nxnn31GQ0MDn332mUf7b1n1f0xUa2jWYygd5Mw7c36VTPEenax6XC644ALuvvtuLrjggj7389Waeqd8/fs8q18EwEXqB3yy4m6vHdtqduGOHTvo7Oxkx44dAGzZsoWysjK2bNnitfMKAaDoTnJ29i7bslI7DUXpO6ywmsgRyp/REkAJn4uLi0NRFOLi4gbcV9d1kot7q46v0U/FOchChOZzyRTv0cnTiQLm/TIyMlAUhYyMDK+3qcaWx/Pa1wGYW/4sEx27vHJcq/XyoqKi3LZWpTtCOXlXeM9w3wfZ2iEy9Hpq9SQqbXn97utaPsu1hdD+jJYASniV1R9jZGQkqqq6lRLoS7TWxDTnXux6OHvVqYM+v/lckvsh+rN9+3Zeeukltm/vLf6XnZ1NYmIi2dnZPjnfYVs+/+c8F4Dv2P5DrtM3xVzNvVIFBQXk5ORQUPBVj64/hi9F8Fu5ciXvvfceK1euHPyDdY2zld6CyCu1hf32PkHvBYrNZnO7QAnlz+jQC/lEULOaUWFVDbwvC/gUgLX6SfSoUYM+v/lcskyL6I95GRSrWXneWC/vWAds09iYPZb5lS/wXfXf/NH5Ta8c91jm5V727t1LZWUlkZGRRr0d11W/q6yDefkOMTocOXIEXdc5cuSIcZvVGqJWMrXD5Kp1NJDAIdvEARcNjo6OJiwszK0HKpRJD5TwKvOHMvR20WqaNmAXrepsZ6FagqYrfKEWDun8+fn5JCYmkp+fP6THi9HFnH9hNfRnlWM0HIoC865/jNedpwNwvfI6297+k1eO7eKq8u/a7tu3j66uLvbt22fs4wqq9u7dC0iP1Gjl+lw+9vPZo1l4usbX6O192jn+OygeFDru7OzE4XDQ2dlp3BbK7zsJoIRXVVZWcvToUSorK43bqqqq0HV9wDH2k/ViAL5IPINOZeB8KSsdHR1omkZHR8eQHi9GLqvhZXP+hdU+5nwib1BUle22ObytzcOm6BRu/jHFa/7qteOb86KsvhCrqqro6uoynmsoD6UIz5nf40OdOJGuVTFBraFJj6Xwwrs8ekxjYyNOp/O4mmWh+r6TITwRHDQ7i9Xe4bvks38M/1gb4AaJkcZqeNlccLK4uJh9+/bR0tLi82EsRVH4RJ1LuNbD19RPmb7+Nt7XL6fFlub1c0VERNDd3e1WvDYiIgJFUYzbZLh7dNiwYQMHDhygurqaSy65xKO6fGa65mTJl71Pb2sLuGJMskePs5qFF8rvO+mBEl41a9Ys5syZw6xZswb1uBnaDsIVJ9u0AnJOWOjRY6z+GId6fjHyeXKlW19fT2trK/X19cZt6enp2Gw20tPTvd4mRVHZqC5kW+xpRCgOblJeJc551OvnsRqmmTZtGmPGjHGriyVGvubmZhwOB83NzYD1LM6BfL7m/5isVtKmR7HP5vlkn8zMTCIjI8nMzBxco4OU9EAJr7K6mhho7bvaI9Wcq24CYKNyEid6eK6EhASam5vdluYI5asZ4VtW7w1zr1R7ezuaphm5QwBLliwxkqt9QlE54fa/s/3x8ynq2sL3eZX/1a7w6imsFvAO5enjYujy8/Pp7Owccp6o09FD8uaHAPiXdjoM4v0z0pbWkr8c4XPmGUFmu1b+jjMUO/u0HI6qntffseqBEmIwzEN4qampNDc3H7f49LGBV2RkJHa73aOyHJ6KiIxiyu1v8OlvzuIkdQ836q+wf/u3vHZ8p9PptgXrCR9i5Btu4Lz9rf/lRK2SRj2O/YPofYKRd4ErAZQIqC67nSnlrwLwAScPaqHVwZRHEMKK+QPdkytkXwRQAFExcbytLiVMczBLPYD2+qVE6pdhV30T4Bw74aOoqEjKGIwSFRUVVFZWDm1ShO4ke/sTAPxLO2NQvU/QW3etpKSEwsJCo5xGKJMcKOFVg61qu+2dlxjLUY7q8VQPcg0l6YES3mZVxsBcbDM/P5/o6GiflMrQlTD+rZ7HDm08Y2jlel4jQmvz+nmgt4xBU1OTlDEYZUpLS3E4HEP6f87TDpCh13OEZMpsA7//XRcZru1IW5tUAijhVYP5ENZ1SPj8OQDe109G86COyLFOOukkkpOTOemkk4bUViHMrC4AzOvI2Ww2IiMjvb5enouuhPNP9QJKbXmkKc1cy98J17xflsOVROzaypCe6I+qOzhf+QCAA9NvQVEG//4vLCwkJyeHwsKh1fkLNhJACa8azIdwhNbKCY6d9Og29qlTBtzfPJNo0aJF3HbbbSxatGhYbRbCxeoCIDExkfDwcLd15HxNUyJIunElB7RMMpUGruFvVB/a69NzWtVwM5P180Kfq7r4QFXGzSY595CitHJYyeSkb9w2pHMXFRVx1VVXjYjhO5AASniZJx/CLrP13m7cnWPOpFsZuLR/eno6iqL4ZDq5EGBd6mDBggXGD/Sul5eSkuK2Xp4r6fzY5PPhSs7I4WX1Qg5p6WQrR3GuuIAjlb4bXtu5cydNTU3s3LnTuM0cMBUXF7N161aKi4t91g7hW7m5uYSFhZGb63nKhKp3c776EQBVs+8kwsP8v4FmYIc6CaCEV7W3t9PV1eU2DdyKrvVw1peFM8ec6dnVTFJSEpGRkSQlJQFyNSy8zyoHynyb1UXCRRddxOLFi7nooou82h6nEs1L6sVU6Knk6DXYnzsfVbcP/MAhMC//AvDuu++ybt063n33XZ+cU/iWOX8Pet+/DofDo4tclxnaFyQoHezRcjhp2fc8fpxV/bGRRAIo4VWVlZV0dXUN+Mc5SdtPpOLgQHgB42ae4dGxY2NjiYqKIjY2FpCkVxE8PvzwQz744AM+/PBDYOjDJFYcSjR/5lvUkMo4vZLLtddRde/PPLVqc21tLU6nk9raWkAK1QY780Xlhg0bKC0tZcOGDcY+bW1tbtuBVJftYpmyHoD/cMagcv/MSeQjzcgMC0XAtLS0uG2taLrO2V8Wzuw88UaPSxdkZ2fT0NBgDJ2Ya/gI4Q+zZs0iISHB7X23f/9+nE6nUZQzJiaG5uZmYmJivHLOHjUG7ap/U/d/55OvVvFt7Q1eU73c22VRK8o803Wk1fEZacyFYR0OB7qu91mDzxM1f7+bTMXBZm0aTerg0ieio6NpamoiOnrgFI1QJAGU8CpFUdB1vd/SAqlaFRlqE3V6ItOWXO3xsVtbW3E4HLS2tgLyYS4Cw+p9Fx4ejtPpNHpvfJH7kTVpBhVXvkH9S+czRa3gEu0NGuuHlsxrxarNg+2tEP5jVbfLfFE5lHXujpXgrGd224c4dYX3lYWDLhmjKAqqqo7YUjMyhCf8Std1Tqd3Ovj7+snYwj3v2g3lVbvFyOZakNe1zczMJCwszOtrfuVMLuJPXEq9nsBU9TB1/3se6D1eObYnQZ8neYeSm+gfnqQwdHZ2um0HRdc4l3UAvK3NH1JB1/z8fBITE31SMy0YSAAlvGqghSl3fraBIrWUHt3GfnXyoI5tleArRDCYPXs2ycnJzJ49G4DGxkacTieNjY1eP1eXGs+f+DYNejwFzv18U3sL9KEP0QyGVVK5zNQLDKsLSm/mhWZqh5iqltOix1Bsmz2kY3R0dKBpGh0d3q9jFgxkCE/4VdOHfwRgk15Ijzoyx8XF6LNo0SK3emQ9PT3ouk5Pj3d6h8y61ASe0y7lRl6lUD2Irr3F6+r5PjnXsY4cOYLT6eTIkSPGbRs2bODAgQNUV1dzySWX+LwNopfVULK38kIV3cFFyloAvsi/CU3m6ViSHijhN7rupKhxNQDblRkBbo0QvpOZmUlkZKTXh/CO1akm0PStv9OoxzJTLeUi7S2aGut9dj7ASIo/Njm+vr6e7u5u6uvrjftUVfVaAv1oNNRhUG/10k/TviBNaeGQls6cb9/t0WNUVXXbwsiftSkBlPCbsdph4pROyrV0GhQphilGrgULFrBw4UKj+CZYf8EMV94Jp/IslxlBVM2T5/k0iHINxRw7JGO329F1Hbu9tz7V/v37aW5uNmaDWZE8qf55MhRnVePJ6rbBqirdydeV3qKZ/2IxkZGejRSY8wBh5KddSAAl/ELXYSHbAPiIOQOWLoiLi3PbChHqBsoPHKpONZHnuIwmPZapzj3UPHmez3KirJKSzUGV1RepmdRw659VfpM56LRamHe4i/XqmsbR124lUunhE20qDepYjx870ms+WZEASvhFhNbKCWoZ3XoYZeqEAfePjo5GUZQRWz9EjGxWAYIvv2A61ESe5TKaiGOqcw/f1N702uy8Y1nN1DMP66WmphIfH++2rI35y9+TAEG4M7+nrBbmdTgcdHd3D7nu07b//InCrq3Y9XDeVc4YVPkBq97JkU6SyMWwrFu3jpKSEgoLC/td1LdQ711fa1fSGThaogY8rq7rxo8QocYqmTclJYXq6mpSUlKA3ouEzs5Or10kdKiJNH/rn/C3iylUD6Jqb/J39QKvHLs/5qFJc8Fb6J2Zt2/fPlpaWvoczjEXgRzNrF4LTxLEq6qq0HV9SEGooveQt+X/AfAP7Ux6wmIH93hT0dXRQHqgxLCUlJTQ2NjYb5expjs5U90KQPyCGz06rqtYpmsrRCixyv1w9Qq4tr7IiRo/Yy4t3/4HDXo8M9QyLtXeoO6I52ueDYUr98m1tVorsL29nc7OTmOdPatSB0Op8zZSe608eS3WrVvHgQMHWLdunXGba9bnUGZ/znZ+RgpNlCvZ7LNNG/Tjs7OzsdlsboHzSCcBVB+eeuop8vLyiIqKYu7cuXzyySeBblJQKiwsZMyYMW7dyGZZznLilC7KtLFMPHmpH1snRPBITU0lIiLCGNry5np5xxo3fS7PHlNss/WZc1F8sHaei3noprKykubmZrcAKjY2lujoaGMdS6tFx4eScDxScqnMgaDVa2EOOq0Wfx6qGK2JZWrvenktS/4HFM/Xu3NZsmQJixYtYsmSJcNuT6iQAMrCq6++yvLly7nvvvvYtm0bRUVFLF261FhQU3yltbWVzs7OPnuKdE3jdKW39+kjTvR43TvXgpX9LVw5Uq8+Reizem+aZ+Z5sm7kUHWpCfyJSzmiJzFRO8RV2j9QNLvXz2OloaEBXddpaGgwbrOazu6N4fmRsjqBJ4GgOej02qQEXeMCfQ2qorMlcSknLPBs2NdqncSRPOPOigRQFh577DFuuOEGrrvuOqZPn87TTz9NTEwMzz//vOX+drudlpYWt5/RoqSkhM7Ozj6H8Eq2rGOaWo5dD6fcg+Rxl5NPPpnk5GROPvnkPvcZKVefYuSxem+av2B8NSvPpUuN5wUu5YiSykS1mmv0v6FoQ1sTbTCsFiWuq6ujrKyMuro64PgeqaEaKV/a8fHxhIWFER/fu1yKVQDe2dlJT0+PMQPSW0PAec59TFUP06jHMunKxz1+nCcXuSOdBFAm3d3dbN261a0bUlVVlixZwqZNmywf8+CDD5KYmGj85Obm+qu5ATfQl0DrphcAWK/PxKF4PvuooKCA2bNnU1BQ0Oc+I+XqU4w85i9EK2FhYW5bX7CrsajX/YcKPZXxai3f41UO7B56jSBPWOXhbNmyhbKyMrZs6V0H05MCiyO1h9nqeZkXSrfKEevu7nbbelIuYiBlu7dxmdpb3Phv+tkkp3uevyQBlARQx6mvr8fpdJKRkeF2e0ZGBjU1NZaPueeee2hubjZ+Dh8+7I+mBgWrq02X1tYWCht718zaoQwuKdGT3qWRcvUpRh7zF6KVBQsWkJyc7FZs0xdfSmnjCvizcgkHtbFkKUdJfOUC9mz/2GvH94Su62iaZgzbWf3tDmVNvVAMsqw+28wXg/X19bS2thrV3aH3OygiIsL4bhp2DpSu0/237xOp9LBJm06Vmjeoh/u6BzUUSBkDL4iMjBxVxcM8VbL2r8xXOqjUU2hU0vrdNzY2lvb2dqNL31trOgkRCJ68fwsKCggLC3Pbx6rOkjf0KNH8Vf0ml2j/pkCtIOyfFxOpX4rdlujV8/SltbUVXdeNgHL79u1G+ZOioiKgd0290tLSQa2pZzXdv6qqitLSUiZOnBiUF1ee9E62t7ejaZpbcNTc3IymaTQ3N3ulHfnOnRSwl2Y9hvfURYMuP9DfxfNoIT1QJqmpqdhsNrfFMqF3Ec2xYz2vyjoSDfZqL2bnqwBs0GcPmDxuHs+X3iURyjx5/65cuZL33nuPlStXGrf5cljEoUTxmnoh+8KnkaS0cYvyF6KdjV4/jxVzb4krWNqwYYOxT11dHXa73ciT8mRNPath/GDPjbQq82DubTPP2ITeoV6n0+mVId9IrYVvq72jAy/r5+FQBq7NZ+aLMhyhZvQ+8z5EREQwZ84c1q5da9ymaRpr165l3rx5AWxZ4HnSpe6iaHZm2j8D4KA6acD9u7q63LZCjHRHjx5F13WOHj1q3JaVlYWiKD67cHAqEeT+cBW7omYRr3Rxu/ISCY4jAz9wmMzDPVZFF83FcysqKmhvb6eioqLP41oFqv7MjfTWEKK5TlZaWhqxsbGkpX3Vc3/w4EEcDgcHDx4c1rl03ck39VWEK04+iz2NGnVoObuuArCjebUICaAsLF++nGeffZYXX3yRXbt2cfPNN9Pe3s51110X6KaFjAlaKaqisztyJl3KwDNtfFUTR4hgNWPGDKKjo5kxY4Zxmz8KyEbFJZF/x9ts0AqJUnq4TX2Zj/72W5+dz4rT6UTXdbfhn7a2Nret1VIlniyW68/e66H0djmdTux2u9tz7+zsxOFwGDPsrBZkNieRD9UMrYQCtYKjejx51/5xyJXDc3NziYyMHFWTpswkB8rCpZdeSl1dHffeey81NTXMmjWLVatWHZdYPtrMmjWLhISEAa/sNF3ndKV34WB74eWwtc4fzRMipFxwwQVccIF7zZ28vDw6OzvJy8vz6bnDo2JZqy6mQ4via+oWTttxH/uc51NuK/C0VNuwuHrdju19MwcIRUVFRn6Uy4YNG6ivr6elpeW4+7zNKk/LbCi5mvv376ezs9MtOGpsbMTpdNLY2Duk6o0ZdlZKNqzkm8r7ALysL+PWtKEHmQUFBdjt9n5nSo900gPVh1tvvZVDhw5ht9vZvHkzc+fODXSTQkas1sR49QjtRDH1rKs8eox5mQshRjqr4Z8xY8aQnp7OmDFjAEhMTHTbepOuqGxUF/Iv7XQAvmt7i2nO7WgBWn/Sk1ldXV1d6Lre71C/t4bVNm7cSGlpKRs3buxzH096u8ztiYuLQ1EU4uLijH3MOWK1tbU4nU6vFm+uqy5n7JpbsCk672incNQ2vB46q1yu0UZ6oITHPF3s8wR2AbAneTEnxiR4dOyYmBi6u7v7TRgVYiTxZMFYnyfqKgrFtpMYVzCH2Xse51LbWlY5W726yPFQvfLKKxw4cIBJkyZx2WWXAZ4NY3nyOWWeqWc1c28oMyKtjmNeSDkpKYmGhgaSkpKMx5lrZ3lzmZbe56BR/cLVzKSRA1oWm9VTh31Mc97WaCQ9UMJjniRnarqT05ViAJLmX+vxsRctWsSkSZNYtGjR8BopRIiw+nsyV+y24ougavblv+B57UIcuso5tk/Y89g5NBytH/iBPrRnzx4cDgd79uwxbjMHGla9TZ58TpknxFjlMi1YsICJEye61ekyG0rtKnNFcfB9Dmi+czczuz+jQ4/k78oydGVwfSdW7zlvVZMPZdIDJbwqQ6siTu2iXE9jwomeLypple8gxEiWlZV1XA9JSUmJMeusqKiIzMxMOjo6yMzMNPbxVa2ow7aJPO28lOv4J7N6itn/1GLQzgfVu3k4w2GevTeU3iYrVrlMnnwmeXL+7OxsGhoayM7urfLd1NSE0+mkqanJ2CcqKoqenh6iogZfTmAgsc6jXK6+A8DuOffR9dngA+PY2FhaW1vdgiVPc2JHMgmghMc2bNjAgQMH+i10dzKfA7BRn81lo7g+iBBD4Zpx5tr6O1H3qC2TZ7QruJZ/kq+V8T1e5gXtEpxqcAytm4NHq8DHPGRm/h2OrzFlFcyaWSWVm4timoMl1+PKy8vRNI2ioiLLfE9fFaVU9W6uVt7Apuh8OuY8Tvr6Lbz52f2DPo7V0Kknr9lIJ99wwmPNzc04HI4+K+GWH9zLyWpvd/tBdfRelQgxVEVFRVx11VXGF7TVkjAJCQluW29rVcegXb+aSjWLbOUot/Nnoh0NPjlXf6yKipqHuj788EM++OADPvzwQ2OfyspKmpubjeRmq2VRPKkxZebqHTx24fTt27dTVlZmlFWwSqwuLy/H6XRSXl4O9NZNUhTFLceso6PDbesNXV2dnKetJl1p5oCWxQnfe2bIx5JlW6xJACU8lp+fT2JiIvn5+Zb3H/rgzwB8pk2mWwmOK1YhQok5p8Yqn8db9YD6k5o7laTb1rFdm0SC0sFy9c+899Jv8OcEPau8G3NQtW/fPhwOB/v27TP2qa+vR9d1I2Cyer0SExNRVdWY3WiVS2WuOWVVl8o8W84qWDP3LlnVwPI2Xdf57OnrmaPupU2P4u/KMqJihx5w+7rAa6iSAEp4bPv27TQ0NFgWsdN1yCx/C4DPmN7vcaRophDWzMnMVtPkp02bRnR0NNOm9S7Q7atSB7FjMviXuoz3tDmEKRpn7X+QGc7P/FbmwJwwDp6VOzEHLGFhYWia5rYEinlduQ0bNhg/LuYep8bGRuPHJTExEUVRjNfeKr/JHPRZ1cDytnHO/cxrWommK7ygX0SX2ve6e55wOByoqiplZkwkgBIec30oHPvh4BKmt5OvHaRbt1Gt5vR7HF/WthEilHkyg2zOnDnMnz+fOXPmADBp0iSio6OZNGngJZMGS1fC+Eg9nde0rwFwie19FmtrceqBWUDWHEBZJdSbb6upqUHXdWpqatyO093dbRynubmZnp4et/SE9vZ27Ha7MU1/y5YtNDQ0sGXLFmOf7u5udF03erfsdrvbFny7vqGVeGct16i9F7N/0c+lwZY5wCMGlpiYSFhYmHxmm0gSufCKydoBsMEWfToONbLffdPT02ltbSU9Pd1PrRMiNHiSmGtOii4rK6Orq4uysjLfNEpR2GUrZNeC85nw0V2crn5OllbPnh0XM2WGf2fOmnNxrAIo8z7x8fHY7XYj0Rt6c6B0XTdyoDIyMmhoaHBbbcI1LOfaWiV6NzQ0uG2tcoWs1v3zlXCtjRuVv2NTdLalXEDpUet0i8GSquPWpAdKDJuu6yxUexcO/pypA+4v9UOEGDpzAcO8vDyioqJ8vvzLtCXX8r9cSa2eRL5axdjXzmXDqpd9ek5viIiIQFEUt2VRzIHO4cOH6erq4vDhw8Y+5lQDT8pHWAVL/shZA6ipLOc7vE6c0sVn2mRmfv85vLUuj9VkBiEBlPCCaK2ZbOUo7URRrw7cXZydnU1KSorbVF8hhGfMFyDm5V98qUVN5nnlckq0CSQq7Zy66WZyHXsDtvyLJ6yG8MyBTnt7O7quu1XVdvVYubauHKpjc6nMx3EtMXPsUjO+qtt1rKP1R2j/0wXkKnUc1tNYqZ5NWMTQa0qZn6u5XIPoJQGUGLZp+l4A9oxZhOZBhdu9e/dSUVHB3r17fdwyIUaeWbNmMWfOHGbNmgX4/8vNrkTzhnoBn6d/A5ui813bW5zm/CBgeVEDsRpWMy/WaxX4mHM+rXKZ/BEcDUTTnRz5368zSSujXk/gL1yEU+k/jWIgkZGRblvpgbImAZQYFk3XWKgWAxAz53KPHlNfX093d7fbVF8hhGfMM/MC8eWmKWHMvPlFdsy6jx7dxhLbNr6rvcL2TzcM/OAgYM5nsgqyzAnrVkNxnuRk+ZKma5yrrWG6czfNxPECl2BX4wZ+4ADS09Ox2WxGnqr0QFmTAEr0yZNVzZO0epKVNur1BApOXebRcVNTU4mIiCA1NXVQ5xJCHM/qy82cv+OTRYkVhRkXLucPXEGNPoY89QgFb15IsqPCr/WihsLcA+UJT0oo+JOu6yzSPuBUdScdRNJw4V/oUL0zS27cuHEkJiYybtw4QHqg+iIBlOiTJwtjFuq7ANioF6GGeVbXacGCBSxcuNBtkU6rxTyFEAOz+nLzScDUhyY1jReUy9miTSVa6eY222vMcX6MUw/eqtWuhXyPXdB3IFY5UIHSZbczz7mBM9XP6NbDqFj6JybMWuS14+/fv5/m5mZjnT9PymuMRoN+J1xzzTVcf/31nH766b5ojwghzU2NLFB7i8ztU/quQaOqKpqmGR/mVlO1rda0EkIMzOpvx9xb4uulOLqVKN5WzyWqYAkz9jzFBbaNzNAO8ummRZw070yfnHM4hvJ6WNV4CgRN1/j88YtYavsEh67ynH4xP5h3wZCPZ7PZcDqdbrld5h46WffO2qAvT5qbm1myZAmTJ0/m17/+tduaP2JkGWi23K51LxOtdFOupdOm9D0DyDVbqL+yBVYVl4UQxzMPd1v97cTFxblt/UJRKLziV/yBK6jVk5ioVjNz1cWsefa/cQb5kF6o0HQn52rvcErXBux6OM/o36bONrzZzGPHjsVmszF27FjjttTUVOLj493SLMTxBh1AvfHGG1RWVnLzzTfz6quvkpeXx7nnnsvf//53t5L7IvStX7+eAwcOsH79esv7w3f/G4DNFPZbbyQ3N5fIyEhyc3N90k4hRhPzcLdV/mBcXBw2m80IoDy5iPGWo2oGzylXsEErJEJx8rXKp1im/QenJt8Pw6HpDi7S3uJUdRcdRPIM36beNvwLTqfTafy4SKkZzwxpgDwtLY3ly5ezfft2Nm/eTH5+Pt/5znfIysrizjvvdFvYUYSu/tZsamyo54TO3iUNypS8fo9TUFBATk6OVLEVwgvM+ShW+YMnn3wyeXl5nHzyyQAkJSVhs9lISkoy9vFlTk+PEsW76hJ2n/wrOolkrrqLu/gTyY4KehzBWe4gmJUd3Mdl2hvMUg/QrMdQd9FrNKoZAz/QA67Z0MfOipakcc8MK8OwurqaNWvWsGbNGmw2G+eddx4lJSVMnz6dxx9/3FttFAHS3xIEuz94lUjFwUFtLB1K/6t87927l8rKSqn7JIQXmIfsrBJ8i4qKuOqqqygq6l1qJSMjg4iICLelSqyWJvEqRWHqslvpvG4dO7XxJCgd3GZ7je2/WSK9UYOwdcNqYl78GtPUco7qCTzL5YwvWuS147uG6Y4drpOkcc8M+tKjp6eHf//737zwwgusXr2amTNncscdd3DFFVeQkND7Rfr666/z3e9+lzvvvNPrDRb+019Nk8g9vcN3W5gx4HIBBw8epKuri4MHDwK9Qw6lpaVMnDhRcp6EGCZPEnybm5vRNM1tsVx/1SxKHj+dJ9WLmKLt4kLlPU5ybGMKO/mz43yO2Mb59NyhTNch2VnJCauvIFLpYb+WxT/V8+lUvJvXZrPZjB8XSRr3zKADqMzMTDRN4/LLL+eTTz4xquEe68wzz3TrKhYji647mdH5KShQpkwYcH9zATrXkAMgf6RC+EFhYaHbFnp7lnVd98sit7qists2gyf1HC6K+piJXTu4xfZ3irVJbNl0BifPW+TzNoQSp64zw/k5l9rWArAjfiGvt87GqXhWKmYwEhMTqa+vJzHxqxpScpHrmUEP4T3++ONUVVXx1FNPWQZP0Dve7uptEKGrryvUDK2KSMVBuZpDpzJwZdqMjAwURTGGD6R7WAj/SktLIy8vj7S0NOO2lJQUt60/tCmJTLz7I17WzqFdj2KWeoATV13Iu49dS4+PSiyEmtIDe1imrTKCp+0Tvsf0O//tteDJvEyL1OUbukH3QH3nO9/xRTtECDmB3QAcyT0Xyge+ej3llFMoKSkxrn6le1gI7/Gkt6C4uJh9+/bR0tJi7BMfH09jY6P/l+dQbey1TecpfTynaps5XS1mScvrzCSRVxznDHtafqjSdUjUakj585lMVNvp0CP4i34BN1zzqFfPk5CQQH19vZFyI3X5hi7wJVVFSNF1J6covdXHM+dfDuVvDfgYmdEhhO94MiTe3t5OZ2cn7e3txm1tbW1omkZbWxtgXVDRlzqVWN63ncXEZXej/ufHZDkrud32Knu0HNa+OQlNB9X3o4tBwalrzHNu4lzbZgB2aeN5S/0aHWr/E3SGIjk5mcbGRpKTk/vcRy5yPSMBlBiUDK2KSNVBuZrLuIITgYEDKLmaEcJ3PPn7io2NJTo62q0OVFxcHA0NDUatKJ/PyutDzknL0IsW8+ovr+Zc5SOmqBVM2XoL8dpU/sMidDXGr+3xJ4fDyUdvvcj39f8j23YUp66wI/8G3jgQja74JpA9fPgwDoeDw4cP++T4o4kEUGJQCo3hu3MYZ5F8apWYKlczQviOJ39f2dnZNDQ0uBVGjI6OJiwsjOjoaMC/SeVmSngUu20zKNUncYJWwlJ1E6eouzmF3XzkLOTDtXOYv+g8v7fLl3RnF9t/s5gzHZ+BApV6Cv/gPG7/zsO8fv/9Pjuvq4fRXz2NI5ksJiw8pzs42Ri+u8J6Fz9NjRZCeK6yspKjR4/2u/SWef2zQOhWothmO5num7fwvjYHp65wmq2E0z+6kpJfnUa4oynkl4Xp1nSmOLbzU+UZ5jg+o5swXtcWsUK5nEY1beADDFN8fDyKovg/920Ekh4o4bH0L4fvSrVMJk45MdDNEUJ4yCoHympYL1jEZUzkQ9sZbNNnU6Rt5wx1G7O1L5ht+4Kd2jjW6nOpOFI/8IGCSI+msfrJ27ibv5No6wBgd8J8Mr/9OJ//6VWfnNOqV1FRFFRVDUhP40gjPVDCY4XsAb4sntmHYLiKFUK4swqWzOudaV+WEdCOKSfQ32oE/tCmJLDBdhqOW7axI/dyuvRwpqvl3Gb7Gwl/OIHpjm30OO049eANBro1J1MdxdzD/3J2/Z9JVDoo08fytP5tpi7/D4k5U312bqsRAfMyP2LopAdKAANPhW5ubDCG7w71s/Zdamoq1dXVsoq3EEFk1qxZJCQkuCWam2fHFhYWsmvXLqZNm2bsEx0dTUdHh5EnFSjRaXnMuP5pfvOLJCZopSxQtpGj1HGJbR2XsI6d2jj+879tpJx6WVDM3uvWFdb84zlid/+NX7CFcFtvYn55RD6r7bOoVHIHXMFBBD8JoAQA7777LuXl5ZSWlnL11Vcfd//u9f9gruLgkJZBp9r32HlkZCSqqhpF2oQQgedJrZ85c+YwZswYtyDLPDMvkInmAHYlmt22GezWp/P9C07m4L9+zUnKLqar5Uw/8gz86xmitAl8qk+nnBxqm9r81rbqhmbCHM1M4QBnqZ+SXPLluRX4XJvIRuVkbrrnGSofeMBvbUpNTaW+vt7tgrakpISKigoAY61EMTQSQAmgN8nU6XT2mWSq7lkJwKdM6/fKybxsixAiOJmDKqt6UtHR0djtdqMHKjw8nO7ubsLDvb+kyKAoCmPnLOOZtz7lA/00srXDzEuoZkLbNmaqB5lJ70oYLY//H6drBewhj1rS2FF6mEm5w58RrGk6h+ub0JxdZOlVTOcAiU88xU9tdmOfBjWZqnFf590yhWbbGKPd/uTKdVLVr7J1rJb1EUMjAZQArPMfXHTdybTWj79c+y6v3+Pk5+fT2dlJfn6+L5ophPARq3pS5s+FYByityvRlNoK+M5df6GnuYZXHl1OHuUUKgdIUDo401bMmRT37vznZynX0zlNy+YIybQQx6qXn0R1tGBXotBQ2PJZMaotjA6nThgOInU7q//5AkmOShJoJZtaDtx/AnlUc7/qXjPrqB7P5/pk9iqT+f5P/0CyLYx/+LAkwUBiY2M5evSoW+6b1bI+YmgkgBJAb9K3w+GwTP5O1I4Sp3ZSqyfRpozp9zhhYWHEx8cTFiZvLSFCidUw3+zZs92WYQr2IfrwxLHst01hP1NYqy/mju8s450XH2IcVYxTqslUGhin1DLOVvvVg/b8i3OOLYn0r98DMOfYKVafw9kWZZNa9Wj26OM4wHjO++5/8+SKf32VgGXz/2dgTEwMHR0dxMT0Fh+Njo4mPDzcLYdNFnP3HvmWEwB0dXW5bY81We9dUHKLNh3C+u+ClqrjQowcBQUFhIWFGX/PjY2NOJ1OGhsbjX38vQSMp3RFJWHSKey0FbKT3gDw3h/fRkPpNla/9izxtBNPGzlxOuHtVSTShg2dMEVDxYlNd9JJFM3E4IhOo7YDWomjnmRO+/p3SJ80m8ee+JMRMF2aNxuUfwfyKRMXF0dnZ6dRXR6Or8knn9HeIwGUAPoewtN1jbnqDgD2KwP/wUnVcSFGDvMixFZlDcLCwnA6nSHR66zEJJNywhL2/mODcdt9d9/H/ccMs913330A7rf95D5WHPP7t0/6+pcHDK6ZdNOmTcPhcBgzKa3KV8hntPcE/zteBFSs1kya2kwrMTSrKYFujhDCj8wFOJOSkmhpaSEpKcnYx+FwuG1F4NTV1dHR0UFdXR1gXb5CeI8EUALoe3ryBL0MgH2J89FbBu6iH6ielBAidJh7MMzr50HwDuGNRnV1ddjtdiOAkt4m35IASvRJ13VO+XL4zjb9Avj40ICPkQRFIUYOcw+G1ZBQdHQ03d3dAS+2OdqEhYXhcDjchk5d5SUCXmZilJAASgDWJf8j9TbGKbXY9XCmLLwIPv7tgMeRBEUhRg5zD0Z2djYNDQ3G8i8gC4gHSnp6OtXV1aSnpxu3yXCqf8laeKJP47RyAD7VpxAVm2i5j2s6s2ublZXFwoULpfdJiBHIvPwLwJgxY1AUhTFjekucpKSkuG0Bo5DjsQUdxeC4ev1c26SkJCIiItzy0VJTU4mIiAiqOl0j2Yh6N+fl5aEoitvPb37zG7d9Pv/8c0477TSioqLIzc3loYceOu44f/vb35g6dSpRUVEUFhby9ttv++sp+E1VVRXr16+nqqqqz31O/HLtu51M7nMfWTxYiNFj4sSJ5Ofnu/UwNzY2ouu6UdrAlUt5bI9Uf4V6hWdiY2NRFMVt+NScs1pQUEBOTg4FBQX+bt6oNOKG8B544AFuuOEG4/f4+K/WbWtpaeHss89myZIlPP3005SUlPDd736XpKQkbrzxRgA2btzI5ZdfzoMPPsj555/PX//6Vy688EK2bdvGCSec4Pfn4ysD5SpVHNzNNLUcp65Qq/bdm+Qafw+FKcxCiOGxSkpOSUmhvb3d6HHKy8ujs7OTvLw8Yx9VVdE0TXqghqGlpQVd12lpaTFuMw+bWvUQCt8Zcd968fHxjB071vK+v/zlL3R3d/P8888TERHBjBkzKC4u5rHHHjMCqCeeeIJzzjmHH//4xwD88pe/ZM2aNTz55JM8/fTTfnsevjZQrtLhTX8nB/hcz8eh9l11WNa+E2J0W7JkiTHzFnqH9NLT040hPejN16mpqXHL1xGDYy52bJXQLzmo/jXiLgd+85vfkJKSwuzZs3n44Yfdkuk2bdrE6aef7jbctHTpUvbs2WN0P2/atIklS5a4HXPp0qVs2rSpz3Pa7XZaWlrcfoLdQLlKcWXvAvBFP8N30H8FcyHEyGf+LHEt5XRs77/r8/XYCubiK1YFSs3MM+xmzZrFnDlzmDVrlrGP5KD614gKoG6//XZeeeUV3n//fb7//e/z61//mrvvvtu4v6amhoyMDLfHuH6vqanpdx/X/VYefPBBEhMTjZ/c3FxvPaWAaG5qYIr9cwAqlJx+983PzycsLEwWDxZilNq+fTsvvfQS27dvB6yHkTyZqTeap+CbXx9XTa1ja2slJia6bUXgBf0Q3k9+8hP+53/+p999du3axdSpU1m+fLlx28yZM4mIiOD73/8+Dz74oE8Xv7znnnvczt3S0hLSQdS+jf/mJMXJIS2Dbltcv/tedtllfmqVECLQrArllpSUUFFRAUBRUZHlMFJqairV1dXG7LDIyEjsdrvb53JPT4/bdjSzKk5qTpeQmnuBF/QB1I9+9COuvfbafvfpa7x37ty5OBwOysrKmDJlCmPHjuXIkSNu+7h+d+VN9bVPX3lV0PthEKyrk/elv4rhzj3/AeAzpgaiaUKIIGX1pV1YWOi2tUo0T0pK4ujRo8aU+6ysLMrLy932k4rmX7EKJjMzM+no6CAzMxOQfKdgEPQBVFpaGmlpaUN6bHFxMaqqGomL8+bN46c//Sk9PT1GN/GaNWuYMmWKkfA4b9481q5dyx133GEcZ82aNcybN294TyTIvPvuu5SXl1NaWsrVV19t3K7rGpObNwJwkHGBap4QIghZfWkXFRVRVFRk/G51cWZOeLbb7Wiaht1uNx6XkZFBdXW1kUJhVWl7pDIvpWWz2XA4HG7BpOt3V16vLNMSeCPmnblp0yY2b97MmWeeSXx8PJs2beLOO+/kqquuMoKjK664gvvvv5/rr7+e//qv/+KLL77giSee4PHHHzeO88Mf/pAzzjiDRx99lGXLlvHKK6/w6aef8sc//jFQT80nDh06hKZpHDrkvjxLjNZCstpCCzG0qMkBap0QIhh58qVt1UtlXhKmra0NXddpa2vr8zgRERE4HI5RUWMuMjKSrq4uYyTDqsp4YmIiVVVVkgMVREZMABUZGckrr7zCL37xC+x2OxMmTODOO+90y01KTExk9erV3HLLLcyZM4fU1FTuvfdeo4QBwPz58/nrX//Kz372M/77v/+byZMn88Ybb4yoGlDQd2G78fRWH98fPxfapCtdCDE4VrPwzIFXfn4+u3btcpt84klQNVK5euJcW/OQJ0BzczOaptHc3ByIJgoLIyaAOvHEE/n4448H3G/mzJl89NFH/e5zySWXcMkll3iraSFlFrsB0AuWwrZat/ukGJ4QYiCeFHO0qhU1e/ZsSkpKjFwqq4u8UPwMMg/PhYeHu6WRQO9wZU9PjzFc2dnZicPhoLOz09jHnGsmAm/EBFBi+GxaJ1PUCpy6Qv78i2DbM4FukhAixHiS3GzVS1VQUEBYWFi/j4uIiKCrqyukhvViYmJob28nJiYGgKioKHp6eoiKijL2iYuLo7Gxkbi43lnPbW1taJrm1htnzjUTgRc6YbzwubF677p4eyOmk5hy/KxDWXVdCOENlZWVHD16lMrKSuM2V+5UaWkpYF2k1zzUZbVIcSDrSVmd21x+wGr5q8zMTKKioowZdnFxcaiqagRUIjhJD5QwTKc38bM5d7Hl/RJACSEGMtT6RJ70XJmHuqw+k6yGyPzFqvyA+TZzOQLonW1eU1NjzDiPjo4mLCyM6OhofzVdDIEEUKKX7mCOsheArFO+YblLVFQUXV1dbl3PQghxLE8CIfOsPCvx8fG0tra6DfOZh7qsAqi0tDTKy8sHVf7GWzWorHK0zMcuKCjAbrdTUFBg7FNRUUF7e7tRkNRqnTsRfCSAEgCM0eqJVHuo0FPJLTjRcp9QzD8QQviXJ6UOrPYpLi5m3759tLS0kJWVxeLFi92SyqF3dlpLS4vb7DSzxsZGdF031t0zJ3HD8ZXQnU6n23aooqKi6OjocLvITEhIoLGxkYSEBMB9+NKV0xQWFobT6TR61jwJMEXgSQAlAMjnIABbtWnk9DHDxWrqsRBC+IJV0nR0dDTh4eHG0JbVcJ3rAs+1HTduHOXl5Ywb91Vh4JSUFKqrq0lJSQG81wMVGxtLZ2enW8/RGWec4RYI1tfX09raSn19vbFPXV0dTqeTuro6QIpkhgoJoEaB/pZtAdCcGicpuwA4qIzv8zhWU4+FEMIbPOl1iY2NJSoqyghQCgsL2bVrF9OmTTP2UVUVRVGMYbSWlhZ0XaelpcXYx5yXZO4lguNTFjwJshYsWHBcr5k5ELSaYVdYWHjc40TwkwBqFBgoqbN0x2bylSY69Aia1ZQ+jyNrLwkhfMWTXhdzkGVVXDI1NZXm5mZj4WJXoHJswGKeLWc1NGhOWbAa5htKwnpaWhqtra1uOVqLFi1i0aJFHh9DBAcJoEYBq5orx6r9bCX5wGd6AahSfVwIEZzMQZZVcckFCxaQmZlpBFnmxHPA6KFy5UVZrc3nScqC+dhbtmyhpqaGrq4uo9fJPAJgbp/VPiI0SAA1ClglLR4rsXIdAHvov2fJnOQphBCBlJaWRl5enltvjjnImjlz5nHDY/n5+XR2dhrBkdUyMuaUBaveJnPPVWJiIvX19W7r1ZlHADxJoBehQQKoUaCyspLm5ma3onUuiu6gwL4TFKhR5A9XCBEcPOmV8aTmlKv3/djCleXl5TQ3N1Ne3rv255gxY2htbXXL7zT33KelpVFdXe0WrJmT2q16lyT1YeSSAGoU6G+RziStjnDVSZmWQY8tpt/jyNRaIYS/eBIcWQUn5sDLap/a2lqcTie1tb3rfZpLH8Dxa/pZLfBrTmq36l0aSm6XCA0SQI0CVpVvXSbphwDYrhccd5+ZTK0VQvjLUHtuPAm8EhMT6ejoMIbazKUPrM5vVdzSW4GPfLaGJgmgRoHa2locDodxteWi6zqz1T0AlCm5Ax5n+/btRi6BLGophPAlT4IKq2DJHPhY5RdlZ2fT0dFBdnY20JtU7vrp6/xWwZIEPqObBFCjQHt7u9vWJVJvJ0s5il0Pp1kdeNmDkpISY6kBCaCEEIE21F4qczBkVVpAiIFIADUK9LUIcKZWBTbYGz0T3X58+QLzcgc5OTk0NjaSk5Pj+0YLIcQArHqAzL1SnvQcWSV/m8lMOWEmAdQoYLVCOMB05QAA7bmLYL9ufhhRUVHY7XajEq/VbBYhhAgm5l6poa7NZ05Gb29vp6ur67iefDF6yTfhCORRUTbdQZGyD4DMk74O+/913C6u6r6urUzHFUJ4gy8LR3orL8nck2WecSeEBFAjkCezUJK0o0SqDir1FMZNngkcH0CZScKkEMIbPPmMCjTzBaOUGhBmEkCNQJ70FOXpvQXkirUpZH+56KaZt1YoF0KIY4VCb7b5glEuIIWZBFAjkEeF25Te8gWlynh/NEkIIQwSjIiRwLrrQYxoFfu/YLxaS49uo7Gf8gWuZQ2OXd5ACCGEENIDNSpVbn2LHKBEn4Su9v0WmDBhAg6HgwkTJvivcUIIIUQIkB6oUSji0AcA7NT7zz/Izs4mJSXFqNYrhBCjVVVVFevXr6eqqirQTRFBQgKoEai/P3RHTzf57Z/17qf2n4NgXkxTCCFGK9fMwdLS0kA3RQQJGcIbgd59913Ky8spLS3l6quvdrvvwPYPmaJ00qTH0qEkoPRxDAiNmTJCCOEP8nkozCSAGoFqa2txOp3HLR4M0Pj5agCK9QKUPsoXuMhMGSGE6CWfh8JMhvBGoMTERBRFITEx8bj7Emo2ALCfcf5ulhBCCDFiSAA1AiUlJREREUFSUpLb7YruYLJ9FwBHlMwAtEwIIYQYGSSAGqEU5fjspkTtKOGKk0olA4caE4BWCSGEECODBFAjUG1tLV1dXcflQI3XDwNQMWZuIJolhBBCjBgSQI1ArrID5vIDhUrv4p1hk8867jGuHiurnishhBBCuJMAagSKiopy2wLY9C4mqVVousLEk8897jESQAkhxPBIsc3RRcoYjEDNzc1uW4A07QiosD8sn4LUscc9Rtd1t60QQojBcRXbBKTkwSggAdQoMZFyAOoz5lNgcb+qqjidTtQBakMJIYSwJsU2RxcJoEYBXdcpUvYBED9tieU+8fHxNDU1ER8f78+mCSHEiCHFNkcX6W4YBaL1VtKVJjr1CCaftNhyn6KiIpKTkykqKvJz64QQQojQIwHUKDBWrwHgcz2fqOhYy306OjrQNI2Ojg5/Nk0IIYQISRJAjQIFHARgjz6hz33a29vp7Oykvb3dX80SQgghQpYEUCOco9vOzC/rP1WpfS/fEhsbS3R0NLGx1j1UQgghhPiKJJGPcKXbP6JAsdOox2FX+k4QnzVrFgkJCTJ7RAghhPCABFAjXOPOtQBs1/NB7btIpsweEUIIITwnAdQIF1u1CYADjO93v+3bt1NSUkJhYaHMxBNCCCEGEDI5UL/61a+YP38+MTExJCUlWe5TXl7OsmXLiImJIT09nR//+Mc4HA63fdatW8eJJ55IZGQk+fn5rFix4rjjPPXUU+Tl5REVFcXcuXP55JNPfPCM/EB3kt/1BQBHlIx+dy0pKaGiooKSkhJ/tEwIIYQIaSETQHV3d3PJJZdw8803W97vdDpZtmwZ3d3dbNy4kRdffJEVK1Zw7733GvscPHiQZcuWceaZZ1JcXMwdd9zB9773Pd555x1jn1dffZXly5dz3333sW3bNoqKili6dCm1tbU+f45D0d/aSwlaI1FKD3V6It1K/8nhOTk5xMbGkpOT46umCiGEECNGyARQ999/P3feeSeFhYWW969evZqdO3fy0ksvMWvWLM4991x++ctf8tRTT9Hd3Q3A008/zYQJE3j00UeZNm0at956K9/61rd4/PHHjeM89thj3HDDDVx33XVMnz6dp59+mpiYGJ5//vk+22a322lpaXH78Zfi4mK2bt1KcXHxcfdlUg301n8yLxJss9nctmFhYcTHxxMWJqO6QgghxEBCJoAayKZNmygsLCQj46uhqqVLl9LS0sKOHTuMfZYscV/KZOnSpWza1Jsn1N3dzdatW932UVWVJUuWGPtYefDBB0lMTDR+cnNzvfnUhqyAMgBKGXfcfa4171zbiRMnkp+fL7PwhBBCCA+MmACqpqbGLXgCjN9ramr63aelpYXOzk7q6+txOp2W+7iOYeWee+6hubnZ+Dl8+LA3npJHsrOzSUlJITs72+12RXcwQ+ktoFlrkf/kyg0z54gJIYQQYmABDaB+8pOfoChKvz+7d+8OZBM9EhkZSUJCgtuPv+zdu5eKigr27t3rdnuC1kik4uAIKfQo0cc9ztwDVVpayv79+yktLfV9o4UQQogQF9CElx/96Edce+21/e7j6ZDS2LFjj5std+TIEeM+19Z127H7JCQkEB0djc1mw2azWe7jOkawOXz4MHa7/bher2x6k8oPJcxBaT2+/lN8fDxNTU3Ex/cW13S9zjKEJ4QQQgwsoAFUWloaaWlpXjnWvHnz+NWvfkVtbS3p6ekArFmzhoSEBKZPn27s8/bbb7s9bs2aNcybNw+AiIgI5syZw9q1a7nwwgsB0DSNtWvXcuutt3qlnd7W2dnptnWZ8uX6d9r4hfBF03GPKyoqMuo+gRTSFEIIIQYjZHKgysvLKS4upry8HKfTSXFxMcXFxbS1tQFw9tlnM336dL7zne+wfft23nnnHX72s59xyy23EBkZCcBNN91EaWkpd999N7t37+YPf/gDr732GnfeeadxnuXLl/Pss8/y4osvsmvXLm6++Wba29u57rrrAvK8h0LVHUxTDgGQM3up5T4dHR1omkZHR4c/myaEEEKMCCEzZ/3ee+/lxRdfNH6fPXs2AO+//z6LFi3CZrPx1ltvcfPNNzNv3jxiY2O55ppreOCBB4zHTJgwgZUrV3LnnXfyxBNPkJOTw3PPPcfSpV8FGZdeeil1dXXce++91NTUMGvWLFatWnVcYnmwsNlsOBwOoxwBQKJ2lHDVyWE9jZwJUwLYOiGEEGJkCpkAasWKFZZVw481fvz444bozBYtWsRnn33W7z633npr0A7Zmem67rYFyKESgC/0SeQq1uvfyeLBQgghxNCFzBCesOYqEuraAkz9Mv+pjOCoRyWEEEKMNBJAhZj+lm4BaG9uYIpSDkC9kt7ncaRsgRBCCDF0ITOEJ3q5Ah/ActZc6dZ3KFR0Dmpj0WyRfR5HyhYIIYQQQycBVIgZKPDp3PshADv0/gMjKVsghBBCDJ0EUCFmoMAnuX4LAIeUHH81SQghhBh1JAdqBOlsbWJCT+/wXoOSGuDWCCGEECOXBFAjyMHi97ApOof1NJxKVKCbI4QQQoxYEkCFmP5m4bXtceU/TaCP8k9CCCGE8ALJgQox/c3CS6jtXUxZ6j8JIYQQviU9UCGmsbGR2tpaGhsb3W5XdAcT7XuA4+s/jR8/HkVRGD9+vN/aKYQQQoxkEkCFmLKyMrq6uigrK3O7PV5rIkJxUEsyDlP+U09Pj9tWCCGEEMMjAVSIKSwsZMyYMRQWFrrdPlavAeBQXBGKKQGqrq4OXdepq6vzWzuFEEKIkUwCqBAzZswY4+dY+V8u39KdM++4xyQmJrpthRBCCDE8EkCFmJKSEioqKigpKfnqRt3JDKV3Tbv0GWce95j4+HhsNhvx8fH+aqYQQggxokkAFWJycnKIjY0lJ+erSuPxejMxSjeNejwTp8857jHt7e1omkZ7e7s/myqEEEKMWBJAhZi6ujo6Ojrc8pnS9SMAlMbMxGazHfeY1NRUIiIiSE2V6uRCCCGEN0gdqBBTXl5OV1cX5eXlxm0TOQxAZ9Zcy8csWLCAzMzMPhcgFkIIIcTgSAAVYlzDcMZwnK5xwpf5TynTF1k+ZqAFiIUQQggxODKEF2J0XXfbxuitJCgdtOpRTCo8fgaeEEIIIbxPAqgQl/Zl/tMX+iQiIiIC3BohhBBidJAAKsRNoAKA/fq4ALdECCGEGD0kgAplus4JygEAqpTMADdGCCGEGD0kgAphR8p2kKK0YtfD6VATAt0cIYQQYtSQACqEVX3+PgA79fGoivxXCiGEEP4i37ohTDv0MQD7JP9JCCGE8CsJoEJYelMxAJWKe40nRVHctkIIIYTwLgmgQlSY3kWu1jsDr1lNdrvPXCtKCCGEEN4lAVSIStIaADigZaEoUlBeCCGE8CcJoEJUFjUA7CLvuPtcCwpbLSwshBBCiOGTACpETaJ3MeHDHL/GXVRUlNtWCCGEEN4lAVQIUnUHU5XeAKpeSTvu/ujoaLetEEIIIbxLAqgQFKs3E6E4OEoiDuX4Xian0+m2FUIIIYR3SQAVgjL0WgBKowtRLUoVhIeHoygK4eHh/m6aEEIIMSpIABWC8jgMQNfYkyzvnz9/PhMnTmT+/Pn+bJYQQggxakgAFWp0nelKGQCJU04LbFuEEEKIUUoCqBATrbcxRmmjSw8nv8i6h6mkpISKigpKSkr83DohhBBidJAKjCEmRa8DBXboE5gTHWO5T2FhodtWCCGEEN4lAVSIyaUK6F1AeE4f+xQVFVFUVOS/RgkhhBCjjAzhhZgpHAKgSskMcEuEEEKI0UsCqBDS3lDNePUIAC2mBYSFEEII4T8SQIWQQ8XvA7BXy0ZRZJ07IYQQIlAkByqEdOzfAMBuPS+wDRFCiCDndDrp6ekJdDNEkAkPD8dm804HRMgEUL/61a9YuXIlxcXFRERE0NTUdNw+ikVV7pdffpnLLrvM+H3dunUsX76cHTt2kJuby89+9jOuvfZat8c89dRTPPzww9TU1FBUVMTvf/97TjnlFG8/pUGLWPgDHnlZp0uxnn0nhBCjna7r1NTUWH5HCAGQlJTE2LFjLWOGwQiZAKq7u5tLLrmEefPm8ac//anP/V544QXOOecc4/ekpCTj3wcPHmTZsmXcdNNN/OUvf2Ht2rV873vfIzMzk6VLlwLw6quvsnz5cp5++mnmzp3Lb3/7W5YuXcqePXtIT0/32fPzxMzpM3g9LCOgbRBCiGDmCp7S09OJiYkZ9pekGDl0Xaejo4Pa2t7l0DIzhzcZK2QCqPvvvx+AFStW9LufK7K08vTTTzNhwgQeffRRAKZNm8b69et5/PHHjQDqscce44YbbuC6664zHrNy5Uqef/55fvKTn3jp2QghhPA2p9NpBE8pKSmBbo4IQtHR0QDU1taSnp4+rOG8EZdEfsstt5Camsopp5zC888/j67rxn2bNm1iyZIlbvsvXbqUTZs2Ab29XFu3bnXbR1VVlixZYuxjxW6309LS4vYjhBDCv1w5TzExkuYg+uZ6fww3Ry5keqA88cADD3DWWWcRExPD6tWr+cEPfkBbWxu333470Nu1m5HhPgSWkZFBS0sLnZ2dNDY24nQ6LffZvXt3n+d98MEHjR4yfwsLC8PhcBAWNqL+K4UQYshk2E70x1vvj4D2QP3kJz9BUZR+f/oLXMx+/vOfs2DBAmbPns1//dd/cffdd/Pwww/78Bn0uueee2hubjZ+Dh8+7PNzurhyvI7N9RJCCCGEbwU0gPrRj37Erl27+v2ZOHHikI8/d+5cKioqsNvtAIwdO5YjR4647XPkyBESEhKIjo4mNTUVm81muU9feVUAkZGRJCQkuP34i6qqKIqCqo640VghhBg1Fi1axB133BHoZgDwxhtvkJ+fj81m44477mDFihVykW4hoOM+aWlppKWl+ez4xcXFjBkzhsjISADmzZvH22+/7bbPmjVrmDdvHgARERHMmTOHtWvXcuGFFwKgaRpr167l1ltv9Vk7hyM1NZXm5mZSU1MD3RQhhBBBat26dZx55pk0NjYOGAx9//vf57rrruP2228nPj6esLAwzjvvPOP+X/ziF7zxxhsUFxf7ttFBLmQSZ8rLy2loaKC8vByn02n8x+Xn5xMXF8ebb77JkSNHOPXUU4mKimLNmjX8+te/5q677jKOcdNNN/Hkk09y9913893vfpf33nuP1157jZUrVxr7LF++nGuuuYaTTjqJU045hd/+9re0t7cbs/KCTUFBAXa7nYKCgkA3RQghRIhra2ujtraWpUuXkpWVZdzumr0mvhIy4z733nsvs2fP5r777qOtrY3Zs2cze/ZsPv30U6C3uuhTTz3FvHnzmDVrFs888wyPPfYY9913n3GMCRMmsHLlStasWUNRURGPPvoozz33nFHCAODSSy/lkUce4d5772XWrFkUFxezatWq4xLLg0VraysOh4PW1tZAN0UIIYKOrut0dDsC8nPsLHBPOBwObr31VhITE0lNTeXnP/+52zHsdjt33XUX2dnZxMbGMnfuXNatW2fcf+jQIS644ALGjBlDbGwsM2bM4O2336asrIwzzzwTgDFjxqAoynEFpKG3lyo+Ph6As846C0VRWLdundsQ3ooVK7j//vvZvn27kas8UHmhkSpkeqBWrFjR73/SOeec41ZAsy+LFi3is88+63efW2+9NWiH7MxcwZPD4Qh0U4QQIuh09jiZfu87ATn3zgeWEhPh+dfsiy++yPXXX88nn3zCp59+yo033si4ceO44YYbgN7vpp07d/LKK6+QlZXF66+/zjnnnENJSQmTJ0/mlltuobu7mw8//JDY2Fh27txJXFwcubm5/OMf/+Diiy9mz549Rt6v2fz589mzZw9TpkzhH//4B/Pnzyc5OZmysjJjn0svvZQvvviCVatW8e677wKQmJg4vBcqRIVMACWsVVRU0N7eTkVFRaCbIoQQYhhyc3N5/PHHURSFKVOmUFJSwuOPP84NN9xAeXk5L7zwAuXl5cbQ2l133cWqVat44YUX+PWvf015eTkXX3wxhYWFAG6TsJKTkwFIT0/vMwcqIiLCWHEjOTnZcvJUdHQ0cXFxhIWF9Tu5ajSQACrE5eTk0NjYSE5OTqCbIoQQQSc63MbOB5YOvKOPzj0Yp556qluNonnz5vHoo4/idDopKSnB6XQel+9qt9uNquu33347N998M6tXr2bJkiVcfPHFzJw5c/hPRFiSACrEhYWFGbMkhBBCuFMUZVDDaMGqra0Nm83G1q1bj1t+JC4uDoDvfe97LF26lJUrV7J69WoefPBBHn30UW677bZANHnEC/131Sjn6qIdTr0sIYQQgbd582a33z/++GMmT56MzWZj9uzZOJ1OamtrOe200/o8Rm5uLjfddBM33XQT99xzD88++yy33XYbERERQO96gcMVERHhleOEupCZhSesZWVlsXDhQrfppkIIIUJPeXk5y5cvZ8+ePbz88sv8/ve/54c//CHQW7Lmyiuv5Oqrr+af//wnBw8e5JNPPuHBBx80SvHccccdvPPOOxw8eJBt27bx/vvvM23aNADGjx+Poii89dZb1NXV0dbWNuR25uXlcfDgQYqLi6mvrzeKVY82EkCFuKqqKtavX09VVVWgmyKEEGIYrr76ajo7OznllFO45ZZb+OEPf8iNN95o3P/CCy9w9dVX86Mf/YgpU6Zw4YUXsmXLFsaNGwf09i7dcsstTJs2jXPOOYeCggL+8Ic/AJCdnc3999/PT37yEzIyMoY10/ziiy/mnHPO4cwzzyQtLY2XX355eE88RCn6YAtViAG1tLSQmJhIc3Oz15d1OXbR4vvuu4/169ezf/9+8vPzWbhwoVfPJYQQoaSrq4uDBw8yYcIEoqKiAt0cEaT6e58M5vtbcqBCnORACSGEEP4nAVSIy8rKkvwnIYQQws8kB0oIIYQQYpAkgBJCCCGEGCQJoEKMqqpuWyGEEEL4n3wLhxjXApBWC0EKIYQQwj8kgAoxqampKIpCampqoJsihBBCjFoSQIWY6upqdF2nuro60E0RQgghRi0JoEJMd3e321YIIYQQ/icBVIgJDw932wohhBCBsGLFCpKSkgLdDK699louvPBCv59XAqgQM3/+fJKTk5k/f36gmyKEEEL0qaysDEVRKC4uDsrjDZcEUCFmzJgxxo8QQojRa6SkcoTq85AAKsRs2bKFsrIytmzZEuimCCFE8NN16G4PzI+ue9zM1tZWrrzySmJjY8nMzOTxxx9n0aJF3HHHHcY+eXl5/PKXv+Tqq68mISGBG2+8EYB//OMfzJgxg8jISPLy8nj00Ufdjq0oCm+88YbbbUlJSaxYsQL4qmfnn//8J2eeeSYxMTEUFRWxadMmt8esWLGCcePGERMTw0UXXcTRo0f7fU4TJkwAYPbs2SiKwqJFi4Cvhtx+9atfkZWVxZQpUzxqZ1/Hc3nkkUfIzMwkJSWFW265hZ6enn7bN1yyFl6ISUxMpL6+nsTExEA3RQghgl9PB/w6QOuF/ncVRMR6tOvy5cvZsGED//73v8nIyODee+9l27ZtzJo1y22/Rx55hHvvvZf77rsPgK1bt/Ltb3+bX/ziF1x66aVs3LiRH/zgB6SkpHDttdcOqrk//elPeeSRR5g8eTI//elPufzyy9m/fz9hYWFs3ryZ66+/ngcffJALL7yQVatWGW3oyyeffMIpp5zCu+++y4wZM4iIiDDuW7t2LQkJCaxZs8bj9vV3vPfff5/MzEzef/999u/fz6WXXsqsWbO44YYbBvUaDIYEUCFmwYIFZGZmMnHixEA3RQghhBe0trby4osv8te//pXFixcD8MILL1guFH/WWWfxox/9yPj9yiuvZPHixfz85z8HoKCggJ07d/Lwww8POoC66667WLZsGQD3338/M2bMYP/+/UydOpUnnniCc845h7vvvts4z8aNG1m1alWfx0tLSwMgJSWFsWPHut0XGxvLc8895xYEDaS/440ZM4Ynn3wSm83G1KlTWbZsGWvXrpUASnwlKyvL8o9KCCGEhfCY3p6gQJ3bA6WlpfT09HDKKacYtyUmJhpDW8c66aST3H7ftWsX3/jGN9xuW7BgAb/97W9xOp3YbDaPmztz5kzj35mZmQDU1tYydepUdu3axUUXXeS2/7x58/oNoPpTWFg4qOBpIDNmzHB7rpmZmZSUlHjt+FYkgBJCCDFyKYrHw2ihIDZ28M9FURR0Uz6WVX7QseVxFEUBQNO0QZ/PE1bPw9N2WjGX9lEUxWdtd5Ek8hBTVVXF+vXrqaoK0BWVEEIIr5o4cSLh4eFuk4Oam5vZu3fvgI+dNm0aGzZscLttw4YNFBQUGD0yaWlpbqtX7Nu3j46OjkG1cdq0aWzevNntto8//rjfx7h6mJxOp0fnGKidgz2er0kPVIgpLS1l//79ADKUJ4QQI0B8fDzXXHMNP/7xj0lOTiY9PZ377rsPVVWNnqC+/OhHP+Lkk0/ml7/8JZdeeimbNm3iySef5A9/+IOxz1lnncWTTz7JvHnzcDqd/Nd//degizHffvvtLFiwgEceeYRvfOMbvPPOOwMO36WnpxMdHc2qVavIyckhKiqq3wlQA7VzsMfzNemBCjETJ04kPz9fksiFEGIEeeyxx5g3bx7nn38+S5YsYcGCBUybNo2oqKh+H3fiiSfy2muv8corr3DCCSdw77338sADD7glkD/66KPk5uZy2mmnccUVV3DXXXcRE+NZfpbLqaeeyrPPPssTTzxBUVERq1ev5mc/+1m/jwkLC+N3v/sdzzzzDFlZWcflapkN1M7BHs/XFN084CiGraWlhcTERJqbm0lISAh0c4QQYlTo6uri4MGDTJgwYcDAI9i1t7eTnZ3No48+yvXXXx/o5owo/b1PBvP9LUN4QgghRIB99tln7N69m1NOOYXm5mYeeOABgID3soi+SQAlhBBCBIFHHnmEPXv2EBERwZw5c/joo49ITU0NdLNEHySAEkIIIQJs9uzZbN26NdDNEIMgSeRCCCGEEIMkAZQQQogRReZGif546/0hAZQQQogRwVUzaLBFIsXo4np/DLYWlpnkQAkhhBgRbDYbSUlJ1NbWAhATEzNgIUoxeui6TkdHB7W1tSQlJQ1qnUArEkAJIYQYMcaOHQtgBFFCmCUlJRnvk+GQAEoIIcSIoSgKmZmZpKene7wQrRg9wsPDh93z5CIBlBBCiBHHZrN57YtSCCuSRC6EEEIIMUgSQAkhhBBCDJIEUEIIIYQQgyQ5UD7gKtLV0tIS4JYIIYQQwlOu721Pim1KAOUDra2tAOTm5ga4JUIIIYQYrNbWVhITE/vdR9Gl5r3XaZpGVVUV8fHxXi/i1tLSQm5uLocPHyYhIcGrxx5p5LXynLxWnpPXynPyWnlOXivP+fK10nWd1tZWsrKyUNX+s5ykB8oHVFUlJyfHp+dISEiQPzIPyWvlOXmtPCevlefktfKcvFae89VrNVDPk4skkQshhBBCDJIEUEIIIYQQgyQBVIiJjIzkvvvuIzIyMtBNCXryWnlOXivPyWvlOXmtPCevleeC5bWSJHIhhBBCiEGSHighhBBCiEGSAEoIIYQQYpAkgBJCCCGEGCQJoIQQQgghBkkCqBDxq1/9ivnz5xMTE0NSUpLlPoqiHPfzyiuv+LehQcKT16u8vJxly5YRExNDeno6P/7xj3E4HP5taBDKy8s77n30m9/8JtDNChpPPfUUeXl5REVFMXfuXD755JNANyno/OIXvzjuPTR16tRANysofPjhh1xwwQVkZWWhKApvvPGG2/26rnPvvfeSmZlJdHQ0S5YsYd++fYFpbIAN9Fpde+21x73PzjnnHL+1TwKoENHd3c0ll1zCzTff3O9+L7zwAtXV1cbPhRde6J8GBpmBXi+n08myZcvo7u5m48aNvPjii6xYsYJ7773Xzy0NTg888IDb++i2224LdJOCwquvvsry5cu577772LZtG0VFRSxdupTa2tpANy3ozJgxw+09tH79+kA3KSi0t7dTVFTEU089ZXn/Qw89xO9+9zuefvppNm/eTGxsLEuXLqWrq8vPLQ28gV4rgHPOOcftffbyyy/7r4G6CCkvvPCCnpiYaHkfoL/++ut+bU+w6+v1evvtt3VVVfWamhrjtv/93//VExISdLvd7scWBp/x48frjz/+eKCbEZROOeUU/ZZbbjF+dzqdelZWlv7ggw8GsFXB57777tOLiooC3YygZ/7M1jRNHzt2rP7www8btzU1NemRkZH6yy+/HIAWBg+r77drrrlG/8Y3vhGQ9ui6rksP1Ahzyy23kJqayimnnMLzzz+PLmW+LG3atInCwkIyMjKM25YuXUpLSws7duwIYMuCw29+8xtSUlKYPXs2Dz/8sAxt0turuXXrVpYsWWLcpqoqS5YsYdOmTQFsWXDat28fWVlZTJw4kSuvvJLy8vJANynoHTx4kJqaGrf3WGJiInPnzpX3WB/WrVtHeno6U6ZM4eabb+bo0aN+O7csJjyCPPDAA5x11lnExMSwevVqfvCDH9DW1sbtt98e6KYFnZqaGrfgCTB+r6mpCUSTgsbtt9/OiSeeSHJyMhs3buSee+6hurqaxx57LNBNC6j6+nqcTqfl+2b37t0BalVwmjt3LitWrGDKlClUV1dz//33c9ppp/HFF18QHx8f6OYFLddnj9V7bLR/Llk555xz+OY3v8mECRM4cOAA//3f/825557Lpk2bsNlsPj+/BFAB9JOf/IT/+Z//6XefXbt2eZx8+fOf/9z49+zZs2lvb+fhhx8eMQGUt1+v0WQwr93y5cuN22bOnElERATf//73efDBBwO+dIIIDeeee67x75kzZzJ37lzGjx/Pa6+9xvXX///27iek6T+O4/jrpzSNlqZsNgsUzRpJ1iDZ6hQhGB2ioIMFyYofnexQaZ2SiGqHDjHoUHev3Yo62FAINAlh4SnYaFhI36IOYf/T9+/wo0H0I/2W/j5rPR8wGN+NfV+8+bK9+G6f7/52mAzl5NChQ8X7HR0d2rp1qzZs2KDR0VF1dXUt+/4pUA719/fr6NGjP3xOa2vrT79+IpHQxYsX9fHjx7L44FvKeUUike9WT3meV3ys3PzK7BKJhL58+aJCoaBoNLoM6X4PoVBIlZWVxePkK8/zyvKYWUpr1qzRpk2blMvlXEcpaV+PI8/z1NjYWNzueZ5isZijVL+P1tZWhUIh5XI5ClS5C4fDCofDy/b62WxWdXV1ZVGepKWd186dO3X58mW9ePFCDQ0NkqTh4WHV1NSovb19SfZRSn5ldtlsVhUVFcU5/akCgYC2b9+uTCZTXN06Pz+vTCajEydOuA1X4mZnZ5XP59Xb2+s6SklraWlRJBJRJpMpFqY3b95oYmJiwRXYkJ49e6ZXr159Uz6XEwXqNzE9Pa3Xr19renpac3NzymazkqS2tjYFg0HdunVLnudpx44dqq6u1vDwsFKplAYGBtwGd2SheXV3d6u9vV29vb26cuWKnj9/rnPnzqmvr69sCufPGB8f18TEhHbv3q3Vq1drfHxcp06d0pEjR1RXV+c6nnOnT59WMplUZ2en4vG40um03r59q2PHjrmOVlIGBga0b98+NTc3a2ZmRufPn1dlZaUOHz7sOppzs7Oz35yJe/LkibLZrOrr69XU1KSTJ0/q0qVL2rhxo1paWjQ4OKh169b9kZek+dGs6uvrdeHCBR08eFCRSET5fF5nz55VW1ub9uzZ8/8EdLb+D74kk0mT9N1tZGTEzMzu3r1rsVjMgsGgrVq1yrZt22Y3btywubk5t8EdWWheZmaFQsH27t1rK1eutFAoZP39/fb582d3oUvA5OSkJRIJq62tterqatu8ebOlUin78OGD62gl49q1a9bU1GSBQMDi8bg9ePDAdaSS09PTY42NjRYIBGz9+vXW09NjuVzOdaySMDIy8p/vTclk0sz+vZTB4OCgrV271qqqqqyrq8seP37sNrQjP5rVu3fvrLu728LhsK1YscKam5vt+PHj31yaZrn9ZcY6dwAAAD+4DhQAAIBPFCgAAACfKFAAAAA+UaAAAAB8okABAAD4RIECAADwiQIFAADgEwUKAADAJwoUAACATxQoAAAAnyhQAAAAPlGgAGABL1++VCQSUSqVKm4bGxtTIBBQJpNxmAyAK/yZMAAswp07d3TgwAGNjY0pGo0qFotp//79unr1qutoABygQAHAIvX19enevXvq7OzU1NSUHj58qKqqKtexADhAgQKARXr//r22bNmip0+fanJyUh0dHa4jAXCE30ABwCLl83nNzMxofn5ehULBdRwADnEGCgAW4dOnT4rH44rFYopGo0qn05qamlJDQ4PraAAcoEABwCKcOXNGN2/e1KNHjxQMBrVr1y7V1tbq9u3brqMBcICv8ABgAaOjo0qn0xoaGlJNTY0qKio0NDSk+/fv6/r1667jAXCAM1AAAAA+cQYKAADAJwoUAACATxQoAAAAnyhQAAAAPlGgAAAAfKJAAQAA+ESBAgAA8IkCBQAA4BMFCgAAwCcKFAAAgE8UKAAAAJ/+ARQLcewmPvaRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -840,13 +840,15 @@ "metadata": {}, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "v0.model=None, \n", - "v0.experiment_data=Empty DataFrame\n", - "Columns: [x, y]\n", - "Index: []\n" + "ename": "TypeError", + "evalue": "'NoneType' object is not subscriptable", + "output_type": "error", + "traceback": [ + "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", + "\u001B[0;31mTypeError\u001B[0m Traceback (most recent call last)", + "Cell \u001B[0;32mIn[15], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;132;01m{\u001B[39;00m\u001B[43mv0\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmodel\u001B[49m\u001B[38;5;132;01m=}\u001B[39;00m\u001B[38;5;124m, \u001B[39m\u001B[38;5;130;01m\\n\u001B[39;00m\u001B[38;5;132;01m{\u001B[39;00mv0\u001B[38;5;241m.\u001B[39mexperiment_data\u001B[38;5;132;01m=}\u001B[39;00m\u001B[38;5;124m\"\u001B[39m)\n", + "File \u001B[0;32m~/Documents/GitHub/AutoResearch/autora-core/src/autora/state.py:1557\u001B[0m, in \u001B[0;36mStandardStateDict.model\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m 1555\u001B[0m \u001B[38;5;250m\u001B[39m\u001B[38;5;124;03m\"\"\"Alias for the last model in the `models`.\"\"\"\u001B[39;00m\n\u001B[1;32m 1556\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m-> 1557\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mdata\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mmodels\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;241;43m-\u001B[39;49m\u001B[38;5;241;43m1\u001B[39;49m\u001B[43m]\u001B[49m\n\u001B[1;32m 1558\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mIndexError\u001B[39;00m:\n\u001B[1;32m 1559\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m\n", + "\u001B[0;31mTypeError\u001B[0m: 'NoneType' object is not subscriptable" ] } ], @@ -865,31 +867,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#-- running experiment_runner --#\n", - "\n", - "v1.model=None, \n", - "v1.experiment_data= x y\n", - "0 -15.0 -1646.530156\n", - "1 -14.7 -1336.437358\n", - "2 -14.4 -1055.375424\n", - "3 -14.1 -1100.425725\n", - "4 -13.8 -929.288485\n", - ".. ... ...\n", - "96 13.8 461.151029\n", - "97 14.1 512.259065\n", - "98 14.4 795.078025\n", - "99 14.7 930.233261\n", - "100 15.0 986.124289\n", - "\n", - "[101 rows x 2 columns]\n" - ] - } - ], + "outputs": [], "source": [ "v1 = next(cycle_generator)\n", "print(f\"{v1.model=}, \\n{v1.experiment_data=}\")" @@ -906,19 +884,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#-- running theorist --#\n", - "\n", - "v2.model=Pipeline(steps=[('polynomialfeatures', PolynomialFeatures(degree=5)),\n", - " ('linearregression', LinearRegression())]), \n", - "v2.experiment_data.shape=(101, 2)\n" - ] - } - ], + "outputs": [], "source": [ "v2 = next(cycle_generator)\n", "print(f\"{v2.model=}, \\n{v2.experiment_data.shape=}\")" @@ -935,19 +901,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "#-- running experiment_runner --#\n", - "\n", - "v3.model=Pipeline(steps=[('polynomialfeatures', PolynomialFeatures(degree=5)),\n", - " ('linearregression', LinearRegression())]), \n", - "v3.experiment_data.shape=(202, 2)\n" - ] - } - ], + "outputs": [], "source": [ "v3 = next(cycle_generator)\n", "print(f\"{v3.model=}, \\n{v3.experiment_data.shape=}\")\n" @@ -967,27 +921,9 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "StandardState(variables=VariableCollection(independent_variables=[Variable(name='x', value_range=(-15, 15), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), conditions= x\n", - "0 -3.681470\n", - "1 13.752780\n", - "2 -4.058959\n", - "3 10.911147\n", - "4 -1.159941, experiment_data=Empty DataFrame\n", - "Columns: [x, y]\n", - "Index: [], models=[])" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "from autora.experimentalist.random_ import random_pool\n", + "from autora.experimentalist.random import random_pool\n", "experimentalist = on_state(random_pool, output=[\"conditions\"])\n", "experimentalist(s)" ] @@ -996,58 +932,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACBtklEQVR4nO3dd3hT5dvA8W+S7r0XFGgZZW+p7NUfBXGgyBIREEEQVJaKC8SFG7c4gVdBhiIOkCmICLLLXoVCgS5WF93Jef84NFBaoIW2J0nvz3XlSnrOycmdQ2juPuN+dIqiKAghhBBCiFLTax2AEEIIIYS1kQRKCCGEEKKMJIESQgghhCgjSaCEEEIIIcpIEighhBBCiDKSBEoIIYQQoowkgRJCCCGEKCNJoIQQQgghykgSKCGEEEKIMpIESojL5syZg06n48SJE1qHUqIuXbrQpUuXSnmtd955h/r162MymSrl9WzF+vXr0el0rF+/XutQKl2tWrUYNmyYJq89ZcoUIiMjNXltUXVJAiVEBdm0aRMdOnTAxcWFoKAgnnrqKTIzM7UO66bS09N5++23ee6559Drb+1XRGpqKqNGjcLf3x9XV1e6du3Kzp07yzlScavmz5/Phx9+qHUYACQkJPDKK68QExNzy+cYP348u3fv5rfffiu3uL744gv69etHjRo10Ol0N0wO5fNeNUkCJcRlQ4YMITs7m5o1a972uWJiYujevTtZWVl88MEHPPbYY3z11Vf069evHCKtWN999x0FBQUMGjTolp5vMpno3bs38+fPZ9y4cbzzzjukpKTQpUsXjh49Ws7RWpZOnTqRnZ1Np06dtA7lhiwtgZo+ffptJVBBQUHcd999vPfee+UW19tvv81ff/1Fo0aNsLOzu+5xVfnzXtVd/1MhRBVjMBgwGAzlcq4XXngBb29v1q9fj4eHB6B2cYwcOZJVq1bRo0ePcnmdijB79mzuvfdenJycbun5P/30E5s2bWLx4sU8+OCDAPTv35969eoxbdo05s+fX57hWoScnBwcHBzQ6/W3fN3E7enfvz/9+vXj+PHjhIeH3/b5/v77b3Prk5ub23WPq4qfd6GSFighLiuvMVDp6emsXr2ahx9+2Jw8ATzyyCO4ubmxaNGi24z0itzcXKZNm0adOnVwdHQkNDSUZ599ltzc3CLH6XQ6xo0bx9KlS2ncuDGOjo40atSIFStWFDkuLi6OPXv2EBUVVWT79cb2nDhxAp1Ox5w5c8zbfvrpJwIDA3nggQfM2/z9/enfvz+//vprsdhK8ueff9KxY0dcXV1xd3end+/e7N+/37z/r7/+Qq/XM3Xq1CLPmz9/Pjqdji+++KLYe583bx4RERE4OTnRqlUrNmzYUOx1z5w5w6OPPkpgYKD5Gn333XclXosFCxbw0ksvUa1aNVxcXEhPTy/xOnXp0oXGjRuzZ88eOnfujIuLC3Xq1OGnn34C1C/qyMhInJ2diYiIYM2aNbcV16JFi3jjjTeoXr06Tk5OdO/endjY2CLxLFu2jJMnT6LT6dDpdNSqVeum/yaFFEXh9ddfp3r16ri4uNC1a9ci/zaFLly4wOTJk2nSpAlubm54eHjQq1cvdu/eXSTmO+64A4Dhw4eb4yn8PP3zzz/mbrTCz/eECRPIzs4u9nqFn9lff/211O/lRmrWrIlOp7vpceXxeRfWSVqghLiBzMxMcnJybnqcvb09np6eAOzdu5eCggJat25d5BgHBweaN2/Orl27yiU2k8nEvffey8aNGxk1ahQNGjRg7969zJw5kyNHjrB06dIix2/cuJElS5bwxBNP4O7uzscff0zfvn2Jj4/H19cXUMdtAbRs2fKW49q1axctW7YsNn6qTZs2fPXVVxw5coQmTZpc9/nff/89Q4cOJTo6mrfffpusrCy++OILOnTowK5du6hVqxbdunXjiSeeYMaMGfTp04eWLVuSmJjIk08+SVRUFKNHjy5yzr///puFCxfy1FNP4ejoyOeff07Pnj3ZunUrjRs3BiA5OZk777zTnHD5+/vz559/MmLECNLT0xk/fnyRc7722ms4ODgwefJkcnNzcXBwuO57unjxInfffTcDBw6kX79+fPHFFwwcOJB58+Yxfvx4Ro8ezUMPPcS7777Lgw8+yKlTp3B3d7+luN566y30ej2TJ08mLS2Nd955h8GDB7NlyxYAXnzxRdLS0jh9+jQzZ84EuGELy7WmTp3K66+/zl133cVdd93Fzp076dGjB3l5eUWOO378OEuXLqVfv36EhYWRnJzMl19+SefOnTlw4AAhISE0aNCAV199lalTpzJq1Cg6duwIQLt27QBYvHgxWVlZjBkzBl9fX7Zu3conn3zC6dOnWbx4cZHX8/T0pHbt2vz7779MmDChyLU3Go03fV8uLi64uLiU+joUut3Pu7BiihBCURRFmT17tgIocXFx5m1Dhw5VgJveOnfubH7O4sWLFUDZsGFDsdfo16+fEhQUdEvxde7cucjrfP/994per1f++eefIsfNmjVLAZR///3XvA1QHBwclNjYWPO23bt3K4DyySefmLe99NJLCqBkZGQUOee6desUQFm3bl2R7XFxcQqgzJ4927zN1dVVefTRR4vFv2zZMgVQVqxYcd33mJGRoXh5eSkjR44ssj0pKUnx9PQssv3SpUtKnTp1lEaNGik5OTlK7969FQ8PD+XkyZNFnlv4b7R9+3bztpMnTypOTk7K/fffb942YsQIJTg4WDl37lyR5w8cOFDx9PRUsrKyilyL8PBw87YbXafOnTsrgDJ//nzztkOHDimAotfrlf/++8+8feXKlcWuZ1njatCggZKbm2s+7qOPPlIAZe/eveZtvXv3VmrWrKmUVUpKiuLg4KD07t1bMZlM5u0vvPCCAihDhw41b8vJyVGMRmOR58fFxSmOjo7Kq6++at62bdu2Yu+50LXXV1EUZcaMGYpOpyv276woitKjRw+lQYMGRbbVrFmzVP+Hp02bdt337erqWuS9XbvvVj/vwrpJC5QQN/Dss8/y8MMP3/Q4b29v8+PC7gVHR8dixzk5OZXY/XArFi9eTIMGDahfvz7nzp0zb+/WrRsA69atM/8lD2oXR+3atc0/N23aFA8PD44fP27edv78eezs7MrUInGt7Ozs6773wv3Xs3r1alJTUxk0aFCR92QwGIiMjGTdunXmbS4uLsyZM4dOnTrRqVMntm7dyrfffkuNGjWKnbdt27a0atXK/HONGjW47777+P333zEajej1en7++Wf69++PoihFXjs6OpoFCxawc+dO2rdvb94+dOhQnJ2dS3VN3NzcGDhwoPnniIgIvLy8qFatWpHp94WPC/9NFEUpc1zDhw8v0hpW2Kpz/Phxc2vbrVqzZg15eXk8+eSTRbq3xo8fz5tvvlnk2Ks/A0ajkdTUVNzc3IiIiCj1DLWrr++lS5fIzs6mXbt2KIrCrl27iv1be3t7F2vhnTdvXqn+z93quKnb+bwL6yYJlBA30LBhQxo2bFim5xT+0i9p7ENOTk6pv3Rv5ujRoxw8eBB/f/8S96ekpBT5uaTEwtvbm4sXL5ZLPIWcnZ2v+94L919P4aylwiTwWlePKQNo3749Y8aM4bPPPiM6OppHH320xOfVrVu32LZ69eqRlZXF2bNn0ev1pKam8tVXX/HVV1+VeI5rr2dYWNh138e1qlevXmw8jaenJ6GhocW2AeZ/k7Nnz5Y5rpKSiqvPeTtOnjwJFL+e/v7+Rf6IALWL+aOPPuLzzz8nLi6uSDdaYZfxzcTHxzN16lR+++23YvGnpaUVO15RlGLX+erksiLczuddWDdJoIS4gbS0tFL9Beng4ICPjw8AwcHBACQmJhY7LjExkZCQkHKJzWQy0aRJEz744IMS91/75Xy9GYaKopgf+/r6UlBQQEZGhnkMDnDdwbQljS0JDg6+7nsHbvj+Cwt3fv/99wQFBRXbf+108tzcXPOA7WPHjpGVlXVL41gKX/fhhx9m6NChJR7TtGnTIj+X5Yvxetf+Zv8mtxJXaf6dK8Obb77Jyy+/zKOPPsprr72Gj48Per2e8ePHl6pAq9Fo5H//+x8XLlzgueeeo379+ri6unLmzBmGDRtW4jkuXryIn59fkW1nz54t1RgoNze3W2p5vZ3Pu7BukkAJcQNPP/00c+fOvelxnTt3Nn+RN27cGDs7O7Zv307//v3Nx+Tl5RETE1Nk2+2oXbs2u3fvpnv37qWaLVQa9evXB9TZeFd/MRe2LqSmphY5vrBF4mrNmzfnn3/+wWQyFRlYu2XLFlxcXKhXr951X7+wizEgIKDYTMCSTJs2jYMHD/Lee+/x3HPPMWXKFD7++ONix5VUj+fIkSO4uLiYW/Dc3d0xGo2let3K4u/vXyFx3ernpbBG2tGjR4t0eZ09e7ZYC9FPP/1E165d+fbbb4tsT01NLZLkXC+WvXv3cuTIEebOncsjjzxi3r569errxhcXF0ezZs2KbLvjjjtK/Jxea9q0abzyyis3Pe5at/N5F9ZNEighbuBWxkB5enoSFRXFDz/8wMsvv2xuyfn+++/JzMwst2Ka/fv3Z/ny5Xz99deMGjWqyL7s7GxMJhOurq5lOmfbtm0B2L59e5EEqmbNmhgMBjZs2ECfPn3M2z///PNi53jwwQf56aefWLJkibkuzrlz51i8eDH33HNPkfEix44dA64kTtHR0Xh4ePDmm2/StWtX7O3ti5z77Nmz5oRny5YtvPfee4wfP55JkyZx7tw53n77bfr27Uvnzp2LPG/z5s3s3LnTPLvw1KlT/Prrr/Ts2dPcYtO3b1/mz5/Pvn37io0Vuvp1K5PBYKiQuFxdXUvsAruZqKgo7O3t+eSTT+jRo4c5+SmpKKfBYCjW6rV48WLOnDlDnTp1isQCxZPzwn+Xq8+hKAofffRRibGlpaVx7NgxxowZU2R7RY+BKsvnXdgWSaCEuIFbGQMF8MYbb9CuXTs6d+7MqFGjOH36NO+//z49evSgZ8+eRY7V6XRFWrBKa8iQISxatIjRo0ezbt062rdvj9Fo5NChQyxatIiVK1cWK6VwM+Hh4TRu3Jg1a9YUGU/k6elJv379+OSTT9DpdNSuXZs//vij2PgbUL9Q7rzzToYPH86BAwfw8/Pj888/x2g0Mn369CLHdu/eHcBce8vDw4MvvviCIUOG0LJlSwYOHIi/vz/x8fEsW7aM9u3b8+mnn5KTk8PQoUOpW7cub7zxBgDTp0/n999/Z/jw4ezdu7dI8ti4cWOio6OLlDEofE6ht956i3Xr1hEZGcnIkSNp2LAhFy5cYOfOnaxZs4YLFy6U6VqWl4qIq1WrVixcuJCJEydyxx134Obmxj333HPT5/n7+zN58mRmzJjB3XffzV133cWuXbv4888/i3Wd3X333bz66qsMHz6cdu3asXfvXubNm1csUalduzZeXl7MmjULd3d3XF1diYyMpH79+tSuXZvJkydz5swZPDw8+Pnnn687lmvNmjUoisJ9991XZPutjoH6/fffzTWr8vPz2bNnD6+//joA9957r/kPjLJ83oWN0WbynxCWp6QyBrfjn3/+Udq1a6c4OTkp/v7+ytixY5X09PQix2RkZCiAMnDgwJue79oyBoqiKHl5ecrbb7+tNGrUSHF0dFS8vb2VVq1aKdOnT1fS0tLMxwHK2LFji52zZs2axaZnf/DBB4qbm1uxKeRnz55V+vbtq7i4uCje3t7K448/ruzbt6/EKegXLlxQRowYofj6+iouLi5K586dlW3btpX4+iVNp1+3bp0SHR2teHp6Kk5OTkrt2rWVYcOGmUsRTJgwQTEYDMqWLVuKPG/79u2KnZ2dMmbMmGLv/YcfflDq1q2rODo6Ki1atChWkkFRFCU5OVkZO3asEhoaqtjb2ytBQUFK9+7dla+++qpIbICyePHiEuOmhDIGjRo1KvG99+7du9j2kv6tbieukkpNZGZmKg899JDi5eWlAGUqaWA0GpXp06crwcHBirOzs9KlSxdl3759xT5LOTk5yqRJk8zHtW/fXtm8eXOJn+Nff/1VadiwoWJnZ1ck1gMHDihRUVGKm5ub4ufnp4wcOdJcfuPaz9yAAQOUDh06lPp93MyNSpjc6udd2BadolTyyEIhhNny5cu5++672b17t8UU20tLSyM8PJx33nmHESNGaB3ObdPpdIwdO5ZPP/1U61BEBUlKSiIsLIwFCxYUa4ESoqLIUi5CaGjdunUMHDjQYpInULvrnn32Wd59991SzZYSQmsffvghTZo0keRJVCppgRJC2DRpgSqdm033v7pUhxBCBpELIYTg5tP9b2WigxC2TBIoIYRNk0b20rnZdP9rK40LUdVJF54QQgghRBnJIHIhhBBCiDKSLrwKYDKZSEhIwN3dvdyW2BBCCCFExVIUhYyMDEJCQooszVMSSaAqQEJCQrGFXIUQQghhHU6dOkX16tVveIwkUBWgcO2zU6dO4eHhoXE0QgghhCiN9PR0QkNDzd/jNyIJVAUo7Lbz8PCQBEoIIYSwMqUZfiODyIUQQgghykgSKCGEEEKIMpIESgghhBCijCSBEkIIIYQoI0mghBBCCCHKSBIoIYQQQogykgRKCCGEEKKMJIESQgghhCgjSaCEEEIIIcpIEighhBBCiDKSBEoIIYQQoowkgRJCCCGEKCNZTFgIK5edZyQ1Ow+DXoejwYCDnR4HOz0G/c0XwxRCCHFrJIESwgooikJCWg47T15kV3wq+xPSOJuRy9mMXDJyC4odr9dBiJcztXxdqeXnQrifG3fU8qFhiIckVkIIUQ4kgRLCQimKws74i/wak8Cq/ckkpedc91g7vQ6joqAo6s8mBU5fzOb0xWw2xl45zt3JjsgwH9rW9qNX4yBCvJwr+F0IIYRt0ilK4a9cUV7S09Px9PQkLS0NDw8PrcMRViYxLZsf/jvJrzEJnL6Ybd5up9fRINiDljW8aBbqRTUvZ/zdHfF3d8TNUf1bqMCkkFdgIjO3gPgLWcSdu8TJ85c4lJjB1rgLRVqrdDqIDPPh/hbV6Nk4GE9n+0p/r0IIYUnK8v0tCVQFkARK3IrTF7P4Yv0xFm8/TZ7RBICrg4HoxkHc2yyEyDBfnB0Mt3x+o0lhf0Iam4+dZ+2hFLbGXTDvc7DT07dldR7rGEZtf7fbfi9CCGGNJIHSmCRQoixS0nP4YPURftpxmgKT+t+xTZgPj7StSff6gbeVNN3I6YtZ/LY7gV93JXA4OQNQW6WiGgQyunM4rWr6VMjrCiGEpZIESmOSQInSMJkUFmw7xYw/D5KRo3atta/jy5Pd6nJnuG+lxaEoCttOXOSrDcdYczDFvL1rhD/P39WAeoHulRaLEEJoSRIojUkCJW4mNiWTF5bsZesJtRutWXVPXr67Ia1radvqE5uSwdcb4vh5p9oaptdB/9ahTPhfPQI9nDSNTQghKpokUBqTBEpcj6IofP/fSV7/4yB5RhMuDgYm9YhgWLtaFlVe4PjZTN5ZcZgV+5MAcLY3MKlHPYa1q4WdQervCiFskyRQGpMESpQkJ9/IC7/sZcnOMwB0rufPG/c3prq3i8aRXd/2Exd4Y/lBdsWnAtC0uidvPdCUhiHyuRZC2B5JoDQmCZS41qkLWTz+/Q4OJKaj18HzvRrwWMcwdDrLaXW6HpNJYdH2U7yxXB2rZdDrGNUpnPFRdXG0q5gB7kIIoQVJoDQmCZS42ta4C4z6fjupWfn4ujrwyUMtaFfbT+uwyiwlPYdXft/P8r1qt17DYA8+HtSCOgFS9kAIYRvK8v0tgxmEqEDrD6fwyHdbSM3Kp1l1T35/soNVJk8AAR5OfD64FV8OaYWPqwMHEtO555ONLNgaj/wdJoSoaiSBEqKC/Lk3kZH/t52cfBPd6gew8PG2NrF0SnSjIFY83ZEOdfzIzjcyZclexs7fSXpOvtahCSFEpbGqBGrDhg3cc889hISEoNPpWLp0aZH9iqIwdepUgoODcXZ2JioqiqNHjxY55sKFCwwePBgPDw+8vLwYMWIEmZmZRY7Zs2cPHTt2xMnJidDQUN55552KfmvCxvy84zRj5+8k36jQu2kwsx5uhZO97YwXCvBw4v8ebcOUXvWx0+tYvjeJPp/9S2xK5s2fLIQQNsCqEqhLly7RrFkzPvvssxL3v/POO3z88cfMmjWLLVu24OrqSnR0NDk5VxZhHTx4MPv372f16tX88ccfbNiwgVGjRpn3p6en06NHD2rWrMmOHTt49913eeWVV/jqq68q/P0J2/DTjtNMWrwbkwL9W1fn44EtcLCzqv9qpaLX6xjduTY/jWlHsKcTx89eos9n/7LmQLLWoQkhRIWz2kHkOp2OX375hT59+gBq61NISAiTJk1i8uTJAKSlpREYGMicOXMYOHAgBw8epGHDhmzbto3WrVsDsGLFCu666y5Onz5NSEgIX3zxBS+++CJJSUk4ODgAMGXKFJYuXcqhQ4dKFZsMIq+61h1K4bH/247RpDCsXS2m3t0QvQXVd6ooZzNyGTtvp7kw6PioujzVrW6VeO9CCNtRJQeRx8XFkZSURFRUlHmbp6cnkZGRbN68GYDNmzfj5eVlTp4AoqKi0Ov1bNmyxXxMp06dzMkTQHR0NIcPH+bixYslvnZubi7p6elFbqLq2RV/kSfm7cRoUnigRbUqkzwB+Ls7Mm9kJEPb1gTgwzVHmbAohtwCo8aRCSFExbCZBCopSZ1aHRgYWGR7YGCgeV9SUhIBAQFF9tvZ2eHj41PkmJLOcfVrXGvGjBl4enqab6Ghobf/hoRViU3J5NE528jON9K5nj9vP9i0yiRPhewNeqbf15h3+jbFTq/j15gEHvl2K2lZMrhcCGF7bCaB0tLzzz9PWlqa+Xbq1CmtQxKVKCU9h6HfbeXi5VIFnw9uiX0VXu6k/x2hzBneBjdHO7bEXaDvrE2cupCldVhCCFGu7LQOoLwEBQUBkJycTHBwsHl7cnIyzZs3Nx+TkpJS5HkFBQVcuHDB/PygoCCSk4sOgi38ufCYazk6OuLo6Fgu70NYl3yjiSfm7eRMajZhfq58N+wOXB0r4b9VXhakxkNu+uVbhnrT24GDGzi6g6MHOHuBVw0w2Fd8TFfpUNePxaPbMnz2NmJTMrn/803836NtZAkYIcTtO70DTv0HdXuAX13NwrCZBCosLIygoCDWrl1rTpjS09PZsmULY8aMAaBt27akpqayY8cOWrVqBcBff/2FyWQiMjLSfMyLL75Ifn4+9vbql87q1auJiIjA29u78t+YsGhvLDvI9pMXcXe047thd+DrVgGJdNYFOL4ekvZAyiE4exAungRKOf9Dbwc+4eBXT72FNIdaHcHFp/xjvUqDYA9+GduO4bO3cSgpg4FfbWbOo21oWUP+HwkhbsPeRbBlFpw7Avd8pFkYVpVAZWZmEhsba/45Li6OmJgYfHx8qFGjBuPHj+f111+nbt26hIWF8fLLLxMSEmKeqdegQQN69uzJyJEjmTVrFvn5+YwbN46BAwcSEhICwEMPPcT06dMZMWIEzz33HPv27eOjjz5i5syZWrxlYcF+jTnDnE0nAPhgQHPC/FzL58SKoiZLR1fB0dVwehsopuLHOXmCs/eV1iZHdzAVQG7mlRaprHOQn6X+ojl35Kon6yCoCYR1gvAuENYZ7ByKv8ZtCvZ0ZuHjbXl0zjZ2nLzIw99s4ZtHWtOujnVWYxdCWIBj69T78K6ahmFVZQzWr19P167FL9jQoUOZM2cOiqIwbdo0vvrqK1JTU+nQoQOff/459erVMx974cIFxo0bx++//45er6dv3758/PHHuLldWc9rz549jB07lm3btuHn58eTTz7Jc889V+o4pYyB7TuUlM79n20iO9/IuK51mBwdcfsnzb4IMfNh+3dwPrbovoCGUONO8G8AAZdvrqVIQkwmyEiAs4fh3FG19Sr+Pzh7TUkOJy9oeB807Q812oG+fMdwZeUV8Pj3O/jn6Dkc7PR8/lBLohoG3vyJQghxtbQzMLMhoINnj5d7S7osJqwxSaBsW3pOPvd+spET57PoWNePOcPbYLidGXcJu2DrN7DvZyjIVrfZu6otQ3X/p948q5dL7GYZyXDiH4j7G46sgsyrZph6VINmg+COx8Aj+PrnKKPcAiNPzt/FqgPJGPQ6Ph3Ugl5Nyu/8QogqYNc8+PUJCGkJo9aV++klgdKYJFC2beKiGJbsPEM1L2d+f7IDPq632PV19jCsfRUO/XFlW2BjaP2o2hLk6F4+Ad+MyQgnNsLexXDgN8hNU7fr7aFxX2j7BAQ3K5eXKjCamLx4N0tjErDT6/j0oZb0bFzy5AwhhCjm58fU31UdJ0H3qeV+ekmgNCYJlO1asS+R0T/sRK+DxaPb0qrmLTQfp52B9TMgZp46tkmnh8YPqi0+oW1Ap2H9qPwcOPInbPkS4jdf2V6rI3SZArU63PZLGE0KkxbFmJOozwe3pEcjSaKEEDdhMsH79eDSWRj6B4R1LPeXqJKVyIWoaGczcnnhl30APN65dtmTJ2M+rH8bPmkJu75Xk6f6d8MT/0Hfr6FGpLbJE4C9EzS6Hx5dASP/UhM7nUHt7pvTG75/ABJibuslDHod7/dvzn3NQygwKYydv5PVsn6eEOJmUvaryZO9i/rHpsYkgRKiFBRF4fkle7hwKY/6Qe6Mjypj7ZGkffB1V1j/JhTkQI22MGI1DJwH/uUwAL0iVGsFD34L4/eorWN6Ozi2Fr7qDIuHwfljt3xqg17H+/2acU+zEPKNCk/M28H6wyk3f6IQouoqnH1Xsz3YaV97URIoIUph8Y7TrDmYgr1Bx8wBzXG0M5TuicYC2PAufNUFkvaqZQf6fgvD/7SIv6BKxbM69H4fxm2DJv0BHez/BT6/E/56HfKzb+m0dgY9M/s3o3fTYPKNCqN/2MG2y4sRCyFEMcfXq/e1tS1fUEgSKCFu4kxqNq/+fgCAif+LoEFwKce1XTwJ30apSYYpHyJ6wxNboMmD2nfV3QqfcLWrcfRGqN0djHlqcvhZJBxZeUunVJOo5nSN8Ccn38Sjs7ex70xaOQcuhLB6+TlwcpP6WOP6T4UkgRLiJl75bT+ZuQW0qunNqE7hpXvS8b/VVqeEXWqNpQe+Vrvr3G2g9lFQY3j4Z+j/vVryIPUkzO8PCwZDekKZT+dgp+fzwa1oE+ZDRm4Bj3y3ldiUzAoIXAhhtU5tUcu8uAWpdfAsgCRQQtzAmgPJrD6QjJ1ex4wHmty83pOiwH9fwPf3Q/YFCGkBY/5VyxJYY6vT9eh00PBeGLsV2j2ljo869Ad83hb2/lTm0zk7GPh2aGuaVPPkwqU8hny7hYTUW+saFELYoOOF1ce7WMzvUkmghLiO7Dwjr/y+H4ARHcOoF3iTukz5ObD0CVgxBRQjNB2ojnUq7yKYlsTRDXq8Bo//A8HNIScVfh6hDjLPKtt4Jncne+Y+2oY6AW4kpuUw9LutpGXlV0TUQghrUziA3ELGP4EkUEJc16frjnL6YjYhnk483f0ms+5y0uD7PrB7vlrXKfpNuH8W2DtXSqyaC2wIj62BLs+rZQ8KB5kfXV2m0/i4OjD30TYEejhyNCWTkf+3nZx8YwUFLYSwClkXIHG3+ji8i6ahXE0SKCFKEJuSyVcbjgMw7d5GuDjcYN3tS+dh7r1q4UlHT3h4CbQdazHNzJXGYK8W23xsDfjVg8xkmPcgrHlFnY1YStW8nJn7aBvcHe3YeuICExbGYDRJvV8hqqzj6wFFXRPU3XKK7koCJcQ1FEVh6q/7yDcqdKsfQI8bLXqbkaQWmEyMARdfGPa7RTUxa6JaS3h8A7QZpf68cSbMvQfSE0t9ivpBHnz1SGscDHr+3JfEq7/vRxZNEKKKMo9/sqzfrZJACXGN5XuT2HTsPI52el65pxG667UkpcbDdz3h7EFwD1bHO5XTmnFWz94Z7noX+s0BB3eI3wSzOlwZx1AKbWv78sEA9XrO3XyS7/49UTGxCiEsl6LAsfXqYwv741QSKCGukldg4p2VhwB1uZYavi4lH3jxJHzXCy7GgVcNNXmy1IriWmp0Pzz+NwQ2gaxz6uzEfz5QfymWwt1NQ3jxLnXK8uvLDsiSL0JUNedjIS1eXdy8ZjutoylCEighrjJ/y0lOns/Cz82Rx69X8ynzrJoIpJ8G37owfAX4hFVuoNbEtzY8thpaPgIosHY6LBmlzloshcc6hvFQZA0UBZ76cZcU2hSiKimciFKzHTi4ahvLNSSBEuKy9Jx8Pv4rFoAJ/6uLq2MJA8dzM9SB0ReOgWcoDP0NPKtVcqRWyN4Z7v1EXRJGZ4C9i2DOXeoYspvQ6XRMv7cRHev6kZ1vZMTcbSSmSY0oIaqE2MsJVN0e2sZRAkmghLjsy7+PceFSHuH+rgxoHVr8gIJctdp24YDxIb+AR0ilx2nV7ngMHlmqrgl4Zodarf3Mzps+zd6g57PBLakX6EZyei6PztnOpdzSz+wTQlihvEtwYqP6uO7/tI2lBJJACQEkpmXzzT9xAEzpWR87wzX/NUxGtdsp7m9wcIPBP4HfTWpDiZKFdYKRf4FfBGQkwuy74PCKmz7Nw8me74bdgZ+bIwcT05m4KAaTlDcQwnbF/aOuuelZQy2NYmEkgRICmLn6CLkFJu6o5c3/SipbsPJFOLBUHcg44Ad1qr64dT7har2oOlHq+lYLBsH22Td9WnVvF74c0goHg56V+5P5cO3RSghWCKEJc/ddlEXW1ZMESlR5R5Iz+GnHaQCev6tB8bIFu36ALV+ojx/40uKm0lotJw8YtACaPwyKCf4YD3+9cdMZeq1qevPmA00A+HjtUZbtKX19KSGElVCUKwPI61he9x1IAiUEH689ikmB6EaBtKzhXXTn6R3wxwT1cZfnoXHfyg/Qlhns4b5PofNz6s8b3oFfx4HxxmvgPdiqOiM7qjMfJy2OkZl5Qtia87GQehIMDmq3vwWSBEpUaUeTM1i2V23BeLr7NX3sGcmw8GG1Dz6iN3R6VoMIqwCdDrq+APd8pM7Qi/kBFg65aZmDKb0a0LmePzn5Jkb+33bOZuRWUsBCiAp3dJV6X7Odumi5BZIESlRpn66LRVGgR8NAGoZ4XNlRkAeLh0JGgjp48f5ZoJf/LhWq1TAYOB/snODInzC/H+RmXvdwg17Hx4NaEO7vSmJaDmPn7yTfaKq8eIUQ5eb4ydOs+/sfEhIS1A0W3n0HkkCJKuzY2Ux+363+Z32q+zUz6lY+f3lxYA/1S93Jo4QziHIX0RMe/lmd6Ri3Ab7vA9kXr3u4p7M9Xw1pjZujHVvjLvDGsoPmfQkJCWzcuPHKL2QhhMWas+Ewo1ak8c6fB9TyBSf/VXdYYPmCQpJAiSrrs79iMSkQ1SCAxtU8r+zYsxi2fQPo4IGvpVxBZavVAR75DZy84PQ2mHOPWv39OuoEuPF+f3XNvDmbTrBkpzoh4Pjx48TGxnL8+PHKiFoIcRtiLzmQr+ioFuBr8eULCkkCJaqkE+cusTTmDHBN69PFk7Bsovq40zNqi4iofNVbwfDl4BoAyXthdq/rVi1PSEjA9WIsw+5Qy088v2Qv+86kER4eTp06dQgPv86SPEIIi5CTb2TXmUsA3HNHbYsvX1BIEihRJX22Tm196hrhT9PqXupGY4FaLDM3Haq3uTIzTGgjsBE8ukJdMuf8UZhzd4lJVGFLU7eAbLpG+JNbYOLx73fg7OlHhw4dCAmRavFCWLLtJy6SnW8k0MORiAC3KwPILXD5lqtJAiWqnFMXsliyS219evLq1qeNH8Cp/8DBHR74CgwlrIUnKpdvbRj2xw2TqMKWpjq1a/PhwBbU9HXhTGo2Ty+MwSiVyoWweH8fSQGgcz1/dOdjITXeossXFJIESlQ5326Mw2hS6FDH70rdp1PbYP1b6uPe74FPmHYBiqK8a12TRPUukkSFhISYW5o8ne2Z9XArnOz1bDhylk/+kkrlQli6v4+oYxw71wu40n1Xsx04uGoY1c1JAiWqlLSsfBZtPwXAqE6Xx8bkZsCSx0AxQuMHoekADSMUJSqSRMWqSVR6yRXIGwR78EYftVL5R2uPsv5wSiUGKoQoi4TUbI4kZ6LXQYc6fnDk8rqYFt59B5JAiSpm/tZ4svKM1A9yp2NdP3Xjiilw8YT65dz7fYsetFilXZtE/d99cOlciYf2bVWdhyJroCgwfmEMpy9mVW6sQohS2XC59alFDW88dZlw4nL5goheGkZVOpJAiSojr8DEnE1xAIzoEKaueXdsnbrWHTq4/0tw9tI0RnEThUmURzU4d/hynajUEg+ddk9Dmlb3JDUrnyfm7SS3wFiZkQohSuFK950/xK5VewL866sLjls4SaBElbFsbwLJ6bn4uztyb/MQyMtSF7AFaDMSarXXND5RSt614JFfwdUfkvbCvAfVbthrONoZ+HxwS7xc7NlzOo0Zyw9VfqxCiOvKN5rYeFRtRe5czx8O/6nuqGcd5WMkgRJVgqIofL1BbX0a2rYmjnYGWD9D7brzqAbdp2oboCgbv7owZOmVYps/DoL87GKHVfd2YWb/5oBaZHPZnpLHTQkhKl/MqVQycgvwcXWgSZDLleVbIu7SNrBSkgRKVAmbj53nQGI6TvZ6BkfWhIQY2PypurP3B+Dorml84hYENYYhS9SyEyf+URd+LsgrdljX+gGM6VIbgOd+3sOJc5cqO1IhRAn+Pqx233Ws64f+1GbITQMXP6jeWuPISkcSKFElfP2PupxHv1aheDvp4bcnQTFBowek2rg1q9YKBi8CO2eIXQNLx4Cp+ILCk/5Xjza1fMjMLeCJeTvJyZfxUEJorcj4p6u77/QGDaMqPUmghM07djaTdYfPotOpg8f57zNI2qN2//R6W+vwxO2q2Q4G/AB6O9j3kzqrUilaQNPOoOfjQS3wdXXgQGI6r/5xQKNghRAA5zJz2XsmDYCOdfzg8HJ1hxXMviskCZSweT/8dxKA7vUDqKVPgXVvqjui3wC3AA0jE+WmbhT0maU+3volbHi32CFBnk7MHNAcnQ7mb4nn990JlRykEKLQP0fV1qfG1Tzwzz4OqSfB4Ai1u2ocWelJAiVsWnaekZ93nAbg4TtrwqqXoCAHanWE5oM1jk6Uq6b9oOflFsV1b8C2b4od0qmeP2O71AHURYdPnpfxUEJo4a9DagLVqa7/ldan8C4WX338apJACZv2++4E0nMKCPVxppPhABz6A3QGuOtdKZhpi+4cDZ2eUR8vmwz7lxY7ZHxUXe6o5U1mbgHj5u+S+lBCVLJ8o4m/L68Q0L1B4JXq41Y2HlUSKGHTftiidt8Nbl0N/arn1Y13PAYBDTSMSlSori9Cq+GAAktGwclNRXbbGfR8NLAFXi727D2Txtt/HtYmTiGqqB0nL5Keo5YvaO6dC6e3qzuspP5TIUmghM3aczqVPafTcDDoedj+L0g5AM7e0GWK1qGJiqTTqUvyRPQGYy78OBBSihbRDPFy5r0HmwHw3b9xrD6QrEWkQlRJaw+q/9+6RPhjiF0FKBDSAjxCtA2sjCSBEjarcPB434YuuG26PDam64vg4qNhVKJS6A3Q9xuofgfkpKnVyq9ZfDiqYSCPtg8D4JmfdpOYVrwQpxCi/K09pHbfRTUIvFK+wEqKZ15NEihhk9Ky8vnt8iyr8XY/Q/ZFCGh4uWtHVAkOLjBoIfjUhrRTMK8f5KQXOWRKr/o0qaaulzd+QQxGk3KdkwkhykPcuUscP3sJO72OjrVc1PVIwarKFxSSBErYpCW7TpOTb6KH3wUCDv2gbuw5Awx22gYmKperLzz8s7puXvJeWDQEjPnm3Q52an0oVwcDW+Iu8Nm6WA2DFcL2FXbfRYb74H56AxRkg2cNCGyscWRlJwmUsDmKojBvSzwA0xzno1OMUP9udYqsqHp8wmDwYrB3hePr4Y8JRQpthvm58lof9Zf3h2uOsP3EBY0CFcL2/XW5+657/UA48Ju6seG9VjkrWhIoYXO2xl0gNiWTLg4HqXZ+E+jtocdrWocltBTSAh78DnR62PU9/Pthkd0PtKzOAy2qYVLg6QUxpGXll3weIcQtS8/JZ2uc+gdK93qeV8oXNLhXw6hunSRQwub8tOM0oDDddYm6odUw8AnXMiRhCSJ6Xim0ueYV2P9Lkd2v9mlMLV8XzqRmM2XJHhRFxkMJUZ42HDlLgUmhToAbNVO3Q246uAerkz2skCRQwqZcyi1g2d5EovQ7qZm9X11ktrCwohCRoyByjPp4yeNwaqt5l5ujHR8PaoG9Qcef+5JYtP2URkEKYZv+OljYfRcAB39VN9a/G/TWmYpYZ9RCXMeKfUnk5OXzguNidcOdo8E9UNughGWJfgPq9bpcI2oQXIgz72pa3YvJPSIAeOW3Axw7m6lVlELYFKNJYV1h9fF63nBombqjoXV234EkUMLGLN5xinv1mwhX4sHJE9o/rXVIwtIU1ogKbgZZ59RCmzlp5t0jO4bTvo4v2flGnl6wi7wCk4bBCmEbdsVf5GJWPp7O9rRSDqilZVx8oUY7rUO7ZZJACZtx6kIWO46nMMH+J3VD+6fVyuNCXMvRTa0R5R4MZw/BT4+CsQAAvV7H+/2a4+1iz74z6by/SpZ6EeJ2rb5cvqBzPX8Mh39XN9bvbdWlZSSBEjbj552nGWBYR01dCrgGQORorUMSlswjGAb9qI6Ti10Dq1407wrydOLtvk0B+HLDcTYePadVlEJYPUVRWLVfTaB6NPSDg3+oOxrcp2FUt08SKGETTCaFP3Yc40m7yzOrOj8LDq7aBiUsX0gLuH+W+njLLNj2rXlXj0ZBDI6sAcDERTFcuJSnRYRCWL2jKZnEnbuEg52ebq4n4FIKOHpCWCetQ7stNpVAvfLKK+h0uiK3+vXrm/fn5OQwduxYfH19cXNzo2/fviQnF11END4+nt69e+Pi4kJAQADPPPMMBQUFlf1WRBltibtA5/Q/CNSlYvKsAS2Hah2SsBaN+kC3l9THy59Ri21e9lLvhtT2dyUlI5fnfpbSBkLcipX7kgDoUMcPl6OXB49H9AI7Bw2jun02lUABNGrUiMTERPNt48aN5n0TJkzg999/Z/Hixfz9998kJCTwwAMPmPcbjUZ69+5NXl4emzZtYu7cucyZM4epU6dq8VZEGSzddoxRdmqzsL7TZKv/jykqWcfJ0KQ/KEZY9AicPwaAs4OBjwaqpQ1WH0hmwTYpbSBEWa08oCZQ0Q0D4ODl8U9WPPuukM0lUHZ2dgQFBZlvfn5+AKSlpfHtt9/ywQcf0K1bN1q1asXs2bPZtGkT//33HwCrVq3iwIED/PDDDzRv3pxevXrx2muv8dlnn5GXJ833lupSbgEuBxYSqEslzyUYmg3SOiRhbXQ6uPcTtaBfTlqRmXmNq3nyTLRa2uDV3w9wXEobCFFqpy9mse9MOnod9PROgPTT6rJKtbtpHdpts7kE6ujRo4SEhBAeHs7gwYOJj1fXRNuxYwf5+flERUWZj61fvz41atRg8+bNAGzevJkmTZoQGHilblB0dDTp6ens37//uq+Zm5tLenp6kZuoPGv2neZR1KJs9p3GS+uTuDX2TjDgB3APgXNH4OfHwGQE4LEO4bSrXVjaIEZKGwhRSoWDx1vX8sHzxJ/qxno9wN5Zw6jKh00lUJGRkcyZM4cVK1bwxRdfEBcXR8eOHcnIyCApKQkHBwe8vLyKPCcwMJCkJLV5MSkpqUjyVLi/cN/1zJgxA09PT/MtNDS0fN+YuKGzm+cRqj/LJXsfdK1k7JO4De5BMHAe2DnB0VWwdjpwubRB/2Z4Otuz90waM9cc0ThQIazDiv3qd2fPhoGw7/Ikn4Z9tAuoHNlUAtWrVy/69etH06ZNiY6OZvny5aSmprJo0aIKfd3nn3+etLQ08+3UKRknUVkuZmTT9ewPAGS3Hm0Tf9UIjVVrCfd9pj7+9yPYvQCAYE9n3nqgCQCz/j5mXhRVCFGy85m5bD+h/j+52+cUpMWDgxvUi9Y4svJhUwnUtby8vKhXrx6xsbEEBQWRl5dHampqkWOSk5MJCgoCICgoqNisvMKfC48piaOjIx4eHkVuonLs/+t7ausSyNC54dflCa3DEbaiyYPQcZL6+Len4PR2AHo1CaZfq+ooCkxYGEN6Tr6GQQph2dYcTMakQONqHgScvFz7qX5vm/lD16YTqMzMTI4dO0ZwcDCtWrXC3t6etWvXmvcfPnyY+Ph42rZtC0Dbtm3Zu3cvKSkp5mNWr16Nh4cHDRs2rPT4xU0oCtX3fgHAoZqDwdFd44CETen6EkTcpa6Zt/BhyFC7Iqbd24gaPi6cSc1m2q/XHxspRFW38vL4p54N/GD/5e67xg9qGFH5sqkEavLkyfz999+cOHGCTZs2cf/992MwGBg0aBCenp6MGDGCiRMnsm7dOnbs2MHw4cNp27Ytd955JwA9evSgYcOGDBkyhN27d7Ny5Upeeuklxo4di6Ojo8bvTlzr4u7fqVVwnEzFiZAesuadKGd6Pdz/JfhFQEYiLBwCBbm4Odoxc0Az9Dr4ZdcZftudoHWkQliczNwCcwX/Pt5xcOksOPtA7a4aR1Z+bCqBOn36NIMGDSIiIoL+/fvj6+vLf//9h7+/PwAzZ87k7rvvpm/fvnTq1ImgoCCWLFlifr7BYOCPP/7AYDDQtm1bHn74YR555BFeffVVrd6SuIG8de8CsNr1bqqFVNM4GmGTnDzU5V6cPOH0Vlg+GRSFVjV9GNetLgAv/bKXhNRsjQMVwrKsP5xCntFEmJ8r1U5dLp7Z8D4w2GsbWDnSKVJat9ylp6fj6elJWlqajIeqKKe2wrf/I1exY2nnFQzodofWEQlbdnQNzHsQUKD3+3DHY+QbTTw4azO7T6XSNtyXeY9FotfrtI5UCIvwxLwdLN+bxNiOoTyz9261rtrQPyCso9ah3VBZvr9tqgVKVB2X/v4YgN9M7el6RxONoxE2r24URE1TH//5HJz4F3uDng8HNMfZ3sDm4+f5dmOctjEKYSEu5Rbw1yF1LHF/78Nq8uQeDDXbaRxZ+ZIESlifiydxjlWbhHeEDCLA3UnjgESV0H48NO4LpgJ1uZe004T5uTL1HnWCybsrD3MwUYroCrH2UAo5+SZq+bpQI+Fy8cxGD4DeoG1g5UwSKGF9tnyJHhMbjE1o0bq91tGIqkKng3s/haAmkHVOnZmXn8PAO0KJahBIntHE+AUx5OQbtY5UCE39cXliRZ9GXugOX06gGvfVMKKKIQmUsC456Zh2zAVgrnIXPRsFaxyQqFIcXNTlXpy9IWEXLJuIDnirbxP83Bw4nJzBeysPax2lEJrJyMln/ZGzAPRz3wf5WeAdphaotTGSQAnrsut79PmZHDVVQwnvhqeL7czoEFbCuxY8OBt0eoiZB9u+wc/Nkbf7NgXgm41x/Bt7TtsYhdDI2oMp5BWYCPd3JeT05dl3jfuqLbg2RhIoYT2MBfDfLAC+NfYiukmIxgGJKqt2V4hS18ljxRQ4uZnuDQJ5KLIGAJMW7SY1K0/DAIXQxh971O67vg3d0B1do25sYjvFM68mCZSwHof+gLR4zivu/GrqQFSDwJs/R4iK0u7JooPK0xN4qXcDwvxcSUrP4aWl+5AqMaIqScvOZ8MRtfX1QYctYMqHwMYQ0EDjyCqGJFDCemxWF3j9wRhFs7AgfN2kOrzQkE4H936ifkFcSoFFj+CiNzJzQHMMeh1/7Enk1xipUi6qjtUHkskzmqgX6Ebg8ctFqpsN0jaoCiQJlLAOp7fD6a3kY8cPBf+jV2MZPC4sgIOrOqjcyQtOb4MVU2ge6sVTl6uUv/zrPs5IlXJRRSy73H03uHYenNkOOgM07a9xVBVHEihhHbZ+DcBvxracxYsejaT7TlgInzDo+y2gg+3fwc7vGdu1Ni1qeJGRU8DEhTEYTdKVJ2xbalYe/1xe++4e1qsb6/4P3AK0C6qCSQIlLF/WBfNK3t8X/I/moV4EezprHJQQV6kbBd1eVB8vm4Rd0i5m9m+Oi4OBLXEX+Oaf49rGJ0QFW7k/iQKTQsNAF3yO2n73HUgCJazBrh/AmMsJ+zrEKLXp2ThI64iEKK7DJIjoDcZcWPgItZyymHq3WqX8vVWHOZAgVcqF7Vq6S+2+e7zGGchIULu1I3ppG1QFkwRKWDaTSe0WAb7O7gLoiG4kCZSwQHo93P8F+NaB9NPw03AGtAomqkEg+UaF8Qt3SZVyYZMSUrP5L+48AP/L/0vd2Lgv2Nn2RB9JoIRlO74OLsaRb+fGkoJ21A9yJ8zPVeuohCiZkycMmAcObnDiH3Rrp5urlB9JzuRdqVIubNCvMQkoCnSp6YhL7HJ1Y/PB2gZVCSSBEpbtcuvTBpcosnGS1idh+QLqw31qyQ02fYLfyeW886BapfxbqVIubIyiKPyy6zQAYwL2Q0E2+NWzyaVbriUJlLBcaWfgsPrXzPsX1EWDZfyTsAqN+kC7p9THS8fSzeeCVCkXNulgYgZHkjNxsNPTKvXywsHNBtnk0i3XkgRKWK6dc0ExccG/DQcKqlHDx4X6Qe5aRyVE6XSfBmGdIP8SLHyYl7pXkyrlwuYUtj4NqFOA3anNgA6aDtA2qEoiCZSwTMZ82DEXgD+d7gKge4MAdFXgrxphIwx26qLDHtXhfCwuy8Yxs39TqVIubIbRpJg/x8Nc/lM3hncBz2raBVWJJIESlunwcshMQnEN4JOE+gB0ry/FM4WVcfWDAf8HBgc4vIzmJ769UqV86T5OX8zSOEAhbt3mY+dJycjFx1lP+KnLtZ9aPKxtUJVIEihhmS4PHk+p04+kSyZcHQy0CfPROCghbkG1VnDXe+rjv95gXI0TapXy3AImLtotVcqF1VpyuftufK14dBkJ4OwDDe7ROKrKIwmUsDwXT8Lx9YCO3+16ANCpnj8OdvJxFVaq1VBo+QigYPhlJJ/08sXFwcDWuAt8tUGqlAvrk5VXwMp9SQDcW7BS3dj8IZuv/XQ1+UYSlidmvnof3pmlJwwAdKtvu+spiSqi17sQ0gKyL1J95Uheu6s2AB+sPsy+M2kaBydE2aw+kMylPCMtvS7heXqdurHVME1jqmySQAnLYjKZE6jUiP7sO5OOTgddJYES1s7eCfp/Dy6+kLSHB5I+ILphAPlGhacX7CI7T6qUC+uxaPspACb7b0OnmKBmB/Crq3FUlUsSKGFZTmyAtHhw9GSV6Q4Amod64edWdZqFhQ3zClVn5un06GLm80HtXQS4O3Ls7CXeXH5Q6+iEKJVTF7L4N/Y8Bp2JNhf/UDe2Hq5tUBqQBEpYll3z1PsmfVl1RO3W6C6tT8KWhHdWa0QBrmtf4MuuJgC+/+8kfx1K1jIyIUpl8eXWpzEhx7HLrHqDxwtJAiUsR3YqHPwNgNwmD7Hx8pIX3aR8gbA17Z+GBveCKZ8Wm59iXBsPAJ79aQ/nMnM1Dk6I6zOaFBbvUGffPWx/eexTFRs8XkgSKGE59i+Bghzwb8CmrBrk5JsI9nSiQbBUHxc2RqeDPp+DXwRkJDIx9U0aBjhzLjOPZ3/aI1XKhcXaGHuOxLQc6jqlE5j8t7qxig0eLyQJlLAcu35Q71sMZu3hFECdfSfVx4VNcnSHAT+Agzv6+E38UGsZDnZ6/jqUwg9b4rWOTogSLdqmdt+9EFx1B48XkgRKWIaUg3BmB+jtUJr056+DagLVvYGMfxI2zL8e3P8FAD57vuHL5nEAvP7HAWJTMrSMTIhiLlzKY9WBJPSY6JCuLvReFQePF5IESliGwtanutEcvuRMQloOjnZ62tX20zYuISpag3ugw0QAuhx+jUE1M8gtMPHkjzHkFkhpA2E5ftl1hnyjwgi/A9hfSlQHj9e/W+uwNCMJlNCeMR/2LFQft3iYDUfOAnBnuC9O9gYNAxOiknR7CcK7osvP4rWcGdR0yeNgYjrvrjisdWRCAKAoirn7boT9KnVjq2FqfbMqShIoob2jq+HSWXD1h7r/Y/XeMwA0D3TQODAhKoneAA9+B141sEs7wc+Bs9Fh4puNceY/KITQ0u7TaRxOzqCp3SmCLm4HnQHueEzrsDQlCZTQXmHrU5P+ZBv1xJxRx36E6GV5C1GFuPiog8rtnPBL/Jvvaq4BYNLi3ZyX0gZCY/O3nATgBd/LM+8a3gee1TSMSHuSQAlt5aTDkRXq46b92RJ3nnwT+Drp6NC0jraxCVHZgpvBPR8B0DV5Do947+NsRi7P/SylDYR20rLy+TUmAW/SaZOpJvZEjtY2KAsgCZTQ1qE/1NpPvnUhuBkbjqjFM//XpDrVqlXtv25EFdVsILR5HIBpBR8TYUhizcEUvv/vpMaBiapq8Y5T5BaYeNprE3pjnroodmgbrcPSnCRQQlt7Fqn3TfuDTseGo+p4j071/DUMSgiNRb8BNdphyM9kgdenuJHF68sOcigpXevIRBVjMinM2xKPHQX0Vy73FkSOVovBVnGSQAntZCRD3OX+9CYPkpCaTWxKJnodtJfyBaIqM9hDvzngHoz3pePM9Z5NfkEBT/24i5x8KW0gKs/G2HPEnbtEH8eduOSmgGsANLpf67AsgiRQQjv7fgbFBNXvAJ9w82yjZqFeeLrYaxycEBpzD1QHlRscaJX9L8+6LONIciavLzugdWSiCinsOn7a7fLYpztGVMl170oiCZTQzt7L3XdN+gHwz1F1/FOnutJ9JwQA1VtD7/cBGG1aQFf9Ln74L56V+5M0DkxUBWdSs1l7MJmmumOEXtoHentoVXUrj19LEiihjXOxkLBLrSXS6AGMJoWNsZcTKBn/JMQVLR+B1iPQofCF8+eE6RJ59qc9JKRmax2ZsHE/bonHpMCzXn+pGxr3VVtGBSAJlNDK3sXqfe2u4ObP7tOppGXn4+FkR7PqntrGJoSl6fkW1GiLk/ESc10+xJidxtMLdlFgNGkdmbBReQUmFmyLJ1SXTPvsy2NV2z6hbVAWRhIoUfkU5aruu/4A5vFPHer6YWeQj6UQRdg5QL+54B5CDeMpPnKcxfYT5/n4r1itIxM26s99iZzLzONp55XoMEHt7mqdMmEm31Si8p3ZCReOg50z1L8LuJJAyfgnIa7jqkHl3XXbedpuCZ/8dZRNx85pHZmwMYqi8M0/cfiRRh/WqRs7TNA2KAskCZSofIWtT/XvAkd30rLziTmVCsj4JyFuqHorc6Xy8XZL6KHbyoSFMbLUiyhXW+MusPdMGiMcVmJnyoVqraFWB63DsjiSQInKZTLC/l/Ux5e777YcP49JgXA/V0K8nDUMTggr0PwhiBwDwIcOs/DKOMrkxbsxmWSpF1E+vtkYhxtZDLO7XLqgwwQpnFkCSaBE5YrfDJnJ4OQJtbsBsOnYeQDa1fHVMjIhrEeP1yGsE87k8I3DB+w6fJyv/zmudVTCBsSdu8Sag8k8ZFiLsykT/OpBxF1ah2WRJIESlevAr+p9RG91YCywuTCBkurjQpSOwU4dVO5Vk1BdCp/af8z7Kw+w4+QFrSMTVu67jXE4KHk84bRS3dB+POglVSiJXBVReUwmOPCb+rhRHwDOZuRyODkDgDvDpQVKiFJz8YFBP6LYu9LBsJ/n9d/z5PxdXLyUp3VkwkpdvJTH4h2nuN+wES/jBfCoZi50LIqTBEpUnlP/QWYSOHpCeFcANh9XW58aBHvg4+qgZXRCWJ/ARuge+BKA4XYr6Zy5jGd+2o2iyHgoUXbzt8aTl1/Ak47L1A1tx5l7CkRxkkCJyrN/qXpf/66ruu/UKdjta0vrkxC3pME90PUlAF61m0PGob/55p84jYMS1ia3wMicTSe4T/8v1UyJ4OytVsEX1yUJlKgcJhMcvNx917CPebMMIBeiHHSaDI37Yq8z8oXDTOat+JvtJ2Q8lCi9X2MSuJCRxUSHy7Ok2z0Fjm7aBmXhJIESlePUFshIBEcPdfkW4PTFLE6ez8Kg13FHLR+NAxTCiul0cO+nKMHN8dFl8qXdezw771/OSX0oUQpGk8Ln62J5wPAPoSSBix+0GaV1WBZPEihROQ4sVe8jeoGdI3Bl9l3T6p64O9lrFJgQNsLBBd2gHzG5BRKhP82LOe8z4ccdGKU+lLiJP/YkcOZ8OhPsL7c+dRgvrU+lIAmUqHhXz74rqftOxj8JUT48QtAP/BGTwZHuhl10PvkxH689qnVUwoKZTAqfrztGf8N6QjgLboHQeoTWYVkFSaCu47PPPqNWrVo4OTkRGRnJ1q1btQ7Jep3eBhkJ4OBuLp6pKIp5DS+p/yREOareCv39swB4zO5Pzq6fZV5rUohrrT6YzInk8zxlt1Td0HESOLhoGpO1kASqBAsXLmTixIlMmzaNnTt30qxZM6Kjo0lJSdE6NOt0dfedvRMAx89dIjk9Fwc7Pa1qemsXmxC2qPED0PVFAF61m838H+dy+mKWxkEJS6MoCp/+FctAwzoCdZfrPrUcqnVYVkMSqBJ88MEHjBw5kuHDh9OwYUNmzZqFi4sL3333ndahWR+T6Ur18cvFM+FK912rGt442Rs0CEwIG9fpGYyN+2GnM/GO6X3emPsrOflGraMSFuTvI2c5eiaFcXaXf0d3mmz+I1fcnCRQ18jLy2PHjh1ERUWZt+n1eqKioti8eXOJz8nNzSU9Pb3ITVx2Zjukn7ncfdfdvHlTbGH3nYx/EqJC6HQY7vuU3OA78NBl8dyFaby7ZKPWUQkLUdj69LBhDf66VPCqAc0f1josqyIJ1DXOnTuH0WgkMDCwyPbAwECSkpJKfM6MGTPw9PQ030JDQysjVOtw8Hf1vl60+S8bk0kxVyCX+k9CVCB7JxwH/0iOa3Vq6ZO5a/8kFm8+onVUwgJsPn6eoydPMa5w7FPn56TqeBlJAlUOnn/+edLS0sy3U6dOaR2SZVAUOHR5SYD6vc2bj6RkkJqVj4uDgabVvbSJTYiqws0fp2FLyLFzp5X+KK5/PsnueCmyWZUpisK7Kw/ztN0SvHSXILAxNBukdVhWRxKoa/j5+WEwGEhOTi6yPTk5maCgoBKf4+joiIeHR5GbAM4dgQvHwOAAda50iW6NU395t6rpjb1BPoJCVDj/CBwemk8Bdtyl/489cydwNkOKbFZVaw+mcPHUQYYYVqsberwOehmLWlby7XUNBwcHWrVqxdq1a83bTCYTa9eupW3bthpGZoUKW5/COoHTlaRyy+UEqo1UHxei0ujDO5F/98cADDEuZenXr5FXYNI4KlHZTCaF91YdZordAux1Rqjbw7w6hCgbSaBKMHHiRL7++mvmzp3LwYMHGTNmDJcuXWL48OFah2ZdSui+UxTF3ALVJkwSKCEqk3PrwVxoMxmAR9M+ZcH8bzSOSFS23/ck4Jm8lZ6GbSg6A/zvNa1Dslp2WgdgiQYMGMDZs2eZOnUqSUlJNG/enBUrVhQbWC5uID1RnYEHUK+XefOJ81mczcjFwaCnWaiXNrEJUYX59HqJxLPHCY5bwoPHXmLVqur06HGX1mGJSpBvNDFz1SE+tv8BAF2roRBQX+OorJe0QF3HuHHjOHnyJLm5uWzZsoXIyEitQ7IuR/5U76u1Bo9g8+atcersu+ahXlL/SQgt6HQEP/wVJ73b4qLLpdW/j7Nvz06toxKVYNH2U7RIXU1TfRyKgxt0eUHrkKyaJFCiYpi774r+ZbtFuu+E0J7BnhqjF3PSsR6+unS8lgwg8Uy81lGJCpSTb+TLNft4xn4hALqOk8DNX+OorJskUKL85aRD3Ab1cf27i+yS8U9CWAadozt+j/9Kgj6Y6qSQ+V0fsjIuah2WqCDf/HOcgdkLCNFdQPGoDneO0TokqycJlCh/sWvAmAc+tcGvnnlzQmo2py9mY9DraCnr3wmhOVefEPSPLOECHtQ1HiPu8wcx5Ut5A1uTnJ7DqvXrGGlQewZ0d70L9s4aR2X9JIES5e/wcvW+fm/Q6cybt51QW58ah3jg5ijzF4SwBEG1GpJ89/dkKY40yt7OkVmDwSRr5tmSd/48wEt8g73OiBJxV7GhFeLWSAIlypcxH46sUh9fVb4Arox/ukPqPwlhURq07sLOtp+Qpxiof341cf83Wl1JQFi93adS0e/5kTb6wxjtXND1ekfrkGyGJFCifJ3YCLlp4OoP1e8oskvGPwlhuTr0HMCyuq9hUnSEnVjEmZ+f1zokcZsURWHmb5t5wW4+AIZuL4CXrNVaXiSBEuWrcPZdvZ5FlgY4l5lLbEomIC1QQliq+x56gvkBEwCotu8Lzq98V+OIxO34bXcCdyV+gbcuk3y/hhA5WuuQbIokUKL8KAocvlz/6Zruu+2Xxz9FBLrj7SorfgthifR6HQ+Oeom5ruqqC76bXydzk1Qrt0bZeUZWLvuZ/nZ/A2B/30dgsNc4KtsiCZQoPykHIP002DlDeJciu6T+kxDWwcneQO8xb/OD3f0AuKyaTN7O+RpHJcrq81V7mJz7GQAFLYZCaBuNI7I9kkCJ8nNkpXof1qnYFFkZ/ySE9fBzc+TOkR+zgB7oUbD7bSymvUu0DkuU0sHEdPy3vEm4Pokc50DsekzXOiSbJAmUKD9HL8++q/u/IpszcvI5mJgOSAIlhLWoE+hBzYc/Z5GpG3pMKD8/hnLwd63DEjdhNCksWDCXRwzq72OnB2eBs9TdqwiSQInykX0RTm1RH9eLLrIr5lQqJgVq+LgQ6OGkQXBCiFvRto4/Ln0/ZomxAwaMmBYNu1KmRFikRf/sZXTqBwBkNXsUanfTOCLbVeYEaujQoWzYsKEiYhHWLHYtKCbwbwBeNYrs2nFSXR6ilVQfF8Lq3N0slIweH/KH8U4MSgHGBYPh6GqtwxIlSEzLxu2vFwjWXSDdpSYuvV/XOiSbVuYEKi0tjaioKOrWrcubb77JmTNnKiIuYW2u030HVxIoWb5FCOs0tGNdDrZ9nxXGOzCY8jD9OAgOr9A6LHGNX+d9zj26fzCix23gN+DgqnVINq3MCdTSpUs5c+YMY8aMYeHChdSqVYtevXrx008/kZ+fXxExCktnMqrr30Gx7jujSWFXfCoArWpIAiWEtZrcqxFrG7/NcmMb9KZ8TAsfhoN/aB2WuGz1f7von6x23aW2GIu+hsy6q2i3NAbK39+fiRMnsnv3brZs2UKdOnUYMmQIISEhTJgwgaNHj5Z3nMKSndkJWefB0RNCI4vsOpKcQWZuAa4OBiKC3DUKUAhxu3Q6HTMebMHvdV7jd+Od6E35KIuGwv6lWodW5SVdyMB3xeP46DJJca2Hb++pWodUJdzWIPLExERWr17N6tWrMRgM3HXXXezdu5eGDRsyc+bM8opRWLqjl8sX1O5arFBbYfddixreGPS6a58phLAidgY9Hw6+g8U1pvGLsT06pQDlp0dh709ah1ZlmUwKu757ipYc5pLOBe9hP4KdFCuuDGVOoPLz8/n555+5++67qVmzJosXL2b8+PEkJCQwd+5c1qxZw6JFi3j11VcrIl5hiQrHP13TfQewU8Y/CWFTHO0MzBrahnlBU/jJ2AmdYkT5+THYJhXLtfD30q/planW6Erv+Qn2/nU0jqjqsCvrE4KDgzGZTAwaNIitW7fSvHnzYsd07doVLy+vcghPWLyMJEjcrT6uU8IA8niZgSeErXFxsOPbR9vy0JeTyTrnyCN2q2HZJLWcScfJoJPW5spw4vBu7tg9FXSwv9YwGkU+qHVIVUqZE6iZM2fSr18/nJyuX8/Hy8uLuLi42wpMWInC1qeQluDmX2TX2YxcTp7PQqeD5qFelR+bEKLCeDrb83+P3clDX8HFC248bfcL/PU6ZF2EHq+DXsoMVqS8rAxYNAQ3XTaHHJvQcMh7WodU5ZT5Ez5kyJAbJk+iirlR993l1qd6Ae54OssilkLYGl83R+aNupM/fIbzav4QdeN/n8Fv48Aos7IrjMnE4a+GUst4knN44jt0HjpZKLjSyZ8I4tYV5MGx9erjuj2K7ZbxT0LYPj83R+aPvJMNvv2YmDeaAvQQMw/m94ecdK3Ds0lHfnyGJqlryVcMnOz6Gf4hNbUOqUqSBErcuvhNkJcBrgEQ3LzY7sIZeK0lgRLCpvm7OzJ/ZCS7fXsxKm8i2TjCsb/gu56QJsWWy1PSX19Q76g6YH9N3Zdo1fkejSOquiSBErcudq16Xyeq2HiH3AIje86kATKAXIiqIMDdiQWj2pIQ0Jl+uS9zFi9I2Q/fdIfEPVqHZxOy9i/Hf8MLAPzs8Qg9HpqgcURVmyRQ4tYd+0u9r9O92K59Z9LJKzDh6+pATV+XSg5MCKEFf3dHFoy6E0P1lvTJmc5RJRQyEmF2LziyUuvwrJqSsAv9T8MxYGKZvitdR70ntfU0JgmUuDUZSZC8D9BBeNdiu68e/6STKc1CVBleLg7MeyyS6mER9M2dyialMeRlwvwBsOE9UBStQ7Q+549xafaDOCk5bDQ1odrQr/Fxc9Q6qipPEihxa46tU++Dm4Grb7Hd/x5OAKCut6EyoxJCWAA3RzvmPtqGVhG1GJr7LPOMUYACf70Gix6B3EytQ7Qe54+R9VVP3PLPcdBUg5ReX9O8pv/NnycqnCRQ4tYUdt/V7lZsl6Io7Dqtzr7xVdIqMyohhIVwsjfw1SOtuadlTV7Mf5Tn80dg1NnBwd/g2//BheNah2j5zh8j95teuOSmcNhUnfWRX/NA2wZaRyUukwRKlJ3JBMcvt0CVMP4pJSOXzHwFgw66NZdlBYSoquwNet7v14xxXevwo7E7/XJeIt3OB1IOwFdd4OAfWodouc7Fkv9tLxyzkzlsqs68+p8y+q4ri7UnJCSwceNGEhISNAyyapMESpRd8l64dBbsXaF6m2K7Az2c2PdKT34d14GwGtU1CFAIYSl0Oh2ToyN44/7GxFCPqMzXOGpfH3LSYOFgWP4M5OdoHaZlORdLweze2Gclc8gUysyQ93mpf+ci40mPHz9ObGwsx49LS55WJIESZVfYfRfW8bqrfjs7GGhczbMSgxJCWLLBkTX5akhrMh38uCvjBRbY3afu2PoVfBsF545qG6ClOLkZ4zdR2F1K4pAplKmeb/L20O442BX9ug4PD6dOnTqEh4drFKiQBEqUnXn8U/HuOyGEuJ6ohoEseaIdgd7uTMkcwOOmKeQ5ekPSXviyM+z8v6o9S2/PIpS592LIuUiMKZyXPN7gs1HRJS6FFRISQocOHQgJCdEgUAGSQImyyrsE8f+pj0sYQC6EEDdSP8iD38Z1IDLMh5V5TemY/jonPVtD/iX47Un4oS+kntI6zMqlKLBuBiwZic6Ux3JjG17weIvPH4/G313KFVgqSaBE2Zz4F4x54FkDfGtrHY0Qwgr5uDrww2ORDLmzJsmKN12Tx/ODx2MoBic4thY+bwvbZ1eN1qi8S7BkFPz9FgCzCu7hA8/nmfN4ZwLcnTQOTtyIJFCibI4VLt/SDaRAphDiFtkb9LzWpzEfDWyOk4M9L6V040HeId2/pbrG5h/j4f/ug7NHtA614iTuVrsu9y4iHwNT8h9jkfdjzB/VTpInKyAJlCibG9R/EkKIsrqveTV+f7ID9YPc2XHJjxanJ7K6xngUO2eI+xu+aAsrX1Rn7dkKkwk2fQJfd4fzR0lSvBmS9zxHq/flp9HtCPCQ5MkaSAIlSi/1FJw7Ajo9hHXSOhohhI2o7e/G0rHtGdQmFKOiZ+SRNjzi9CFpNaLAVACbP4VPWsGuH9Tkw5qlJ8IPD8Cql8CUz0pja3rmvoVvo+7MeywSH9eSZzYLyyMJlCi9wtanaq3B2VvbWIQQNsXJ3sCMB5ryzSOt8XNz5J9z7rSMHcHPDT7C5FtXrT3361j4siMc+M36EqmCXNg4Ez5tDcfXkatz5Pn8ETyeP4H+nZrxyaAWONnL0lfWRBIoUXrSfSeEqGBRDQNZPaET9zQLwWhSmLTLnx7ZbxLbfAo4eqiLmC8aAl92goO/W34ipShw+E/4/E5Y8wrkZbJXV4+7cl7nZ93/mPFAU164qwF6vYwptTY6RakK0xwqV3p6Op6enqSlpeHh4aF1OOXDZIR3wiEnFR5dBTUib/oUIYS4Hcv2JDL99/2kZOQC8EB9F14J+BuPmG/UgeYAgY0h8nFo/CA4uGgY7TUUBU7+C/+8b/7jM9PBj6mX+vGLsT3h/u58+lBLGgTbyHeEjSjL97ckUBXAJhOohBj4qjM4uMNzJ8Bgp3VEQogqICMnn4/WHGX2phMYTQpO9npGt/FhtMOfOO34GvIy1QMdPaH5Q3DHCPCrq13AxgI4+Ks6SDxhFwAmvQOL7O7htfS7uIQzfVtW59X7GuHqKL9HLY0kUBqzyQTq349h9ctQNxoGL9I6GiFEFXM4KYOXf93H1rgLALg72jGurS/DXDbiuGs2XDxx5eDqbaDhvdDgHvCudVuvm5CQwPHjxwkPDzdX/S5pG2ePwIFf1WrqafEAKHZObHLrwfPJXYlXAvF1dWDqPQ25r3m124pJVJyyfH9L+itKJ+5v9T68s7ZxCCGqpIggdxaOupO/DqXw3qojHExMZ8b6ZGa5NGRwmwWMCI7De///wZEVcHqrelv1EgQ1hfp3Q822ENISHN3K9LqFi/YC5mTp+PHjHDt6BNeMY4QcTlATp7MHzc8xOfuyyfcBnj8VyakkF3Q6GBxZg2ej6+PpUnxZFmGdpAWqAthcC1RBHrxdS11qYfRGCGqidURCiCrMZFJYtjeRD1YfIe7cJQDs9DrubhrMyObONEzbgO7gb+oYJOWqQeY6vTpmKrQN+NcHr5rgVQO8QsHBtcTXSjh1gtOHdxHm54K/IQMSdpEbtxm7s/sxGHOuHKi3J7dmZ1ZzJy8fi+BinjqjrnE1D17v04TmoV4VdTlEOZIuPI3ZXAIV/x98Fw0uvjA5FvQyeVMIob0Co4nVB5L57t84tp24aN4e7ufKPc1C6BPhRNi59XBsHZzeBmnXX2PP5OBOgaLHYO+Awd5JTbZy0tSJM9fj4IapZgf2eXXlm5T6LD+aRYFJ/UptXM2Dp7rVJapBoMywsyKSQGnM5hKo9W/D+jehYR/oP1fraIQQNq7EMUY3sfd0GrP/jWPZ3kRyC660OjUI9qBjXT/a1vYl0icbl5SdcHo7XIiD1Hj1lnuTKud6e3ALBI9gCG5Ohm8TdhSEsSrZgz/3p3AxK998aMsaXozrVoeuEQHoZLkrqyMJlMZsLoGa3RtOboS7Z0LrR7WORghh4zZu3EhsbCx16tShQ4cOZXpuZm4Bq/Yn8dvuBP45eg6j6cpXnJ1eR6MQD+oGulM3wI06AW7U9HXBU5dFbtIRUs7EUz0kCH9fbwry88jRu3EWD2LT7TlxIYu4c5fYFZ/KoaSMIq8Z4O7I/S2r8WDL6tQNdC+XayC0IYPIRfnJy1IHYwKEyQByIUTFCw8PL3JfFm6OdjzQsjoPtKzO+cxcNsaeY1PseTYdP8epC9nsPp3G7tMltzg52PngYCggOz/pcuJ1/rqvUz/InXa1/egc4U/72r7YGWRoQ1UjCZS4sVP/gTEPPKqBT9l/mQkhRFmFhISUuuvuRnzdHLmveTVz2YBTF7LYeyaNo8mZHE3JIDYlk4TUbDJyC1AUyCswkVdQtLK5m6MdtfxcCPNzI8zPlYhAd+4M98HXzfG24xPWTRIocWNxG9T7sM4g/flCCCsW6uNCqI8LXDOR2GRSyMwrID07n3yjgouDAWcHA872BuylZUlchyRQ4saOX67/FNZJ2ziEEKKC6PU6PJzs8XCSGk2i9CS1FteXnQqJMepjSaCEEEIIM0mgxPUVFqHzrQOesvSAEEIIUUgSKHF9V49/EkIIIYSZTSVQtWrVQqfTFbm99dZbRY7Zs2cPHTt2xMnJidDQUN55551i51m8eDH169fHycmJJk2asHz58sp6C5bFnEBJ950QQghxNZtKoABeffVVEhMTzbcnn3zSvC89PZ0ePXpQs2ZNduzYwbvvvssrr7zCV199ZT5m06ZNDBo0iBEjRrBr1y769OlDnz592LdvnxZvRzuZKZByQH1cq6O2sQghhBAWxuZm4bm7uxMUFFTivnnz5pGXl8d3332Hg4MDjRo1IiYmhg8++IBRo0YB8NFHH9GzZ0+eeeYZAF577TVWr17Np59+yqxZsyrtfWiusPUpqAm4+mobixBCCGFhbK4F6q233sLX15cWLVrw7rvvUlBQYN63efNmOnXqhIODg3lbdHQ0hw8f5uLFi+ZjoqKiipwzOjqazZs3X/c1c3NzSU9PL3Kzeic2qve1pPtOCCGEuJZNtUA99dRTtGzZEh8fHzZt2sTzzz9PYmIiH3zwAQBJSUmEhYUVeU5gYKB5n7e3N0lJSeZtVx+TlJR03dedMWMG06dPL+d3o7GTm9T7Wu21jUMIIYSwQBbfAjVlypRiA8OvvR06dAiAiRMn0qVLF5o2bcro0aN5//33+eSTT8jNza3QGJ9//nnS0tLMt1OnTlXo61W4zLNw7rD6uEZbbWMRQgghLJDFt0BNmjSJYcOG3fCY6y04GRkZSUFBASdOnCAiIoKgoCCSk5OLHFP4c+G4qesdc71xVQCOjo44OtrQukgn/1XvAxqBi4+2sQghhBAWyOITKH9/f/z9/W/puTExMej1egICAgBo27YtL774Ivn5+djbqyX7V69eTUREBN7e3uZj1q5dy/jx483nWb16NW3bVqGWmMIESrrvhBBCiBJZfBdeaW3evJkPP/yQ3bt3c/z4cebNm8eECRN4+OGHzcnRQw89hIODAyNGjGD//v0sXLiQjz76iIkTJ5rP8/TTT7NixQref/99Dh06xCuvvML27dsZN26cVm+t8p24nEDVlARKCCGEKInFt0CVlqOjIwsWLOCVV14hNzeXsLAwJkyYUCQ58vT0ZNWqVYwdO5ZWrVrh5+fH1KlTzSUMANq1a8f8+fN56aWXeOGFF6hbty5Lly6lcePGWrytypd1AVL2q48lgRJCCCFKpFMURdE6CFuTnp6Op6cnaWlpeHh4aB1O2RxaBgseAr96MG6b1tEIIYQQlaYs398204Unyol03wkhhBA3JQmUKOpkYQHNDtrGIYQQQlgwSaDEFTlpkLRXfVyznbaxCCGEEBZMEihxRfwWUEzgHQYeIVpHI4QQQlgsSaDEFebuOxn/JIQQQtyIJFDiCvMAchn/JIQQQtyIJFBClZsJCbvUx9ICJYQQQtyQJFBCdXorKEbwDAWvGlpHI4QQQlg0SaCESuo/CSGEEKUmCZRQyQLCQgghRKlJAiUgPwfO7FAfSwuUEEIIcVOSQAl18LgxD1z9wSdc62iEEEIIiycJlIBT/6n3Ne4EnU7bWIQQQggrIAmUgPjLCVTondrGIYQQQlgJSaCqOpMJTm1RH9doq20sQgghhJWQBKqqO3cEsi+CnTMEN9U6GiGEEMIqSAJV1RWOf6reGgz22sYihBBCWAlJoKq6+KsGkAshhBCiVCSBqupkALkQQghRZpJAVWUZyXAxDtBB6B1aRyOEEEJYDUmgqrLC8U+BjcDJU9tYhBBCCCsiCVRVJuOfhBBCiFsiCVRVJuOfhBBCiFsiCVRVlXcJEnerj6UFSgghhCgTSaCqqjM7QDGCRzXwCtU6GiGEEMKqSAJVVcn4JyGEEOKWSQJVVcn4JyGEEOKWSQJVFZmMcGqr+lhaoIQQQogykwSqKko5AHkZ4OCu1oASQgghRJlIAlUVxV+1gLDeoG0sQgghhBWSBKoqOr1NvQ+N1DYOIYQQwkpJAlUVmRMoWf9OCCGEuBWSQFU1l87BhePq42qttI1FCCGEsFKSQFU1p7er934R4OytbSxCCCGElZIEqqo5fbl8QXXpvhNCCCFulSRQVY2MfxJCCCFumyRQVYnJCGd2qo+lBUoIIYS4ZZJAVSUpByEvUy2g6V9f62iEEEIIqyUJVFVSOP6pWkspoCmEEELcBkmgqpLCGXihbbSNQwghhLBykkBVJadkBp4QQghRHiSBqiqyLsD5o+pjSaCEEEKI2yIJVFVxZod671MbXHy0jUUIIYSwcpJAVRXm+k8y/kkIIYS4XZJAVRXm8U+ttY1DCCGEsAGSQFUFJtOVLrzq0gIlhBBC3C5JoKqCc0cgNx3sXSGgodbRCCGEEFZPEqiq4OoCmgY7bWMRQgghbIAkUFVB4QByGf8khBBClAtJoKqCU4UJlIx/EkIIIcqDJFC2LjcDzh5SH0sLlBBCCFEuJIGydQkxgAKeoeAWoHU0QgghhE2QBMrWFZYvqNZS2ziEEEIIGyIJlK0zJ1CttI1DCCGEsCFWk0C98cYbtGvXDhcXF7y8vEo8Jj4+nt69e+Pi4kJAQADPPPMMBQUFRY5Zv349LVu2xNHRkTp16jBnzpxi5/nss8+oVasWTk5OREZGsnXr1gp4R5UkYZd6HyItUEIIIUR5sZoEKi8vj379+jFmzJgS9xuNRnr37k1eXh6bNm1i7ty5zJkzh6lTp5qPiYuLo3fv3nTt2pWYmBjGjx/PY489xsqVK83HLFy4kIkTJzJt2jR27txJs2bNiI6OJiUlpcLfY7nLSIa0U4AOQpprHY0QQghhM3SKoihaB1EWc+bMYfz48aSmphbZ/ueff3L33XeTkJBAYGAgALNmzeK5557j7NmzODg48Nxzz7Fs2TL27dtnft7AgQNJTU1lxYoVAERGRnLHHXfw6aefAmAymQgNDeXJJ59kypQppYoxPT0dT09P0tLS8PDwKId3fYsO/wk/DgT/BjD2P+3iEEIIIaxAWb6/raYF6mY2b95MkyZNzMkTQHR0NOnp6ezfv998TFRUVJHnRUdHs3nzZkBt5dqxY0eRY/R6PVFRUeZjSpKbm0t6enqRm0U4s1O9lwHkQgghRLmymQQqKSmpSPIEmH9OSkq64THp6elkZ2dz7tw5jEZjiccUnqMkM2bMwNPT03wLDQ0tj7d0+2QGnhBCCFEhNE2gpkyZgk6nu+Ht0KFDWoZYKs8//zxpaWnm26lTp7QOCRRFZuAJIYQQFUTTlWUnTZrEsGHDbnhMeHh4qc4VFBRUbLZccnKyeV/hfeG2q4/x8PDA2dkZg8GAwWAo8ZjCc5TE0dERR0fHUsVZaS4ch5xUMDhAQCOtoxFCCCFsiqYJlL+/P/7+/uVyrrZt2/LGG2+QkpJCQIBacXv16tV4eHjQsGFD8zHLly8v8rzVq1fTtm1bABwcHGjVqhVr166lT58+gDqIfO3atYwbN65c4qw0heULgpqCnYO2sQghhBA2xmrGQMXHxxMTE0N8fDxGo5GYmBhiYmLIzMwEoEePHjRs2JAhQ4awe/duVq5cyUsvvcTYsWPNrUOjR4/m+PHjPPvssxw6dIjPP/+cRYsWMWHCBPPrTJw4ka+//pq5c+dy8OBBxowZw6VLlxg+fLgm7/uWSfedEEIIUWE0bYEqi6lTpzJ37lzzzy1atABg3bp1dOnSBYPBwB9//MGYMWNo27Ytrq6uDB06lFdffdX8nLCwMJYtW8aECRP46KOPqF69Ot988w3R0dHmYwYMGMDZs2eZOnUqSUlJNG/enBUrVhQbWG7xZAC5EEIIUWGsrg6UNdC8DpQxH2aEQkE2jNsOfnUrPwYhhBDCylTJOlDiKikH1eTJ0QN8amsdjRBCCGFzJIGyRYXddyEtQC//xEIIIUR5k29XW5RQWIFcBpALIYQQFUESKFskS7gIIYQQFUoSKFuTdwlSDqiPpQVKCCGEqBCSQNmaxD2gmMA9GDxCtI5GCCGEsEmSQNka8wBy6b4TQgghKookULYmMUa9D2mhaRhCCCGELZMEytYkxKj3Ic21jEIIIYSwaZJA2ZKcdDgfqz4Obq5pKEIIIYQtkwTKliTtARTwqAZu/lpHI4QQQtgsSaBsSWH3nbQ+CSGEEBVKEihbIgPIhRBCiEohCZQtkQHkQgghRKWQBMpW5GbIAHIhhBCikkgCZSsSZQC5EEIIUVnstA5AlJPC8U/S+iSEEBiNRvLz87UOQ1gYe3t7DAZDuZxLEihbIeOfhBACRVFISkoiNTVV61CEhfLy8iIoKAidTndb55EEylYk7FLvpQVKCFGFFSZPAQEBuLi43PaXpLAdiqKQlZVFSkoKAMHBwbd1PkmgbMHVA8ilBUoIUUUZjUZz8uTr66t1OMICOTs7A5CSkkJAQMBtdefJIHJbUDiA3D0E3AK0jkYIITRROObJxcVF40iEJSv8fNzuGDlJoGyBFNAUQggz6bYTN1Jenw9JoGyBDCAXQgir1qVLF8aPH691GAAsXbqUOnXqYDAYGD9+PHPmzMHLy0vrsCyOJFC2QEoYCCGEuIH169ej0+lKNTvx8ccf58EHH+TUqVO89tprDBgwgCNHjpj3v/LKKzRv3rzigrUSMojc2uVmwLmj6mNpgRJCCHEbMjMzSUlJITo6mpCQEPP2wsHX4gppgbJ2SXuRAeRCCGH9CgoKGDduHJ6envj5+fHyyy+jKIp5f25uLpMnT6ZatWq4uroSGRnJ+vXrzftPnjzJPffcg7e3N66urjRq1Ijly5dz4sQJunbtCoC3tzc6nY5hw4YVe/3169fj7u4OQLdu3dDpdKxfv75IF96cOXOYPn06u3fvRqfTodPpmDNnTkVdEosmLVDWrrD+k7Q+CSFEMYqikJ1v1OS1ne0NZRqwPHfuXEaMGMHWrVvZvn07o0aNokaNGowcORKAcePGceDAARYsWEBISAi//PILPXv2ZO/evdStW5exY8eSl5fHhg0bcHV15cCBA7i5uREaGsrPP/9M3759OXz4MB4eHiW2KLVr147Dhw8TERHBzz//TLt27fDx8eHEiRPmYwYMGMC+fftYsWIFa9asAcDT0/P2LpSVkgTK2hUOIJfxT0IIUUx2vpGGU1dq8toHXo3GxaH0X7OhoaHMnDkTnU5HREQEe/fuZebMmYwcOZL4+Hhmz55NfHy8uWtt8uTJrFixgtmzZ/Pmm28SHx9P3759adKkCQDh4eHmc/v4+AAQEBBw3QHhDg4OBAQEmI8PCgoqdoyzszNubm7Y2dmVuL8qkQTK2plLGDTXMgohhBC36c477yzSYtW2bVvef/99jEYje/fuxWg0Uq9evSLPyc3NNRcNfeqppxgzZgyrVq0iKiqKvn370rRp00p9D1WJJFDWLDfzygByaYESQohinO0NHHg1WrPXLi+ZmZkYDAZ27NhRrHq2m5sbAI899hjR0dEsW7aMVatWMWPGDN5//32efPLJcotDXCEJlDVLOQAo4BYI7oFaRyOEEBZHp9OVqRtNS1u2bCny83///UfdunUxGAy0aNECo9FISkoKHTt2vO45QkNDGT16NKNHj+b555/n66+/5sknn8TBwQFQl7u5XQ4ODuVyHmsns/CsWeJu9T5ImmiFEMLaxcfHM3HiRA4fPsyPP/7IJ598wtNPPw1AvXr1GDx4MI888ghLliwhLi6OrVu3MmPGDJYtWwbA+PHjWblyJXFxcezcuZN169bRoEEDAGrWrIlOp+OPP/7g7NmzZGZm3nKctWrVIi4ujpiYGM6dO0dubu7tv3krJAmUNUvao94HSwIlhBDW7pFHHiE7O5s2bdowduxYnn76aUaNGmXeP3v2bB555BEmTZpEREQEffr0Ydu2bdSoUQNQW5fGjh1LgwYN6NmzJ/Xq1ePzzz8HoFq1akyfPp0pU6YQGBjIuHHjbjnOvn370rNnT7p27Yq/vz8//vjj7b1xK6VTri4yIcpFeno6np6epKWl4eHhUXEv9GVndRB5vznQ6P6Kex0hhLACOTk5xMXFERYWhpOTk9bhCAt1o89JWb6/pQXKWhnzIeWg+li68IQQQohKJQmUtTp3BIy54OAO3mFaRyOEEEJUKZJAWavEy+OfghqDXv4ZhRBCiMok37zWKmmvei/dd0IIIUSlkwTKWskMPCGEEEIzkkBZI0W5kkBJC5QQQghR6SSBskap8ZCTBnp78K+vdTRCCCFElSMJlDUqbH0KqA92DtrGIoQQQlRBkkBZI/MMvGbaxiGEEEJUUZJAWSMZQC6EEEJjc+bMwcvLS+swGDZsGH369Kn015UEyhqZSxg00TYOIYQQ4jpOnDiBTqcjJibGIs93uySBsjaXzkP6GfVxYGNtYxFCCKGZvLw8rUMoF9b6PiSBsjZJu9V7n3BwqsCFioUQQlSajIwMBg8ejKurK8HBwcycOZMuXbowfvx48zG1atXitdde45FHHsHDw4NRo0YB8PPPP9OoUSMcHR2pVasW77//fpFz63Q6li5dWmSbl5cXc+bMAa607CxZsoSuXbvi4uJCs2bN2Lx5c5HnzJkzhxo1auDi4sL999/P+fPnb/iewsLUZcZatGiBTqejS5cuwJUutzfeeIOQkBAiIiJKFef1zlfovffeIzg4GF9fX8aOHUt+fv4N47tddhV6dlH+pAK5EEKUnqJAfpY2r23vAjpdqQ6dOHEi//77L7/99huBgYFMnTqVnTt30rx58yLHvffee0ydOpVp06YBsGPHDvr3788rr7zCgAED2LRpE0888QS+vr4MGzasTOG++OKLvPfee9StW5cXX3yRQYMGERsbi52dHVu2bGHEiBHMmDGDPn36sGLFCnMM17N161batGnDmjVraNSoEQ4OV2aNr127Fg8PD1avXl3q+G50vnXr1hEcHMy6deuIjY1lwIABNG/enJEjR5bpGpSFJFDWxjwDT8Y/CSHETeVnwZsh2rz2Cwng4HrTwzIyMpg7dy7z58+ne/fuAMyePZuQkOJxd+vWjUmTJpl/Hjx4MN27d+fll18GoF69ehw4cIB33323zAnU5MmT6d27NwDTp0+nUaNGxMbGUr9+fT766CN69uzJs88+a36dTZs2sWLFiuuez9/fHwBfX1+CgoKK7HN1deWbb74pkgTdzI3O5+3tzaefforBYKB+/fr07t2btWvXVmgCJV141sY8A09KGAghhC04fvw4+fn5tGnTxrzN09PT3LV1tdatWxf5+eDBg7Rv377Itvbt23P06FGMRmOZ4mja9ErPRnBwMAApKSnm14mMjCxyfNu2bct0/qs1adKkTMnTzTRq1AiDwWD+OTg42Bx7RZEWKGuSdwnOHVUfSxeeEELcnL2L2hKk1WuXM1fXm7doXUun06EoSpFtJY0Psre3L/IcAJPJVObXK42S3kdp4yzJ1bEXnquiYi8kCZQ1ST4AKOAaAO6BWkcjhBCWT6crVTealsLDw7G3t2fbtm3UqFEDgLS0NI4cOUKnTp1u+NwGDRrw77//Ftn277//Uq9ePXOLjL+/P4mJieb9R48eJSurbOPCGjRowJYtW4ps+++//274nMIWptK2hN0szrKer6JJAmVNCmfgSQFNIYSwGe7u7gwdOpRnnnkGHx8fAgICmDZtGnq93twSdD2TJk3ijjvu4LXXXmPAgAFs3ryZTz/9lM8//9x8TLdu3fj0009p27YtRqOR5557rliLzc089dRTtG/fnvfee4/77ruPlStX3nD8E0BAQADOzs6sWLGC6tWr4+TkhKen53WPv1mcZT1fRZMxUNYkJw3snKX7TgghbMwHH3xA27Ztufvuu4mKiqJ9+/Y0aNAAJyenGz6vZcuWLFq0iAULFtC4cWOmTp3Kq6++WmQA+fvvv09oaCgdO3bkoYceYvLkybi4lK178c477+Trr7/mo48+olmzZqxatYqXXnrphs+xs7Pj448/5ssvvyQkJIT77rvvhsffLM6ynq/CKVbi9ddfV9q2bas4Ozsrnp6eJR4DFLv9+OOPRY5Zt26d0qJFC8XBwUGpXbu2Mnv27GLn+fTTT5WaNWsqjo6OSps2bZQtW7aUKda0tDQFUNLS0sr0vFIxFihKbmb5n1cIIaxcdna2cuDAASU7O1vrUG5bZmam4unpqXzzzTdah2JzbvQ5Kcv3t9W0QOXl5dGvXz/GjBlzw+Nmz55NYmKi+Xb1+jhxcXH07t2brl27EhMTw/jx43nsscdYuXKl+ZiFCxcyceJEpk2bxs6dO2nWrBnR0dEVPpq/1PQGi+/PF0IIUTa7du3ixx9/5NixY+zcuZPBgwcDaN/KIq7LasZATZ8+HcBckfR6vLy8itWHKDRr1izCwsLMVVobNGjAxo0bmTlzJtHR0YDajDpy5EiGDx9ufs6yZcv47rvvmDJlSjm9GyGEEKKo9957j8OHD+Pg4ECrVq34559/8PPz0zoscR1W0wJVWmPHjsXPz482bdrw3XffFZkSuXnzZqKiooocHx0dbS5Xn5eXx44dO4oco9friYqKKlbS/mq5ubmkp6cXuQkhhBCl1aJFC3bs2EFmZiYXLlxg9erVNGkiBZMtmdW0QJXGq6++Srdu3XBxcWHVqlU88cQTZGZm8tRTTwGQlJREYGDR6f+BgYGkp6eTnZ3NxYsXMRqNJR5z6NCh677ujBkzzC1kQgghhLB9mrZATZkyBZ1Od8PbjRKXa7388su0b9+eFi1a8Nxzz/Hss8/y7rvvVuA7UD3//POkpaWZb6dOnarw1xRCCCGEdjRtgZo0adJN1+oJDw+/5fNHRkby2muvkZubi6OjI0FBQSQnJxc5Jjk5GQ8PD5ydnTEYDBgMhhKPud64KgBHR0ccHR1vOU4hhBDlR7mmmrUQVyuvz4emCZS/v795ccCKEBMTg7e3tzm5adu2LcuXLy9yzOrVq83r+RQO3Fu7dq159p7JZGLt2rWMGzeuwuIUQghx+wqLLmZlZeHs7KxxNMJSFVY3L2sx0WtZzRio+Ph4Lly4QHx8PEajkZiYGADq1KmDm5sbv//+O8nJydx55504OTmxevVq3nzzTSZPnmw+x+jRo/n000959tlnefTRR/nrr79YtGgRy5YtMx8zceJEhg4dSuvWrWnTpg0ffvghly5dMs/KE0IIYZkMBgNeXl7msjMuLi43reQtqg5FUcjKyiIlJQUvL68iiw/fCqtJoKZOncrcuXPNP7do0QKAdevW0aVLF+zt7fnss8+YMGECiqJQp04dc0mCQmFhYSxbtowJEybw0UcfUb16db755htzCQOAAQMGcPbsWaZOnUpSUhLNmzdnxYoVxQaWCyGEsDyFwy0spnafsDg3KndUFjpFOovLXXp6Op6enqSlpeHh4aF1OEIIUeUYjUby8/O1DkNYGHt7+xu2PJXl+9tqWqCEEEKI0iqcFCRERbG5QppCCCGEEBVNEighhBBCiDKSBEoIIYQQooxkDFQFKByXL2viCSGEENaj8Hu7NPPrJIGqABkZGQCEhoZqHIkQQgghyiojIwNPT88bHiNlDCqAyWQiISEBd3f3ci/ilp6eTmhoKKdOnZISCTch16r05FqVnlyr0pNrVXpyrUqvIq+VoihkZGQQEhKCXn/jUU7SAlUB9Ho91atXr9DX8PDwkP9kpSTXqvTkWpWeXKvSk2tVenKtSq+irtXNWp4KySByIYQQQogykgRKCCGEEKKMJIGyMo6OjkybNg1HR0etQ7F4cq1KT65V6cm1Kj25VqUn16r0LOVaySByIYQQQogykhYoIYQQQogykgRKCCGEEKKMJIESQgghhCgjSaCEEEIIIcpIEigr8cYbb9CuXTtcXFzw8vIq8RidTlfstmDBgsoN1EKU5nrFx8fTu3dvXFxcCAgI4JlnnqGgoKByA7VAtWrVKvY5euutt7QOy2J89tln1KpVCycnJyIjI9m6davWIVmcV155pdhnqH79+lqHZRE2bNjAPffcQ0hICDqdjqVLlxbZrygKU6dOJTg4GGdnZ6Kiojh69Kg2wWrsZtdq2LBhxT5nPXv2rLT4JIGyEnl5efTr148xY8bc8LjZs2eTmJhovvXp06dyArQwN7teRqOR3r17k5eXx6ZNm5g7dy5z5sxh6tSplRypZXr11VeLfI6efPJJrUOyCAsXLmTixIlMmzaNnTt30qxZM6Kjo0lJSdE6NIvTqFGjIp+hjRs3ah2SRbh06RLNmjXjs88+K3H/O++8w8cff8ysWbPYsmULrq6uREdHk5OTU8mRau9m1wqgZ8+eRT5nP/74Y+UFqAirMnv2bMXT07PEfYDyyy+/VGo8lu5612v58uWKXq9XkpKSzNu++OILxcPDQ8nNza3ECC1PzZo1lZkzZ2odhkVq06aNMnbsWPPPRqNRCQkJUWbMmKFhVJZn2rRpSrNmzbQOw+Jd+zvbZDIpQUFByrvvvmvelpqaqjg6Oio//vijBhFajpK+34YOHarcd999msSjKIoiLVA2ZuzYsfj5+dGmTRu+++47FCnzVaLNmzfTpEkTAgMDzduio6NJT09n//79GkZmGd566y18fX1p0aIF7777rnRtorZq7tixg6ioKPM2vV5PVFQUmzdv1jAyy3T06FFCQkIIDw9n8ODBxMfHax2SxYuLiyMpKanIZ8zT05PIyEj5jF3H+vXrCQgIICIigjFjxnD+/PlKe21ZTNiGvPrqq3Tr1g0XFxdWrVrFE088QWZmJk899ZTWoVmcpKSkIskTYP45KSlJi5AsxlNPPUXLli3x8fFh06ZNPP/88yQmJvLBBx9oHZqmzp07h9FoLPFzc+jQIY2iskyRkZHMmTOHiIgIEhMTmT59Oh07dmTfvn24u7trHZ7FKvzdU9JnrKr/XipJz549eeCBBwgLC+PYsWO88MIL9OrVi82bN2MwGCr89SWB0tCUKVN4++23b3jMwYMHSz348uWXXzY/btGiBZcuXeLdd9+1mQSqvK9XVVKWazdx4kTztqZNm+Lg4MDjjz/OjBkzNF86QViHXr16mR83bdqUyMhIatasyaJFixgxYoSGkQlbMnDgQPPjJk2a0LRpU2rXrs369evp3r17hb++JFAamjRpEsOGDbvhMeHh4bd8/sjISF577TVyc3Nt4ouvPK9XUFBQsdlTycnJ5n225nauXWRkJAUFBZw4cYKIiIgKiM46+Pn5YTAYzJ+TQsnJyTb5mSlPXl5e1KtXj9jYWK1DsWiFn6Pk5GSCg4PN25OTk2nevLlGUVmP8PBw/Pz8iI2NlQTK1vn7++Pv719h54+JicHb29smkico3+vVtm1b3njjDVJSUggICABg9erVeHh40LBhw3J5DUtyO9cuJiYGvV5vvk5VlYODA61atWLt2rXm2a0mk4m1a9cybtw4bYOzcJmZmRw7dowhQ4ZoHYpFCwsLIygoiLVr15oTpvT0dLZs2XLTGdgCTp8+zfnz54sknxVJEigrER8fz4ULF4iPj8doNBITEwNAnTp1cHNz4/fffyc5OZk777wTJycnVq9ezZtvvsnkyZO1DVwjN7tePXr0oGHDhgwZMoR33nmHpKQkXnrpJcaOHWszCeet2Lx5M1u2bKFr1664u7uzefNmJkyYwMMPP4y3t7fW4Wlu4sSJDB06lNatW9OmTRs+/PBDLl26xPDhw7UOzaJMnjyZe+65h5o1a5KQkMC0adMwGAwMGjRI69A0l5mZWaQlLi4ujpiYGHx8fKhRowbjx4/n9ddfp27duoSFhfHyyy8TEhJSJUvS3Oha+fj4MH36dPr27UtQUBDHjh3j2WefpU6dOkRHR1dOgJrN/xNlMnToUAUodlu3bp2iKIry559/Ks2bN1fc3NwUV1dXpVmzZsqsWbMUo9GobeAaudn1UhRFOXHihNKrVy/F2dlZ8fPzUyZNmqTk5+drF7QF2LFjhxIZGal4enoqTk5OSoMGDZQ333xTycnJ0To0i/HJJ58oNWrUUBwcHJQ2bdoo//33n9YhWZwBAwYowcHBioODg1KtWjVlwIABSmxsrNZhWYR169aV+Ltp6NChiqKopQxefvllJTAwUHF0dFS6d++uHD58WNugNXKja5WVlaX06NFD8ff3V+zt7ZWaNWsqI0eOLFKapqLpFEXmuQshhBBClIXUgRJCCCGEKCNJoIQQQgghykgSKCGEEEKIMpIESgghhBCijCSBEkIIIYQoI0mghBBCCCHKSBIoIYQQQogykgRKCCGEEKKMJIESQgghhCgjSaCEEEIIIcpIEighhLiJs2fPEhQUxJtvvmnetmnTJhwcHFi7dq2GkQkhtCJr4QkhRCksX76cPn36sGnTJiIiImjevDn33XcfH3zwgdahCSE0IAmUEEKU0tixY1mzZg2tW7dm7969bNu2DUdHR63DEkJoQBIoIYQopezsbBo3bsypU6fYsWMHTZo00TokIYRGZAyUEEKU0rFjx0hISMBkMnHixAmtwxFCaEhaoIQQohTy8vJo06YNzZs3JyIigg8//JC9e/cSEBCgdWhCCA1IAiWEEKXwzDPP8NNPP7F7927c3Nzo3Lkznp6e/PHHH1qHJoTQgHThCSHETaxfv54PP/yQ77//Hg8PD/R6Pd9//z3//PMPX3zxhdbhCSE0IC1QQgghhBBlJC1QQgghhBBlJAmUEEIIIUQZSQIlhBBCCFFGkkAJIYQQQpSRJFBCCCGEEGUkCZQQQgghRBlJAiWEEEIIUUaSQAkhhBBClJEkUEIIIYQQZSQJlBBCCCFEGUkCJYQQQghRRpJACSGEEEKU0f8DBlvIdMozGS0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACIxklEQVR4nOzdeVxU1fvA8c8wwLDJIDsosriguOGSu6ZmYmllalpZalmZP1vMsrLFrcX62l6abS4tmpplZeaSaW7kvq8gKCoCKrLJPnN/f1wYnUQFBS4Dz/v1mtdczr1z55lxcB7OOfc5OkVRFIQQQgghRKnZaR2AEEIIIYStkQRKCCGEEKKMJIESQgghhCgjSaCEEEIIIcpIEighhBBCiDKSBEoIIYQQoowkgRJCCCGEKCNJoIQQQgghykgSKCGEEEKIMpIESogic+fORafTcfz4ca1DKdGIESMICQmplOdatGgRnp6eZGVlVcrzVRfHjx9Hp9Mxd+5crUOpdN27d6d79+6aPPesWbOoV68eeXl5mjy/qJkkgRKiAqxatYqRI0fSrFkz9Hp9pSU+5cFkMjFp0iSefvpp3NzcbugceXl5vPTSSwQGBuLs7Ez79u1ZvXp1OUcqbtTy5cuZPHmy1mEAkJ2dzeTJk1m3bt0Nn2PEiBHk5+fzxRdflEtM58+fZ/r06XTr1g0fHx88PDzo0KEDCxcuLPF4+bzXTJJACVHk4YcfJicnh+Dg4Js+1/z585k/fz5Go5HAwMByiK7y/P777xw5coQnnnjihs8xYsQIPvjgA4YOHcrHH3+MXq/nzjvvZOPGjeUYadUTHBxMTk4ODz/8sNahXNPy5cuZMmWK1mEAagI1ZcqUm0qgnJycGD58OB988AHlsbxrdHQ0r776Kp6enrz22mu89dZbuLi4cP/99zNp0qQrjq+pn/caTxFClLvTp08r+fn5iqIoSt++fZXg4OCbPufw4cPL5TzXc/fddytdunS54cdv2bJFAZTp06db2nJycpT69esrHTt2LI8Qq5yCggIlLy9P6zBKbcyYMUp5//d/6623KrfeemuZH3f27FkFUCZNmnRTz799+3YFUNasWXNT51EURYmLi1OOHz9u1WY2m5WePXsqBoNBycrKsrTXxM+7UEkPlBBFynMOVGBgIA4ODjcf1HWYzWY++ugjmjZtipOTE35+fowaNYoLFy5YHRcSEkK/fv3YuHEj7dq1w8nJibCwML799lur43Jzc1mxYgW9evWyar/W3B6dTmc1HPTTTz+h1+uterCcnJwYOXIk0dHRnDx58rqva8uWLfTp0wej0YiLiwu33normzZtsuw/dOgQzs7ODBs2zOpxGzduRK/X89JLL13x2letWkVkZCROTk5ERETw888/X/G8aWlpjB07lqCgIAwGAw0aNODdd9/FbDZf8V689957fPTRR9SvXx+DwcDBgwdLfJ9GjBiBm5sbCQkJ9OvXDzc3N+rUqcOMGTMA2LdvHz179sTV1ZXg4GDmz59/03F9+eWXlrhuueUWtm3bZhVP8XPrdDrLrSyKz+/s7Ey7du3YsGHDFcfk5+czceJE2rRpg9FoxNXVla5du7J27VqrmH18fACYMmWKJZbiz9PevXsZMWIEYWFhODk54e/vz6OPPsr58+eveL42bdrg6enJr7/+WqbXUpLQ0NAreqJ1Oh39+/cnLy+PuLg4S3t5fN6FbbLXOgAhqrKsrCxyc3Ove5yDgwNGo7ESIrI2atQo5s6dyyOPPMIzzzxDfHw8n332Gbt27WLTpk1WSVxsbCyDBg1i5MiRDB8+nNmzZzNixAjatGlD06ZNAdixYwf5+fm0bt36hmPatWsXjRo1wt3d3aq9Xbt2AOzevZugoKCrPv7vv//mjjvuoE2bNkyaNAk7OzvmzJlDz5492bBhA+3ataNJkya88cYbjB8/nkGDBnH33Xdz8eJFRowYQePGjZk6darVOWNiYhgyZAhPPvkkw4cPZ86cOdx3332sWLGC22+/HVCHkm699VZOnz7NqFGjqFevHps3b2bChAmcOXOGjz76yOqcc+bMITc3lyeeeAKDwYCnp6dVQnM5k8nEHXfcQbdu3fjf//7HDz/8wFNPPYWrqyuvvvoqQ4cOZcCAAcyaNYthw4bRsWNHQkNDbyiu+fPnk5mZyahRo9DpdPzvf/9jwIABxMXF4eDgwKhRo0hMTGT16tV899131/33/K9vvvmGUaNG0alTJ8aOHUtcXBx33303np6eVv+uGRkZfP311zzwwAM8/vjjZGZm8s033xAVFcXWrVuJjIzEx8eHzz//nNGjR3PvvfcyYMAAAFq0aAHA6tWriYuL45FHHsHf358DBw7w5ZdfcuDAAf79998rEr/WrVtbJdoA6enpFBQUXPd1OTk5XXfOX1JSEgDe3t6Wtpv9vAsbpnUXmBBVxZw5cxRAiY+Pt7QNHz5cAa57u9bQRUUN4W3YsEEBlB9++MHquBUrVlzRHhwcrADK+vXrLW0pKSmKwWBQnn/+eUvb119/rQDKvn37rM4ZHx+vAMqcOXOuiIv/DL80bdpU6dmz5xXHHThwQAGUWbNmXfU1ms1mpWHDhkpUVJRiNpst7dnZ2UpoaKhy++23W9pMJpPSpUsXxc/PTzl37pwyZswYxd7eXtm2bZvVOYtf+5IlSyxt6enpSkBAgNKqVStL2xtvvKG4uroqR48etXr8yy+/rOj1eiUhIcHqvXB3d1dSUlKu+z4Vf4befvttS9uFCxcUZ2dnRafTKT/++KOl/fDhw1e8n2WNy8vLS0lNTbUc9+uvvyqA8vvvv1vabnQILz8/X/H19VUiIyOthiy//PLLK34PCgsLrxjWvHDhguLn56c8+uijlrZrDeFlZ2df0bZgwYIrPsvFnnjiCcXZ2dmq7dZbby3V7/Dw4cOv+drPnz+v+Pr6Kl27drVqv5nPu7Bt0gMlxDW8+OKLPPTQQ9c9rnbt2pUQjbXFixdjNBq5/fbbOXfunKW9TZs2uLm5sXbtWh588EFLe0REBF27drX87OPjQ3h4uNVwRPHQyM28npycHAwGwxXtTk5Olv1Xs3v3bmJiYnjttdeuGKa57bbb+O677zCbzdjZ2WFnZ8fcuXNp2bIld9xxB9u3b+e1116jbdu2V5w3MDCQe++91/Kzu7s7w4YN49133yUpKQl/f38WL15M165dqV27ttX72atXL9555x3Wr1/P0KFDLe0DBw60DD+VxmOPPWbZ9vDwIDw8nNjYWAYPHmxpDw8Px8PDw+rfpKxxDRkyxOrfr/jf/PJz3qjt27eTkpLC1KlTcXR0tLSPGDGC8ePHWx2r1+vR6/WAOtSclpaG2Wymbdu27Ny5s1TP5+zsbNnOzc0lKyuLDh06ALBz506rzzOon9ucnByys7NxcXEB4P33379iSLsk17rYw2w2M3ToUNLS0vj000+t9t3M513YNkmghLiGiIgIIiIitA6jRDExMaSnp+Pr61vi/pSUFKuf69Wrd8UxtWvXLvHLRbmJK5mcnZ1LrMdTPBR6+Zfif8XExAAwfPjwqx6Tnp5uSRDq16/P5MmTGT9+PM2aNeP1118v8TENGjS4YrinUaNGgDoPx9/fn5iYGPbu3XvVpOi/72fxEFtpODk5XXFeo9FI3bp1r4jLaDRa/ZuUNa7//jsXv1elSSKu58SJEwA0bNjQqt3BwYGwsLArjp83bx7vv/8+hw8fthpGK+17l5qaypQpU/jxxx+veJ3p6elXHF/8ub38PW3Tpk2pnutann76aVasWMG3335Ly5YtrfbdzOdd2DZJoIS4hvT09FL9Beno6Iinp2clRHSJ2WzG19eXH374ocT9//3CLe4N+K/LkyUvLy9A/bKtW7eupf1qk4xNJtMVbQEBAZw+ffqK9jNnzgDX/0sfYPr06URGRpZ4zH/nqaxatQqAxMREzp8/j7+//1XPfy1ms5nbb7+dF198scT9xQlXsbJ8MV7tvS/Nv0lZ4yrNOSvD999/z4gRI+jfvz/jx4/H19cXvV7PtGnTOHbsWKnOMXjwYDZv3sz48eOJjIzEzc0Ns9lMnz59SpxvduHCBVxcXKz+bVJTU8nPz7/uczk7O5c4j3HKlCnMnDmTd955p8TyFDfzeRe2TRIoIa7h2WefZd68edc97tZbb72pOjY3on79+vz111907ty53P7Kbdy4MQDx8fE0b97c0l7ci5GWlmZ1fHGPxOUiIyNZu3YtGRkZVhNrt2zZYtl/NfXr1wfUIbb/XglYklmzZrF69Wreeustpk2bxqhRo0q8Cis2NhZFUawSwaNHjwJYipzWr1+frKysUj1vZaqIuMp61V2x4ivTYmJi6Nmzp6W9oKCA+Ph4q96Zn376ibCwMH7++Wer5/tvHaWrxXLhwgXWrFnDlClTmDhxoqW9uJeyJPHx8TRp0sSqbcCAAfzzzz/XfW3Dhw+/4irTGTNmMHnyZMaOHWt1ZeflbubzLmyblDEQ4hpefPFFVq9efd3b+++/X+mxDR48GJPJxBtvvHHFvsLCwiuSndJo06YNjo6ObN++3ard3d0db29v1q9fb9U+c+bMK84xaNAgTCYTX375paUtLy+POXPm0L59e6srkhISEjh8+LDV89evX5/33nuvxGVkzp49a9mOj49n/PjxDBw4kFdeeYX33nuP33777YrSDKD2Tv3yyy+WnzMyMvj222+JjIy09FgNHjyY6OhoVq5cecXj09LSKCwsvKK9MlREXK6urpbHl0Xbtm3x8fFh1qxZVr06c+fOveJcxT1hl/d8bdmyhejoaKvjiucqlebxwBVXHV5u586ddOrUyart/fffL9Xv8H97+BYuXMgzzzzD0KFD+eCDD676nGX5vIvqRXqghLiGG50DtXfvXn777TdA7f1IT0/nzTffBKBly5bcddddlmOLe0DKWn/q1ltvZdSoUUybNo3du3fTu3dvHBwciImJYfHixXz88ccMGjSoTOd0cnKid+/e/PXXX1eUAnjsscd45513eOyxx2jbti3r16+39OJcrn379tx3331MmDCBlJQUGjRowLx58zh+/DjffPON1bHDhg3jn3/+sXxJ2tnZ8fXXX3PHHXfQtGlTHnnkEerUqcPp06dZu3Yt7u7u/P777yiKwqOPPoqzszOff/45oJZ0WLJkCc8++yy9evWyGjpp1KgRI0eOZNu2bfj5+TF79mySk5OZM2eO5Zjx48fz22+/0a9fP0t5h4sXL7Jv3z5++uknjh8/bnX5emWpiLiK5wU988wzREVFodfruf/++6/7OAcHB958801GjRpFz549GTJkCPHx8cyZM+eKOVD9+vXj559/5t5776Vv377Ex8cza9YsIiIirJJjZ2dnIiIiWLhwIY0aNcLT05NmzZrRrFkzS9mHgoIC6tSpw6pVq4iPjy8xth07dpCamso999xT4msti61btzJs2DC8vLy47bbbrhgm79Spk+X1luXzLqoZrS7/E6KqKamMwc2eq6Tbfy+X9vb2Vjp06HDdc16tEvmXX36ptGnTRnF2dlZq1aqlNG/eXHnxxReVxMREyzHBwcFK3759r3hsSdWjf/75Z0Wn01kujy+WnZ2tjBw5UjEajUqtWrWUwYMHKykpKSVegp6Tk6O88MILir+/v2IwGJRbbrlFWbFiRYnPX9J/Q7t27VIGDBigeHl5KQaDQQkODlYGDx5sqTL98ccfX1GaQFEUJSEhQXF3d1fuvPPOK177ypUrlRYtWigGg0Fp3Lixsnjx4iueNzMzU5kwYYLSoEEDxdHRUfH29lY6deqkvPfee5bK8sXlAi6vPF3samUMXF1dS3ztTZs2vaK9pH+rm43rv/9GhYWFytNPP634+PgoOp2uzCUNZs6cqYSGhioGg0Fp27atsn79+is+S2azWXn77beV4OBgxWAwKK1atVKWLVtW4ud48+bNSps2bRRHR0erWE+dOqXce++9ioeHh2I0GpX77rtPSUxMLPEz99JLLyn16tWzKn9xo671+/vff19FKf3nXVQvOkWp5JmFQgiLgwcP0rRpU5YtW0bfvn21DgdQJ4ZHREQwePDgEocHbU1ISAjNmjVj2bJlWociKkheXh4hISG8/PLLPPvss1qHI2oImQMlhIbWrl1Lx44dq0zyBOrck6lTpzJjxowS5yEJUdXMmTMHBwcHnnzySa1DETWI9EAJIao16YEqnetd7q/X68tUOFSI6k4mkQshhLju5f7BwcHlstC2ENWF9EAJIYRgx44d16xW7uzsTOfOnSsxIiGqNkmghBBCCCHKSCaRCyGEEEKUkcyBqgBms5nExERq1ap1w0smCCGEEKJyKYpCZmYmgYGB2Nldu49JEqgKkJiYKOX7hRBCCBt18uRJqwXVSyIJVAWoVasWoP4DXL64pBBCCCGqroyMDIKCgizf49ciCVQFKB62c3d3lwRKCCGEsDGlmX4jk8iFEEIIIcpIEighhBBCiDKSBEoIIYQQoowkgRJCCCGEKCNJoIQQQgghykgSKCGEEEKIMrKpBGr9+vXcddddBAYGotPpWLp0qdV+RVGYOHEiAQEBODs706tXL2JiYqyOSU1NZejQobi7u+Ph4cHIkSPJysqyOmbv3r107doVJycngoKC+N///lfRL00IIYQQNsSmEqiLFy/SsmVLZsyYUeL+//3vf3zyySfMmjWLLVu24OrqSlRUFLm5uZZjhg4dyoEDB1i9ejXLli1j/fr1PPHEE5b9GRkZ9O7dm+DgYHbs2MH06dOZPHkyX375ZYW/PiGEEELYCMVGAcovv/xi+dlsNiv+/v7K9OnTLW1paWmKwWBQFixYoCiKohw8eFABlG3btlmO+fPPPxWdTqecPn1aURRFmTlzplK7dm0lLy/PcsxLL72khIeHlzq29PR0BVDS09Nv9OUJIYQQopKV5fvbpnqgriU+Pp6kpCR69eplaTMajbRv357o6GgAoqOj8fDwoG3btpZjevXqhZ2dHVu2bLEc061bNxwdHS3HREVFceTIES5cuFDic+fl5ZGRkWF1E0IIIUT1VW0SqKSkJAD8/Pys2v38/Cz7kpKS8PX1tdpvb2+Pp6en1TElnePy5/ivadOmYTQaLTdZSFgIIYSo3qpNAqWlCRMmkJ6ebrmdPHlS65CEEEIIUYGqzWLC/v7+ACQnJxMQEGBpT05OJjIy0nJMSkqK1eMKCwtJTU21PN7f35/k5GSrY4p/Lj7mvwwGAwaDoVxehxBlpiiQfxHyMsHOHpzcwV4+j0KIairjDORngVcDKMWivxWl2iRQoaGh+Pv7s2bNGkvClJGRwZYtWxg9ejQAHTt2JC0tjR07dtCmTRsA/v77b8xmM+3bt7cc8+qrr1JQUICDgwMAq1evJjw8nNq1a1f+CxMCoDAfzh2B5AOQvF+9T42D3HTIzQDFZHW4onek0KEW+Q7upLmEkmQI4YxjCOluDch0D8PewYDBQU+g0YkgTxeCarvg7KjX6MUJIUQZ7PoO1r4FrYfB3Z9qFoZNJVBZWVnExsZafo6Pj2f37t14enpSr149xo4dy5tvvknDhg0JDQ3l9ddfJzAwkP79+wPQpEkT+vTpw+OPP86sWbMoKCjgqaee4v777ycwMBCABx98kClTpjBy5Eheeukl9u/fz8cff8yHH36oxUsWNVlWChxdCUeWw7G1UJhzzcPN2GGHGQCdKR8H03kccs/jmhlPnctPqzgRbY5gg7k5s80tiFf8AR3ebgaaBNSibbAnt4TUJrKeBy6ONvVfhBCiJohfr94HtNQ0DJ2iKIqmEZTBunXr6NGjxxXtw4cPZ+7cuSiKwqRJk/jyyy9JS0ujS5cuzJw5k0aNGlmOTU1N5amnnuL333/Hzs6OgQMH8sknn+Dm5mY5Zu/evYwZM4Zt27bh7e3N008/zUsvvVTqODMyMjAajaSnp+Pu7n5zL1rULPkXYc+P6u3UNuCyX08nI/g1A7+mXPRozJYsb9aeKGTdiVzOFTqRgwEdCm7k4q7LIcStkBDnbJroE6lPAnXyT+CTE4ez2bpw7Cl8+aWwE0tMXTmuXBr+1tvpaFnXyB3NArijuT91a7tU0psghBBXUZAL79QDUx6M2QY+ja7/mDIoy/e3TSVQtkISKFFmaSdh21ewYx7kpl1qD4iE8Dsh/A4Uv2ZEx6Uye9Nx1h5JwWS+9Ktbt7Yz7UI9aV7HSPM6RiIC3UvuPTKbIXkfHPtbvSX8C6Z8y+4Uj0jWGHrxzYVIYjOsrzGJDPKgX4sA7m1VBy83mWMlhNBA/AaY1w/c/OD5I+U+B0oSKI1JAiVK7fwxdSz/wNJL85hqh0K7xyGiPxjrkFtg4rfdiczeFM/hpEzLQxv71yKqqT9RTf1pElAL3Y38R5J/UR0m3LMAYv8CRR0CxOBORrNhrKh1L0uOFLD1eCrF/1M42ttxd8tARnQKoVkd4029fCGEKJO1b8M/70KzgTBodrmfXhIojUkCJa4rNx3Wvwf/fg7mArUttBu0Hw2NosBOj8mssHj7Sd5ffZSzmXkAODvoGdSmLsM7hdDA1+0aT3ADMpNg70LY+R2cL1pDUm+AVg9xruUTLD/lxOLtp9h3Ot3ykLbBtRl1a316NfG9sQROCCHKYvYdkLAZ+n0EbR8p99NLAqUxSaDEVZlN6hUkf78JF8+qbfVvg9ungH9zy2Hrj57l7eWHLD1OdTycGd4pmCFt62F0cajgGM1wdAVs/KBoHhag00ObESjdJ7DzvD3zNh9n+b4zFBYNI7YM8mB873A6N/CSREoIUTHys9X5T+YCeHoneNUv96eQBEpjkkCJEqXGw89PwKmt6s9eDSHqbWh4u2Uc/2RqNq//up91R9TkyujswDO3NeThDsE42ldy3VtFgRObYMMHcGyN2mZwh67PQ/snSc6BOZuOM2/zcXIK1OHH9qGevNinMW2CpeSHEKKcHVsL3/WHWoEw7mCF1ICSBEpjkkDVLImJicTFxREWFmYph2FFUdShsT9egPxMNQnp8Qrc8hjoHYoOUViw9SRv/nGQ7HwTDnodD3cI4ZnbGuDh4njlOSvb8Y2w8hU4s0f92aMe9H4TmtxNSlYeM9ceY/6WBPJN6hyqga3rMuHOxnjLZHMhRHlZMxU2vA8thsCALyvkKSSB0pgkUDXLxo0biY2NpUGDBnTp0sV6Z04a/DEO9i9Rf67XUf3F96hnOSQ5I5eXluy19Dq1C/Hk3UEtCPV2raRXUEpms5oIrpkKmYlqW+N+0Pd9qOXP6bQcPv7rKIu2nwLA3cme8X0a82C7eujtZFhPCHGTvr5d7cG/+zNo/XCFPIUkUBqTBKpmuWoPVNI+WPAgpCeoc4h6TIAu48DuUsXvlQeSePGnvaTnFOBob8f43uE82iW0aicc+dmw8UN1jpS5EAxGiHoLWj0EOh07Ey7w+tL9HEjMAKBFXSP/G9SCxv7yuyCEuEF5WfBusPp/zrN7oHZIhTyNJFAakwRKELMaFo9Q12uqHQIDv4G6bS27zWaFj9fE8PEa9Wq3ZnXc+WBwJI38amkT741IPgC/PgWJO9WfQ2+Fe2aARxAms8L3/57gvZVHyMwrxFFvx/O9G/FY17CqnRwKIaqm2L/g+4FgrAfP7auwpynL93clz0oVogbY+hXMH6wmT6Hd4Il/rJKnrLxCRv+ww5I8PdI5hF/+r7NtJU8Afk3hsb/UuVD2zhD/D8zqAod+R2+nY3inENa8cCu3NfYl32Rm2p+HeeDLfzmZmq115EIIWxO/Qb0P7aptHJeRBEqI8mI2wYpXYPkLakHKVg/B0CXg7GE5JOF8NgNnbmblgWQc9XZMH9SCSXc1xUFvo7+Kdnro9DSM3gR12qhV1Bc+BMvGQUEOvrWc+Hp4W94Z0BxXRz1bj6fS56P1/LzzlNaRCyFsyfGiBCpEEighqhdTAfz0KPw7Q/35tonqREf7S1fQ7TuVTv+ZmziSnIlvLQMLR3XgvrZBGgVczrzqw6MrofNY9eft38BXPSHlEDqdjvvb1ePPZ7vRNrg2F/NNjFu0h1d+2UduUfkDIYS4qtwMSNytbksPlBDViKkQljwGB5eC3lFdXqDr81Y1SrbGp/LgV/+SejGf5nWM/P50F1rVq2a1kvQOakHQh38BV19IOagmUQeWAlDPy4WFozry7G0N0elg/pYE7psVLUN6QohrS4hWl7qqHQrGulpHYyEJlBA3w1QIvzyhJk92DjD4O3WNpsv8c/Qsw2ZvITOvkPahnix4ogN+7k7axFsZ6veE0ZshrDsUZMPi4WrpA7MJvZ2O525vxJwRt+Dh4sC+0+n0+3Qjaw+naB21EKKqil+v3leh3ieQBEqIG2cqhF9GqTWe7BxgyHcQ3sfqkBX7z/DYvG3kFpjpEe7DvEfb4Waw1yjgSuTmo87/6vS0+vOG92HB/WpdLKB7uC9/PNOVlkEepOcU8Oi8bXy1Pg65KFgIcQXL/Kdu2sbxH5JACXEjzCb49f9g/09gZw+D50H4HVaHLN93hv/7YScFJoW+zQP44uG2ODnoSzxdYmIiGzduJDExsTKirxx6e/UKvQFfg70TxKxSh/TOqVcf1vFwZtGoDjzQrh6KAm8tP8Qrv+yjoKiauRBCkJ0KZ/aq2yFdrn1sJZMESogbsXqiWpXbzh7umwuN+1rt3hBzlmd/3IVZUZc1+eSBVtdcyy4uLo7Y2Fji4uIqOHANtLhPnWBuDILUY/DN7XAiGgCDvZ63723G6/0i0OlgwdaTDJ+9lfTsAo2DFkJUCcc3AAp4h4N7gNbRWJEESoiy2vY1RH+mbt/7BTS5y2r3zoQLjPpuh6Xn6X+DWly3eGRYWBgNGjQgLCysoqLWVmAkPL5WLXWQcwG+vQcO/AKATqdjZJdQvh7WFldHPZuPnefemZtIOC+Ty4Wo8Y6tVe/r99A2jhJIAiVEWcSshuXj1e2er0PzQVa7jyRl8sicbWTnm+ja0JsPhrQsVeXtwMBAunTpUvJixNWFmw8MXwbhfcGUp1Zq3/yputgycFsTP34a3YlAoxNx5y4ycNZmDp3J0DZmIYS24ooSqDBJoISwXUn71C99xQyRD6mlCi5zMjWbh7/ZQnpOAa3qeTDroTYY7Eue81RjObqok+1veVz9edVrsOJldaFioEmAO7+M6Uy4Xy3OZuYx+ItotsanahiwEEIzqfFw4bg6VSKks9bRXEESKCFKI+MMzB+iLs8S0hX6fWhV5ykjt4BH5m4jJTOPcL9azBlxC6414Wq7G2GnhzunqxPMAbbMUifkmwoB8HN3YtGojrQNrk1mbiEPf7OFvw4maxiwEEITxb1PdduBoeotdSUJlBDXU5ivLk+ScRq8G6k9KJdVGDeZFZ5dsIvYlCz83A3Me7QdHi6O1zihQKdTSxwM+Ap0etizQK0XVZgHgNHFge9Gtue2xr7kFZoZ9f0Oftkly78IUaNU4flPIAmUENe3eiKc3g5OHvDgInC2riD+vxWHWXvkLAZ7O74a1hZ/YzUuklneWgxWE1K9IxxeptaKyr8IgLOjnlkPt2Fg67qYzArjFu1h0faTGgcshKgUZtOlAppVcP4TSAIlxLUd/A22fK5u3/sFeIZa7V6y4xRfrFdLD7x3X0ta1PWo5ACrgcZ9YehicHCFY3/DdwMgNx0AB70dz3X25rZgRxQFXvxpLwu2JmgcsBCiwiXuVhcnNxghsJXW0ZRIEighriY1Dn59St3u9MwVVcZ3Jlxgws/7AHiqRwPualmNr6CraGHdYdhScDLCyX/hu3stSdTx+Hi6OJ2md4g6LDrh53189+8J7WIVQlS8uL/V+9CualHeKkgSKCFKUpCrXnGXlw5B7eG2iVa7z2Xl8eR3O8g3mekd4ce42xtpE2d1EtROLXPg7Amnd1h6osLCwmjYsAGT7org8a5qD+DrS/czd1O8xgELIcrLgg0HGfTRSuavP6g2HFun3od11yqk65IESoiSrHoVzuxRv8wHzQa9g2WXuWg+TkpmHg183fhwSCR2paj1JEohoAUM/02dZ3Z6O3w/kEBPN7p06UKdOnV45c4mjO5eH4DJvx9k/parD+dVy+VxhKimlu85xfakQjYePq3Ogzy5Rd1Rv6e2gV2DJFBC/NfhP9Rq4wADvgRjXavdX26IY/1RddL4jAdbS7mC8ubfHIYVJVGntsH3AyBXLaip0+l4MSqcUbeqFdtfXbqPn3eWfHVetV4eR4hqRFEUDl1Qt3u3CIITm8FcAMZ64Fl1V2eQBEqIy2Wnwu9j1e1OT0PD26127zhxgekrjwAw5e6mhPtXvdok1UJACxj2q3rl46lt8MMgyMsC1CTq5T6NGd4xGEWBFxbv4YNFa6/oaar2y+MIUU3EpGRx7mIBBns7+rRpeFn5gu5W9faqGkmghLjc8vFwMQV8GkOP16x2pWcX8MyCXZjMCne1DGTILUEaBVlDBLS8lESd3AI/PqjOTUNNoibd1ZTBbetiVuCznRdZEn3E6uE1YnkcIaqBDTHnAGgX6omTg75KL99yOUmghCh28FfY/5Na2LH/THC4VM9JURReXLKH02k5BHu58Pa9zdBV4b+Mqo3ASHhoCTi6Qfw/8NOjYCoAwM5Ox7QBLbi9UW3M6Ph0Zw7Rx85rG68Qosw2xJwFoFtDH8hMgpSDgK5KTyAHSaCEUF08B8vGqdtdxkKdNla7F20/ycoDyTjodXz2QGtqOTlceQ5RMeq2hQd+BL0BjvwBS//Psnae3k7HzOEduD3Cj3yTwhPfbudAYrrGAQshSiuv0MS/ceofPl0beUPcOnVHQEtw8dQusFKQBEoIgOUvQPY58I2AW1+y2nU6LYc3lh0CYHxUOM3rGrWIsGYL7QqDv1UXFd23CJY/D4oCqMU2P32gFe1CPcnMK2T47G0knM/WOGAhRGnsOH6B3AIzPrUMhPvVUovpQpXvfQJJoISAA7+oN50e+n8O9gbLLkVReHnJXrLyCmkTXJuRXWRCsmbC+6hXRaKD7bPh7zcsu5wc9Hw1rC2N/WtxLiuPh2dv4WxmnnaxCiFKZX3R/KeuDb3RKQrE/qXu+M8FPFWRJFCiZstJUyeOA3R9Xp1zc5kFW0+yIeYcBns7pg9qgV7qPWmr2UC46yN1e8P7sPUryy6jswPfPtqOurWdOXE+m0fmbiUzt0CbOIUQpVI8/6lrQ29I3AXZ58HgrhYwruIkgRI127ppcPEseDWEbuOtdp1MzeatP9SquOOjwgnzcdMiQvFfbUZcukJy+Xg4sNSyy9fdie9GtsfL1ZH9pzP4vx92UmAyaxKmEOLazmflcSBRrfHWuYE3xK5Wd4TdalW8uKqSBErUXEn7YOuX6vad08He0bLLbFZ4acleLuabuCWkNo90Dr3KSYQmur0AbUcCCvz8OMRvsOwK9XZlziO34OygZ0PMOV5fuh+laL6UEKLq2BirDt81CXDHt5YTxBQlUA17axhV6UkCJWomsxn+eAEUMzS9F+pb1xtZsC2BzcfO4+Rgx/RBLWXorqrR6dSkt8ldYMpXa0Ql7bfsblHXg08faIWdDn7cdpKZ645pGKwQoiTF9Z+6NfRWr4Q+vUPd0aCXhlGVniRQomba+yOc/BccXKH3W1a7zmbm8c6fhwF4MaoxId6uWkQorsdODwO+hnqdIC9DrVaeftqyu1eEH5PvbgrA9JVH+HX36audSQhRyRRFuWz+k0/R1XcK+DUDd9sofisJlKh5ctJg1evqdveXwFjHavfbyw+RmVtIszruDO8UUunhiTJwcIIH5quV4zPPwPzBlnXzAIZ1DOGxLurw6/jFe9kSJ4U2hagKYlKySM7Iw2BvR9uQ2pcN31X9q++KSQIlap61b6k1n7zDof1oq13Rx87zy67T6HTwVv/mMnRnC5xrw9DF4OoLyfvhp0fAVGjZ/cqdTbijmT/5JjOjvt/BifMXNQxWCAGw/qja+9Q+zAsnPXBsjbqjgSRQQlRNSftg29fq9n8mjucXmnn9V3UezdD29WgZ5KFBgOKGeNSDB38Ee2e1jszyFyyFNu3sdHw4JJKWdY2kZRcwct52MqS8gRCaKp5A3u2K8gXtNI6s9CSBEjXL6omXJo6H3Wq166sNccSmZOHt5sj4qMYaBShuWJ02MOgbQAc75sDmTyy7igtt+rs7EZuSxdPzd1Eo5Q2E0ERugcmybmXXhj6Xhu/q97CJ8gXFJIESNcextepERTsHuG2S1a6Tqdl8+ncMAK/2bYLR2XZ+icVlGveFqLfV7dUT1QWii/i6O/H18LY4Odjxz9GzvL38sEZBClGzRcedJ6/QTKDRiUZ+bpfqP9nQ8B1IAiVqCrNZ/UIFuOUx8LSu6zTl94PkFpjpEOZJ/8g6JZxA2IwOo6HdE+r2z6MgcbdlV7M6Rj4cHAnA7E3x/Lg1ofLjE6KGW3c4BYDujX3RZZ+H0zvVHTZSvqCYJFCiZtj/EyTtVcfY/1NxfGPMOf46lIy9nY43+zdDp5OJ4zZNp4OoaVD/NijMgQUPQGaSZfcdzQMYd3sjAF5bup+t8alaRSpEjaMoCn8fUROoHuG+ELsGUMC/ObgHaBtcGUkCJaq/wrxLC892fhZcvSy7TGaFN4uWa3moQzANfGtpEaEob3p7uG+OeqVlZqKaRBXkWHY/3bMB/VoEUGhW+L8fdpCYlnONkwkhysuxsxc5mZqDo96Ozg28bHb4DiSBEjXBtq8hLQFqBUCH/7Pa9dOOkxxOysTdyZ5nb2uoUYCiQjgZ1SvznGtD4k74dYzlyjydTsf0QS2JCHDnXFY+o77bQW6BSeOAhaj+1hX1PrUP88TFXlfUA4VN1X8qJgmUqN5y0mD9dHW7xyvg6GLZlZVXyPSVRwF45raG1HZ1LOEEwqZ5hsHg78DOHvYvufRZAJwd9XzxcBtquziw73Q6r/yyT9bME6KCrb18+O7UdshJVf/YqWs75QuKSQIlqreNH0LOBbVSdcsHrXbNWneMc1l5hHi5MKxjiDbxiYoX2hX6fqBur30LDi2z7ArydGHGg63R2+n4eedp5mw6rk2MQtQAWXmFljmHPRr7wpHl6o6GvdVhdxsjCZSovrLOwpYv1O1ek61+QU+n5fDVhjgAJtzZBEd7+VWo1toMh/ZPqtu/jIKUQ5ZdnRp48+qdTQB4a/khNh87p0WEQlR7G2POUWBSCPFyIdTb9VICFX6HtoHdIPnWENXX5k/Uq7ACW0OjPla7pq84TF6hmfahnvSO8NMoQFGREhMT2bhxI4mJiWpD7zchpCvkZ8GPD6o9k0Ue6RzCgNZ1MJkVnp6/izPpMqlciPJWPP+pR2NfOBcL546qw+s2Vr6gmCRQonq6eO7Ski3dX1YvbS+y71Q6S3cnotPB6/0ipGxBNRUXF0dsbCxxcWpPI3oHuG+euuxLahz89CiY1YnjOp2Ot+9tTkSAO+cv5jP6+53kFcqkciHKi6Io1vOfjv6p7gjpos6BskGSQInqKfozKMiGgEh1fP0y7606AsA9LQNpVsc2f3HF9YWFhdGgQQPCwsIuNbp6wf3zwcFFrUr/12TLLicHPbMeaoO7kz27T6bx5rJDV55UCHFDDp7JIDkjD2cHPe1CPeFIUQIV3lfbwG6CJFCi+slOha1fqdu3vmTV+7TteCr/HD2LvZ2O54qKKYrqKTAwkC5duhAYGGi9w7853DND3d78Cez7ybKrnpcLH9/fCoDv/j3Bkh2nKitcIaq1dUfOAtC5gRdOBemQEK3uCO9zjUdVbZJAieon+jN1not/C6vJiYqiMH2l2vt0X9sggr1ctYpQaK3ZAOgyTt3+9SlI2m/Z1aOxr6Um2Cu/7ONgYoYWEQpRraw9fNn8p5hV6qLufs3VIXUbJQmUqF6yU2HLl+r2f3qfNsScY2t8Ko72djxzWwONAhRVRs/XoH5P9UKDhUOtJpU/e1tDuof7kFdoZvQPO8jILdAwUCFsW1p2PjsT1N+v7uG+Nn/1XTFJoET18u9MyM9U/7JpfGlsXVEUy9ynhzsEE2B01ipCUVXY6WHgN+pfwBeOw5LH1UWnATs7HR8NiaSOhzMnzmczfvEeKbIpxA36+3AKZgXC/WpRx83uUvVxSaCEqCJyLlyq+3Tri1a9T6sOJrP3VDoujnpGd6+vUYCiynHxhCHfg72TuibXP+9Ydnm4ODJjaGsc9DpWHkjmm43xGgYqhO1afTAZgN5N/SB+gzrFolaAepGPDatWCdTkyZPR6XRWt8aNG1v25+bmMmbMGLy8vHBzc2PgwIEkJydbnSMhIYG+ffvi4uKCr68v48ePp7CwsLJfirgR276GvAzwjYDG/SzNJrPC+0W9T492DsXbzaBVhKIqCmgJd32sbv/z7qWrg4DIIA9e6xsBwDt/HmbHiQslnUEIcRW5BSb+OapOIL89ws96+M7OtlMQ246+BE2bNuXMmTOW28aNGy37nnvuOX7//XcWL17MP//8Q2JiIgMGDLDsN5lM9O3bl/z8fDZv3sy8efOYO3cuEydO1OKliLIoyL0096nLc1a/mMv2JnI0OQt3J3se7xZ2lROIGq3l/dDuCXX75yfg/DHLrmEdg+nbIoBCs8JT83eSejFfoyCFsD3Rx86TnW/C392J5oHul5UvuFPbwMpBtUug7O3t8ff3t9y8vb0BSE9P55tvvuGDDz6gZ8+etGnThjlz5rB582b+/fdfAFatWsXBgwf5/vvviYyM5I477uCNN95gxowZ5OfLf5pV2r5FcDEF3OtA03stzWazwqd/xwLwRLcwjM4OWkUoqrreb0FQB7UXc9EwyM8G1CKb7w5sQZi3K2fScxm7cDdms8yHEqI0VhUN3/WK8EWXtBcyE8HBVV0VwMZVuwQqJiaGwMBAwsLCGDp0KAkJCQDs2LGDgoICevW6VDK+cePG1KtXj+hotR5FdHQ0zZs3x8/v0tIeUVFRZGRkcODAgas+Z15eHhkZGVY3UYnMZtj8mbrdYbRacbrIygNJxKaovU/DO4VoE5+wDfaOcN8ccPWB5P3wx/NQNHHczWDPzIda4+Rgx/qjZ/n8n2PXOZkQwmxW+OuQmkDdHuF/afiuQU9wcNIwsvJRrRKo9u3bM3fuXFasWMHnn39OfHw8Xbt2JTMzk6SkJBwdHfHw8LB6jJ+fH0lJSQAkJSVZJU/F+4v3Xc20adMwGo2WW1BQUPm+MHFtsavh3BEwuEPr4ZZmRVH4bK3a+zSiUwi1nKT3SVyHeyAMmg06O9gzH3bOs+xq7O/O1LubAfDB6qNsO56qVZRC2IQ9p9I4m5mHm8GeDmGecOh3dYcNVx+/XLVKoO644w7uu+8+WrRoQVRUFMuXLyctLY1FixZV6PNOmDCB9PR0y+3kyZMV+nziPzZ9ot63GQFO7pbmdUfOciAxAxdHPY90DtUmNmF7QrvBbUXzHpePh8Rdll33ta3Lva0uLTos86GEuLriq+9uDffBkBYHKQfBzsGmq49frlolUP/l4eFBo0aNiI2Nxd/fn/z8fNLS0qyOSU5Oxt/fHwB/f/8rrsor/rn4mJIYDAbc3d2tbqKSnN4BJzaqK3q3f9LSrCgKn/wdA6h1n2q7OmoVobBFnceqk1xN+ep8qGy1t0mn0/Fm/2aE+biSlJHL84tkPpQQV2MpXxDhBwd/VRvDbgXn2hpGVX6qdQKVlZXFsWPHCAgIoE2bNjg4OLBmzRrL/iNHjpCQkEDHjh0B6NixI/v27SMlJcVyzOrVq3F3dyciIqLS4xelUDz3qdkgMNaxNEcfO8+uhDQM9naM7Cq9T6KMdDro/znUDoG0BPjlSUuRTVeDPTMebI3B3o61R87y1YY4bWMVogqKP3eRmJQs7O10avXx4gQq4h5tAytH1SqBeuGFF/jnn384fvw4mzdv5t5770Wv1/PAAw9gNBoZOXIk48aNY+3atezYsYNHHnmEjh070qFDBwB69+5NREQEDz/8MHv27GHlypW89tprjBkzBoNBagdVORdOwMGl6nanp6x2FV9590C7evjWsv3JikIDzh4w+DvQGyBmJWz+2LKrSYA7k+5qCsD/Vh6R+lBC/Mfqg+q84Q5hXhhzTkHSXtDpq838J6hmCdSpU6d44IEHCA8PZ/DgwXh5efHvv//i4+MDwIcffki/fv0YOHAg3bp1w9/fn59//tnyeL1ez7Jly9Dr9XTs2JGHHnqIYcOGMXXqVK1ekriWfz9XF6QM6wH+zS3N24+nEh13Hge9jiek7pO4GQEt4M7p6vaaN+D4JsuuB9oFcVfLQExmhWcW7CI9R9bLE6JY8fDd7RF+cOg3tTGkC7h6aRhV+dIpssBTucvIyMBoNJKeni7zoSpKXia831hdEuChn6HBbZZdj8zZytojZ7n/liDeGdhCwyBFtaAo6hDe3h/BzR+e3ABuvgBk5hbQ95ONJKRmc0czf2YObY3usiWEhKiJzmflcctbf2FWYNPLPamzuB+c3g59P4BbRmod3jWV5fu7WvVAiRpkz49q8uTVEOr3tDQfTc5k7ZGz6HTw5K2y5p0oBzod9PsAfJpAVhIsGQlmEwC1nBz49IFW2Nvp+HN/EvO3JmgcrBDaW1O0eHDTQHfqcE5NntBZLbFVHUgCJWyPoqjr3gHc8pjVosFfF03ojYrwJ8TbVYvoRHXk6AqD56kVlOPXw7pLiw63DPLgpT7qmptTfz/IkaRMraIUokpYsV+d/9Q7wv9S7afgTlDL7xqPsj2SQAnbc3wjnD2sfplFPmBpTsnMZemuRABZ806UP5/wS4sOr58OsZeu6B3ZJZTu4T7kFZp5av5OcvJNGgUphLbScwrYEKMuHty3hf+l+U9N7tYwqoohCZSwPdu+Uu9bDAYno6X5280nyDeZaV3PgzbB1aPOiKhiWtwHbR4BFHXR4YwzANjZ6Xjvvpb41DIQk5LF1GVXX/pJiOpszaFkCkwKDX3daOB8ERLUtWZpcpe2gVUASaCEbclIhEPL1O12j1uas/ML+e7fEwBy5Z2oWH2mgV9zyD4HSx4DUyEA3m4GPhoSiU4HC7aeZPm+MxoHKkTlK/7c39k8oGj4ToG6t1jV6asuJIEStmXHXFBMUK8T+DW1NP+04xTpOQUEe7moi1YKUVEcnNX5UI5uahX8ddMsuzo38LZcvPDykr2cTsvRKkohKl1mbgHrj54DihKoalg883KSQAnbUZivJlAA7R6zNJvMCl9viAfUuSh6O7mMXFQwr/qX5kNteB9i/7LsGnd7I1oGeZCRW8jYH3dRaDJrFKQQlWvNoRTyTWbq+7jSyC0HThTVTauGw3cgCZSwJYd/h6xkcPODxpd+IVcfTCIhNRujswOD2tTVMEBRozQfBG0f5dJ8KPUCBge9HZ/cH4mbwZ5txy/w2dpYbeMUopJcPnynO/irWug4sLW6JFI1JAmUsB1bi0oXtBkB9pcWB/5yvVq64OEOwbg42msQmKixoornQ523mg8V7OXKm/2bAfDJmhi2HU/VMkohKlxWXiHrjqpX393ZPAD2LVZ3NL9Pw6gqliRQwjYkH4CEzepaSm1GWJp3n0xjZ0Iajno7hnUK1i4+UTM5OF02H2oT/POuZVf/VnUY0KoOZgWeXbCL9GxZ6kVUX38fTiG/0EyotyuNnVLh5BZAB03v1Tq0CiMJlLANO79V7xv3BfdAS/O3m48D0K9lgCwaLLRx+Xyo9dMhbp1l19T+zQj2ciExPZdXlu5DVs4S1dXyverw3R3N/NHtL1pjNrQruAdoGFXFkgRKVH2FebB3obrderil+VxWHsuKfmmHdwzRIDAhijQfVPTZVGDJ45CpLqTqZrDn4/vVpV7+2HuGn3ac0jZOISrAxbxC1h5JAYqG7/YvUXc0G6RhVBVPEihR9R1eBjkXwL0O1O9haf5xawL5JjMtgzxoGeShXXxCAPR5B3wj4GIK/Py4Zb28yCAPnru9EQCTfjtA/LmLWkYpRLlbd+QseYVm6nm60NT+FCTvBzsHiKh+1ccvJwmUqPp2fqfeRz4IdnoACk1mvv9XXbh1hMx9ElWBowvcNxccXCD+H9jwgWXXk7fWp0OYJ9n5Jp79cRf5hVLaQFQfVlffFfc+NewNztV7RQhJoETVlpZwaU5J5FBL8+qDySRl5OLl6qh2GQtRFfiEQ9/31e11b8NxtQ6O3k7Hh0MiMTo7sPdUOh/+dVTDIIUoP1l5hfx1SB2y7tvMH/b9pO5oPlDDqCqHJFCiatv1A6BAaDfwDLU0z4s+DsAD7ephsNdrE5sQJYl8EFo+qNbAWfIYXDwPQIDRmXcHNgdg1j/H2HzsnJZRClEuVu5PIq/QTJi3K804Cmkn1IXeG92hdWgVThIoUXWZTbD7B3W71TBL8+GkDP6NS0Vvp2Noh3oaBSfENdw5HbwaQmYiLB0NRVff9WkWwAPtglAUGLdwD2nZ+RoHKsTN+XWPWkD2nsg6l4bvGvdVh7SrOUmgRNUVtw7ST4KTEZr0szR/G60uGhzV1I8Ao7NGwQlxDQY3dT6U3gAxKyF6hmXX6/0iCPN2JSkjlwk/S2kDYbvOZuaxMUYtnnlPC18oLl9QjYtnXk4SKFF17SqaPN58sLqAK5CeU8AvO08DMExKF4iqzL8Z9ClaaPivSXBqBwAujpdKG/y5P4lF209qGKQQN27Z3kTMCrQM8iAkc4d6Baqzp9XV0tWZJFCiaspOhcN/qNutH7Y0L9lxipwCE439a9E+1FOj4IQopbaPQkR/MBfCT49AThoAzesaeb53OACTfztI3Nks7WIU4gb9ulsdvusfGQh7i5Zuadof9A7aBVWJJIESVdPeRWDKB/8WENASAEVRWLBVLV0wtH09dDqdlhEKcX06Hdz9CXgEq5Nrf3/GMh9qVLcwOoZ5kVNgYuzC3VLaQNiU4+cusvtkGnY66NfYHQ7+qu5oMUTbwCqRJFCiatr1vXrf+tLk8R0nLhCTkoWzg557WtXRKDAhysjJCPfNUQsLHvwVts8GwM5OxwdDWkppA2GTfiuaPN65gTc+CSug4CJ4NYCg9hpHVnkkgRJVT/IBSN6nfuE0u1RLZMFWda7IXS0DcHeqGV3Eopqo0wZ6TVa3V0yApH2AWtrgnQGXShtEHzuvUYBClJ6iKCzdrc5F7R9Z59LV0pEPqr2uNYQkUKLq2btIvW8UBS7qPKf07AKW7VX/4nmgnZQuEDao4xho1AdMebD4EchT5z3d0TyAwW3rqqUNFu2W0gaiytt/OoO4sxcx2NvRp04OnNgE6KDF/VqHVqkkgRJVi9l8qZJti8GW5qW7T5NXaKaxfy0iZd07YYt0OrhnJtQKhPMxsHy8Zdeku5oS4uXCmfRcXvlFShuIqu3Xot6nXhF+uB4qmjxevwcYa9bUCkmgRNWSsBkyToHBCA2jAOvJ4w+0k8njwoa5esGgb0BnB3vmw+4FarPhUmmD5fuS+GnHKY0DFaJkJrPC70WjAf1bBlg+w5cvtVVTSAIlqpa9C9X7iLvBwQmAXSfTOJyUicHejv4yeVzYuuBO0H2Cuv3HODirTh5vGeTBc7c3AmDSbwc4fu6iVhEKcVUbY8+RnJGHh4sD3R2PQHqC+gdv475ah1bpJIESVUdBLhy48lLYH4t6n/q1CMToLJPHRTXQ9Xl1fceCbLU+VEEOAE/eWp92oZ5k55t4duFuCkxS2kBULYuLCr/2j6yDw775amOzAZZixzWJJFCi6ohZCXnp4F4HgjsDkJFbwO97zgDwYPsgLaMTovzY6WHAV+DqA8n7YeUrAOjtdHw4JBJ3J3v2nEzj479iNA5UiEvSsvNZdSAZgMHNjXDwN3VHq4c0jEo7kkCJqqP46rvm94Gd+tH8dXciOQUmGvm50bpebQ2DE6Kc1fKHAV8COrU2VNE6YnU8nHm7qLTBjHWxbImT0gaiavhtTyL5JjMRAe5EXPgbCnPAu5FapqMGkgRKVA3ZqRCzSt2+7Oq7hdvU4bv7b5HJ46Iaqt8Tuo5Tt39/FlLjAHW4elAbtbTBcwt3k55ToGGQQqiK1228r21d2FVc+2lojar9dDlJoETVcPBXdekWv2bg1xSAQ2cy2H86Awe9jntl8riorrq/AkEdIC8DfnoUCtU6UJPvbkqwlwuJ6bm8KqUNhMYOJl72/3G9HDj5r3o1aQ1auuW/JIESVUPx8N1lvU9Lii7l7tXEj9qujlpEJUTF09urpQ2ca0PiLvhrEgBul5U2WLb3DD/vPK1xoKImW7xD7X26PcIPjwNFS2017A3uARpGpS1JoIT20hLU+k/ooNkgAApMZstSAYPa1NUwOCEqgbEu9P9c3f53Jhz+A4DIy0obTPx1PyfOS2kDUfnyC80s3aX+fzykpc+lpVvajtQwKu1JAiW0VzR5lpAuYKxDYmIiny/9h3NZ+Xi7GejWyEfb+ISoDOF3QMen1O2lo9U/LFBLG7QP9eRivolnfpTSBqLyrTmUzIXsAvzcDXTJ3wC5aWCsBw1u0zo0TUkCJbR34Bf1vtkAAOLi4vjz0AUA7m0ViINePqaihrhtknpFU266Oh/KVHBFaYOP/jqqdZSihimePD6gdV30O+eojW1HqOU4ajD5ZhLaSo2HM7vVyYhN7gbAM6AeRy8aABgow3eiJrF3hEFzwMkIp7bBmikABHo4887AFgDMXHeM6GNS2kBUjuSMXP45ehaAofXS1M+lnT20eljbwKoASaCEtg4uVe9DuoKrNwBbk0yYFGhex0hjf3ftYhNCC7WD1UWHATZ/CkdXAnBn8wCGtA2ylDZIy87XMEhRUyzefhKzAm2Da1M3rmiprSZ3gZuvtoFVAZJACW0dWKreN73X0rS46Oo7mTwuaqwm/aD9k+r2L6MgXf2dmHhXBGHeriRl5PLyEiltICqWyaywYKs6fPdwa69LV0u3fVTDqKoOSaCEdizDd3r1LxrUWiMHEtVaI3e3DNQ2PiG0dPtUCGwFORdg8SNgKsC1qLSBg17HigNJli83ISrC2sMpnE7LwcPFgTvZCPlZ4NVQHTEQkkAJDRUP34VeGr5bslNqPwkBgL1BnQ9lMMKprZb5UM3rGnmhdzgAU5cdICY5U8soRTX2/ZYTAAxuUxcHy+TxR2ts5fH/kgRKaKf46ruI/kBR7addUvtJCAvPUOg/Q93e/Ckc+ROAx7uG0bWhN7kFZp5esIvcApOGQYrqKOF8tmXy+CPB5yB5H9g7Qcv7NY6s6pAESmgjNR7O7LEavtsYc47zF/PxcnWU2k9CFGtyF7QfrW7/8iSkJWBnp+P9wS3xcnXkcFIm7/x5WNsYRbXzw9YTKAp0a+RDwNGiwplNB4CLp7aBVSGSQAltlDB8V1x5/K6WUvtJCCu3Ty2qD5UGi0dAYT6+tZx4776WAMzdfJy/DiaTmJjIxo0bSUxM1DRcYdtyC0ws3q5Op3i0hRPsX6LuaPeYhlFVPfItJbRRPHxXdPXdxbxCVh1IBuCeSJk8LoSVy+tDnd5hWS+vR2NfRnYJBWD8T3vYcTCW2NhY4uLitIxW2Lg/958h9WI+AUYnuqUtBXOBuuB1nTZah1alSAIlKl9q3KXhu8bq8N3qg8nkFJgI9nIhMshD2/iEqIpqB0P/Wer2vzPh4K8AvNgnnKaB7lzILmDOYYWw+vUJCwvTMFBh677/V11G6OE2vtjtKJo83vH/NIyoapIESlS+4tpPod3A1Qu4NHx3T2QddHKFhxAla3wndHpG3V46Bs4fw2Cv59MHWuHiqGfnqSz25PsTGCi9uOLGHEzMYMeJC9jb6XjINRpyUsGjHjTup3VoVY4kUKLyFc9/atofgHNZeWyIOQdAfxm+E+LabpsI9TpBfiYsGgYFOYT5uPHGPc0A+PCvo2yNT9U4SGGriksXREX44b7ra7Wx/ZM1ft27kkgCJSpX2smi4Ts7y180f+w9g8ms0KKukTAfN40DFKKK0zvAoNng6gPJ+2H5C4C6buSAVnUwK/Dsj7u4cFGWehFlk3oxn5+LavE9FXwCzh0Bx1qy7t1VSAIlKteR5ep9vY5XXH13T2QdraISwra4B8DAr9U/RHZ9r96AN/o3I9TblTPpuYz/aa8s9SLKZP6WE+QWmGlWx53Gx79TG1s/DE6yJmlJJIESlevwMvW+cV8ATpy/yK6ENOx0cFfLAA0DE8LGhHWHHq+o2388D0n7cDXY8+kDrXDU2/HXoWTmbj6uZYTChuQVmpgXrQ7fPdfChO7Y32qC3n6UxpFVXZJAicqTnQrHN6nb4XcC8OtutV5N5wbe+NZy0ioyIWxTl+ehYW8ozIWFD0NOGs3qGHnlzsYATFt+mH2n0jUOUtiC33YncjYzD393J3qkFdV9Cr8TaodoGldVJgmUqDwxq0AxgV8z8AxFURQZvhPiZtjZwb1fqFdJXYhXK5WbzQzvFELvCD/yTWbGzN9JRm6B1pGKKkxRFL7ZGA/Ak7e4Y7dvkbqj4xgNo6r6JIESlec/w3f7T2cQd/YiBns7opr6aRiYEDbMxRMGfwd6Axz9EzZ+gE6nY/qgltTxcCYhNZsJS/bJfChxVRtjz3E4KRMXRz33F/6u9mgGtlbnqoqrkgRKVI6CHIhdo24XDd8t26sO3/Vq4kctJwetIhPC9gVGQt/31O2/34Rjf2N0cWDG0NY46HX8se8M3/97QtMQRdX11Qa192lYpBGnXbPVxm4vgNTkuyZJoETliFsHBdngXhcCWqIoCsv2ngGgXwuZPC7ETWs9rOhycwV+GglpJ4kM8uClPup8qDeWHWL/aZkPJawdScpk/dGz6HTwpPMatb6YbwQ0ukPr0Ko8SaBE5bh8+E6nY/fJNE6n5eDiqKdHY19tYxOiurjzPQhoqVaPXvQwFOQysksovZrIfChRstlFc5/ubmzEY29R4cyuz6vz68Q1yTskKp7ZBEdWqNtF85/+KOp96tXEDycHqXArRLlwcILB34JzbUjcBX88jw54774W1PFw5sT5bF6S+lCiSHJGLr/sUi/kecFrE+RcAM8wyyLv4tokgbqKGTNmEBISgpOTE+3bt2fr1q1ah2S7Tm6F7HPg5AHBnTCbFZbvUxOovjJ8J0T5qh2iVirX2cHu72H7N3i4OPLZg61w0Ov4c38Sszcd1zpKUQV88U8c+SYzHeu5UvfwN2pjl+dk2ZZSkgSqBAsXLmTcuHFMmjSJnTt30rJlS6KiokhJSdE6NNtUPHzXqA/oHdh1Mo3E9FzcDPbc2shH29iEqI7q94TbJqnbf74MCf/Sql5tXusbAcC05YfYcULWy6vJzmXlMX+remHBlODd6LKS1TmqLe7XODLbIQlUCT744AMef/xxHnnkESIiIpg1axYuLi7Mnj1b69Bsj6LA4T/U7aLhu+Kr726PkOE7ISpM52choj+YC9RFhzPOMKxjMP1aBFBoVhjzwy7OZeVpHaXQyFcb4sgtMNO6jisNjxbNfer8LNg7ahuYDZEE6j/y8/PZsWMHvXr1srTZ2dnRq1cvoqOjS3xMXl4eGRkZVjdRJOWQWuDP3gka3GY9fNdchu+EqDA6HdwzQ72iKisZFg1DZ8rnnYEtCPNxJSkjl7E/7sZklvlQNc2Fi/l8V7Rsyxthh9ClnwRXX3XdO1FqkkD9x7lz5zCZTPj5WRd29PPzIykpqcTHTJs2DaPRaLkFBQVVRqi2oXjx4LDu4OjKjoQLJGfkUctgT9dG3pqGJkS1Z3CDId+DkxFObYU/nsfNUc+sh9rg7KBnY+w5Pv7rqNZRiko2Z1M82fkmWvg7ExE7S23sOAYcnLUNzMZIAlUOJkyYQHp6uuV28uRJrUOqOmJWqfeNogBYtqdo+K6pHwZ7Gb4TosJ51YeBRZPKd30HW7+kkV8tpg1oDsAnf8ey5lCyxkGKypKRW8CcokWmp4XsRnfhuNr71O5xTeOyRZJA/Ye3tzd6vZ7kZOv/UJKTk/H39y/xMQaDAXd3d6ubQF08+NQ2dbvB7ZjMCsv3q714d7UI1DAwIWqYhr2g1xR1e8UEiFtH/1Z1GNYxGICxC3cTf+6ihgGKyjJv03Eycwtp5uNAROwXamO38eDoqm1gNkgSqP9wdHSkTZs2rFmzxtJmNptZs2YNHTvKukBlErsGFDP4NgWPILYdT+VsZh7uTvZ0biDDd0JUqk5PQ4sh6oLei0dAajyv9Y2gTXBtMnMLefK7HWTnF2odpahAWXmFfLNJLZz5blA0uqwkdSHqNiO0DcxGSQJVgnHjxvHVV18xb948Dh06xOjRo7l48SKPPPKI1qHZlpiV6n2j3sCl4plRTf1xtJePnhCVSqeDuz5WF4nNuQALHsDRdJGZQ1vjU8vAkeRMXpJFh6u1ORvjScsuoJmXQkRc0VXl3V+RK+9ukHyLlWDIkCG89957TJw4kcjISHbv3s2KFSuumFgursFsgti/1O2GUZjNCisOqMN3d8rVd0Jow8EZ7v8B3Pzh7CH4+Qn83ByY8WBr7O10/L4nkW+KlvYQ1UvqxXy+WB8HwAd1/kGXmwY+TaDFYG0Ds2GSQF3FU089xYkTJ8jLy2PLli20b99e65Bsy6lt6l+5Th5Q9xZ2nbzA2Uz16rtODby0jk6Imss9UE2i9Ab1Ktm/JtMu1JPX+jYBYNqfh9kce65Mp0xMTGTjxo0kJiZWRMSiHMxYG0tWXiFd/E00jP9ebez5mlQdvwmSQImKcbRo+K5BL9Dbs6Jo8njPJr5y9Z0QWqvbFvrPVLc3fwI7v2V4pxAGtKqDyazwf/N3cjI1u9Sni4uLIzY2lri4uAoKWNyMUxeyLXWf3vFdja4gG+q0tRQ3FjdGEihRMS4rX6Aol4bv7mhW8pWMQohK1nwQdJ+gbi97Dt3xjbw9oDkt6xpJyy7g8W+3czGvdJPKw8LCaNCgAWFhYRUYsLhRH66OId9k5p56edSJXaA23jZRnRcnbpgkUKL8pZ+C5P2ADurfxsEzGZxMzcHJwY5usvadEFXHrS9Bs0FgLoSFD+GUcZwvHm6LTy0Dh5MyGbdoN+ZSVCoPDAykS5cuBAZKeZKq5nBSBj/vOgXAVKcF6MwFUP82CLtV48hsnyRQovwV9z7VvQVcvVhZNHx3ayMfXBztNQxMCGFFp4N7PlOHc3LTYP5g/B2ymfVQGxz1dqw8kMynf8dqHaW4CdNXHEFR4LmwUxgTVoGdPfSZpnVY1YIkUKL8xaxW74vKF/xZlED1keE7IaoeB2d4YAEYg+B8LPz4IG0CnXnz3mYAfPjXUf4sWr9S2JZtx1NZczgFg52J0TlfqY3tngCfcG0DqyYkgRLlqyAX4tap2w2jiE3JIiYlC3s7HT0bSxkIIaokN18YuhgMRkiIhqWjGdy6DiM6hQDw3KLd7D2VpmmIomzMZoU3lx0E4L2QbTheiAEXL3XYVpQLSaBE+TqxEQqyoVYg+DdnZdHk8U4NvDE6O2gcnBDiqnybwJDvwM4BDvwMaybzWt8mdA/3IbfAzGPztnMmPUfrKEUpLd5xkj2n0gkyZNP3/Fy1sefr4OyhZVjViiRQonwdLZr/1PB20OksCVSfpjJ8J0SVF3Yr3DND3d70MfY7vuHTB1rRyM+NlMw8Rs4t/ZV5Qjvp2QW8u+IIAF/W+RO7vAzwbwGth2kcWfUiCZQoX5eVLzidlsPeU+nodNC7qQzfCWETWg5RCywC/PkitY6v5pvht+Dt5sjBMxmMXbgbUymuzBPa+fCvo6RezKePVzKNE39WG+94V4pmljNJoET5SY2DC/HqVR6h3SxX390S4om3m0Hj4IQQpdb1BbW3QjHDT48QlLWXLx5ui6O9HasPJjNt+SGtIxRXcehMBt9GH8cOM/9z/hYdCjQbCMGdtA6t2pEESpSfY3+r90EdwFDLUjxThu+EsDE6HfT9EBr1gcJcmD+YNk5nmD6oBQBfb4xnziZZM6+qURSFSb8dwKzAu3WjcT+3Cxxrwe1vaB1atSQJlCg/x9aq9/V7cD4rj+3HUwEZvhPCJuntYdAc9Q+i3HT4fgD3BBfyYh/1Evipyw5KeYMq5rc9iWyNT6W+wzkGps1WG2+fAsY62gZWTUkCJcqHqQDi/lG36/fk78MpmBVoGuhO3dou2sYmhLgxji7w4I/gGwGZZ+D7AYxua+ShDvVQFHh24W62Ff2hJLSVnlPA28sPAQpzvH7ArjAHgjtDm0e0Dq3akgRKlI9T2yE/E5w9ISCSvw4lA9CrifQ+CWHTnGvDQ0vAWA/Ox6Kbfx9Toupxe4Qf+YVqeYPYlCyto6zx3lx2kOSMPJ40bqVe2hawd4K7PgE7+ZqvKPLOivJRPP+pfg9yTQrrj54D4PYISaCEsHnugfDwL2ohxsRd6BfczycDGhEZ5EF6TgHDZ2+VGlEaWnckhcU7TuGjS+cFZa7a2P1l8G6gaVzVnSRQonxYEqiebD52jpwCEwFGJ5oGumsblxCifHg3UJMogxESNuP888N8M7QZod6unE7L4eFvtpJ6MV/rKGuczNwCJvy8D4C5/ouxz0+HgJbQ8WmNI6v+JIESNy87FRJ3qtv1e7L6YAqgDt/pdDoNAxNClKuAlvDQT+DgCnHr8Fr+BN+NiMTf3YnYlCxGzNlKlhTarFRvLz/MmfRcHnHfTtMLf4NOD3d/pl4EICqUJFDi5sX/o9aL8WmC2S3g0vwnGb4TovoJagcPLlTn2BxdQd2/n+X7R1tT28WBvafSeXzednILTFpHadMSExPZuHEjiYmJ1zxuY8w5FmxNIEiXzKvKl2pjt/EQ0KISohSSQImbd9nw3d7T6ZzNzMPNYE+HME9t4xJCVIzQrjDkB3XdvINLabBpPPNGtMbNYE903HmeXrCLQpNZ6yhtVlxcHLGxscTFxV31mKy8Ql5ashd7Cplf+yvsC7LUkhPdxldipDWbJFDi5igKxBYlUA168tdBtffp1kY+GOxl2QAhqq2GveC+uerKA/sW02LLeL56KNJSrXzswt2SRN2gsLAwGjRoQFhYWIn7FUXhlZ/3cToth9ddfyUo+6A6N23gVzJ0V4kkgRI351wMZJwCvQHqdWL1weLhO1+NAxNCVLgm/eC+eWpP1IGf6bhrPLMeaI6DXseyvWd4fvEeWTfvBgQGBtKlSxcCAwNL3L9o+0l+25NIZ/1BhpmK1rq7+2PwqFeJUQpJoMTNKR6+C+5IQiYcSc5Eb6ejR7gkUELUCE36wZDvQO8IB3+l576XmHl/M+ztdPy6O5EXJIkqV0eSMpn02wFqk8EXrl+oa921HgZN79U6tBpHEihxc46tUe/r97RMHr8lpDYeLo4aBiWEqFThd6hzovQGOLyM2/e9yMwhTbG30/HLrtO8+NNeSaLKQXZ+IWPm7yS/oJB5Ht/gln8WvBtBn3e0Dq1GkgRK3LjCPDi+Ud2uf9ul4TupPi5EzdOoNzwwX02ijv5J791PMXNQQ/R2OpbsPMX4xXtkTtRNmvjrAWJTspjqsogWudvA3hkGzQZHV61Dq5HKnEANHz6c9evXV0Qswtac3AIF2eDqS3qtRmwtWhNLqo8LUUM16AVDF4OjG8Svp/f2x/n83nro7XT8vOs0Y+bvJK9QShzciEXbT/LTjlMM0q/nIfNvamP/meDfXNvAarAyJ1Dp6en06tWLhg0b8vbbb3P69OmKiEvYgrh16n39HqyLOYvJrNDQ141gL/lrSIgaK+xWGP67ZdmX3v+OYM69/jjq7Vh5IJnH5m0nO1+KbZbFlrjzvPrLPlrpYnjX8Ru1sdt4aDZA28BquDInUEuXLuX06dOMHj2ahQsXEhISwh133MFPP/1EQUFBRcQoqqr4op7I0FtZe1itPt6ziUweF6LGq9MaHlkB7nXhfAzdNjzEgns9cHbQsyHmHMO+2UpGrnxflMbxcxcZ9f0OvEznmOvyMXqlABr3g+6vaB1ajXdDc6B8fHwYN24ce/bsYcuWLTRo0ICHH36YwMBAnnvuOWJiYso7TlHV5GbAaXX5FlNIV/45ehaAnnL1nRACwKcRjFwJ3uGQcZo2fw3h1zsLqeVkz/YTF7j/i39JzsjVOsoqLT27gEfnbiM/O5Pv3T7GaEoF36Zw7xdgJ1OYtXZT/wJnzpxh9erVrF69Gr1ez5133sm+ffuIiIjgww8/LK8YRVV0YjMoJvAMY3eGGxeyC3B3sqdNcG2tIxNCVBXGuvDInxDUHnLTabR6OCu6ncDbzZGDZzK4d8YmjiRlah1llZRfaObJ73dw+twF5rl8RIPCWHD2VCfqG9y0Dk9wAwlUQUEBS5YsoV+/fgQHB7N48WLGjh1LYmIi8+bN46+//mLRokVMnTq1IuIVVYVl+K4bfxcN33Vr5IO9Xv1IlXYtJyFENefqBcN+g2YDwVxInfXjWdNiHfW9nUlMz2XQ55vZFHtO6yirFLNZ4ZVf9rEtLpmZhs+4xbxXXcD5wUVQO0Tr8ESRMtd8DwgIwGw288ADD7B161YiIyOvOKZHjx54eHiUQ3iiyro8gVpTNHzX+NLwXfFaTsBVq+kKIWoIBycY+A14NYB/3sW48zP+bHSckS6PsSEhm+Gzt/LOwBYMalNX60g1pygKr/+6nyU7EvjA4Utu021XS0M8sACCbtE6PHGZMvdAffjhhyQmJjJjxowSkycADw8P4uPjbzY2UVVdPAfJ+wBI8WrHoTMZ6HTq+nfFrreWkxCihtHpoMcrRfN3HHA8uox5ygRGNjFRaFZ4YfEe3vrjYI2uFaUoCpN/O8APW04w1WEu9+o3qmsNDp6nXt14Genl116ZE6iHH34YJyeniohF2IrjG9R736asOalWF44M8sDLzWA55HprOQkhaqiW98OIZeDmh93ZQ7yWOIaPWp4C4KsN8Tz8zVbOZ+VpHGTlUxSFqcsO8m10PK/bf8/D+r8AnZpwht9xxfHFvfxxcXGVH6wApBK5uBElzH+Ste+EEKVWrwOMWg/1OqLLy6D/kRdZ03IttRx1RMed565PN7L3VJrWUVYaRVGY9udhvtsUy/sOsxhp/6e6o9+H0HxQiY+RXn7tSQIlyq4ogSoI7mKZ/Hn5/CchhLiuWv5qwc0OYwCof+QrttT9mA6e2erk8lnRfP/vCRSleq+hl19o5oXFe/lu/UG+dnifAfqNoNND/1nQ9pGrPk56+bUnCZQom/TTcD4WdHZsNTchO9+Eby0DTQPdtY5MCGFr9A7Q5211PTcHV1wS/2WBaRyvBO0nv9DMa0v38/i32zlXTYf00rMLGD57K2t2HmK+49t01+9R17d74EeIfEDr8MR1SAIlyqZ4+C4gktVxahG8HuG+6HQ6DYMSQti0ZgNh9Eaoewu6vAyeOPs2a4K/xVufzV+HUujz0XrLagfVxcnUbAZ8vonk+H0sMUyhlV0sONdWe+Ua9dY6PFEKkkCJsilKoJTQW1l7pGj+kwzfCSFulmeYuvxLj1dBp6d+8gqiPV5nuOdBzmXl88jcbbzyyz7Sc2x/CZjoY+e5d+YmIs6v5nfDa9TXJYJ7HXh0pZQqsCGSQInSUxRLApXk1Y4T57Nx0Ovo0tBb48CEENWC3h5ufRFGrgLPMBwunmFK9pv86T+LAM4zf0sCvT74h9/2JNrk3Kj8QjPvrjjMiK838EzuF3zq+Bmu5EJIV3h8LfiEax2iKANJoETppcZBximwc2BFRjAA7UI9cTOUuR6rEEJcXd228OQm6PIc2NnTJG09G91e4kXjX6RmZvPMgl0Mm72V+HMXtY601I6dzWLA55tY9s9mFjlMYZj9anVH1+fh4aVQy0/T+ETZSQIlSi/+H/U+qB1/H8sCpHyBEKKCOLpAr8kwagMEdUBfmM3/5c1mW+2J9HXYzoaYs0R9uJ7Jvx3gbGbVnWReYDIze2M8/T9ZS7ek71hleImWdnHqfKcHF8NtE9WeN2Fz5F9NlF5x+YJ6XdiyNhWA7uE+13qEEELcHL8IdUHi3d/D6kl45sQzQ/8Bzzk35rWsQczdbGbhtpM82iWEJ7rWx+jioHXEgFrb6e/DKby1/BDe57bzs8NsGjqcVneGdIX+n4NHkLZBipsiCZQoHUWBeLUC+T7HluQXmqnj4Ux9H1kVXAhRwezsoPUwiLgHNn0C/86kQf5hfnR8k10OrZl+sQ8z1hbyXfQJHmhfj4faBxPk6aJZuAcTM3h7+SGOHzvIWPufGWQouvjGxRtd1NvQYrC6tI2waZJAidI5dxSyz4G9E3+cDwQS6dbIR8oXCCEqj5MRbnsd2j0B66fDjjm0KtjJfMedxNmF8Hleb+b+04mv1sdxWxM/hncMoXMDr0r5f6rQZOavQyl8G32c5Li9/J/9b9zjuAl7XdHafm1GoOs1WR26E9WCJFCidI5vVO/r3sLa2HTAevFgIYSoNLX8oO970HEMRM+A3T8QVnCc6Q5f8pphIT/md+H3Qx156GASdTxc6N3Ujz5N/Wkb4onermzJVGJiInFxcYSFhVmqfhe3hYaGkutoZMX+JBb8e5yAjD2MsF/BHY7bsNMVXSVYvyd0f0XKE1RDkkCJ0jmxGYB033bEHb6I3k5HpwZeGgclhKjRPEPVRKrnq7DzW9jyJcaMU4yy/4NR9n+QoPjxa1ZH/tzcjrmb6uHp6sSt4T60CvKgRV0PGgfUwmCvv+ZTFC/aCxAQEEDqxXyWRB9hfcx5jq9Jxzc3nrv1m1mo/5c6hvOXHhjeF7o9D3XaVOQ7IDSkU2yxmEYVl5GRgdFoJD09HXf3arDEiaLAB00g8wyrb/maxze40C7Ek0VPdtQ6MiGEuMRUCEf/hH0/wdGVUJhj2ZWGG9tM4Ww1h7PV3JjDSj3MegON/GoRYHTC281QdHMEIN9kJr/QzLkL6cQnpZJa6MjptBz8cuNpZRdLa7sY2uqOEGKXbHkOxVALXZN7oOP/gV/TSn/54uaV5ftbeqDE9V2Ih8wzYOfA0rMBQDq3ytV3QoiqRm8PTe5Sb3lZcHQF7P8Z4tbiUZDF7fod3K7fYTk8WfHg5DlfEs76kqzUJh8Hzit2FGJPIXYYdRdpygV66NLw1aVRT5eMq8G6ZIJi74SuURQ0G4SuYW9wcKrsVy00IgmUuL7jmwAwB7ZmXZxa/0nmPwkhqjSDGzQfpN5MBXBmjzoVISEaEv6FnFT8dGn46dJoy9FSn1ZxdENXpw0EtYO67dDV6wBO1WCkQZSZJFDi+ormP53xaM3FWBNero5EBMh/GEKIilHSxO2bondQq5vXbQudn1Hbci7AheNFtxNkJcWSkZaK0c0FVydHMBeqV/25+UEtf3DzB2NddN4Nwe7a86ZEzSAJlLi+E+oVeJsKGwPQrZEPdmW8kkUIIUrr8onb5ZJAlcS5tnoLbAWAW9FNiNKSBEpcW9pJSEsAnZ6FSQFAoQzfCSEqVFhYmNW9EFWRJFDi2oqG7wr8mrPjeCE6HXRt6K1xUEKI6iwwMLDiep6KlPswoahxJIES13ZCnUAe76p2czevY8TLzaBlREIIcdMqZZhQVGuSQIlrK0qg1uU2BKBbQxm+E0LYPhkmFDdLEihxdZnJcD4WBR0/nFH/Qusm85+EENVAZQwTiurNTusARBVW1PuU69mEE9mOuBnsaVXPQ9uYhBBCiCpAEihxdUUTyGOcWwLQIcwTB718ZIQQQohq9W0YEhKCTqezur3zzjtWx+zdu5euXbvi5OREUFAQ//vf/644z+LFi2ncuDFOTk40b96c5cuXV9ZLqFqKeqD+zqkPQJcGcvWdEEIIAdUsgQKYOnUqZ86csdyefvppy76MjAx69+5NcHAwO3bsYPr06UyePJkvv/zScszmzZt54IEHGDlyJLt27aJ///7079+f/fv3a/FytJOdCikHAViQUg+ALjKBXAghhACq4STyWrVq4e/vX+K+H374gfz8fGbPno2joyNNmzZl9+7dfPDBBzzxxBMAfPzxx/Tp04fx48cD8MYbb7B69Wo+++wzZs2aVWmvQ3NFw3cX3euTnOJGgNGJ+j6uGgclhBBCVA3VrgfqnXfewcvLi1atWjF9+nQKCwst+6Kjo+nWrRuOjo6WtqioKI4cOcKFCxcsx/Tq1cvqnFFRUURHR1/1OfPy8sjIyLC62bwE9fUeNTQH1OE7nU6WbxFCCCGgmvVAPfPMM7Ru3RpPT082b97MhAkTOHPmDB988AEASUlJhIaGWj3Gz8/Psq927dokJSVZ2i4/Jikp6arPO23aNKZMmVLOr0ZjJ7cAsOaiWiOli1QfF0IIISyqfA/Uyy+/fMXE8P/eDh8+DMC4cePo3r07LVq04Mknn+T999/n008/JS8vr0JjnDBhAunp6ZbbyZMnK/T5KlxBDiTuBuDXC0EAdJYJ5EIIIYRFle+Bev755xkxYsQ1j7laJdn27dtTWFjI8ePHCQ8Px9/fn+TkZKtjin8unjd1tWOuNq8KwGAwYDBUo+VNEneBuYBcgzcnc31pEuCOtyzfIoQQQlhU+QTKx8cHH58bu/pr9+7d2NnZ4evrC0DHjh159dVXKSgowMHBAYDVq1cTHh5O7dq1LcesWbOGsWPHWs6zevVqOnbseHMvxJZY5j81BXSyeLAQQgjxH1V+CK+0oqOj+eijj9izZw9xcXH88MMPPPfcczz00EOW5OjBBx/E0dGRkSNHcuDAARYuXMjHH3/MuHHjLOd59tlnWbFiBe+//z6HDx9m8uTJbN++naeeekqrl1b5EtT5T2uL5z/J8J0QQghhpcr3QJWWwWDgxx9/ZPLkyeTl5REaGspzzz1nlRwZjUZWrVrFmDFjaNOmDd7e3kycONFSwgCgU6dOzJ8/n9dee41XXnmFhg0bsnTpUpo1a6bFy6p8ZrNlAvnf2aE46u24JcRT46CEEEKIqkWnKIqidRDVTUZGBkajkfT0dNzd3bUOp2xSDsPM9hTaOdE4+0va1fdj/uMdtI5KCCGEqHBl+f6uNkN4opyc/BeAY47hFGIv5QuEEEKIEkgCJawVzX9aV7T+XdcGsnyLEEII8V+SQAlrRT1Q0QUN8HBxoGmgjQ1BCiGEEJVAEihxSVYKpMahoGOnuSGd6nthZyfLtwghhBD/JQmUuKTo6ruT9sFk4ErH+jL/SQghhCiJJFDikgR1+G5TfgMAOtX30jIaIYQQosqSBEpcUpRAbS1siL+7E2HerhoHJIQQQlRNkkAJVUEOnNkDwHalEZ3qe6HTyfwnIYQQoiSSQAnV6Z1gLiDVrjYnFV86yvCdEEIIcVWSQAlVUfmCLYUNAZ0kUEIIIcQ1SAIlVEUFNLebGhHs5ULd2i4aBySEEEJUXZJACVAUOLUVgO3mRnSS8gVCCCHENUkCJeD8Mci5QB6OHFRCpHyBEEIIcR2SQAk4tQ2AveYQCrCnQ5gkUEIIIcS1SAIlLAnULnNDwv1q4VPLoHFAQgghRNUmCZS4LIFqQKcG0vskhBBCXI8kUDVd/kVIPgAUJVAygVwIIYS4LkmgarrE3aCYOKN4kqLzol2op9YRCSGEEFWeJFA13WXDd83rGDE6O2gckBBCCFH1SQJV012WQHWQ8gVCCCFEqUgCVZMpilUC1VHKFwghhBClIglUTZZ+CrKSKVD0HNKF0TZE5j8JIYQQpSEJVA2Wum8VAIeUejSo44ubwV7jiIQQQgjbIAlUDZYTsx4omv8UJr1PQgghRGlJAlWD+eQdB9QK5LJ8ixBCCFF6kkDVVIV5OJw7BMBeGtI2uLbGAQkhhBC2QxKomippPzpTHqmKG7UCGlLLSeo/CSGEEKUlCVRNddkCwh1k+RYhhBCiTCSBqqkuL6Ap85+EEEKIMpEEqoYqTNgKwB6lAW1DZP6TEEIIURaSQNVEWSnYZyRgVnQU+LeS+U9CCCFEGUkCVROd2g5AjFKHFg3qaRyMEEIIYXskgaqJTqsJ1G4poCmEEELcEEmgaqC8E2oCtVepL+vfCSGEEDdAEqiaRlHQndkFwEXvFrjL/CchhBCizCSBqmlS43AsyCBPccCvQWutoxFCCCFskiRQNc3pnQAcVIK5pb6fxsEIIYQQtkkSqBom+7haQHOvEsYtMv9JCCGEuCGSQNUwuSfUBCqlVlOMLjL/SQghhLgRkkDVJKZCaqUeAMAp+BaNgxFCCCFslyRQNcnZQzgoeWQozoQ2bql1NEIIIYTNkgSqBime/7TfHEq7UG+NoxFCCCFslyRQNciFmH8BOO4Ujq+7k8bRCCGEELZLEqgaRH9mNwAm/1baBiKEEELYOEmgaoqCXLyzYwHwbNhB42CEEEII2yYJVA2Rd3o39pg4q7jTPKKZ1uEIIYQQNk0SqBoicf8mAI7YNSTIy0XjaIQQQgjbJglUDVFcQDPDszk6nU7jaIQQQgjbJglUDWG8sA8AQ3BbjSMRQgghbJ8kUDVAwcULBBaeAiC4eVeNoxFCCCFsnyRQNcCJ/ZsBOI0PYcHBGkcjhBBC2D5JoGqA80fVApqJrhHY2cn8JyGEEOJmSQJVA9if2QWAyT9S20CEEEKIakISqGrObFYIzD4IgHd4R42jEUIIIaoHSaCqubgTJwjgPADBzSSBEkIIIcqDJFDVXMIBdQJ5on1dHFw8tA1GCCGEqCYkgarmck7sACDDI0LjSIQQQojqQxKoas419QAAjkGtNY5ECCGEqD5sJoF666236NSpEy4uLnh4eJR4TEJCAn379sXFxQVfX1/Gjx9PYWGh1THr1q2jdevWGAwGGjRowNy5c684z4wZMwgJCcHJyYn27duzdevWCnhFFS85I5f6BbEA+Ie30zgaIYQQovqwmQQqPz+f++67j9GjR5e432Qy0bdvX/Lz89m8eTPz5s1j7ty5TJw40XJMfHw8ffv2pUePHuzevZuxY8fy2GOPsXLlSssxCxcuZNy4cUyaNImdO3fSsmVLoqKiSElJqfDXWN72HI0nyO4sAC7BbTSORgghhKg+dIqiKFoHURZz585l7NixpKWlWbX/+eef9OvXj8TERPz8/ACYNWsWL730EmfPnsXR0ZGXXnqJP/74g/3791sed//995OWlsaKFSsAaN++PbfccgufffYZAGazmaCgIJ5++mlefvnlUsWYkZGB0WgkPT0dd3f3cnjVN+bbH+YyLOZZUh0D8XzlkGZxCCGEELagLN/fNtMDdT3R0dE0b97ckjwBREVFkZGRwYEDByzH9OrVy+pxUVFRREdHA2ov144dO6yOsbOzo1evXpZjbInp9G4AcnxaaBuIEEIIUc3Yax1AeUlKSrJKngDLz0lJSdc8JiMjg5ycHC5cuIDJZCrxmMOHD1/1ufPy8sjLy7P8nJGRcVOvpTxczCvEN/MQ6KFWiAzfCSGEEOVJ0x6ol19+GZ1Od83btRKXqmLatGkYjUbLLSgoSOuQ2HMyjQhdPADuYW01jkYIIYSoXjTtgXr++ecZMWLENY8JCwsr1bn8/f2vuFouOTnZsq/4vrjt8mPc3d1xdnZGr9ej1+tLPKb4HCWZMGEC48aNs/yckZGheRK1J/YkneyKXkdApKaxCCGEENWNpgmUj48PPj4+5XKujh078tZbb5GSkoKvry8Aq1evxt3dnYiICMsxy5cvt3rc6tWr6dhRXeLE0dGRNm3asGbNGvr37w+ok8jXrFnDU089ddXnNhgMGAyGcnkd5SX12DYAspwCcXPx1DgaIYQQonqxmUnkCQkJ7N69m4SEBEwmE7t372b37t1kZWUB0Lt3byIiInj44YfZs2cPK1eu5LXXXmPMmDGW5ObJJ58kLi6OF198kcOHDzNz5kwWLVrEc889Z3mecePG8dVXXzFv3jwOHTrE6NGjuXjxIo888ogmr/tGmMwKDin7ADD7t9Q4GiGEEKL6sZlJ5BMnTmTevHmWn1u1agXA2rVr6d69O3q9nmXLljF69Gg6duyIq6srw4cPZ+rUqZbHhIaG8scff/Dcc8/x8ccfU7duXb7++muioqIsxwwZMoSzZ88yceJEkpKSiIyMZMWKFVdMLK/KDidl0MgcC3pwC5UJ5EIIIUR5s7k6ULZA6zpQ30Yfp9Ofd9DALhGGLoGGva7/ICGEEKKGq5F1oMQle+NOE6Y7o/4QIEN4QgghRHmTBKoayjq+CzudQp6LP7iVzyR9IYQQQlwiCVQ1czoth4BstXZWoVcTjaMRQgghqidJoKqZ7cdTaWZ3HIBzDoHaBiOEEEJUU5JAVTMnzmfTrKgCuVvDzhpHI4QQQlRPkkBVM890rUMjfSIAXs1u0zgaIYQQonqSBKq6Sd6PTjGDmz/UuvryM0IIIYS4cZJAVTdn9qj3Ur5ACCGEqDCSQFU3SXvVe0mghBBCiAojCVR1c6YogfJvrm0cQgghRDUmCVR1YiqAlEPqtiRQQgghRIWRBKo6ORcDpjwwuINHsNbRCCGEENWWJFDVSdI+9d6vGdjJP60QQghRUeRbtjpJkvlPQgghRGWQBKo6Ke6BkgRKCCGEqFCSQFUXiiIJlBBCCFFJJIGqLjISIScV7OzBt4nW0QghhBDVmiRQ1UXx/CefxmBv0DYWIYQQopqTBKq6kOE7IYQQotJIAlVdyBV4QgghRKWx1zoAUU6kB0oIISxMJhMFBQVahyGqGAcHB/R6fbmcSxKo6iA3HS4cV7f9mmkaihBCaElRFJKSkkhLS9M6FFFFeXh44O/vj06nu6nzSAJVHSQfUO+NQeDiqW0sQgihoeLkydfXFxcXl5v+khTVh6IoZGdnk5KSAkBAQMBNnU8SqOpAhu+EEAKTyWRJnry8vLQOR1RBzs7OAKSkpODr63tTw3kyibw6kAnkQghhmfPk4uKicSSiKiv+fNzsHDlJoKqDM5JACSFEMRm2E9dSXp8PSaBsXWE+nD2sbksCJYQQNql79+6MHTtW6zAAWLp0KQ0aNECv1zN27Fjmzp2Lh4eH1mFVOZJA2bpzR8GUDwYjeARrHY0QQogqaN26deh0ulJdnThq1CgGDRrEyZMneeONNxgyZAhHjx617J88eTKRkZEVF6yNkEnktu7yCeTSbS2EEOImZGVlkZKSQlRUFIGBgZb24snX4hLpgbJ1cgWeEEJUC4WFhTz11FMYjUa8vb15/fXXURTFsj8vL48XXniBOnXq4OrqSvv27Vm3bp1l/4kTJ7jrrruoXbs2rq6uNG3alOXLl3P8+HF69OgBQO3atdHpdIwYMeKK51+3bh21atUCoGfPnuh0OtatW2c1hDd37lymTJnCnj170Ol06HQ65s6dW1FvSZUmPVC2Tq7AE0KIq1IUhZwCkybP7eygL9OE5Xnz5jFy5Ei2bt3K9u3beeKJJ6hXrx6PP/44AE899RQHDx7kxx9/JDAwkF9++YU+ffqwb98+GjZsyJgxY8jPz2f9+vW4urpy8OBB3NzcCAoKYsmSJQwcOJAjR47g7u5eYo9Sp06dOHLkCOHh4SxZsoROnTrh6enJ8ePHLccMGTKE/fv3s2LFCv766y8AjEbjzb1RNkoSKFumKJf1QEkFciGE+K+cAhMRE1dq8twHp0bh4lj6r9mgoCA+/PBDdDod4eHh7Nu3jw8//JDHH3+chIQE5syZQ0JCgmVo7YUXXmDFihXMmTOHt99+m4SEBAYOHEjz5uof1GFhYZZze3qqRZZ9fX2vOiHc0dERX19fy/H+/v5XHOPs7Iybmxv29vYl7q9JJIGyZRmJkJsGdvbg01jraIQQQtyEDh06WPVYdezYkffffx+TycS+ffswmUw0atTI6jF5eXmWoqHPPPMMo0ePZtWqVfTq1YuBAwfSokWLSn0NNYkkULaseAkX70Zgb9A2FiGEqIKcHfQcnBql2XOXl6ysLPR6PTt27LiierabmxsAjz32GFFRUfzxxx+sWrWKadOm8f777/P000+XWxziEkmgbFnyfvXer6m2cQghRBWl0+nKNIympS1btlj9/O+//9KwYUP0ej2tWrXCZDKRkpJC165dr3qOoKAgnnzySZ588kkmTJjAV199xdNPP42joyOgLndzsxwdHcvlPLZOrsKzZcU9UL4R2sYhhBDipiUkJDBu3DiOHDnCggUL+PTTT3n22WcBaNSoEUOHDmXYsGH8/PPPxMfHs3XrVqZNm8Yff/wBwNixY1m5ciXx8fHs3LmTtWvX0qRJEwCCg4PR6XQsW7aMs2fPkpWVdcNxhoSEEB8fz+7duzl37hx5eXk3/+JtkCRQtqw4gfKTCeRCCGHrhg0bRk5ODu3atWPMmDE8++yzPPHEE5b9c+bMYdiwYTz//POEh4fTv39/tm3bRr169QC1d2nMmDE0adKEPn360KhRI2bOnAlAnTp1mDJlCi+//DJ+fn489dRTNxznwIED6dOnDz169MDHx4cFCxbc3Au3UTrl8iITolxkZGRgNBpJT0/H3d29Yp6kMA/eCgDFBM8dBGOdinkeIYSwEbm5ucTHxxMaGoqTk5PW4Ygq6lqfk7J8f0sPlK06e0RNnpw8wD3wuocLIYQQovxIAmWrLh++kyVchBBCiEolCZStSilOoOQKPCGEEKKySQJlq5IlgRJCCCG0IgmUrZIESgghhNCMJFC2KOssZCUDOlnCRQghhNCAJFC2qHj+k2coGNy0jUUIIYSogSSBskUyfCeEEEJoShIoWyQVyIUQQghNSQJli2QRYSGEEBqbO3cuHh4eWofBiBEj6N+/f6U/ryRQtsZUqFYhB0mghBBCVFnHjx9Hp9Oxe/fuKnm+myUJlK1JjYPCXHBwBY8QraMRQgihkfz8fK1DKBe2+jokgbI1xcN3vk3ATv75hBCiOsjMzGTo0KG4uroSEBDAhx9+SPfu3Rk7dqzlmJCQEN544w2GDRuGu7s7TzzxBABLliyhadOmGAwGQkJCeP/9963OrdPpWLp0qVWbh4cHc+fOBS717Pz888/06NEDFxcXWrZsSXR0tNVj5s6dS7169XBxceHee+/l/Pnz13xNoaGhALRq1QqdTkf37t2BS0Nub731FoGBgYSHh5cqzqudr9h7771HQEAAXl5ejBkzhoKCgmvGd7PsK/TsovzJFXhCCFF6igIF2do8t4NLqdcqHTduHJs2beK3337Dz8+PiRMnsnPnTiIjI62Oe++995g4cSKTJk0CYMeOHQwePJjJkyczZMgQNm/ezP/93//h5eXFiBEjyhTuq6++ynvvvUfDhg159dVXeeCBB4iNjcXe3p4tW7YwcuRIpk2bRv/+/VmxYoUlhqvZunUr7dq146+//qJp06Y4Ojpa9q1ZswZ3d3dWr15d6viudb61a9cSEBDA2rVriY2NZciQIURGRvL444+X6T0oC0mgbI1cgSeEEKVXkA1vB2rz3K8kgqPrdQ/LzMxk3rx5zJ8/n9tuuw2AOXPmEBh4Zdw9e/bk+eeft/w8dOhQbrvtNl5//XUAGjVqxMGDB5k+fXqZE6gXXniBvn37AjBlyhSaNm1KbGwsjRs35uOPP6ZPnz68+OKLlufZvHkzK1asuOr5fHx8APDy8sLf399qn6urK19//bVVEnQ91zpf7dq1+eyzz9Dr9TRu3Ji+ffuyZs2aCk2gZAzI1kgPlBBCVCtxcXEUFBTQrl07S5vRaLQMbV2ubdu2Vj8fOnSIzp07W7V17tyZmJgYTCZTmeJo0aKFZTsgIACAlJQUy/O0b9/e6viOHTuW6fyXa968eZmSp+tp2rQper3e8nNAQIAl9ooiPVC2JDcd0hPUbb8IbWMRQghb4OCi9gRp9dzlzNX1+j1a/6XT6VAUxaqtpPlBDg4OVo8BMJvNZX6+0ijpdZQ2zpJcHnvxuSoq9mKSQNmS5IPqvXtdcK6tbSxCCGELdLpSDaNpKSwsDAcHB7Zt20a9evUASE9P5+jRo3Tr1u2aj23SpAmbNm2yatu0aRONGjWy9Mj4+Phw5swZy/6YmBiys8s2L6xJkyZs2bLFqu3ff/+95mOKe5hK2xN2vTjLer6KJgmULUmR4TshhKhuatWqxfDhwxk/fjyenp74+voyadIk7OzsLD1BV/P8889zyy238MYbbzBkyBCio6P57LPPmDlzpuWYnj178tlnn9GxY0dMJhMvvfTSFT021/PMM8/QuXNn3nvvPe655x5Wrlx5zflPAL6+vjg7O7NixQrq1q2Lk5MTRqPxqsdfL86ynq+iyRwoW5KbDvbOMnwnhBDVzAcffEDHjh3p168fvXr1onPnzjRp0gQnJ6drPq5169YsWrSIH3/8kWbNmjFx4kSmTp1qNYH8/fffJygoiK5du/Lggw/ywgsv4OJStuHFDh068NVXX/Hxxx/TsmVLVq1axWuvvXbNx9jb2/PJJ5/wxRdfEBgYyD333HPN468XZ1nPV+EUG/Hmm28qHTt2VJydnRWj0VjiMcAVtwULFlgds3btWqVVq1aKo6OjUr9+fWXOnDlXnOezzz5TgoODFYPBoLRr107ZsmVLmWJNT09XACU9Pb1MjysVU6Gi5GWV/3mFEMLG5eTkKAcPHlRycnK0DuWmZWVlKUajUfn666+1DqXaudbnpCzf3zbTA5Wfn899993H6NGjr3ncnDlzOHPmjOV2+fo48fHx9O3blx49erB7927Gjh3LY489xsqVKy3HLFy4kHHjxjFp0iR27txJy5YtiYqKqvDZ/KVmp6/y4/lCCCHKZteuXSxYsIBjx46xc+dOhg4dCqB9L4u4KpuZAzVlyhQAS0XSq/Hw8LiiPkSxWbNmERoaaqnS2qRJEzZu3MiHH35IVFQUoHajPv744zzyyCOWx/zxxx/Mnj2bl19+uZxejRBCCGHtvffe48iRIzg6OtKmTRs2bNiAt7e31mGJq7CZHqjSGjNmDN7e3rRr147Zs2dbXRIZHR1Nr169rI6PioqylKvPz89nx44dVsfY2dnRq1evK0raCyGEEOWlVatW7Nixg6ysLFJTU1m9ejXNmzfXOixxDTbTA1UaU6dOpWfPnri4uLBq1Sr+7//+j6ysLJ555hkAkpKS8PPzs3qMn58fGRkZ5OTkcOHCBUwmU4nHHD58+KrPm5eXR15enuXnjIyMcnxVQgghhKhqNO2Bevnll9HpdNe8XStx+a/XX3+dzp0706pVK1566SVefPFFpk+fXoGvQDVt2jSMRqPlFhQUVOHPKYQQQgjtaNoD9fzzz193rZ6wsLAbPn/79u154403yMvLw2Aw4O/vT3JystUxycnJuLu74+zsjF6vR6/Xl3jM1eZVAUyYMIFx48ZZfs7IyJAkSgghNKL8p5q1EJcrr8+HpgmUj4+PZXHAirB7925q166NwWAA1HV7li9fbnXM6tWrLev5FE/cW7NmjeXqPbPZzJo1a3jqqaeu+jwGg8HyHEIIIbRRXHQxOzsbZ2dnjaMRVVVxdfOyFhP9L5uZA5WQkEBqaioJCQmYTCZ2794NQIMGDXBzc+P3338nOTmZDh064OTkxOrVq3n77bd54YUXLOd48skn+eyzz3jxxRd59NFH+fvvv1m0aBF//PGH5Zhx48YxfPhw2rZtS7t27fjoo4+4ePGi5ao8IYQQVZNer8fDw8NSdsbFxeW6lbxFzaEoCtnZ2aSkpODh4WG1+PCNsJkEauLEicybN8/yc6tWrQBYu3Yt3bt3x8HBgRkzZvDcc8+hKAoNGjSwlCQoFhoayh9//MFzzz3Hxx9/TN26dfn6668tJQwAhgwZwtmzZ5k4cSJJSUlERkayYsWKKyaWCyGEqHqKp1tUmdp9osq5VrmjstApMlhc7jIyMjAajaSnp+Pu7q51OEIIUeOYTCYKCgq0DkNUMQ4ODtfseSrL97fN9EAJIYQQpVV8UZAQFaXaFdIUQgghhKhokkAJIYQQQpSRJFBCCCGEEGUkc6AqQPG8fFnSRQghhLAdxd/bpbm+ThKoCpCZmQkg1ciFEEIIG5SZmYnRaLzmMVLGoAKYzWYSExOpVatWuRdxK14m5uTJk1Ii4TrkvSo9ea9KT96r0pP3qvTkvSq9inyvFEUhMzOTwMBA7OyuPctJeqAqgJ2dHXXr1q3Q53B3d5dfslKS96r05L0qPXmvSk/eq9KT96r0Kuq9ul7PUzGZRC6EEEIIUUaSQAkhhBBClJEkUDbGYDAwadIkDAaD1qFUefJelZ68V6Un71XpyXtVevJelV5Vea9kErkQQgghRBlJD5QQQgghRBlJAiWEEEIIUUaSQAkhhBBClJEkUEIIIYQQZSQJlI1466236NSpEy4uLnh4eJR4jE6nu+L2448/Vm6gVURp3q+EhAT69u2Li4sLvr6+jB8/nsLCwsoNtAoKCQm54nP0zjvvaB1WlTFjxgxCQkJwcnKiffv2bN26VeuQqpzJkydf8Rlq3Lix1mFVCevXr+euu+4iMDAQnU7H0qVLrfYrisLEiRMJCAjA2dmZXr16ERMTo02wGrveezVixIgrPmd9+vSptPgkgbIR+fn53HfffYwePfqax82ZM4czZ85Ybv3796+cAKuY671fJpOJvn37kp+fz+bNm5k3bx5z585l4sSJlRxp1TR16lSrz9HTTz+tdUhVwsKFCxk3bhyTJk1i586dtGzZkqioKFJSUrQOrcpp2rSp1Wdo48aNWodUJVy8eJGWLVsyY8aMEvf/73//45NPPmHWrFls2bIFV1dXoqKiyM3NreRItXe99wqgT58+Vp+zBQsWVF6AirApc+bMUYxGY4n7AOWXX36p1Hiququ9X8uXL1fs7OyUpKQkS9vnn3+uuLu7K3l5eZUYYdUTHBysfPjhh1qHUSW1a9dOGTNmjOVnk8mkBAYGKtOmTdMwqqpn0qRJSsuWLbUOo8r77//ZZrNZ8ff3V6ZPn25pS0tLUwwGg7JgwQINIqw6Svp+Gz58uHLPPfdoEo+iKIr0QFUzY8aMwdvbm3bt2jF79mwUKfNVoujoaJo3b46fn5+lLSoqioyMDA4cOKBhZFXDO++8g5eXF61atWL69OkytInaq7ljxw569eplabOzs6NXr15ER0drGFnVFBMTQ2BgIGFhYQwdOpSEhAStQ6ry4uPjSUpKsvqMGY1G2rdvL5+xq1i3bh2+vr6Eh4czevRozp8/X2nPLYsJVyNTp06lZ8+euLi4sGrVKv7v//6PrKwsnnnmGa1Dq3KSkpKskifA8nNSUpIWIVUZzzzzDK1bt8bT05PNmzczYcIEzpw5wwcffKB1aJo6d+4cJpOpxM/N4cOHNYqqamrfvj1z584lPDycM2fOMGXKFLp27cr+/fupVauW1uFVWcX/95T0Gavp/y+VpE+fPgwYMIDQ0FCOHTvGK6+8wh133EF0dDR6vb7Cn18SKA29/PLLvPvuu9c85tChQ6WefPn6669btlu1asXFixeZPn16tUmgyvv9qknK8t6NGzfO0taiRQscHR0ZNWoU06ZN03zpBGEb7rjjDst2ixYtaN++PcHBwSxatIiRI0dqGJmoTu6//37LdvPmzWnRogX169dn3bp13HbbbRX+/JJAaej5559nxIgR1zwmLCzshs/fvn173njjDfLy8qrFF195vl/+/v5XXD2VnJxs2Vfd3Mx71759ewoLCzl+/Djh4eEVEJ1t8Pb2Rq/XWz4nxZKTk6vlZ6Y8eXh40KhRI2JjY7UOpUor/hwlJycTEBBgaU9OTiYyMlKjqGxHWFgY3t7exMbGSgJV3f1/e3cQ0nQfx3H88xhNo6kozmaCIiwkSRokK08hwsKDKHSQoDE6dLKDpnlSIsgdOsSgQ929dkvqoGOCoIkIE0+CI7GQSuwQplHot8MDgjwP6e956vntqfcLvOwwP/wO481f//+FQiGFQqGf9v65XE4VFRW/RDxJP/a8WltbNTo6qvfv36u6ulqSNDExobKyMjU1Nf2Q31FI/s3Z5XI5FRUV7Z/T7yoQCOjChQvKZDL7d7fu7e0pk8no1q1bfscVuK2tLeXzeSUSCd9TClpDQ4PC4bAymcx+MH38+FFzc3OH3oEN6c2bN9rc3DwQnz8TAfU/sba2pg8fPmhtbU27u7vK5XKSpEgkomAwqGfPnundu3e6dOmSSkpKNDExoVQqpcHBQb/DPTnsvOLxuJqampRIJPTgwQO9fftWw8PD6u3t/WWC85+YnZ3V3Nyc2traVFpaqtnZWfX39+v69euqqKjwPc+727dvK5lMqqWlRbFYTOl0Wp8+fdKNGzd8Tysog4OD6uzsVH19vdbX13X37l0dO3ZM165d8z3Nu62trQNX4l69eqVcLqfKykrV1dWpr69P9+/f15kzZ9TQ0KCRkRGdPn36t3wkzffOqrKyUvfu3dPVq1cVDoeVz+c1NDSkSCSiK1eu/DcDvd3/ByfJZNIk/eUnm82amdmLFy8sGo1aMBi0kydP2vnz5+3Jkye2u7vrd7gnh52Xmdnq6qp1dHTYiRMnrKqqygYGBuzr16/+RheAhYUFu3jxopWXl1tJSYmdPXvWUqmUff782fe0gvHo0SOrq6uzQCBgsVjMXr586XtSwenp6bGamhoLBAJWW1trPT09trKy4ntWQchms3/72ZRMJs3sz0cZjIyM2KlTp6y4uNja29tteXnZ72hPvndW29vbFo/HLRQK2fHjx62+vt5u3rx54NE0P9sfZtznDgAA4ILnQAEAADgioAAAABwRUAAAAI4IKAAAAEcEFAAAgCMCCgAAwBEBBQAA4IiAAgAAcERAAQAAOCKgAAAAHBFQAHCIjY0NhcNhpVKp/ddmZmYUCASUyWQ8LgPgC9+FBwBH8Pz5c3V3d2tmZkaNjY2KRqPq6urSw4cPfU8D4AEBBQBH1Nvbq8nJSbW0tGhpaUnz8/MqLi72PQuABwQUABzRzs6Ozp07p9evX2thYUHNzc2+JwHwhP+BAoAjyufzWl9f197enlZXV33PAeARV6AA4Ai+fPmiWCymaDSqxsZGpdNpLS0tqbq62vc0AB4QUABwBHfu3NHTp0+1uLioYDCoy5cvq7y8XOPj476nAfCAP+EBwCGmpqaUTqc1NjamsrIyFRUVaWxsTNPT03r8+LHveQA84AoUAACAI65AAQAAOCKgAAAAHBFQAAAAjggoAAAARwQUAACAIwIKAADAEQEFAADgiIACAABwREABAAA4IqAAAAAcEVAAAACOCCgAAABH3wA+NdrvPu3t3wAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACEf0lEQVR4nOzdeVxU9f7H8dfMsO8iuwuKCIobiIprrrmklVuamUtZmVcrs8y8lWtlN5eym2Wr2q00zbJSfyqZZiru4r4hKCoCbuz7zPn9MTJJooKCZ2b4PB8PHgznnDnznnFkPny/3/P9ahRFURBCCCGEEGWmVTuAEEIIIYSlkQJKCCGEEKKcpIASQgghhCgnKaCEEEIIIcpJCighhBBCiHKSAkoIIYQQopykgBJCCCGEKCcpoIQQQgghykkKKCGEEEKIcpICSojrFi9ejEaj4cyZM2pHKdXIkSOpU6fOfXms5cuX4+npSVZW1n15PGtx5swZNBoNixcvVjvKfdepUyc6deqkymMvXLiQ2rVrk5+fr8rji6pJCighKlhOTg4LFiyge/fu+Pv74+rqSkREBJ9++il6vV7teHek1+uZOnUqL7zwAi4uLnd1jvz8fCZNmkRAQACOjo5ERUURHR1dwUnF3Vq7di3Tpk1TOwZg/P8ybdo0Nm/efNfnGDlyJAUFBXz22WcVluvll1+mefPmeHp64uTkRMOGDZk2bVqpf1TI+71qkgJKiOuGDRtGbm4ugYGB93Se+Ph4XnjhBRRFYcKECcyZM4e6devyr3/9i6effrqC0lae3377jRMnTvDcc8/d9TlGjhzJvHnzGDp0KPPnz0en0/HQQw+xdevWCkxqfgIDA8nNzWXYsGFqR7mttWvXMn36dLVjAMYCavr06fdUQDk4ODBixAjmzZtHRS3vunv3bjp06MD06dOZP38+nTt35r333qNnz54YDIYSx1bV93uVpwghKtSlS5eUw4cP37T9qaeeUgDl1KlTd3XeESNGKIGBgfeY7s4eeeQRpX379nd9/507dyqAMnv2bNO23NxcpV69ekqbNm0qIqLZKSwsVPLz89WOUWZjx45VKvrXf8eOHZWOHTuW+36XLl1SAGXq1Kn39Ph79uxRAGXjxo33dJ7bmTNnjgIoMTExpm1V8f0ujKQFSojrKmoMlJeXF40aNbppe79+/QA4duzYPZ3/RgaDgQ8//JBGjRrh4OCAr68vo0eP5tq1ayWOq1OnDn369GHr1q20atUKBwcHgoKC+Oabb0ocl5eXx7p16+jWrVuJ7bcb26PRaEp0B/3444/odLoSLVgODg6MGjWKmJgYzp07d8fntXPnTnr27Im7uztOTk507NiRbdu2mfYfO3YMR0dHhg8fXuJ+W7duRafTMWnSpJue+4YNGwgPD8fBwYGwsDB++umnmx43LS2N8ePHU6tWLezt7QkODuY///lPiRaH4tdizpw5fPjhh9SrVw97e3uOHj1a6us0cuRIXFxcSExMpE+fPri4uFCjRg0WLFgAwKFDh+jSpQvOzs4EBgby/fff33Ouzz//3JSrZcuW7N69u0Se4sfWaDSmr/IoPr+joyOtWrXir7/+uumYgoICpkyZQmRkJO7u7jg7O9OhQwc2bdpUIrO3tzcA06dPN2Upfj8dPHiQkSNHEhQUhIODA35+fjz99NNcuXLlpseLjIzE09OTX375pVzPpTyKxyCmpaWZtlXE+11YJhu1AwhhzrKyssjLy7vjcba2tri7u9/2mOTkZMBYYFWU0aNHs3jxYp566ilefPFFEhIS+Pjjj9m/fz/btm3D1tbWdGxcXBwDBw5k1KhRjBgxgq+//pqRI0cSGRlpKvj27t1LQUEBzZs3v+tM+/fvJyQkBDc3txLbW7VqBUBsbCy1atW65f3/+OMPevXqRWRkJFOnTkWr1bJo0SK6dOnCX3/9RatWrWjYsCEzZ85k4sSJDBw4kEceeYTs7GxGjhxJgwYNmDFjRolznjp1isGDB/P8888zYsQIFi1axGOPPca6det48MEHAWNXUseOHblw4QKjR4+mdu3abN++ncmTJ3Px4kU+/PDDEudctGgReXl5PPfcc9jb2+Pp6XlT104xvV5Pr169eOCBB3j//ff57rvvGDduHM7OzrzxxhsMHTqU/v37s3DhQoYPH06bNm2oW7fuXeX6/vvvyczMZPTo0Wg0Gt5//3369+9PfHw8tra2jB49mqSkJKKjo/nf//53x3/Pf/rqq68YPXo0bdu2Zfz48cTHx/PII4/g6elZ4t81IyODL7/8kiFDhvDss8+SmZnJV199RY8ePdi1axfh4eF4e3vz6aefMmbMGPr160f//v0BaNq0KQDR0dHEx8fz1FNP4efnx5EjR/j88885cuQIO3bsuKnwa968eYlCGyA9PZ3CwsI7Pi8HB4ebxvwVFRWRlpZGQUEBhw8f5s0338TV1dX0XoZ7f78LC6Z2E5gQ5mLRokUKoCQkJJi2jRgxQgHu+HWnrov8/HwlLCxMqVu3rlJYWHhX+f7ZhffXX38pgPLdd9+VOG7dunU3bQ8MDFQAZcuWLaZtqampir29vfLKK6+Ytn355ZcKoBw6dKjEORMSEhRAWbRo0U25+Ef3S6NGjZQuXbrcdNyRI0cUQFm4cOEtn6PBYFDq16+v9OjRQzEYDKbtOTk5St26dZUHH3zQtE2v1yvt27dXfH19lcuXLytjx45VbGxslN27d5c4Z/FzX7lypWlbenq64u/vr0RERJi2zZw5U3F2dlZOnjxZ4v6vv/66otPplMTExBKvhZubm5KamnrH16n4PfTuu++atl27dk1xdHRUNBqNsmzZMtP248eP3/R6ljdX9erVlatXr5qO++WXXxRA+e2330zb7rYLr6CgQPHx8VHCw8NLdFl+/vnnN/0/KCoquqlb89q1a4qvr6/y9NNPm7bdrgsvJyfnpm1Lly696b1c7LnnnlMcHR1LbOvYsWOZ/g+PGDHipvPFxMSUOCY0NFTZtGlTiWPu5f0uLJu0QAlxG6+99hpPPvnkHY+rVq3abfePGzeOo0ePsmbNGmxsKua/3YoVK3B3d+fBBx/k8uXLpu2RkZG4uLiwadMmnnjiCdP2sLAwOnToYPrZ29ub0NBQ4uPjTduKu0bu9HxuJzc3F3t7+5u2Ozg4mPbfSmxsLKdOneLNN9+8qZuma9eu/O9//8NgMKDVatFqtSxevJhmzZrRq1cv9uzZw5tvvkmLFi1uOm9AQICpCxXAzc2N4cOH85///Ifk5GT8/PxYsWIFHTp0oFq1aiVez27duvHee++xZcsWhg4dato+YMAAU/dTWTzzzDOm2x4eHoSGhhIXF8egQYNM20NDQ/Hw8Cjxb1LeXIMHDy7x71f8b37jOe/Wnj17SE1NZcaMGdjZ2Zm2jxw5kokTJ5Y4VqfTodPpAGNXc1paGgaDgRYtWrBv374yPZ6jo6Ppdl5eHllZWbRu3RqAffv2lXg/g/F9m5ubS05ODk5OTgDMnTv3pi7t0gQEBNy0LSwsjOjoaLKzs9m+fTu///77TVfh3cv7XVg2KaCEuI2wsDDCwsLu6RyzZ8/miy++YObMmTz00EMVlMzYLZWeno6Pj0+p+1NTU0v8XLt27ZuOqVatWqkfLso9XMnk6OhY6nw8xV2hN34o/tOpU6cAGDFixC2PSU9PNxUI9erVY9q0aUycOJHGjRvz1ltvlXqf4ODgm7p7QkJCAOM4HD8/P06dOsXBgwdvWRT98/Us7mIrCwcHh5vO6+7uTs2aNW/K5e7uXuLfpLy5/vnvXPxalaWIuJOzZ88CUL9+/RLbbW1tCQoKuun4JUuWMHfuXI4fP16iG62sr93Vq1eZPn06y5Ytu+l5pqen33R88fv2xtc0MjKyTI9VGjc3N9N4wEcffZTvv/+eRx99lH379tGsWTPg3t7vwrJJASXEbaSnp5fpL0g7Ozs8PT1v2r548WImTZrE888/z5tvvlmh2QwGAz4+Pnz33Xel7v/nB25xa8A/3VgsVa9eHTB+2NasWdO0/VaDjEub18rf358LFy7ctP3ixYtA6X/pFyseQzR79mzCw8NLPeaf41Q2bNgAQFJSEleuXMHPz++W578dg8HAgw8+yGuvvVbq/uKCq1h5Phhv9dqX5d+kvLnKcs774dtvv2XkyJH07duXiRMn4uPjg06nY9asWZw+fbpM5xg0aBDbt29n4sSJhIeH4+LigsFgKHUqATC+b52cnEr821y9epWCgoI7Ppajo+MdxzH279+fYcOGsWzZMlMBdS/vd2HZpIAS4jZeeukllixZcsfjOnbseNM8Nr/88gvPPPMM/fv3N131VJHq1avH77//Trt27Srsr9wGDRoAkJCQQJMmTUzbi1sxbrz6CP5ukbhReHg4mzZtIiMjo8TA2p07d5r230q9evWAkn/5387ChQuJjo7mnXfeYdasWYwePbrUq7Di4uJQFKVEIXjy5Eng7yur6tWrR1ZWVpke936qjFzlvequWPEcaadOnaJLly6m7YWFhSQkJJiKCjBenRYUFMRPP/1U4vGmTp1apizXrl1j48aNTJ8+nSlTppi2F7dSliYhIYGGDRuW2Na/f3/+/PPPOz63ESNG3HEG+fz8fAwGQ4nWr3t5vwvLJtMYCHEbr732GtHR0Xf8mjt3bon7bdmyhccff5wHHniA7777Dq224v+rDRo0CL1ez8yZM2/aV3z1UHlFRkZiZ2fHnj17Smx3c3PDy8uLLVu2lNj+ySef3HSOgQMHotfr+fzzz03b8vPzWbRoEVFRUSWuSEpMTOT48eMlHr9evXrMmTOn1BmfL126ZLqdkJDAxIkTGTBgAP/+97+ZM2cOv/76601TM4Cxdernn382/ZyRkcE333xDeHi4qcVq0KBBxMTEsH79+pvun5aWRlFR0U3b74fKyOXs7Gy6f3m0aNECb29vFi5cWKJVZ/HixTedq7gl7MaWr507dxITE1PiuOKxSmW5P3DTVYc32rdvH23bti2xbe7cuWX6P3xjC19aWlqpV+59+eWXACXG2ZXn/S6si7RACXEbdzMG6uzZszzyyCNoNBoGDhzIihUrSuxv2rSp6TJt+LsFpLzzT3Xs2JHRo0cza9YsYmNj6d69O7a2tpw6dYoVK1Ywf/58Bg4cWK5zOjg40L17d37//febpgJ45plneO+993jmmWdo0aIFW7ZsMbXi3CgqKorHHnuMyZMnk5qaSnBwMEuWLOHMmTN89dVXJY4dPnw4f/75p+lDUqvV8uWXX9KrVy8aNWrEU089RY0aNbhw4QKbNm3Czc2N3377DUVRePrpp3F0dOTTTz8FjFM6rFy5kpdeeolu3bqV6DoJCQlh1KhR7N69G19fX77++mtSUlJYtGiR6ZiJEyfy66+/0qdPH9P0DtnZ2Rw6dIgff/yRM2fOVOgUFGVVGbmKxwW9+OKL9OjRA51Ox+OPP37H+9na2vL2228zevRounTpwuDBg0lISGDRokU3jYHq06cPP/30E/369aN3794kJCSwcOFCwsLCShTHjo6OhIWF8cMPPxASEoKnpyeNGzemcePGpmkfCgsLqVGjBhs2bCAhIaHUbHv37uXq1as8+uijpT7X8ti8eTMvvvgiAwcOpH79+hQUFPDXX3/x008/0aJFixIXlpTn/S6sjFqX/wlhbkqbxuBubNq06baXS//zcm0vLy+ldevWdzzvrWYi//zzz5XIyEjF0dFRcXV1VZo0aaK89tprSlJSkumYwMBApXfv3jfdt7TZo3/66SdFo9GYLo8vlpOTo4waNUpxd3dXXF1dlUGDBimpqamlPqfc3Fzl1VdfVfz8/BR7e3ulZcuWyrp160p9/NJ+De3fv1/p37+/Ur16dcXe3l4JDAxUBg0aZJplev78+TdNTaAoipKYmKi4ubkpDz300E3Pff369UrTpk0Ve3t7pUGDBsqKFStuetzMzExl8uTJSnBwsGJnZ6d4eXkpbdu2VebMmaMUFBQoivL3dAE3zjxd7FbTGDg7O5f63Bs1anTT9tL+re411z//jYqKipQXXnhB8fb2VjQaTbmnNPjkk0+UunXrKvb29kqLFi2ULVu23PReMhgMyrvvvqsEBgYq9vb2SkREhLJ69epS38fbt29XIiMjFTs7uxJZz58/r/Tr10/x8PBQ3N3dlccee0xJSkoq9T03adIkpXbt2iWmv7hbcXFxyvDhw5WgoCDF0dFRcXBwUBo1aqRMnTpVycrKuun4sr7fhXXRKMp9HlkohDA5evQojRo1YvXq1fTu3VvtOIBxYHhYWBiDBg0qtXvQ0tSpU4fGjRuzevVqtaOISpKfn0+dOnV4/fXXeemll9SOI6oIGQMlhIo2bdpEmzZtzKZ4AuPYkxkzZrBgwYJSxyEJYW4WLVqEra0tzz//vNpRRBUiLVBCCKsmLVBlc6fL/XU6XbkmDhXC2skgciGEEHe83D8wMPCeF9oWwppIC5QQQgj27t1729nKHR0dadeu3X1MJIR5kwJKCCGEEKKcZBC5EEIIIUQ5yRioSmAwGEhKSsLV1fWul0wQQgghxP2lKAqZmZkEBATccQUJKaAqQVJSkkzfL4QQQlioc+fOlVhQvTRSQFUCV1dXwPgPcOPikkIIIYQwXxkZGdSqVcv0OX47UkBVguJuOzc3NymghBBCCAtTluE3MohcCCGEEKKcpIASQgghhCgnKaCEEEIIIcpJCighhBBCiHKSAkoIIYQQopykgBJCCCGEKCcpoIQQQgghykkKKCGEEEKIcpICSgghhBCinKSAEkIIIYQoJymghBBCCCHKSQooIYQQQohysqgCasuWLTz88MMEBASg0WhYtWpVif2KojBlyhT8/f1xdHSkW7dunDp1qsQxV69eZejQobi5ueHh4cGoUaPIysoqcczBgwfp0KEDDg4O1KpVi/fff7+yn5oQQgghLIhFFVDZ2dk0a9aMBQsWlLr//fff56OPPmLhwoXs3LkTZ2dnevToQV5enumYoUOHcuTIEaKjo1m9ejVbtmzhueeeM+3PyMige/fuBAYGsnfvXmbPns20adP4/PPPK/35CaG2pKQktm7dSlJSktpRhBDCrGkURVHUDnE3NBoNP//8M3379gWMrU8BAQG88sorvPrqqwCkp6fj6+vL4sWLefzxxzl27BhhYWHs3r2bFi1aALBu3Toeeughzp8/T0BAAJ9++ilvvPEGycnJ2NnZAfD666+zatUqjh8/XqZsGRkZuLu7k56ejpubW8U/eSEqydatW4mLiyM4OJj27durHUcIIe6r8nx+W1QL1O0kJCSQnJxMt27dTNvc3d2JiooiJiYGgJiYGDw8PEzFE0C3bt3QarXs3LnTdMwDDzxgKp4AevTowYkTJ7h27Vqpj52fn09GRkaJLyEsUVBQEMHBwQQFBakdRQghzJrVFFDJyckA+Pr6ltju6+tr2pecnIyPj0+J/TY2Nnh6epY4prRz3PgY/zRr1izc3d1NX7Vq1br3JyTEPVAUhSK9gYIiA3mFenIL9BTqDXe8X0BAAO3btycgIOA+pBRCCMtlo3YAazB58mQmTJhg+jkjI0OKKHFfZOUXse/sNWLPpXH+Wg4X0nK5cC2XpPQ8CopuLpiqOdni6+aAt6s9fm4ONPR3o2lNd8IC3HCyk18HQghRVlbzG9PPzw+AlJQU/P39TdtTUlIIDw83HZOamlrifkVFRVy9etV0fz8/P1JSUkocU/xz8TH/ZG9vj729fYU8DyFup0hvYNvpK2w6nsreM5dJvJiKs5KDqyYHF3LRo0OHIx6KE1k4koM9oDHd/1pOIddyCjmenFnivFoN1PdxpXWQJ10b+tI6qDp2NlbTQC2EsCaX4+DaGQhsA3bOqsWwmgKqbt26+Pn5sXHjRlPBlJGRwc6dOxkzZgwAbdq0IS0tjb179xIZGQnAH3/8gcFgICoqynTMG2+8QWFhIba2tgBER0cTGhpKtWrV7v8TE1WeoigcOXKQo3u3kH4mltpFZxipOccUTSpa+9tfA6Lo7DB4BqN4hVLgGcI15yDOOzYkUe/JhbRcDl/I4NCFNFIy8jmRksmJlEyWxJzFxd6GjiHedG/kS49GfjjY6u7TsxVCiDs48D38NReaDYF+C1WLYVEFVFZWFnFxcaafExISiI2NxdPTk9q1azN+/Hjefvtt6tevT926dXnrrbcICAgwXanXsGFDevbsybPPPsvChQspLCxk3LhxPP7446YxH0888QTTp09n1KhRTJo0icOHDzN//nw++OADNZ6yqKr0RRSeieH0th9xOhNNY8MFGhfv+2cto7MDezewdwVFD3kZkJ8Jih6NvgDdpaNw6Sg2gBNQA4jyrAf1OkOrzlC3AykF9uxPTOPPk6n8fiyVS5n5rDl0kTWHLuLhZEv/iJo8EVWLYB/X+/kqCCHEzRK2GL/X6aBqDIuaxmDz5s107tz5pu0jRoxg8eLFKIrC1KlT+fzzz0lLS6N9+/Z88sknhISEmI69evUq48aN47fffkOr1TJgwAA++ugjXFxcTMccPHiQsWPHsnv3bry8vHjhhReYNGlSmXPKNAbirl06QVHMZxQd+hGHwnTT5kJFx0XHYGwCmuAb3BydX2PwCgEnT7AppftYUaAwB7JS4fJJuHQcLp2AlCOQfMhYaBXT2kD97tDscQjpiUFrx8EL6UQfTWbV/iQupOWaDm1Vx5PRHYPo0sAHjUZz8+MKIURlysuA/9Qx/g4bfxg8Kna8cXk+vy2qgLIUUkCJcjEY4NQGlJ2foYn/w7T5muJCjLY59mG9ieo+CBd3z4p5vLx0SPgL4jdB/Ga48nerLg4e0HgANB8OAeHoDQpbTl1i6c5ENh5PRW8w/rpoFODGC13q0z3MF61WCikhxH1yYh0sHQyeQfDi/go/vRRQKpMCSpSJosCxX+H36XD1NAAGRcPvhuasdXqYVp0fpX9kYOWPP0o9DgeWwsHlkHnDDOR1O0K7l6BeF9BoSE7PY/H2M3wTc4acAmMLVgM/VyY8GMKDYb7SIiWEqHzr/g07FkDkSHh4foWfXgoolUkBJe7owl5Y/wYkGid5TVecWKbvzM+6Xgx6sD3D2gRiq7vPV8EZ9MaxBfu/hSM//93N59cE2o2HRv1Aq+NqdgFfb01g8fYzZOUXAdChvhdv9QkjxFfGSAkhKtGn7SHlEAz82thaXsGkgFKZFFDiljKSIHoqHFoOQB52fFbUh8+K+tAzoh6vP9QAH1cHlUMCaYkQ8wnsW2IcSwXg2xgenAHBXQFIzylk4ZbTfPVXAgV6AzqthmGtAxnfrT4eTna3ObkQQtyF7Csw+/oqCa+eAhef2x9/F6SAUpkUUKJUh36ENROMY5CAlfoOzC4chJNXbWb1b0JUUHWVA5Yi5yrs/hJiPjblpl4XeHAm+BmvC0y8ksM7a4+y/ohxvjRPZztmPtqY3k39b3VWIYQovyOrYMUI8AmDf8VUykNIAaUyKaCqlqSkJOLj4wkKCip9CZTcNFg70dTqFGcbwvis4RxWghgYWZPpjzTC2d7MZxTJuQpb5sCuz8FQCGig+TBji5SjcX60bXGXmf7bEU6mZAHQq7EfMx5tjLerTDIrhKgAqyfAnq8g6nno9Z9KeYgquZiwEGqJj48nLi6O+Pj4m3cm/AWftoNDy1E0Oj7XPEbPzDc5YxfC/MfDmfNYM/MvnsA4XULPd2HcLuNYKBTY9w183AoO/wSKQrtgL1a/0IGXutbHRqvh/w4n0/2DP/kl9gLyd5oQ4p4Vz/9U9wF1c1wnLVCVQFqgqpZSW6AUBWIWwIY3AYVs59qMTH+W3UX1aBTgxoInmlPHS70lCO7Z2e3w20vGOaYAQnpC77ngXhOAI0npvLriIMcuZgDQNzyAt/s1wcUSikUhhPnJSIJ5DUGjhdcSwNGjch5GuvDUJQVUFacvhDWvGAdgA8f8HmHAmb7k4MCDYb7MfzzcOhbuLcqHv+YZl1QwFIKdC/R8DyKeBI2GQr2BBZvi+O8fcegNCkFezvz3iQgaBbirnVwIYWkOLIOfR0NABDy3udIeRrrwhFBLzlX4tj/sW4Ki0fJbwIv0OjOYHBx4ul1dFj4ZaR3FExhnQO88GZ7fCrWioCALfh1nHOSZew1bnZbx3UJY9lxr/N0diL+cTb9PtvO/HWelS08IUT5m1n0HUkAJUXGunIYvu0HCFhQ7Fz71f5sX4luj1WiY9nAYUx4OQ/ePWbuTkpLYunUrSUlJtzipBfBpAE/9H3SbZlwW5ugvxnFfZ7YC0LKOJ2tf7EDXBj4UFBl4a9VhXlwWS26B/vbnFUIIMA6JkAJKCCuVehy+7glXT6O41+Rd//m8H18HW52GT5+MZGS7uqXe7bYD0C2JVgftX4ZRG8CzHmRcgMV94I+3waCnmrMdX45owZu9G2Kj1fDbgSQe+2w7STessyeEEKW6lgDp54x/oNVuo3YaEymghLhXqcdgSR/ITkXxbcxkz/l8ccLRWDwNjaRHI79b3jUoKIjg4GCCgoLuY+BKVCMSRm8xjoNCgS2z4bvHIOcqGo2GZzoE8e0zUXg623H4QgaPfLyNvWevqp1aCGHOilufarYEO/O5+EYKKCHuRcpRY0tL9iUUv6ZMcn6bZcfysdVpWPhkJN3CfG9794CAANq3b1/6/FGWyt4FHl0AA74CG0c4vRE+7wQXDwLQOqg6v4xtRwM/Vy5n5fP45ztYvvucupmFEObL1H3XUd0c/yAFlBB3K/mwseUp5zKKfzPedHuH5UdzsNNpWfhkJF0b3r54upFVjIX6pyYD4ZnfoVodSDsLX3U3LlgM1PJ0YuWYtvRq7EehXuG1lQeZF31SBpcLIUoy0/FPIAWUEHfn0glY8jDkXAH/cD6qMYfvDmZio9Xw6ZPNy1U8gRWNhfonv8bw7CYI7gZFufDTsxA9BQwGnO1tWPBEc17oEgzARxtPMWnlQQr1BpVDCyHMRupRyL5kbM2u2ULtNCVIASVEeWWlwncDIfcqBETwQ9jHfLD1EgCz+jcpd/EEVjgW6kZOnvDEcujwqvHnbfPhx5FQmItWq+GV7qG8268JWg0s33OeZ7/ZQ3Z+kaqRhRBmIm6j8Xud9sapU8yIFFBClEdBNnw/CNISoVpd/mzxKZPXJgLwcrcQHmtR665Oa5VjoW6k1UHXt6Df56C1NU51sORhyDIWnk9E1ebzYS1wsNWy+cQlhnyxgytZ+SqHFkKo7vQfxu/1uqiboxRSQAlRVvoi+PFpSNoPjp4c7bqI0T+fwaDA4Ba1eLFrsNoJzV+zwTB8FTh4wPnd8GVXuGRcDqZbmC9Ln22Np7MdB8+nM/jzHaRk5KkaVwihosJc47JRIAWUEBZLUWDdJDi5DmwcuPLINwxfdYW8QgMdQ7x5u19jNBrNnc8jjE3xJQaXPwjndpOUlER24hE+6V8Pf3cH4lKzeGxhDOeu5qidWAihhrPbQZ8PrgHgHap2mptIASVEWcQsgN1fAhoKH/2MZzdpuZyVTwM/VxYMbY6tTv4rlYtXfXhmo3Fel7w0+OZRru5eSVxcHEXXklg+ug21PZ1IvJrDoM9iOH0pS+3EQoj77cbuOzP8A1V+6wtxJwl/QfRbxtvd32ZmfDD7EtNwc7Dhs2GRuNhbydp295uzFwz/xfjLsTCbRgemE+WaTFBQELU8nVjxfBuCfVy4mJ7H4M9iOJ6coXZiIcT9dHqT8Xuw+XXfgRRQQtxeZrJx3JNigGZD+Mn+Ub6JOQvAh4+HE1jdfGbFtUh2zjBkGYT1RWMopOHh/xBwcQMAvm4O/PBca+p7OXI5q4DHP4vhZEqmyoGFEPdFZjKkHgE0ULeTymFKJwWUELdSPGg8OxV8GnE0chqTfz4MwItd69OlQfmnKxClsLGHgV9D5EhjofrbS7D9YwCqu9jzanNb/O0LScst4okvdhCXKkWUEFavuPUpIBycq6sa5VakgBLiVv6YAWe3gZ0rmY9+xfPLjpFfZKBTqDfju9ZXO5110eqgz4fGBYkBNrxhnC8KaNKgHlM7eppaooZ8sZN4GRMlhFXZe/wMi37bzLnzF4wbzHj6gmJSQAlRmuNrTB/gPPoxb/6VR+LVHGpWc+TDweFoteY3oNHiaTTQdSp0fN34c/QU+GseAQEB9OzyAD+MaU8DP1cuZeYz5IsdnLmcrW5eIUSF+W57HNO3ZfP6z0fAYJACSgiLdO0s/DzGeLv1v/ilsCW/xCah02r4aEgEHk526uazZhoNdJ4Mnd8w/rxxOvw5GwBPZzu+eyaKEF8XUjLyeeKLHSSl5d7yVFa5vqAQVupkhvFinPahfpByCHIug50L1GylcrJbkwJKiBsZDLDqX5CfDjVbcaHlZN5cZRz39EKXYJrXrqZywCqi42vQdYrx9qa3YfN/AOOYqO+eaU2QtzNJ6Xk8+dVODsedLbVQstr1BYWwMuk5hRxNMbYoP9Kq/t+tT3U6gI35/sEqBZQQN9q5EM5uBVtn9P0+Z8KPR8jMKyK8lgfjOstM4/dVh1eg23Tj7c3vwtYPAPB2tefbUVHU8HAk/lI2Y5cf5fCJ0zcVSla9vqAQVmRr3GUMCgT7uFDDw9Eiuu9ACigh/nbppLHLCKDH23x52MDOhKs42en4cHA4NjJZ5v3XfvzfRdTv02DnZwAEeDjyv1Gt8HKx42yGgZ+v+BJQq06Ju1r9+oJCWIktJ41rYnYM8TauN5q4w7hDCighLIC+CH4eDUV5UK8rR/z7M2fDCQCmPhxGHS+Z70k17cdDx0nG2//3Guz7BoAgbxeWPN0KV3sbTlzVM/OPJAr1BvVyCiHKTVEU/rxeQD0Q4n19+ZYCcK8N1eupnO72pIASAozdQ0n7wMGdwj4fMfHHQxTqFbqH+TKoRS2104lOk6HtC8bbv74IB1cA0CjAna+faomDrZZNJy7x+spDKIqiYlAhRHmcSs0iOSMPexstUXU9IW6jcUe9zma5fMuNpIAS4uIB+PM94+2H5vDVwXyOXszAw8mWd/s3kUWCzYFGAw/OhJbPAIqxtfDYagBa1vHkk6HN0Wk1rNx3nnnRJ9XNKoQos+Luu6ig6jjY6uCUcSUCgrupmKpspIASVZu+CFaNBUMRNHyYM/4P8cH1D+A3HmqIl4u9ygGFiUYDvWZD+FBQ9MZZ4hP+AqBLA1/e7dcYgP/+Ecd3O8+qmVQIUUam7rv6XnDlNFw9DVpbYwuUmZMCSlRtuz4zzjni4IHSex7/XnWY/CID7YKrMzCyptrpxD9ptfDwR9CgD+jzYekQYwsiMLhlbV66PkP8W6sOE300Rc2kQog7yC3QszPhKnB9APnJ9cYdgW3B3lXFZGUjBZSoutIvwKZ3jbcfnM6K4/lsP30FB1st7/aTrjuzpbOBAV9BYHsoyIRvBxj/cgXGd6vP4Ba1MCjwwtJ97E+8pnJYIcSt7Ei4QkGRgQB3B4J9XP7uvqvfXd1gZSQFlKi61k+Ggiyo2YpL9QfzzppjAIzvFkJgdbnqzqzZOsCQ78GvCWRfgv/1g8xkNBoN7/RrTOdQb/IKDTz7zR7OXc1RO60QohTF459C3PQkJ8YZ1x4FCOmhYqqykwJKVE2nfoejv4BGB33mMWPNcdJzC2kU4MYz7euqnU6UhYM7PPkTVKsLaWeNLVF56djotHz8RHPC/N24nFXAqCW7ycgrVDutEOIfigsob/1lru1dZZy+oFodqG4ZkxZLASWqnsJcWPuK8XbU88RkB/DbgSS0Gnivf1OZMNOSuPjAsJ/BxRdSDsPy4VBUgLO9DV+NbIGvmz0nU7IY+90+imSOKCHMxvlrOZy+lI1OA92a1CKwwDjvHvV7mP30BcXkk0JUPVs/gGtnwNWfogcmMf23IwAMaVWbJjXd1c0mys+zLjyxHGydIX4z/PYiKAr+7o58NaIljrY6/jp1mam/HpE5ooQwE1tOXgYgvHY1enRqj/OF6913FjL+CaSAElXNldOmNdXoOYulB9M4npyJm4MNr3QPVTebuHsB4TDoG2OX7IGlposDGtdwZ/7j4Wg08N3ORL7edkbVmEIIoxLLt6QchswksHGEOu1VTlZ2UkCJquX3qcZ+9npdSKvzEHOvL9fySvdQPJ3Nd9VvUQb1u8HDHxpvb3kf9i4BoHsjP954qCEA76w5yuYTqSoFFEIAFBQZ2BpnbIF64MbpC4I6Gi8QsRBSQImq42wMHPsNNFro8S4f/H6KtJxCQn1dGRpVW+10oiI0Hw4PvGa8vfpl48UCwKj2dW+Y3mA/py9lqRhSiKpt95mrZOUX4eViR9Ma7nAq2rjDgrrvQAooUVUoCmx403g7YhjHDTX43w7jbNVTHw6TgePWpPO/odkQ42zlK0ZCylE0Gg0z+zamZZ1qZOYV8eySPaTnyJV5Qqjhj+PGVuBOoT5o867B+V3GHVJACWGGjvwMF/aArTNKp8lM//UoBgV6NvKjbbCX2ulERdJojLOVF0+0+f1gyErFzkbLp09GUsPDkfjL2YxbKlfmCaGG4gKqawMfOP0HKAbwCQMPy1q4XQooYf2K8uH3acbb7V7i9/NaYuKvYG+j5Y3eDVWNJiqJjR0M/h941oP0ROOSL4W5eLnY8/nwSNOVee+uPa52UiGqlPhLWSRczsZWp6F9fa+/xz9ZWOsTSAElqoJdXxgnWnTxQ996LLPXGz80n2pXl1qeTiqHE5XGyROGrgAHD2Pr46p/gcFAowB35g1qBsDX2xJYufe8ujmFqEKKW5+i6lbH1U4LccZxilJACWEGkpKS2Lp1K0lJSZBzFbbMNu7o8iY/Hb7GyZQs3B1tGdOpnrpBReWrXg8Gf2tc3f3IT7B5FgC9mvibFh7+98+HOHQ+Xc2UQlQZxQVUlwY+cG4X5F41ripQK0rlZOUnBZSwOvHx8cTFxREfHw9/zYW8NPBpRF6jwXwQfRKAf3Wqh7ujrbpBxf1Rt0PJ6Q0O/QjAS13r07WBD/lFBp7/di9XsvLVyyhEFZCRV8iuhKsAdG3oA8dXG3fU72FcJNzCSAElrE5QUBDBwcEE+zobu+8AHpzBt7vOk5Seh7+7AyPa1lE1o7jPIp6Eti8ab/8yFi7sQ6vV8MHj4QR5OXMhLZdx3++XQeVCVKK/Tl6myKBQz9uZQE8nOL7GuKNBb3WD3SUpoITVCQgIoH379vid+h70+VC7DRk1H+DjTXEAjO9WHwdbncopRWUr0ZUL0G2acZxFUR4sGwqZybg52PLZsEic7XTExF9h1v/JoHIhKsvG4ynA9e67S8fhWgLo7CC4q8rJ7o4UUMI6pV+AvYuNtztN5vMtCaTlFFLP25kBzWuqGk3cHyW6cgG0OhjwJXiFGpeNWDYUCvOo7+vK3OuDyr/amsAvsRdUTC2EddIbFDafMC7f0qWB79+tT0GdwN5VvWD3QAooYZ22zjMu2RLYjtTqrfhqawIAE3s0kEkzq4jirtygoKC/Nzq4w5Clf1+Z99tLoCj0bOzP2M7GiwpeX3mIE8mZ6oQWwkodOJ/G1ewCXB1saFGnmsV334EUUMIapZ2Dfd8Yb3f+N5/8GU9uoZ6I2h70aOSrbjZx3xR35QYEBJTcUb0eDFpiXHj44DLY/l8AJjwYSof6XuQW6hnz7V4y82SmciEqyh/HjFffdQzxxjY7GZL2ARoI6aVusHsgBZSwPn/NNbY+1elAimcLvt+VCMCr3UPRaDQqhxNmIagT9DROacDvU+H0H+i0GuY/HkGAuwPxl7OZuOIgiqKoGlMIa7GxePbxhj5wYq1xY82W4Gq5f9RKASWsS1oi7P/WeLvzv1n452kKigy0CKxG23rV1c0mzEur5yD8SeMyEiuegqsJeDrbsWBoc2x1GtYdSebzLfFqpxTC4iWl5XLsYgZaDXQM8bmh++4hdYPdIymghHXZMgcMhVC3I6mezfl+p7H16cWu9aX1SZSk0UDvuVAj0jhX2LKhUJBNRO1qTHm4EQD/WXecmNNX1M0phIWLPmq8+i4ysBqeulxI+Mu4o0EfFVPdOymghPW4dhZivwPgQPU+zFt7kPwiAxG1PehQXxYMFqWwdTDOVO7sA6lHjHNEKQpPRtWmf0QNDAq8sHQ/qZl5aicVwmKtP5IMQI9GfnAq2vhHbvX64FVf5WT3xqoKqGnTpqHRaEp8NWjQwLQ/Ly+PsWPHUr16dVxcXBgwYAApKSklzpGYmEjv3r1xcnLCx8eHiRMnUlRUdL+firgb2/8LhiKueYbzV7I9Px0wXjL7krQ+idtxCzAuPKy1hSM/w9YP0Gg0vNOvCaG+rlzOyufFpTLJphB341p2ATuvzz7ePczv7/FPFnz1XTGrKqAAGjVqxMWLF01fW7duNe17+eWX+e2331ixYgV//vknSUlJ9O/f37Rfr9fTu3dvCgoK2L59O0uWLGHx4sVMmTJFjaciyiP7smnsk77NSxwzBFBggGY13ekY4q1yOGH2areGh9433t44A+I24min45Mnm+Nsp2NH/FU+/P2UuhmFsEAbj6eiNyg08HOltruNsQUKpIAyRzY2Nvj5+Zm+vLyMXTfp6el89dVXzJs3jy5duhAZGcmiRYvYvn07O3bsAGDDhg0cPXqUb7/9lvDwcHr16sXMmTNZsGABBQUFaj4tcSe7voCiXAiIQNPgIf44pwfgpW7S+iTKqMXT0Hw4oMDKUXDtLPW8XZg1oCkAH2+KY9OJVHUzCmFhNtzYfXfmL8jPMHaZ12ihcrJ7Z3UF1KlTpwgICCAoKIihQ4eSmGgcRLx3714KCwvp1q2b6dgGDRpQu3ZtYmJiAIiJiaFJkyb4+v59WWWPHj3IyMjgyJEjt3zM/Px8MjIySnyJ+6ggG3Z9brzd7iW+2HqG3EI9TWq40znUR91swrL0mg0BEZB7DZYPg8JcHmkWwLDWgQBM+CGWpLRclUMKYRlyC/RsOWUcStG9ke/fiweH9gKt5Zcflv8MbhAVFcXixYtZt24dn376KQkJCXTo0IHMzEySk5Oxs7PDw8OjxH18fX1JTjZWyMnJySWKp+L9xftuZdasWbi7u5u+atWqVbFPTNze/m8h9ypUq0tG3V58u+MsIFfeibtg6wCD/gdO1eHiAVjzCigKb/ZpSJMa7lzLKWTc9/solPFQQtzRnycvkVdooGY1R8J8neHYb8YdDR9RN1gFsaoCqlevXjz22GM0bdqUHj16sHbtWtLS0li+fHmlPu7kyZNJT083fZ07d65SH0/cQF8E2z823m77At/vvkBWfhH1fVzo2kBan8Rd8KgFAxeBRmu8qnPP19jb6FjwRHNcHWzYl5jGnPUn1E4phNnbcPTv7jtN4nbIvmRcRimoo7rBKohVFVD/5OHhQUhICHFxcfj5+VFQUEBaWlqJY1JSUvDz8wPAz8/vpqvyin8uPqY09vb2uLm5lfgS98nRVZCeCE5e5DcezNfX17x77oEgtFppfRJ3KagjdJ1qvP1/k+DcbmpXd2L2QOOiw59tieeP4ym3OYEQVVuh3sDG68u3dA/zhSOrjDsa9AGdrXrBKpBVF1BZWVmcPn0af39/IiMjsbW1ZePGjab9J06cIDExkTZt2gDQpk0bDh06RGrq3wNFo6OjcXNzIyws7L7nF3egKLDtQ+PtqOf55cg1UjPz8XWz59HwGqpGE1ag3UsQ9qhxzpoVIyD7Mj0b+zGybR0AJiw/IOOhhLiFXQlXSc8tpLqzHS1qu//dfdeor6q5KpJVFVCvvvoqf/75J2fOnGH79u3069cPnU7HkCFDcHd3Z9SoUUyYMIFNmzaxd+9ennrqKdq0aUPr1q0B6N69O2FhYQwbNowDBw6wfv163nzzTcaOHYu9vb3Kz07c5PQfkHwIbJ0xtBhlWnbj6XZ1sbOxqre2UINGA48uME74l3EBfnwaDHomP9SAJjXcScsp5MWl+2U8lBClKL76rltDX3Tnd0B2Kji4Q13r6L4DKyugzp8/z5AhQwgNDWXQoEFUr16dHTt24O1tnAfogw8+oE+fPgwYMIAHHngAPz8/fvrpJ9P9dTodq1evRqfT0aZNG5588kmGDx/OjBkz1HpK4na2f2T8HjmCP84WEpeahau9DUOiaqubS1gPe1fjTOW2zpDwJ2x6F3sbHR8/EYGrvQ17zl5jXvRJtVMKYVYURWHD9eVbujf6R/edjZ16wSqYRpHlxitcRkYG7u7upKeny3ioypJ6HD6JMg70fekAg5ZdYNeZq4x+IIjJDzVUO52wNod+NM4NBTDkBwjtyZqDFxn7/T4AFj/Vkk4yZYYQABw4l8ajC7bhZKdj3xtdcPhvY8hKgSdWQEh3tePdVnk+v62qBUpUIcXzPoU+xN50V3aduYqtTsNT7eqqm0tYpyYDodVo4+2fn4OrCfRu6s+TrY2tna8sP0BqhqyXJwTAuuvdd51CvXG4uNtYPDm4Q1AndYNVMCmghOXJS4cDy4y3o0bz+ZbTAPQNr4Gfu4OKwYRV6/421GxpfP9dn2Tzzd5hNPBz5Up2AeN/iEVvkAZ9UbUpisKagxcBeKiJv/FKabC67juQAkpYov3fQWE2+IRxxqW5qa/9uQeCVA4mrJqNHTy2BJy8jBcv/N8kHGx1fPxEcxxtdWw/fYWFf55WO6UQqjp8IYPEqzk42GrpEuoFR3817gjrq2quyiAFlLAsBgPs/sJ4u9WzfLMjEUWBjiHe1Pd1VTebsH7uNWDAl4AG9i2B2O8J9nFhxqONAJgXfZI9Z66qm1EIFa0+mARA1wa+OCXvgaxkq+y+AymghKWJ+x2uxoO9O9mhA1ixxzjr+8h2ddTNJaqOep2h02Tj7dUTIOUIAyNr0jc8AL1B4aVlsaTlyOLjoupRFIXV17vv+jT1//vqu9DeVtd9B1JACUuz6zPj94gn+enwNTLzi6jr5UzH+t7q5hJVywMToV4XKMqF5cPRFGTxdr8m1KnuxIW0XCatPIhc4CyqmgPn07mQlouTnY5OIV5w7Hr3nRVNnnkjKaCE5bgcZ2yBQoOhxTMs3n4GgBFtAmXZFnF/abXQ/wtwqwFX4uDXF3CxM46HstVpWH8khe92JqqdUoj7ak1x911DXxwv7oTMi2Bvnd13IAWUsCTFY5/qd2frVVdOX8rG2U7HgMia6uYSVZOzFzy2GLQ2cORn2PUFjWu4M6lnAwBmrj7KieRMdTMKcZ8YDH9ffde7iT8c/MG4I+wRsLHOlTykgBKWIT8TYr833o56jiXXW58ea1ELVwfrWJhSWKBareDB6ysVrP83XNjL0+3q0inUm/wiAy8s3UdugV7djELcB/vPpZGUnoeznY5O9dzg6C/GHU0HqRusEkkBJSzDoRWQnwHVgznjHsUfJ4wLPg9vE6hyMFHltf6XcY4bQyEsH4k2P405jzXD29WekylZzFxzVO2EQlS64tanB8N8cTiz0ThfmlsNCGyvcrLKIwWUsAx7lxi/Rz7FNzvOoSjGWW6DvF3UzSVE8aLD1epAeiL8PAYvZzs+GBSORgPf70zk/w5dVDulEJXGYFBYe/093rtpwN/dd40HGMcLWinrfWbCelw8ABdjQWtLdsPHTFMXjGhbR9VYQpg4ehgn2dTZwcn/g+3/pX19L57vWA+ASSsPciEtV92MQlSSvYnXSM7Iw9Xehg61bOHkeuMOK+6+AymghCXY943xe8M+/HQiT6YuEOYpIBx6zjLe/n0aJO5gwoMhhNfyICOviPHL9lOkN6iZUIhKUaL77tRq0BeAd0PwbaxyssolBZQwbwU5cHAFAErzEXx//dLwJ1vL1AXCDLUYZey2UPSw4ils867y0eMRuNjbsPvMNT7eFKd2QiEqVJHeYJo8s3dTfzi43Lij6WPG7m0rJgWUMG9Hf4H8dPAI5IBtM45dzMDORsuA5jXUTibEzTQaeHg+VK8PmUnw82hqV3Pg7b7Gv8Q/2niK3bLUi7AiW+Muczkrn2pOtjzgVwBnthp3NHlM3WD3gRRQwrztuz54vPkwvt9lHPvUu4k/Hk7WtyyAsBL2rsb5oWwcjBO/bvuAvhE16B9RA4MCLy3dT3pOodophagQq/ZfAODhZgHYHv0JUKB2W/CorW6w+0AKKGG+Lp2ExBjQ6MhsOJjfDhibiZ+Isv7/mMLC+TWGh2Ybb//xNpzZxoy+jalT3Ymk9Dwm/yxLvQjLl51fxPojKQD0i6hhGm5BU+tvfQIpoIQ5K259CunBqjgDuYV66vu40CKwmrq5hCiLiGHQ9HFQDPDj07gUXmP+4xHYaDWsPZTMD7vPqZ1QiHuy/kgyuYV66lR3Itw+CVIOgdYWwvqqHe2+kAJKmKeiAjiwFAAlYphpXbEhrWqjsfKBicJKaDTQZx54hUJWMvz0LM1quPJqj1AApv92lLjULJVDCnH3fr7efdc3ogaaQ9dbn+o/CE6eKqa6f6SAEubpxBrIuQKu/sQ6tOR4cib2NloGNJd174QFsXOGQUvA1gniN8Ffc3muQxDtgquTW6jnxaX7yS+SpV6E5UnNyGNb3GUA+jXzhQPLjDuaDlYx1f0lBZQwT8VzP0U8yfe7jSt8927qj7uTrHsnLIxPQ+g913h78yy0Z/9i3qBwqjnZcvRiBu+vO6FuPiHuwq8HkjAo0Ly2B4HXdkLmRXD0hNBeake7b6SAEuYnIwlObzLebDiY3w4aC6gnWsngcWGhwp+A8CeN46FWPoOvNoPZA5sB8NXWBDZfX9tRCEtR3H3Xr3lN2P8/48amg8HGXsVU95cUUML8HFpB8aWwq87YkldoIMTXhUgZPC4s2UOzjbMzZ6XAylF0a+DFiOuLYb+64gCXMvNVDihE2ZxMyeRIUgY2Wg0P17OFE/9n3BHxpLrB7jMpoIR5UZS/+9KbDWbZ9bmfZPC4sHh2TtfHQzlDwhbYMpvJDzUk1NeVy1kFvLriAAaDTG0gzF9x61OnUB884laBoRACIozTd1QhUkAJ85J8CFKPgs6eY55dOHoxAzud1jjHiBCWzjsU+nxgvL35PRzO/cV/n4jA3kbLnycv8fW2BHXzCXEHBoPCL9cLqP4RAX9331Wx1ieQAkqYm+LWp9BeLD+cCRgXqJSZx4XVaDbYOEcUCqx8hhCnbN7sEwbAf9Yd5/CFdHXzCXEb209fISk9D1cHG7q6XzD+wWvjAI0Hqh3tvpMCSpgPfdH18U9Q2HgQv8QaB48PjJSpC4SVeWg2+DSC7Euw8hmebBlA9zBfCvUKLy7bT05BkdoJhSjVD3uMwyoeDQ/A/tD3xo0NHwZHD/VCqUQKKGE+4jdBdio4VeePoqZczS7Ax9WeDvW91E4mRMWydTSOh7JzgTN/ofnzP/xnQFP83ByIv5TNjN+Oqp1QiJtcyy5g/eFkAIZEeMOhH407qmD3HUgBJcxJcfdd44Gs2H99faXmNbDRydtUWCGv+vDwfOPtLXOodvEv5g1uhkYDy3afY+2hi+rmE+IfVsVeoEBvIMzfjUbpWyA/A9xrQ50H1I6mCvlkEuYhLwOOrwbgWv3+bLo+L85j0n0nrFmTgdDiaUCBn56lrXcB/+pUD4BJKw9y/lqOuvmEuE5RFNP6jYNb1rph8PhQ0FbNUqJqPmthfo79CkV54BXCyove6A0K4bU8CPZxVTuZEJWrxyzwa2pcuujHUYzvEkR4LQ8y84oYvyyWIr1B7YRCcOhCOseTM7Gz0dI/sMA4FQca4ySxVZQUUMI8XO++U5oOZsVe4yWyMnhcVAm2DvDYYrBzhcTt2G5+h48ej8DF3oY9Z6/x3z/i1E4oBMuutz71auyH65HrS23V6wIeVXeFCCmghPrSEuHMXwCc8HmIEynGv3IebhagcjAh7pPq9eDRj423t31I7ctbeKefcVLC//5xil0JV1UMJ6q63AI9v12/KnpIuDfs/9a4o9WzKqZSnxRQQn2HVxq/B7Zn6Qljd0VzHx3Z1y6pGEqI+6xRX4h63nj759E8WkfPwMiaGBQYv2w/aTkFqsYTVdfaQxfJzC+itqcTrXK3QO41cK8F9burHU1VUkAJ9R3+CYCisP78csD4V06w9hLx8fFqphLi/ntwJtSIhLw0WDGS6b3rU9fLmaT0PF5feQhFkaVexP1XPHh8UIuaaPd8ZdzY4inQ6lRMpT4poIS6rpyG5IOg0fFrVkPScgqp5qile7PaBAUFqZ1OiPvLxs44HsrBAy7sxfnP6Xz0eAS2Og3rjiTz3c5EtROKKib+Uha7zlxFq4HHa16FC3tAawsRw9WOpjopoIS6rrc+EdSRZYezAGjtb8MDHToQECBjoEQV5FEb+n1mvL1zIU3S/+C1Hg0AmLn6KCeSM1UMJ6qapbuMRXvHEG+8jl2fuqBRX3DxVi+UmZACSqjriLGAyg15lNhU4/IVg1rVVTOREOoL7Qntxhtv//ICoxrq6RTqTX6RgXHf7yO3QK9qPFE15BboWb7nPABPRXr8PfN4y2fUC2VGpIAS6kk9blyIUmvLen0LCvQK9byd6dSsntrJhFBfl7egdlsoyES7YgRz+tbH29WeU6lZzFgtS72IyvfrgQuk5xZSy9OR9lnRUJQLvo2hVpTa0cyCFFBCPddbn6jXhZXHsgF4NLwGGo1GxVBCmAmdDTy2CJx9IPUIXpv/zYeDjEu9LN2VyJqDstSLqDyKovBNzFkAhkXV+nvweMtRIL+jASmghFoUxTT+KSP4YbbFXQaMK3wLIa5z9YOBX4FGCwe+p13m/5mWenn9p4OcuypLvYjKsS8xjSNJGdjbaHnC+wxcPW2c7LXJILWjmQ0poIQ6Ug7DlVOgs2dVbjgGBSJqexBY3VntZEKYl7oPQJc3jbfXvMr4Rnk0r21c6uWFpfspvGGpl6SkJLZu3UpSUpJKYYW1+F/MGQAeaRaAy4GvjRvDh4C9i3qhzIwUUEIdxVff1X+QHw+nA9A3vIaKgYQwY+1ehpCeoM/HduUI/ts/CDcHG2LPpTFn/QnTYfHx8cTFxckcauKeXMrMZ80hYxfxM2EGOPF/xh2tnlMxlfmRAkrcf4piGv+UUvshDp5PR6fV0Lupv8rBhDBTWi30/dQ4xcG1M9TYNIH3BzQB4LMt8Ww6kQpAUFAQwcHBMoeauCc/7E6kUK8QUduD0IRvAAVCeoFXfbWjmRUpoMT9l7Qfrp0BG0eWZzQCoH2wF14u9urmEsKcOXnCoG9AZwcn1tIzbSkj2gQC8MryAySn5xEQEED79u1lDjVx14r0BtOErc80d4PY74072o5TMZV5kgJK3H/XW5+UkB6sPHQNgL4R8gtfiDsKiICHZhtv//E2bzRMpVGAG1ezC3hp2X70BlnqRdyb34+lcjE9j+rOdvTIXQNFeeAfDoHt1I5mdqSAEveXosCRXwA449eDM1dycLTV0T3MT+VgQliI5iMg/ElQDNiteoZPH/bF2U7HzoSrzN94Su10wsIt3p4AwNAWPtjs+dK4se0LMnVBKaSAEvfXxQOQngg2jvxwzbg8RdeGPjjb26gcTAgLodFA7zng1xRyrlD79zG892goAP/945RpShAhyuvg+TR2xF/FRqvhabc9kH0J3GpC2KNqRzNLUkCJ++v4agCU4K78etTYfdenqXTfCVEuto4w+H/XFx3ew8MX/8vjLWuhKPDSsv2kZuSpnVBYoC/+MrY+PdLUH4/Yz40bWz8POlsVU5kvKaDE/XXMWECd9elKUnoeznY6OoXKopRClFu1OtD/C0ADe75iRp2DNPBz5XJWAS/KeChRTueu5rD2+tQF4+skwqXjxokzmw9XOZn5kgJK3D+X4+DSMdDasCIjDIBuYb442OpUDiaEhQrpDh0nAWC3dgJfdLfF2U7HjvirzP/9pMrhhCX5elsCeoNCh/pe1D5xfdmWyBHg4K5uMDMmBZS4f47/BoBSpwM/XV/7rncTmftJiHvScZJpks1a659lTu+aAPx3Uxx/nbqkcjhhCdJzCvlh9zkAJjTKgYQ/QaODqOdVTmbepIAS98/17rtE365cTM/Dxd6GB0Kk+06Ie6LVQr/PwDMI0s/R6/i/GdoyAEWB8ctiSU6X8VDi9r7deZacAj0N/FwJT7g+9qnJQPCopW4wMycFlLg/MpLgwh5Aw8rsZgB0a+gj3XdCVARHDxj8Hdg6QcKfTHf5iYb+blzJLuCFpftKrJcnxI3yi/Qs3n4GgFebFaI5sRbQQIdXVc1lCaSAEvfH8TUAKDVbsvx4IQC95eo7ISqObxg8ugAAm5iPWBJ1AVd7G3afucb7646rHE6Yq1/2J3EpMx8/Nwc6p35j3NioH3iHqBvMAkgBJe6PY8bxT+f9upKckYervQ0d6nupHEoIK9O4v3HSQ8Bn48t8+qBxeaQv/kpg3eGLaiYTZshgUPjiL+PC0xMiDOiOGSc55gFpfSoLKaBE5cu5Cme2AvBTbgQAD8rVd0JUjq7TIKgzFObQfs8LvNi6GgATVxwk4XK2utmEWVl/JJlTqVm42tvQL3MpoECDPuDbSO1oFkEKqFtYsGABderUwcHBgaioKHbt2qV2JMt1ch0oehSfML4/ZSyaejeVq++EqBQ6Gxj4tXGeqLRExqfNIirQjcz8IsZ8u5e8Qr3aCYUZMBgU09I/LzfXYnvsZ+OOByaqmMqySAFVih9++IEJEyYwdepU9u3bR7NmzejRowepqalqR7NM16++S/LvRkpGPq4ONrSX7jshKo+TJzy+FGyd0Z7ZwtcBv+DlYsfx5Eze+PkwiiKTbFZ1G46mcDw5Exd7G4YW/giKwTgdRkC42tEshhRQpZg3bx7PPvssTz31FGFhYSxcuBAnJye+/vprtaNZnoJsOL0RgF/zIwFj9529jXTfCVGpfMOg30IAnPd/wdJW8Wg1sHLfeb7dmahyOKEmRVH46Hrr04vNbbA/ssK444HXVExleaSA+oeCggL27t1Lt27dTNu0Wi3dunUjJiam1Pvk5+eTkZFR4ktcF7cRivJQPAL5Jt4FgIcaS/edEPdF2COmD8X6O99kXtt8AGb8doS9Z6+pmUyo6PdjqRy9mIGznY4RRStB0UO9LlAzUu1oFkUKqH+4fPkyer0eX1/fEtt9fX1JTk4u9T6zZs3C3d3d9FWrlkw+ZnJyHQCXa3TjYkY+znY66b4T4n7qNBlCe4O+gEePT+LJBloK9Qr/+m4vqZkyyWZVoygK8zcal/l5OULB/vBS445Ok1VMZZmkgKoAkydPJj093fR17tw5tSOZB4MBTq4HYKOhOQCdQmXyTCHuK60W+n8GPo3QZKcyPfcdmnjbkJKRz7jv9lOoN5CUlMTWrVtJSkpSO62oZH8cT+XwhQwcbXUMy/nGOPYptDfUaqV2NIsjBdQ/eHl5odPpSElJKbE9JSUFPz+/Uu9jb2+Pm5tbiS8BJO2DnMtg78bX54wtej0al/4aCiEqkb0rPLEMnLzQpRximfdi3Oy17DpzlXfXHiM+Pp64uDji4+PVTioqkbH1yTj2aXLjDOxPrQWNFrpOUTmZZZIC6h/s7OyIjIxk48aNpm0Gg4GNGzfSpk0bFZNZoOvdd5k1H+Dk5QLsdFo6h8rad0KowqM2PP4d6Oxwjl/Lz2FbAFi07QzH890JDg4mKChI5ZCiMv1xPJWD59NxtNUyJPP6RVHhT4BPA3WDWSgpoEoxYcIEvvjiC5YsWcKxY8cYM2YM2dnZPPXUU2pHsywnjAXUDltj03Db4Oq4OtiqmUiIqq12a3h4PgD1jn3CJ02NLU7vbzqPc+1GBATI8krWSm9Q+M/1JX2mN0zC9nwM2DjI2Kd7IAVUKQYPHsycOXOYMmUK4eHhxMbGsm7dupsGlovbSD8PKYcADYtTgwHo0Ui674RQXfgT0PZFAHqdnsmYoEsUFBkY/b+9pGTc3aByGUNl/lbuPc/JlCyqOWgZcO1L48ZWz4F7TXWDWTApoG5h3LhxnD17lvz8fHbu3ElUVJTakSzL9cHj+f4t2JYEGo1x/ichhBnoNg0a9EGjz+e1azPo6JVJamY+o/93dzOVyxgq85ZboGdetPHKu3kNT6G7dBQc3KH9yyons2xSQInKcb2AOuTcGoCWgZ54udirmUgIUUyrg/6fg384mtwrfGnzPjUd8og9l8Zbq8o/U3lQUJCMoTJji7YnkJyRRx13GzolfW7c2P5l44z14q5JASUqXkEOJPwJwA/pYQB0byStT0KYFTtneOIHcKuJbdppVvssxF5TxIq95/lqa0K5ThUQEED79u1lDJUZupZdwKebTwOwoO42NOnnwDUAWo1WOZnlkwJKVLyEP6EoD71bLVaeN07pIOOfhDBDrn4wdDnYueKRuovfApcDCu+sPcbGYyl3vLswfx9viiMzr4gOvvmEnf7CuPHBGWDnpG4wKyAFlKh416cviK/WHoOioVGAG7U85T+rEGbJtxEMWgwaHSHJq/mq9gYUBV5cup9jF2VZKkt27moO/4s5C8Bc9xVoCnOgdltoMlDlZNZBCihRsRTFNP5pdW4TQFqfhDB7wd2gzzwAuqYu4U3fHWQX6HlmyR4uZearHE7crf+sO06B3sBzNc/hk3h90syH3jde1SPumRRQomIlH4TMiyi2TnyVZLw8VgooISxA5EjoOAmAURkfM9TjMBfSchn9vz13dWWeUNf2uMusPngRO00RE/TXpy1o+Qz4NVE3mBWRAkpUrOutT6nebcgqsqG2pxMhvi4qhxJClEmnyRDxJBrFwMyiebR3iGdfYhqvrjiAwVC+K/OEegqKDEz59QgA84P24HDtFDhVh87/VjmZdZECSlSs6+OfthAJQNeGPmikuVgIy6DRQJ8PoX53tEV5LLKfS4juIqsPXuQ/64+rnU6U0eLtCcSlZhHilE3PS4uMG7tOBcdq6gazMlJAiYqTfRku7APgqxTj7OPdGsr0BUJYFJ0tPLYYAppjm3+NVW5z8OMKn/0Zz/92nFU7nbiDi+m5fPi7ccHgL/xXoSnIhIAIiBimcjLrIwWUqDinNwEKOdUacDzbBVd7G1rWkYnahLA4ds7wxHKoHoxT7kXWVptHNTKY+sthmd7AzL2z5hg5BXqe9T1B4IU11weOzwWtfNxXNHlFRcU5vRGAQ44tAXgg1Bs7G3mLCWGRXLxh2M/gVgPP3AR+rfYhjkou477fz8HzaWqnE6UoHjjursnmtcKFxo2t/wU1I9UNZqXk001UDIMB4owF1E/poQA8KN13Qlg2j9owbBU4VadW7nFWuH+EoTCXpxbtJuFyttrpxA3yCvW89cthAL4O+AXbnBTwrAdd3lQ5mfWSAkpUjJTDkJ2KwdaJn6/UQqfV0CnUW+1UQoh75R0CT64EO1fC8g+w2HUh6dk5DPtqJykZeWqnE9d9+PspTl/KprfTcSKvrAY08OjHYOuodjSrJQWUqBhxvwNwwb0FBdgSGVgNDyc7lUMJISpEQAQMWQo6e9oU7uAz5y+4eC2L4V/tIj2nUO10Vd7+xGt8vuU0zuQyx+Er48ZWz0FgW3WDWTkpoETFOP0HAH8UNQWgW0MfNdMIISpa3Q4w6BvQ2tJV/xf/dfySUynpjFqym9wCmWhTLXmFeuM8XQos9PsNx5wLxq7XrlPUjmb1pIAS9y4/ExJjAPjmknH6gq4y/kkI6xPaEx5bBBodDyl/MsfhK/aevcLY7/dRUGRQO12V9MHvJzl9KZuHnY/SIW2VceMj/wV7mcC4skkBJe5dwhYwFJHtXJvTeh/qejlTz1v+8wphlRo+DAO+BI2W/mziXbvF/HE8hZeW7adIL0VURUhKSmLr1q0kJSXd9rh9idf4Yks83lxjrs0nxo0tn4GgTpUfUkgBJSrA9avv9tsZL5WV7jshrFzj/tDvM0DDEO3vvG27hHWHk3hlxQH0suTLPYuPjycuLo74+PhbHpNXqGfiigOgGPjO8yvs8q+Cb2Po/s59TFq12agdQFg4RTENIF+RFgJI950QVULTQaAvhF/G8qRuA7YUMjl2FPY2Wt7r3xStVpZwultBQUElvpdmxuqjnL6UzWtOawjJ2Qe2TjBwEdg63K+YVZ4UUOLeXI2HtLMYtLZE54Ti7mhLi0BZb0mIKiFiKGh1sGoMg3WbsKOQV/eMxs5Gy8xHG8s6mHcpICCAgICAW+5fvOkw3+9MpKXmOGOUH4wbH5pjnHJC3Dfl7sIbMWIEW7ZsqYwswhJdb30659KUHBx4IMQbG530DAtRZTR7HAZ8BVob+um28pHtxyzbEc+UX45gkO68Chd/KYv3fj+LB5l87rQAjWKApoMh/Am1o1U55f6kS09Pp1u3btSvX593332XCxcuVEYuYSmuj3/aWNgEgM4yeaYQVU/j/qYpDnrrdvKp7XyW7zjFv38+JGOiKlBeoZ5/fbePQr2eL5w/pZr+inG28d5zQVr77rtyF1CrVq3iwoULjBkzhh9++IE6derQq1cvfvzxRwoLZUK1KqUoH878BcCKtFA0GnggRAooIaqkBr2Nk23aOPCgbi9L7P7D2t3HmbjigFydV0Gm/3aU48mZzHRcRkt9LNg4wmOLwd5V7WhV0l31tXh7ezNhwgQOHDjAzp07CQ4OZtiwYQQEBPDyyy9z6tSpis4pzFFiDBTmkGvvxTGlNk1ruOPlYq92KiGEWuo/CEN/BHs3WmuP8YPdTLbuP8z4H2IplCLqnvy07zxLdyUyRPcHTyhrjBv7LQT/puoGq8LuabDKxYsXiY6OJjo6Gp1Ox0MPPcShQ4cICwvjgw8+qKiMwlyd3gTAAbvmgIaOoTJ9gRBVXt0OMHINuPjSUJvISvtpHDm0j+f/t1dmLL9Lu89c5fWVh2itPcrbdouMGzu/CY36qpqrqit3AVVYWMjKlSvp06cPgYGBrFixgvHjx5OUlMSSJUv4/fffWb58OTNmzKiMvMKcxG8G4JdM45UfMv5JCAEYW0WeXg+eQdTSXGKl3TQun9jOk1/tJC2nQO10FuXslWye+2YP/oYkvnSYj07RQ+OB8MCraker8so9jYG/vz8Gg4EhQ4awa9cuwsPDbzqmc+fOeHh4VEA8YbZyrsLFAwBszGtINSdbmtb0UDeTEMJ8eNaFpzfAdwPxvBjLD/YzmXBuDI8tLGTJ060I8HBUO6HZS88p5KnFu1FyrvKt8zxc9JlQowU8+rEMGjcD5W6B+uCDD0hKSmLBggWlFk8AHh4eJCQk3Gs2Yc7ObAUULjvWIZVqdAzxRicT5wkhbuTiDSNXQ/3uOFDIJ3Yf0fPKNwz4ZBunUjLVTmfWCooMPP/tXi5dusRSx/eppT8PbjXg8e/BVopPc1DuAmrYsGE4OMhMp1Xe9e67bfrGAHT6x/insq7lJISwcvauMGQZtB4LwCu2P/J67lyGfLqZLScvqRzOPBkMCpN/OsSB+At8Y/8+DZXT4OQFw34GV1npwVzIjIfi7iT8CcDqrJBSpy8oy1pOQogqQquDnu/Cw/NRtDY8qtvOF4ZpTF68jsXbElAUmSuqmMGg8Maqw6zeF8+XdnOI0JwEB3cYvgq8Q9WOJ24gBZQov/TzcCUOA1p2GMJoVtMDT2e7EocEBQURHBx827WchBBVTORINMN+RnHwIEIbxy+2/yZ6zQ+8seqwTHMAKIrClF8Ps3LXaT6z/YC22qNg5wpP/gx+TUocK6386pMCSpRfvLH16Yx9KJk40amUq+8CAgJo3779bddzEkJUQXUfQPPcJhS/JnhpMvif7XtU3/Mhw7+M4XJWvtrpVKMoCtN/O8rKHSdZaPsBnXQHjAsED10BNSNvOl5a+dUnBZQov+vdd9F5DQHoLPM/CSHKwzMIzahoaD4crUbhFdsfee78ZIZ8uJYd8VfUTnffKYrC22uO8ev2gyy1e5suuljjLOOPfw+BbUq9j7Tyq6/c0xiIKk5RTAPINxc2pLqzHU1quKubSQhheWwd4ZH/Qq3WGFa/TGcOEFY4nklfjmbvg4MY07Ee2ipwZW9+kZ7JKw+xJ3YfK+3eo642BRw94YkfoFarW94vICBAWvhVJi1QonwunYCsFAo19uwz1OeBEO8q8UtOCFFJIoaiffYPDJ7B+GrSWGz3H9w2TuK5r7dYfZdeek4hw7/axanYv/jJbqqxePKoDaM23LZ4EuZBCihRPte77w7pwsjHjo6yeLAQ4l75NUb7/F8orUYDMMzmd95IfJZX5n3JmoMXVQ5XORKv5NDv0234nf2VH+xm4qXJMA4UHxUNXvXVjifKQAooUT7Xu+825Bovp21f30vFMEIIq2HnhOah92HYKgqd/amrTeFr/RukLn+JV/63hStW1BoVc/oKQxb8wXPXPmC+3Sc4afKhXhcYuRZc/dSOJ8pICihRdvqi6zOQw1ZDYxoFuOHlYq9yKCGEVanXGdtxMegbD0KnUXjKZj2vxz3JvLnv8FvsBYueM6pQb2D2+uO8+dVKvip6ncdtNqOggY6vw9AfwcFN7YiiHKSAEmWXtB/yM8jRunJUqUOH+tJ9J4SoBI7V0A38Aob/Qp57Pbw16byjzKf6yoFM/GQZxy5mqJ2w3M5czuaxT7dxbcvn/Gr7Jg2051CcfdAM/wU6TzZONiosilyFJ8ouYTMAMUojDGh5QLrvhBCVKagTDi/EULT1I9gym7YcpXXqGFZ90o61jV/gqT5dbprE19zoDQrLdify85o1TOUrImzjjDvqdkTT/wtZmsWCSQElyu76BJqbChriYKslsk41lQMJIayejT02nSZCs0Hkrv03jqdW01+3lcKjMfx0rAvpkS8xqGsUHk7mV0jtiL/C3F920fvK1/ygi0anUTDYuaDt/AZEjZZWJwsnBZQom8I8OLcLgG2GxrQOro69jfznF0KUT1JSEvHx8QQFBZVvHqNqgTgO/Q6S9pO2eioeSX8ymGjy92xm7Z62XGvyDI/07GEW4zLPXc3hg9W78T3xPZ/arMXLxtjlaGg8EG33t8HNX+WEoiJIASXK5sIe0OdzTetJguLHkzL+SQhxF4qXIAHubiLIgAg8nvsVQ8JW0lZPwfPKXvrxJxz+k92HGrK29hAadRlC8zreaDSVM0fdrYrA2HNprNi8l1onFzNNG42bbS4Aes9gdH3mog3qVCl5hDqkgBJlU3z1XVEDQCPjn4QQd6V46ZF7XYJEW7c9nuM2opzbRUr0fLzOraOl5hgtz03hyuLZrLZrh6Zxf1p27IOvh/NdP05pxdKNRWA1L19+P3KOA5tX0fBqNG9pd+KgKwQgv1oI9p1eQdd4AOhs7+n5CvMjBZQom+sFVIy+IX5uDgT7uKgcSAhhiSp0CRKNBk3tKPxGfY+SfoGkjQtwO/Id1fVpPFy4Dvav49I+N9bYt0Vfux21wrvSpGFDbHRlvwC9tBYzd99apCSkkbJvDxc2zKW7ZhcPa7Lg+qiGHO9wnLq+hn1IL9DKxe7WSqNY8qQaZiojIwN3d3fS09Nxc7OCeT0K8+A/gVCUR5f8OUQ2b8Xsx5qpnUoIIW6mLyT75GYubvse3wvRuCqZJXZfULw4ad+YHI9QHHyCqFajPo4+QTi7++DuZIeLgw2FegNZ+UVk5RaSeOYUp08cRmsoQJd5nmrXDhJccJz6mgtoNX9/fGbbeqJp3A+niMHGZVgqqftQVK7yfH5LC5S4swt7oSiPqxoP4hV/xsvyLUIIc6WzxbnhgwQ3fBD0hWQc/Z3U/auxS9pNQN4pamguU6NgM6RuhlTgsPFu+YotBdiQiZZCdOjR4Us2dTQFPPDPx7jeqJRuH4Chbic8Wj2Oc532clVdFSMFlLizs9sA2FbUAI1GQ/tgGf8khKg8d32l3j/pbHFr0gu3Jr0AMORlknxsK5mntlF0KQ7bzHN45CfhpVzFXlOIPYWlniZb40S2rRcFLgEoARG4B7fBLbgN7i4+d59NWDwpoMSdnfkLgB2GMBoHuJv9xHVCCMt2z1fq3YLWwRW/iF74RfQquaMwj5T4Q5xJiMfT25caPp44aPVoHT3AxRdnOyfufhi6sFZSQInbK8o3zf+0w9CQHnL1nRCiklXUlXplZuuAb2hLfENb3p/HE1ZBCihxexf2QVEeV3DntBJAeymghBCVrEKv1BOiksj1leL2TNMXNMDBVkdkoCzfIoSwfElJSWzdupWkpCS1owgLJS1Q4vbOGguoHYYwWgZ5yvItQgirUFnjrETVIQWUuLWiAkjcCRjHPw2Uq++EEFbivo+zElZHCihxa0n7oCiXK4obcUoN2tWTAkoIYR1knJW4VzIGStzameLuuwa4OdgSFmAFs6oLIYQQFcCqCqg6deqg0WhKfL333nsljjl48CAdOnTAwcGBWrVq8f777990nhUrVtCgQQMcHBxo0qQJa9euvV9PwbxcL6B2GhrSpl51dFpZmkAIIYQAKyugAGbMmMHFixdNXy+88IJpX0ZGBt27dycwMJC9e/cye/Zspk2bxueff246Zvv27QwZMoRRo0axf/9++vbtS9++fTl8+LAaT0c9+kI4Vzz+KYx2Mv5JCCGEMLG6MVCurq74+fmVuu+7776joKCAr7/+Gjs7Oxo1akRsbCzz5s3jueeeA2D+/Pn07NmTiRMnAjBz5kyio6P5+OOPWbhw4X17HqpL2g+FOVxVXDml1KCtjH8SQgghTKyuBeq9996jevXqREREMHv2bIqKikz7YmJieOCBB7Cz+3spkh49enDixAmuXbtmOqZbt24lztmjRw9iYmLuzxMwF9fXv9tpaICPmyP1vGUhAyGEEKKYVbVAvfjiizRv3hxPT0+2b9/O5MmTuXjxIvPmzQMgOTmZunXrlriPr6+vaV+1atVITk42bbvxmOTk5Fs+bn5+Pvn5+aafMzIyKuopqeessWDcbWhAu3peaDQy/kkIIYQoZvYtUK+//vpNA8P/+XX8+HEAJkyYQKdOnWjatCnPP/88c+fO5b///W+J4qYyzJo1C3d3d9NXrVq1KvXxKp3BAOd2ALDbEEpbGf8khBBClGD2LVCvvPIKI0eOvO0xt5oILSoqiqKiIs6cOUNoaCh+fn6kpKSUOKb45+JxU7c65lbjqgAmT57MhAkTTD9nZGRYdhF16TjkpZOt2HNUCaRdcHW1EwkhhBBmxewLKG9vb7y9ve/qvrGxsWi1Wnx8fABo06YNb7zxBoWFhdja2gIQHR1NaGgo1apVMx2zceNGxo8fbzpPdHQ0bdq0ueXj2NvbY29vf1cZzVKisftuvyGYQC83/N0dVQ4khBBCmBez78Irq5iYGD788EMOHDhAfHw83333HS+//DJPPvmkqTh64oknsLOzY9SoURw5coQffviB+fPnl2g9eumll1i3bh1z587l+PHjTJs2jT179jBu3Di1ntr9l1jcfdeAttL6JIQQQtzE7Fugysre3p5ly5Yxbdo08vPzqVu3Li+//HKJ4sjd3Z0NGzYwduxYIiMj8fLyYsqUKaYpDADatm3L999/z5tvvsm///1v6tevz6pVq2jcuLEaT0sd11ugdiuhDJPpC4QQQoibaBRFUdQOYW0yMjJwd3cnPT0dNzcLW/4k7Rx82JgiRUuzgi/Z9tbDeDjZ3fl+QgghhIUrz+e31XThiQpyffbxI0od6vj7SPEkhBBClEIKKFHS9e67PYZQ2gTJ+CchhBCiNFJAiZKuDyDfZQiltRRQQgghRKmkgBJ/y01DSTkCwD4llJZ1PVUOJIQQQpgnKaDE387tQoNCvMEP34BauDvaqp1ICCGEMEtSQIm/3TD+qXVd6b4TQgghbkUKKPG34gk0FRn/JIQQQtyOFFDCqCgf5cJeAPbK+CchhBDitqSAEkZJ+9Ho87mkuOHkFyLjn4QQQojbkAJKGN04/ilIlm8RQgghbkcKKGF0ffzTHpn/SQghhLgjKaAEGAwYzhoLqL1KiIx/EkIIIe5ACigBV+LQ5qeRq9ih+DWV8U9CCCHEHUgBJeD8LgAOKkG0DPJVOYwQQghh/qSAEnDOWEDtN9SX8U9CCCFEGUgBJSg8uxOAfUqwjH8SQgghykAKqKouLx2bKycAyPFpLuOfhBBCiDKQAqqqu7AXDQqJBm9C6wWrnUYIIYSwCFJAVXXndgOwT6lPK+m+E0IIIcpECqgqruD6/E/7DPVpWUcKKCGEEKIspICqygwGNOf3AHDZoxmeznYqBxJCCCEsgxRQVdmVU9gWZpCr2OFZr7naaYQQQgiLIQVUFXbt0AageAJNH5XTCCGEEJZDCqgqLPvUFsA4gaaMfxJCCCHKTgqoKswtMw6AePuGBHg4qpxGCCGEsBxSQFVVeem4ZiUA4BDURuUwQgghhGWRAqqqOr/HNIFmw/oygaYQQghRHlJAVVFFicXr38kEmkIIIUR5SQFVRWXHxQBw0rYhQV7OKqcRQgghLIsUUFWRwYBDyj4AigJaotFoVA4khBBCWBYpoKqiyyex12eRq9jhHxKpdhohhBDC4kgBVQUZzhnHPx1UgmhZz1flNEIIIYTlkQKqCko7ZVxA+IgmhIb+biqnEUIIISyPFFBVkHJ+LwDZ3uHotDL+SQghhCgvKaCqmoIcPLJOAeAa3FrlMEIIIYRlkgKqilEuHkCHgRTFg7CQBmrHEUIIISySFFBVzLXr458OKsE0reWhbhghhBDCQkkBVcVkxxuvwEtxbYSDrU7lNEIIIYRlkgKqinG+HAuApkZzdYMIIYQQFkwKqKok+zKeBRcB8G3QVuUwQgghhOWSAqoKyY7fBcBpgz/N6geqnEYIIYSwXFJAVSGpx7cDEGcXirervcpphBBCCMslBVQVolzYA0C2VzOVkwghhBCWTQqoqkJR8Eo/AoBzkEygKYQQQtwLKaCqiMIrCbgpGeQrNtRr3ErtOEIIIYRFkwKqirhweCsAJzV1CPKrrnIaIYQQwrJJAVVFZJ42zkCe4toIrSwgLIQQQtwTKaCqCMdLBwBQakSqnEQIIYSwfFJAVQFKUQE1804C4BMqE2gKIYQQ90oKqCogOS4WBwrIUJwIbRSudhwhhBDC4kkBVQVcPGocQB5vF4KDna3KaYQQQgjLJwVUFaA/vxeArOoygaYQQghREaSAqgKqpx0GwClI5n8SQgghKoIUUFYuPT2NQP1ZAAKbdFA5jRBCCGEdpICycvGHd6DTKFzWVKO6f6DacYQQQgirIAWUlUs/vQuAZOeGKicRQgghrIcUUFbOJtk4gWaRrwwgF0IIISqKxRRQ77zzDm3btsXJyQkPD49Sj0lMTKR37944OTnh4+PDxIkTKSoqKnHM5s2bad68Ofb29gQHB7N48eKbzrNgwQLq1KmDg4MDUVFR7Nq1qxKeUeUzGBT8co4D4BEsA8iFEEKIimIxBVRBQQGPPfYYY8aMKXW/Xq+nd+/eFBQUsH37dpYsWcLixYuZMmWK6ZiEhAR69+5N586diY2NZfz48TzzzDOsX7/edMwPP/zAhAkTmDp1Kvv27aNZs2b06NGD1NTUSn+OFS0+KYW6ygUAaoa1UTmNEEIIYT00iqIoaocoj8WLFzN+/HjS0tJKbP+///s/+vTpQ1JSEr6+vgAsXLiQSZMmcenSJezs7Jg0aRJr1qzh8OHDpvs9/vjjpKWlsW7dOgCioqJo2bIlH3/8MQAGg4FatWrxwgsv8Prrr5cpY0ZGBu7u7qSnp+Pm5lYBz/ru/LH+F7rEDOeK1ovqU06rlkMIIYSwBOX5/LaYFqg7iYmJoUmTJqbiCaBHjx5kZGRw5MgR0zHdunUrcb8ePXoQExMDGFu59u7dW+IYrVZLt27dTMdYkuwzewC46iYDyIUQQoiKZKN2gIqSnJxcongCTD8nJyff9piMjAxyc3O5du0aer2+1GOOHz9+y8fOz88nPz/f9HNGRsY9PZeK4nj5IACaGhEqJxFCCCGsi6otUK+//joajea2X7crXMzFrFmzcHd3N33VqlVL7Uhk5BUSmH8KAO/Q1iqnEUIIIayLqi1Qr7zyCiNHjrztMUFBQWU6l5+f301Xy6WkpJj2FX8v3nbjMW5ubjg6OqLT6dDpdKUeU3yO0kyePJkJEyaYfs7IyFC9iDocf57WmiQA3INaqppFCCGEsDaqFlDe3t54e3tXyLnatGnDO++8Q2pqKj4+PgBER0fj5uZGWFiY6Zi1a9eWuF90dDRt2hivULOzsyMyMpKNGzfSt29fwDiIfOPGjYwbN+6Wj21vb4+9vX2FPI+KcuHYbrQahWs23lRz8VE7jhBCCGFVLGYQeWJiIrGxsSQmJqLX64mNjSU2NpasrCwAunfvTlhYGMOGDePAgQOsX7+eN998k7Fjx5qKm+eff574+Hhee+01jh8/zieffMLy5ct5+eWXTY8zYcIEvvjiC5YsWcKxY8cYM2YM2dnZPPXUU6o877tVcG4fAJnVGqucRAghhLA+FjOIfMqUKSxZssT0c0SEcWD0pk2b6NSpEzqdjtWrVzNmzBjatGmDs7MzI0aMYMaMGab71K1blzVr1vDyyy8zf/58atasyZdffkmPHj1MxwwePJhLly4xZcoUkpOTCQ8PZ926dTcNLDdnBoOCe9ohAOxqR6qcRgghhLA+FjcPlCVQex6ouNQs+LglwdokioYsxya0x53vJIQQQlRxVXIeKPG3g/HnCdJcBMCmRnOV0wghhBDWRwooK3Tp5C60GoV0O19wqZhB+kIIIYT4mxRQVshwfi8AGe4NVE4ihBBCWCcpoKxMZl4h/rknAch2Un9CTyGEEMIaSQFlZQ6cS6eJJgEA77AHVE4jhBBCWCcpoKzM4fhz1NMaB5BXb9xV5TRCCCGEdZICysr08bkEQJ5TADh7qZxGCCGEsE5SQFmZmtfHPznUlukLhBBCiMoiBZS1uXjA+N0/XNUYQgghhDWTAsraJB80fvdvqm4OIYQQwopJAWVNCnLgsrELDz8poIQQQojKIgWUNUk9CooBnL3B1U/tNEIIIYTVkgLKmhSPf/JrChqNulmEEEIIKyYFlDWR8U9CCCHEfSEFlDW5eL2AkvFPQgghRKWSAspa6IuMY6AA/Jupm0UIIYSwclJAWYvLJ6EoD+xcoVpdtdMIIYQQVk0KKGtRPP7JrzFo5Z9VCCGEqEzySWstZPyTEEIIcd/YqB1AVBC5Ak8IIUz0ej2FhYVqxxBmxtbWFp1OVyHnkgLKGijKDV14UkAJIaouRVFITk4mLS1N7SjCTHl4eODn54fmHudLlALKGqSdhbx00NqCdwO10wghhGqKiycfHx+cnJzu+UNSWA9FUcjJySE1NRUAf3//ezqfFFDWIPmQ8btPQ7CxUzeLEEKoRK/Xm4qn6tWrqx1HmCFHR0cAUlNT8fHxuafuPBlEbg0uyvgnIYQoHvPk5OSkchJhzorfH/c6Rk4KKGtgGv8kE2gKIYR024nbqaj3hxRQ1kBaoIQQwqJ16tSJ8ePHqx0DgFWrVhEcHIxOp2P8+PEsXrwYDw8PtWOZHSmgLF32ZchMAjTg21jtNEIIIczQ5s2b0Wg0Zbo6cfTo0QwcOJBz584xc+ZMBg8ezMmTJ037p02bRnh4eOWFtRAyiNzSXTxg/F69Hti7qJtFCCGERcvKyiI1NZUePXoQEBBg2l48+Fr8TVqgLJ3M/ySEEFahqKiIcePG4e7ujpeXF2+99RaKopj25+fn8+qrr1KjRg2cnZ2Jiopi8+bNpv1nz57l4Ycfplq1ajg7O9OoUSPWrl3LmTNn6Ny5MwDVqlVDo9EwcuTImx5/8+bNuLq6AtClSxc0Gg2bN28u0YW3ePFipk+fzoEDB9BoNGg0GhYvXlxZL4lZkxYoSyfjn4QQ4pYURSG3UK/KYzva6so1YHnJkiWMGjWKXbt2sWfPHp577jlq167Ns88+C8C4ceM4evQoy5YtIyAggJ9//pmePXty6NAh6tevz9ixYykoKGDLli04Oztz9OhRXFxcqFWrFitXrmTAgAGcOHECNze3UluU2rZty4kTJwgNDWXlypW0bdsWT09Pzpw5Yzpm8ODBHD58mHXr1vH7778D4O7ufm8vlIWSAsrSSQuUEELcUm6hnrAp61V57KMzeuBkV/aP2Vq1avHBBx+g0WgIDQ3l0KFDfPDBBzz77LMkJiayaNEiEhMTTV1rr776KuvWrWPRokW8++67JCYmMmDAAJo0aQJAUFCQ6dyenp4A+Pj43HJAuJ2dHT4+Pqbj/fz8bjrG0dERFxcXbGxsSt1flUgBZckKsuHKaeNtKaCEEMKitW7dukSLVZs2bZg7dy56vZ5Dhw6h1+sJCQkpcZ/8/HzTpKEvvvgiY8aMYcOGDXTr1o0BAwbQtKl8NlQWKaAsWcpRQAEXX3DxVjuNEEKYHUdbHUdn9FDtsStKVlYWOp2OvXv33jR7touL8QKiZ555hh49erBmzRo2bNjArFmzmDt3Li+88EKF5RB/kwLKkqUcNn6X6QuEEKJUGo2mXN1oatq5c2eJn3fs2EH9+vXR6XRERESg1+tJTU2lQ4cOtzxHrVq1eP7553n++eeZPHkyX3zxBS+88AJ2dsZlvvT6ex8PZmdnVyHnsXRyFZ4lKy6g/KSAEkIIS5eYmMiECRM4ceIES5cu5b///S8vvfQSACEhIQwdOpThw4fz008/kZCQwK5du5g1axZr1qwBYPz48axfv56EhAT27dvHpk2baNiwIQCBgYFoNBpWr17NpUuXyMrKuuucderUISEhgdjYWC5fvkx+fv69P3kLJAWUJUuWFighhLAWw4cPJzc3l1atWjF27FheeuklnnvuOdP+RYsWMXz4cF555RVCQ0Pp27cvu3fvpnbt2oCxdWns2LE0bNiQnj17EhISwieffAJAjRo1mD59Oq+//jq+vr6MGzfurnMOGDCAnj170rlzZ7y9vVm6dOm9PXELpVFunGRCVIiMjAzc3d1JT0/Hzc2tch5EUWBWLSjIhDEx4BtWOY8jhBAWIi8vj4SEBOrWrYuDg4PacYSZut37pDyf39ICZanSzhqLJ50deNVXO40QQghRpUgBZamKu++8Q0Fnq24WIYQQooqRAspSpRwxfvdtom4OIYQQogqSAspSpRwyfpcr8IQQQoj7TgooS2W6Aq+RujmEEEKIKkgKKEuUnwXXEoy3pQtPCCGEuO+kgLJEqUeN3139wbm6ulmEEEKIKkgKKEuUfH38k3TfCSGEEKqQAsoSma7AkwHkQgghhBqkgLJEpjXwZPyTEEIIdSxevBgPDw+1YzBy5Ej69u173x9XCihLYzDc0AIlXXhCCCHM05kzZ9BoNMTGxprl+e6VFFCWJu0sFGSBzh6qyxIuQghRVRUUFKgdoUJY6vOQAsrSFHff+TQAnY26WYQQQlSIzMxMhg4dirOzM/7+/nzwwQd06tSJ8ePHm46pU6cOM2fOZPjw4bi5ufHcc88BsHLlSho1aoS9vT116tRh7ty5Jc6t0WhYtWpViW0eHh4sXrwY+Ltl56effqJz5844OTnRrFkzYmJiStxn8eLF1K5dGycnJ/r168eVK1du+5zq1q0LQEREBBqNhk6dOgF/d7m98847BAQEEBoaWqactzpfsTlz5uDv70/16tUZO3YshYWFt813r+QT2NKYJtCUAeRCCHFHigKFOeo8tq0TaDRlOnTChAls27aNX3/9FV9fX6ZMmcK+ffsIDw8vcdycOXOYMmUKU6dOBWDv3r0MGjSIadOmMXjwYLZv386//vUvqlevzsiRI8sV94033mDOnDnUr1+fN954gyFDhhAXF4eNjQ07d+5k1KhRzJo1i759+7Ju3TpThlvZtWsXrVq14vfff6dRo0bY2dmZ9m3cuBE3Nzeio6PLnO9259u0aRP+/v5s2rSJuLg4Bg8eTHh4OM8++2y5XoPykALK0qRIASWEEGVWmAPvBqjz2P9OAjvnOx6WmZnJkiVL+P777+natSsAixYtIiDg5txdunThlVdeMf08dOhQunbtyltvvQVASEgIR48eZfbs2eUuoF599VV69+4NwPTp02nUqBFxcXE0aNCA+fPn07NnT1577TXT42zfvp1169bd8nze3t4AVK9eHT8/vxL7nJ2d+fLLL0sUQXdyu/NVq1aNjz/+GJ1OR4MGDejduzcbN26s1AJKuvAsjekKPCmghBDCGsTHx1NYWEirVq1M29zd3U1dWzdq0aJFiZ+PHTtGu3btSmxr164dp06dQq/XlytH06ZNTbf9/f0BSE1NNT1OVFRUiePbtGlTrvPfqEmTJuUqnu6kUaNG6HQ608/+/v6m7JVFWqAsSV4GXDtjvC0tUEIIcWe2TsaWILUeu4I5O9+5ReufNBoNiqKU2Fba+CBbW9sS9wEwGAzlfryyKO15lDVnaW7MXnyuyspeTAooS5J6zPjdNQCcPNXNIoQQlkCjKVM3mpqCgoKwtbVl9+7d1K5dG4D09HROnjzJAw88cNv7NmzYkG3btpXYtm3bNkJCQkwtMt7e3ly8eNG0/9SpU+TklG9cWMOGDdm5c2eJbTt27LjtfYpbmMraEnannOU9X2WTAsqSpFxfwkW674QQwmq4uroyYsQIJk6ciKenJz4+PkydOhWtVmtqCbqVV155hZYtWzJz5kwGDx5MTEwMH3/8MZ988onpmC5duvDxxx/Tpk0b9Ho9kyZNuqnF5k5efPFF2rVrx5w5c3j00UdZv379bcc/Afj4+ODo6Mi6deuoWbMmDg4OuLu73/L4O+Us7/kqm4yBsiR56WDjKN13QghhZebNm0ebNm3o06cP3bp1o127djRs2BAHB4fb3q958+YsX76cZcuW0bhxY6ZMmcKMGTNKDCCfO3cutWrVokOHDjzxxBO8+uqrODmVr3uxdevWfPHFF8yfP59mzZqxYcMG3nzzzdvex8bGho8++ojPPvuMgIAAHn300dsef6ec5T1fpVMsxNtvv620adNGcXR0VNzd3Us9Brjpa+nSpSWO2bRpkxIREaHY2dkp9erVUxYtWnTTeT7++GMlMDBQsbe3V1q1aqXs3LmzXFnT09MVQElPTy/X/cpEX6Qo+VkVf14hhLBwubm5ytGjR5Xc3Fy1o9yzrKwsxd3dXfnyyy/VjmJ1bvc+Kc/nt8W0QBUUFPDYY48xZsyY2x63aNEiLl68aPq6cX2chIQEevfuTefOnYmNjWX8+PE888wzrF+/3nTMDz/8wIQJE5g6dSr79u2jWbNm9OjRo9JH85eZVmf2/flCCCHKZ//+/SxdupTTp0+zb98+hg4dCqB+K4u4JYsZAzV9+nQA04ykt+Lh4XHT/BDFFi5cSN26dU2ztDZs2JCtW7fywQcf0KNHD8DYjPrss8/y1FNPme6zZs0avv76a15//fUKejZCCCFESXPmzOHEiRPY2dkRGRnJX3/9hZeXl9qxxC1YTAtUWY0dOxYvLy9atWrF119/XeKSyJiYGLp161bi+B49epimqy8oKGDv3r0ljtFqtXTr1u2mKe2FEEKIihIREcHevXvJysri6tWrREdH06RJE7VjiduwmBaospgxYwZdunTBycmJDRs28K9//YusrCxefPFFAJKTk/H19S1xH19fXzIyMsjNzeXatWvo9fpSjzl+/PgtHzc/P5/8/HzTzxkZGRX4rIQQQghhblRtgXr99dfRaDS3/bpd4fJPb731Fu3atSMiIoJJkybx2muvMXv27Ep8BkazZs3C3d3d9FWrVq1Kf0whhBBCqEfVFqhXXnnljmv1BAUF3fX5o6KimDlzJvn5+djb2+Pn50dKSkqJY1JSUnBzc8PR0RGdTodOpyv1mFuNqwKYPHkyEyZMMP2ckZEhRZQQQqhE+cds1kLcqKLeH6oWUN7e3qbFAStDbGws1apVw97eHjCu27N27doSx0RHR5vW8ykeuLdx40bT1XsGg4GNGzcybty4Wz6Ovb296TGEEEKoo3jSxZycHBwdHVVOI8xV8ezm5Z1M9J8sZgxUYmIiV69eJTExEb1eT2xsLADBwcG4uLjw22+/kZKSQuvWrXFwcCA6Opp3332XV1991XSO559/no8//pjXXnuNp59+mj/++IPly5ezZs0a0zETJkxgxIgRtGjRglatWvHhhx+SnZ1tuipPCCGEedLpdHh4eJimnXFycrrjTN6i6lAUhZycHFJTU/Hw8Cix+PDdsJgCasqUKSxZssT0c0REBACbNm2iU6dO2NrasmDBAl5++WUURSE4ONg0JUGxunXrsmbNGl5++WXmz59PzZo1+fLLL01TGAAMHjyYS5cuMWXKFJKTkwkPD2fdunU3DSwXQghhfoqHW5jN3H3C7NxuuqPy0CjSWVzhMjIycHd3Jz09HTc3N7XjCCFElaPX6yksLFQ7hjAztra2t215Ks/nt8W0QAkhhBBlVXxRkBCVxeom0hRCCCGEqGxSQAkhhBBClJMUUEIIIYQQ5SRjoCpB8bh8WdJFCCGEsBzFn9tlub5OCqhKkJmZCSCzkQshhBAWKDMzE3d399seI9MYVAKDwUBSUhKurq4VPolb8TIx586dkykS7kBeq7KT16rs5LUqO3mtyk5eq7KrzNdKURQyMzMJCAhAq739KCdpgaoEWq2WmjVrVupjuLm5yX+yMpLXquzktSo7ea3KTl6rspPXquwq67W6U8tTMRlELoQQQghRTlJACSGEEEKUkxRQFsbe3p6pU6dib2+vdhSzJ69V2clrVXbyWpWdvFZlJ69V2ZnLayWDyIUQQgghyklaoIQQQgghykkKKCGEEEKIcpICSgghhBCinKSAEkIIIYQoJymgLMQ777xD27ZtcXJywsPDo9RjNBrNTV/Lli27v0HNRFler8TERHr37o2TkxM+Pj5MnDiRoqKi+xvUDNWpU+em99F7772ndiyzsWDBAurUqYODgwNRUVHs2rVL7UhmZ9q0aTe9hxo0aKB2LLOwZcsWHn74YQICAtBoNKxatarEfkVRmDJlCv7+/jg6OtKtWzdOnTqlTliV3em1Gjly5E3vs549e963fFJAWYiCggIee+wxxowZc9vjFi1axMWLF01fffv2vT8BzcydXi+9Xk/v3r0pKChg+/btLFmyhMWLFzNlypT7nNQ8zZgxo8T76IUXXlA7kln44YcfmDBhAlOnTmXfvn00a9aMHj16kJqaqnY0s9OoUaMS76GtW7eqHcksZGdn06xZMxYsWFDq/vfff5+PPvqIhQsXsnPnTpydnenRowd5eXn3Oan67vRaAfTs2bPE+2zp0qX3L6AiLMqiRYsUd3f3UvcBys8//3xf85i7W71ea9euVbRarZKcnGza9umnnypubm5Kfn7+fUxofgIDA5UPPvhA7RhmqVWrVsrYsWNNP+v1eiUgIECZNWuWiqnMz9SpU5VmzZqpHcPs/fN3tsFgUPz8/JTZs2ebtqWlpSn29vbK0qVLVUhoPkr7fBsxYoTy6KOPqpJHURRFWqCszNixY/Hy8qJVq1Z8/fXXKDLNV6liYmJo0qQJvr6+pm09evQgIyODI0eOqJjMPLz33ntUr16diIgIZs+eLV2bGFs19+7dS7du3UzbtFot3bp1IyYmRsVk5unUqVMEBAQQFBTE0KFDSUxMVDuS2UtISCA5ObnEe8zd3Z2oqCh5j93C5s2b8fHxITQ0lDFjxnDlypX79tiymLAVmTFjBl26dMHJyYkNGzbwr3/9i6ysLF588UW1o5md5OTkEsUTYPo5OTlZjUhm48UXX6R58+Z4enqyfft2Jk+ezMWLF5k3b57a0VR1+fJl9Hp9qe+b48ePq5TKPEVFRbF48WJCQ0O5ePEi06dPp0OHDhw+fBhXV1e145mt4t89pb3HqvrvpdL07NmT/v37U7duXU6fPs2///1vevXqRUxMDDqdrtIfXwooFb3++uv85z//ue0xx44dK/Pgy7feest0OyIiguzsbGbPnm01BVRFv15VSXleuwkTJpi2NW3aFDs7O0aPHs2sWbNUXzpBWIZevXqZbjdt2pSoqCgCAwNZvnw5o0aNUjGZsCaPP/646XaTJk1o2rQp9erVY/PmzXTt2rXSH18KKBW98sorjBw58rbHBAUF3fX5o6KimDlzJvn5+VbxwVeRr5efn99NV0+lpKSY9lmbe3ntoqKiKCoq4syZM4SGhlZCOsvg5eWFTqczvU+KpaSkWOV7piJ5eHgQEhJCXFyc2lHMWvH7KCUlBX9/f9P2lJQUwsPDVUplOYKCgvDy8iIuLk4KKGvn7e2Nt7d3pZ0/NjaWatWqWUXxBBX7erVp04Z33nmH1NRUfHx8AIiOjsbNzY2wsLAKeQxzci+vXWxsLFqt1vQ6VVV2dnZERkayceNG09WtBoOBjRs3Mm7cOHXDmbmsrCxOnz7NsGHD1I5i1urWrYufnx8bN240FUwZGRns3LnzjldgCzh//jxXrlwpUXxWJimgLERiYiJXr14lMTERvV5PbGwsAMHBwbi4uPDbb7+RkpJC69atcXBwIDo6mnfffZdXX31V3eAqudPr1b17d8LCwhg2bBjvv/8+ycnJvPnmm4wdO9ZqCs67ERMTw86dO+ncuTOurq7ExMTw8ssv8+STT1KtWjW146luwoQJjBgxghYtWtCqVSs+/PBDsrOzeeqpp9SOZlZeffVVHn74YQIDA0lKSmLq1KnodDqGDBmidjTVZWVllWiJS0hIIDY2Fk9PT2rXrs348eN5++23qV+/PnXr1uWtt94iICCgSk5Jc7vXytPTk+nTpzNgwAD8/r+9+welf4/jOP65v3IQsfibYlFS5AxiNCgysRlNJqPYrEYpA7vVKBai1EnJIJOilLLYEfG+w61bt3u7fIZ7P4bHo85yplff4fTsc873e7q60t3dXVpdXU39/f1penr6/xlY7P4/siwsLERK6W+vk5OTiIg4PDyMarUazc3N0dTUFCMjI7GzsxMfHx9lhxfy1fWKiLi/v4+ZmZlobGyMtra2WF5ejvf393Kjf4DLy8sYHx+P1tbWaGhoiMHBwVhfX4/X19fS036Mra2t6O3tjUqlEmNjY3F+fl560o8zPz8f3d3dUalUoqenJ+bn5+P29rb0rB/h5OTkHz+bFhYWIuKPRxmsra1FZ2dn1NfXx+TkZNzc3JQdXci/Xavn5+eYmpqK9vb2qKuri76+vlhcXPzLo2n+a79FuM8dACCH50ABAGQSUAAAmQQUAEAmAQUAkElAAQBkElAAAJkEFABAJgEFAJBJQAEAZBJQAACZBBTAF56enlJXV1daX1//871arZYqlUo6Pj4uuAwoxX/hAXzDwcFBmpubS7VaLQ0MDKRqtZpmZ2fTxsZG6WlAAQIK4JuWlpbS0dFRGh0dTdfX1+ni4iLV19eXngUUIKAAvunl5SUNDQ2lh4eHdHl5mYaHh0tPAgrxGyiAb7q7u0uPj4/p8/Mz3d/fl54DFOQECuAb3t7e0tjYWKpWq2lgYCBtbm6m6+vr1NHRUXoaUICAAviGlZWVtLe3l66urlJzc3OamJhIra2taX9/v/Q0oABf4QF84fT0NG1ubqbd3d3U0tKSfv36lXZ3d9PZ2Vna3t4uPQ8owAkUAEAmJ1AAAJkEFABAJgEFAJBJQAEAZBJQAACZBBQAQCYBBQCQSUABAGQSUAAAmQQUAEAmAQUAkElAAQBk+h1IVbq4airiIAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDZElEQVR4nOzdeVxU1f/H8dfMsO+ygyKIKIobiolrrommlaVpZaVmaWaLmZa2qOm3rGwvy2xRW9yz+lXmkllm4r7vICgqmxv7PnN/f4xMEqigwJ0ZPs/HYx7AvXfuvGcYnQ/nnHuORlEUBSGEEEIIUWlatQMIIYQQQlgaKaCEEEIIIapICighhBBCiCqSAkoIIYQQooqkgBJCCCGEqCIpoIQQQgghqkgKKCGEEEKIKpICSgghhBCiiqSAEkIIIYSoIimghLhs4cKFaDQaTp48qXaUCo0cOZKQkJBaeazly5fj6elJTk5OrTyetTh58iQajYaFCxeqHaXW9ejRgx49eqjy2PPmzaNhw4YUFhaq8viibpICSoga8Prrr9OxY0d8fHxwcHCgSZMmTJgwgXPnzqkd7br0ej3Tp0/nqaeewsXF5YbOUVhYyAsvvEBgYCCOjo5ER0ezfv36ak4qbtTq1auZMWOG2jEAyMvLY8aMGfz55583fI6RI0dSVFTEZ599Vn3BrnDixAkcHBzQaDTs3Lmz3P6MjAzGjBmDj48Pzs7O9OzZk927d9dIFmE+pIAS4rKHHnqI/Px8goODb/pcu3btIjIykpdeeom5c+dy1113sWDBAjp37kxubm41pK05P//8M8eOHWPMmDE3fI6RI0fy7rvvMnz4cD744AN0Oh233347mzdvrsak5ic4OJj8/HweeughtaNc0+rVq3n11VfVjgEYC6hXX331pgooBwcHRowYwbvvvktNLO/67LPPYmNjU+E+g8HAgAEDWLx4MU8++SRvvfUW6enp9OjRg7i4uGrPIsyIIoSoFStXrlQAZcmSJTd0/xEjRijBwcHVG6oCd955p9K1a9cbvv+2bdsUQJkzZ45pW35+vtK4cWOlU6dO1RHR7BQXFyuFhYVqx6i08ePHK9X933/37t2V7t27V/l+586dUwBl+vTpN/X4O3fuVABlw4YNN3We/1qzZo1iZ2envPzyywqg7Nixo8z+ZcuWKYCyYsUK07b09HTFw8NDuf/++6s1izAv0gIlxGU1PQaqdPxSRkZGtZ3TYDDw/vvv06JFCxwcHPDz82Ps2LFcunSp3GMPHDiQzZs306FDBxwcHAgNDeXrr78uc1xBQQFr1qyhT58+ZbZfa2yPRqMp0x20cuVKdDpdmRYsBwcHRo8eTWxsLKdPn77u89q2bRv9+vXD3d0dJycnunfvzj///GPaf+TIERwdHXn44YfL3G/z5s3odDpeeOGFcs993bp1REZG4uDgQEREBKtWrSr3uBkZGUyYMIGgoCDs7e0JCwvjzTffxGAwlHst3n77bd5//30aN26Mvb09hw8frvB1GjlyJC4uLiQlJTFw4EBcXFyoX78+c+fOBeDAgQP06tULZ2dngoODWbx48U3nmj9/vinXLbfcwo4dO8rkKX1sjUZjulVF6fkdHR3p0KEDf//9d7ljioqKmDZtGlFRUbi7u+Ps7Ey3bt3YuHFjmcw+Pj4AvPrqq6Yspe+n/fv3M3LkSEJDQ3FwcMDf359HHnmECxculHu8qKgoPD09+emnn6r0XK6luLiYZ555hmeeeYbGjRtXeMzKlSvx8/PjnnvuMW3z8fFh6NCh/PTTTzIuy4pV3CYphAAgJyeHgoKC6x5na2uLu7t7mW2KonDhwgVKSkqIi4tjypQp6HS6ah1oO3bsWBYuXMioUaN4+umnSUxM5OOPP2bPnj38888/2Nramo6Nj49nyJAhjB49mhEjRvDVV18xcuRIoqKiaNGiBWDseiwqKqJdu3Y3nGnPnj00bdoUNze3Mts7dOgAwN69ewkKCrrq/f/44w/69+9PVFQU06dPR6vVsmDBAnr16sXff/9Nhw4daN68ObNmzWLy5MkMGTKEO++8k9zcXEaOHEmzZs2YOXNmmXPGxcUxbNgwHn/8cUaMGMGCBQu49957WbNmDbfddhtg7Erq3r07Z8+eZezYsTRs2JAtW7YwdepUUlJSeP/998ucc8GCBRQUFDBmzBjs7e3x9PQsU9BcSa/X079/f2699VbeeustvvvuO5588kmcnZ156aWXGD58OPfccw/z5s3j4YcfplOnTjRq1OiGci1evJjs7GzGjh2LRqPhrbfe4p577iEhIQFbW1vGjh1LcnIy69ev55tvvrnu7/O/vvzyS8aOHUvnzp2ZMGECCQkJ3HnnnXh6epb5vWZlZfHFF19w//3389hjj5Gdnc2XX35JTEwM27dvJzIyEh8fHz799FPGjRvH3XffbSpCWrduDcD69etJSEhg1KhR+Pv7c+jQIebPn8+hQ4fYunVrucKvXbt2ZQptgMzMTIqLi6/7vBwcHMqN+Xv//fe5dOkSL7/8coUFNxjf7+3atUOrLdse0aFDB+bPn8/x48dp1arVdR9fWCC1m8CEMBcLFixQACUxMdG0bcSIEQpw3VtFXRcpKSlljmnQoIGybNmyG8733y68v//+WwGU7777rsxxa9asKbc9ODhYAZRNmzaZtqWnpyv29vbKc889Z9r2xRdfKIBy4MCBMudMTExUAGXBggXlcvGf7pcWLVoovXr1KnfcoUOHFECZN2/eVZ+jwWBQmjRposTExCgGg8G0PS8vT2nUqJFy2223mbbp9Xqla9euip+fn3L+/Hll/Pjxio2NTbkultLn/v3335u2ZWZmKgEBAUrbtm1N22bNmqU4Ozsrx48fL3P/KVOmKDqdTklKSirzWri5uSnp6enXfZ1K30Ovv/66adulS5cUR0dHRaPRKEuXLjVtP3r0aLnXs6q5vLy8lIsXL5qO++mnnxRA+fnnn03bbrQLr6ioSPH19VUiIyPLdFnOnz+/3L+DkpKSct2aly5dUvz8/JRHHnnEtO1aXXh5eXnlti1ZsqTce7nUmDFjFEdHxzLbunfvXql/wyNGjChzv5SUFMXV1VX57LPPFEX59/+H/76/nJ2dyzyfUr/++qsCKGvWrCm3T1gHaYES4hqef/55HnzwweseV69evXLbPD09Wb9+PQUFBezZs4dVq1ZV67QAK1aswN3dndtuu43z58+btkdFReHi4sLGjRt54IEHTNsjIiLo1q2b6WcfHx/Cw8NJSEgwbSvtGqno+VRWfn4+9vb25bY7ODiY9l/N3r17iYuL4+WXXy7XTdO7d2+++eYbDAYDWq0WrVbLwoULadOmDf3792fnzp28/PLLtG/fvtx5AwMDufvuu00/u7m58fDDD/Pmm2+SmpqKv78/K1asoFu3btSrV6/M69mnTx/eeOMNNm3axPDhw03bBw8ebOp+qoxHH33U9L2Hhwfh4eHEx8czdOhQ0/bw8HA8PDzK/E6qmmvYsGFlfn+lv/Mrz3mjdu7cSXp6OjNnzsTOzs60feTIkUyePLnMsTqdDp1OBxi7mjMyMjAYDLRv377SV6g5Ojqavi8oKCAnJ4eOHTsCsHv37jLvZzC+b/Pz88nLy8PJyQmAd955p1yXdkUCAwPL/PzCCy8QGhpa5vdWkZt5vwvLJgWUENcQERFBRETEDd3Xzs7ONJZo4MCB9O7dmy5duuDr68vAgQNvOltcXByZmZn4+vpWuD89Pb3Mzw0bNix3TL169Sr8cFFu4komR0fHCsd9lHaFXvmh+F+lVy2NGDHiqsdkZmaaCoTGjRszY8YMJk+eTMuWLXnllVcqvE9YWFi57p6mTZsCxnE4/v7+xMXFsX///qsWRf99PUu72CrDwcGh3Hnd3d1p0KBBuVzu7u5lfidVzfXf33Ppa1WZIuJ6Tp06BUCTJk3KbLe1tSU0NLTc8YsWLeKdd97h6NGjZbrRKvvaXbx4kVdffZWlS5eWe56ZmZnlji993175mkZFRVXqsa60detWvvnmGzZs2FCua+6/bub9LiybFFBCXENmZmal/oK0s7PD09Pzmsd07tyZgIAAvvvuu2opoAwGA76+vnz33XcV7v/vB25pa8B/XVkseXl5AcYP2wYNGpi2X22QsV6vL7ctICCAs2fPltuekpIClP9L/0qlY4jmzJlDZGRkhcf8d5zKunXrAEhOTubChQv4+/tf9fzXYjAYuO2223j++ecr3F9acJWqygfj1V77yvxOqpqrMuesDd9++y0jR45k0KBBTJ48GV9fX3Q6HbNnz+bEiROVOsfQoUPZsmULkydPJjIyEhcXFwwGA/369atwvNmlS5dwcnIq87u5ePEiRUVF130sR0dH0zjG559/nm7dutGoUSPTRSWlrX8pKSkkJSWZCtWAgADTe/tKlXm/C8smBZQQ1/DMM8+waNGi6x7XvXv3Ss1jU1BQUOFfzjeicePG/P7773Tp0qXa/spt1qwZAImJiWUGvpa2Yvz3CsLSFokrRUZGsnHjRrKyssoMJN+2bZtp/9WUXunk5uZW7krAisybN4/169fz2muvMXv2bMaOHVvhVVjx8fEoilKmEDx+/Djw79WRjRs3Jicnp1KPW5tqIldVr7orVTpHWlxcHL169TJtLy4uJjExkTZt2pi2rVy5ktDQUFatWlXm8aZPn16pLJcuXWLDhg28+uqrTJs2zbT9WnMrJSYm0rx58zLb7rnnHv7666/rPrcRI0aYrp5MSkri1KlTFbaU3Xnnnbi7u5v+LURGRvL333+bupZLbdu2DScnp3IFrrAeUkAJcQ03MgYqNzcXjUZjGoNR6vvvv+fSpUsVjtG5EUOHDuWTTz5h1qxZvP7662X2lZSUkJOTg4eHR5XOGRUVhZ2dHTt37uTOO+80bXdzc8Pb25tNmzYxYcIE0/ZPPvmk3DmGDBliupR+0qRJgHFm8gULFhAdHV3mSq2kpCTy8vJMhVtUVBSNGzfm7bff5oEHHijX2nTu3DlTy1piYiKTJ09m8ODBvPjii3h5efH444/z9ddfl5veIDk5mR9++MF0lVdWVhZff/01kZGRpharoUOHMmPGDNauXUtMTEyZ+2dkZODi4nLVyRRrUk3kcnZ2Nt2/Ku+R9u3b4+Pjw7x58xg1apRpHNTChQvLFdelLWFXFq7btm0jNja2TDdj6b+Ta93/Sv+96vBKu3fvLjMeDG5sDNT8+fPJy8srs/+PP/7go48+4u233za9X8H4fl+5ciWrVq1iyJAhgLG1asWKFdxxxx0Vjo8S1kEKKCGu4UbGQMXFxdGnTx+GDRtGs2bN0Gq17Ny5k2+//ZaQkBCeeeaZMseXtoBUdf6p7t27M3bsWGbPns3evXvp27cvtra2xMXFsWLFCj744APTf+iV5eDgQN++ffn999/LTQXw6KOP8sYbb/Doo4/Svn17Nm3aZGrFuVJ0dDT33nsvU6dOJT09nbCwMBYtWsTJkyf58ssvyxz78MMP89dff5k+JLVaLV988QX9+/enRYsWjBo1ivr163P27Fk2btyIm5sbP//8M4qi8Mgjj+Do6Minn34KGKd0+P7773nmmWfo06dPmQ/Epk2bMnr0aHbs2IGfnx9fffUVaWlpLFiwwHTM5MmT+b//+z8GDhxomt4hNzeXAwcOsHLlSk6ePIm3t3eVXs/qUBO5SscFPf3008TExKDT6bjvvvuuez9bW1v+97//MXbsWHr16sWwYcNITExkwYIF5cZADRw4kFWrVnH33XczYMAAEhMTmTdvHhEREWUupnB0dCQiIoJly5bRtGlTPD09admyJS1btjRN+1BcXEz9+vVZt24diYmJFWbbtWsXFy9e5K677qrwuVZF3759y20rLfC6d+9e5o+gIUOG0LFjR0aNGsXhw4fx9vbmk08+Qa/Xm81s76KGqHX5nxDmpqJpDG7EuXPnlDFjxijNmjVTnJ2dFTs7O6VJkybKhAkTlHPnzpU73tvbW+nYseN1z3u1mcjnz5+vREVFKY6Ojoqrq6vSqlUr5fnnn1eSk5NNxwQHBysDBgwod9+KZo9etWqVotFoTJfHl8rLy1NGjx6tuLu7K66ursrQoUOV9PT0Ci9Bz8/PVyZNmqT4+/sr9vb2yi233FLh5dyll5j/1549e5R77rlH8fLyUuzt7ZXg4GBl6NChplmmP/jgg3JTEyiKoiQlJSlubm7K7bffXu65r127VmndurVib2+vNGvWrMzM0aWys7OVqVOnKmFhYYqdnZ3i7e2tdO7cWXn77beVoqIiRVH+nS7gypnWS11tGgNnZ+cKn3uLFi3Kba/od3Wzuf77OyopKVGeeuopxcfHR9FoNFWe0uCTTz5RGjVqpNjb2yvt27dXNm3aVO69ZDAYlNdff10JDg5W7O3tlbZt2yq//PJLhe/jLVu2KFFRUYqdnV2ZrGfOnFHuvvtuxcPDQ3F3d1fuvfdeJTk5ucL33AsvvKA0bNiwzPQX1elq0xgoiqJcvHhRGT16tOLl5aU4OTkp3bt3r/A4YV00ilLLIwuFECaHDx+mRYsW/PLLLwwYMEDtOIBxYHhERARDhw5l1qxZase5aSEhIbRs2ZJffvlF7SiihhQWFhISEsKUKVPKtfAKUVNkKRchVLRx40Y6depkNsUTGMeezJw5k7lz51brvFVC1JQFCxZga2vL448/rnYUUYdIC5QQwqpJC1TlXO9yf51OV6WJQ4WwdjKIXAghxHUv9w8ODq6xhbaFsETSAiWEEIJdu3Zd83J/R0dHunTpUouJhDBvUkAJIYQQQlSRDCIXQgghhKgiGQNVAwwGA8nJybi6ut7wkglCCCGEqF2KopCdnU1gYOB1F5KWAqoGJCcnl1muQgghhBCW4/Tp02UWVK+IFFA1wNXVFTD+Aq5cTFUIIYQQ5isrK4ugoCDT5/i1SAFVA0q77dzc3KSAEkIIISxMZYbfyCByIYQQQogqkgJKCCGEEKKKpIASQgghhKgiKaCEEEIIIapICighhBBCiCqSAkoIIYQQooqkgBJCCCGEqCIpoIQQQgghqkgKKCGEEEKIKpICSgghhBCiiqSAEkIIIYSoIimghBBCCCGqyKIKqE2bNnHHHXcQGBiIRqPhxx9/LLNfURSmTZtGQEAAjo6O9OnTh7i4uDLHXLx4keHDh+Pm5oaHhwejR48mJyenzDH79++nW7duODg4EBQUxFtvvVXTT00IIYQQFsSiCqjc3FzatGnD3LlzK9z/1ltv8eGHHzJv3jy2bduGs7MzMTExFBQUmI4ZPnw4hw4dYv369fzyyy9s2rSJMWPGmPZnZWXRt29fgoOD2bVrF3PmzGHGjBnMnz+/xp+fEGpLTk5m8+bNJCcnqx1FCCHMmkZRFEXtEDdCo9Hwww8/MGjQIMDY+hQYGMhzzz3HpEmTAMjMzMTPz4+FCxdy3333ceTIESIiItixYwft27cHYM2aNdx+++2cOXOGwMBAPv30U1566SVSU1Oxs7MDYMqUKfz4448cPXq0UtmysrJwd3cnMzMTNze36n/yQtSQzZs3Ex8fT1hYGF27dlU7jhBC1KqqfH5bVAvUtSQmJpKamkqfPn1M29zd3YmOjiY2NhaA2NhYPDw8TMUTQJ8+fdBqtWzbts10zK233moqngBiYmI4duwYly5dqvCxCwsLycrKKnMTwhKFhoYSFhZGaGio2lGEEMKsWU0BlZqaCoCfn1+Z7X5+fqZ9qamp+Pr6ltlvY2ODp6dnmWMqOseVj/Ffs2fPxt3d3XQLCgq6+SckhAoCAwPp2rUrgYGBakcRQgizZqN2AGswdepUJk6caPo5KytLiihRqxRFIaewhPTsQtKzCjmXU0iJ3oBOq8FGq8VGp8HZzoZADwcCPRxxsNWpHVkIISya1RRQ/v7+AKSlpREQEGDanpaWRmRkpOmY9PT0MvcrKSnh4sWLpvv7+/uTlpZW5pjSn0uP+S97e3vs7e2r5XkIcT2KonA2I599SZc4cvIsJ86kkJKWhq44Bz06snEkW3EiB0fysAc05c7h62pPkKcTrRu40z7Yk6jgevi7O9T+kxFCiKo6Hw+XTkJwJ7BzVi2G1RRQjRo1wt/fnw0bNpgKpqysLLZt28a4ceMA6NSpExkZGezatYuoqCgA/vjjDwwGA9HR0aZjXnrpJYqLi7G1tQVg/fr1hIeHU69evdp/YkIAysVEzhyO5fSRHehTDxFUfJL+mnQGaC5fA6IFKqjhi7El2aY+p3UNOUEDduf7s6MohORsb9KzC9l16hIL/jkJQH0PR25t6k3/lgF0auyFrc5qeviFENZk32L4+x1ocz/cPU+1GBZ1FV5OTg7x8fEAtG3blnfffZeePXvi6elJw4YNefPNN3njjTdYtGgRjRo14pVXXmH//v0cPnwYBwfjX9f9+/cnLS2NefPmUVxczKhRo2jfvj2LFy8GjFfuhYeH07dvX1544QUOHjzII488wnvvvVdmuoNrkavwxE3Tl8DpbeQe/IXCQ7/imX/q6odqbVHs3NA6uqFV9FCQBYXZoOivep9Ct0ac9ezIVk1rVl0KZXeaHsMV/xN4ONnSN8KPO9oE0qWxN1pt+VYsIYRQxRd94MwOuOsTaDu8Wk9dlc9viyqg/vzzT3r27Flu+4gRI1i4cCGKojB9+nTmz59PRkYGXbt25ZNPPqFp06amYy9evMiTTz7Jzz//jFarZfDgwXz44Ye4uLiYjtm/fz/jx49nx44deHt789RTT/HCCy9UOqcUUOKGnTsG2+ej378SXWGGaXOxouMowWS5heMe0obGLaNxDGgOTp5gU0HTk6JAcR7kpMP543DuqPHcaYcg9UDZ4kprQ0njPhzzG8jSzAhWH77Ihdwi0+5Qb2ce7hTM4KgGuDrY1uCTF0KI6yjIgjdDjP+HTTgIHtU73thqCyhLIQWUqBKDAeLWwfbP4MQfps2XFBc2GiJJqNeV5t3upkfrMJztq6HXvSATEv+GhI2Q8CdciP93n4MHhpaDOeh7F8uTPflpTzLZhSUAONvpGBLVgDHdG1Pfw/HmcwghRFUdWwNLhoFnKDy9p9pPLwWUyqSAEpWiKHDk/+D3V+HiCQAMiobfDe34Wt8X5/CejOnRhKhgz5rNkX4U9i2B/csh+4oZyBt1p6DDU6y4FMairUnEpxuXPLLTaXkguiFP9GyMr6sMPBdC1KI1L8LWuRA1Eu74oNpPLwWUyqSAEtd1dhesfQmSjJO8ZuHMkpIefKO/jVYtWjMpJpzGPi7XOUk1M+ghcRPs+RYO/fBvN59/K5TOz/CP/a3M/SuR2IQLADjYahnROYRx3Rvj4WR3jRMLIUQ1+bQrpB2AIV9By8HVfnopoFQmBZS4qqxkWD8dDiwHoBB75pUM4LOSgQT5+TD9jgg6h3mrHBLISILYT2D3IuNYKgC/lnDbTLbQhjnrjrEnKQOAek62TOnfjHujgmSwuRCi5uRegDmXV0mYFAcuvtc+/gZIAaUyKaBEhQ6shF8nGscgAT8ptzK78F5yHfyY1Dec4dENsTG3qQPyLsKOLyD2Y1NuGvdCuW0mf1zy5c01RzmeZuzaa9fQg1mDWtIi0F3FwEIIq3XoR1gxAnwj4InYGnkIKaBUJgVU3ZKcnExCQgKhoaEVL4GSnwGrJ5tanU7aN+PJrAc5qITSIcST9+6LNP9B2XkXYdPbsH0+GIoBDbR7iOJer7Jwdwbv/36c3CI9Wg2M7NyIyTHhONrJbOdCiGr0y0TY+SVEPw7936yRh6iTiwkLoZaEhATi4+NJSEgovzPxb/i0CxxYjqLR8ZXNUPpkvsgRTWMmx4SzZExH8y+ewDhdQr/X4cnt0OJuQIHdX2P7aTSPee5lw8TuDGgdgEGBr/5JZMBHf7P3dIbaqYUQ1iRxk/Fro1vVzXGZtEDVAGmBqlsqbIFSFIidC+teBhTyXRoyOnsMWwpDaejpxIf3tyUyyEPN2Dfn1Bb4+RnjHFMATfvBgHf4M9WOF77fT1pWITqthvE9w3iqV5jMai6EuDlZyfBuc9Bo4flEcPSomYeRLjx1SQFVx+mL4dfnjAOwgbjAu7g78S5yFAeiG3ky78Eo6jlbwVVrJYXw97vGJRUMxWDnAv3eICN8KK/832F+3mecEqFVfXc+ur8tId7qrVklhLBw+5bCD2MhsC2M+bPGHka68IRQS95F+PYe2L0IRaPlt/rPcFvCUHIUB+6NasA3o6Oto3gC4wzoPafC45shKBqKcuD/nsTj18f4aFAIH97fFndHWw6czeSOjzaz9lCq2omFEJbKzLrvQAooIarPhRPGNZoSN6HYufBZ4GuMOxGNRqNhSv9mvDWkNXY2Zf/JJScns3nzZpKTk69yUgvg2wxG/QZ9ZoDWBg7/BJ924U73BNZOuJX2wfXILixh7De7eH31EUr0BrUTCyEsiaJIASWE1Uo/Cl/1g4snUNwb8Lr/B7xxIhgbrYaP72/H490bo9GUnyPpmgPQLYlWB12fhdHrwLMxZJ2FhQPx3/U2Sx69hUe7NgJg/qYEHvh8G+lZBSoHFkJYjEuJkHna+Adaw05qpzGRAkqIm5V+BBYNhNx0DH4tmezxHp8fd8RWp+HTB6MY0DrgqncNDQ0lLCyM0NDQWgxcg+pHwdhN0PZBQIFNc7BdOoyXe/nzyfB2uNjbsP3kRe78+B8Ons1UO60QwhKUtj41uAXszGcspRRQQtyMtMOwcCDknsPg35pn7Wey8lgxdjotnz0UxW0Rfte8e2BgIF27dq14/ihLZe8Cd82FwV+CjSOc2ADze3C79zn+78kuNPZxJjWrgHvnxbJOxkUJIa7H1H3XXd0c/yEFlBA3KvWgseUp7zxKQBsmOczkp+MF2Nlo+XxEe3o1u3bxdCWrGAv1X62GwKO/Q70QyDgFX/YlNGU1q57oQtcwb/KL9Yz9dhfzN51ALgYWQlTITMc/gRRQQtyYc8dg0R2QdwElIJLZ3m+w6mgedjotX45oT/emPlU6ndWMhfov/5bw2EYI6wMl+bDqMdw3z2LByCiGRzdEUeD11UeZuuqADC4XQpSXfhhyzxlbsxu0VztNGVJACVFVOenw3RDIvwiBbfky9H3m77iERgPvDmtDtyZVK57ACsdCXcnJEx5YDt0mGX/+5wNsVz3C/wY0ZvodEWg1sHTHaR7/djcFxXp1swohzEv8BuPXkK7GqVPMiBRQQlRFUS4sHgoZSVCvET+3/JD/bTB2u70yIIKBrW9sLJNVjoW6klYHvV+Bu+eD1hYO/4Tm6zsZ1caFeQ9GYWej5fcjaTz85XYy84vVTiuEMBcn/jB+bdxL3RwVkAJKiMrSl8DKRyB5Dzh6sr3L5zz7yxkAxtwayiOXL9UX19BmGDz8Izh4wJkd8EVv+vpm8c0jHXC9fIXesM9iZZoDIQQU5xuXjQIpoISwWIoCa16A42vAxoEzty/gkZ8vUmJQuLNNIFP6NVM7oeUI6fqfweW3EW2bwMf3NMbdXsPR1GwGz9tC0oU8tZMKIdR0agvoC8E1EHzC1U5TjhRQQlRG7FzY8QWgIf+OTxm5XkNOYQkdQjyZc29rtNryk2SKa/BuAo9uMM7rUpABX9+F18nfGFH/PL5OWk5fzGfY/FhOns9VO6kQQi1Xdt9VMBGx2qSAEuJ6Ev+G9a8AoPSdxcQDwcSn5+DnZs/Hw9tib6NTOaCFcvaGh38y/udYnEuLfa/Sw+kEz7YyEFzPnpTMAobNj+XEuRy1kwoh1HBio/FrmPl134EUUEJcW3aqcdyTYoA29zOvsD+/HUzFVqfhk+FR+Lo6qJ3Qstk5w/1LIWIQGkMxbeM/pOGZn3i+vR1N/VxIyyrk3k//Ydlvf1nXHFlCiGvLToX0Q4AGGvVQOUzFpIAS4mpKB43npoNvC/5p9iJz1h0DYMadLYgKrqdyQCthYw9DvoKokWgw0OXCMroWb2bJYx1p5u/KxbwSXt2cxV9749ROKoSoLaWtT4GR4OylapSrkQJKiKv5Yyac+gfsXEnrP58nVxzFoMDQ9g14oENDtdNZF60OBr5vXJAYcN/6Jl775rHksY409XEkT6/lrR0F0p0nhJU6ciKJX37f9G9LsxlPX1BKCighKnL0V/jnAwD0d37M0+uyuZRXTKv67sy8qyUaMxzQaPE0Gug9HbpPMf68fhr1dn/MinHdiAhw41J+CcM/38bpi3J1nhDWZtHmOJ78PZvpPx0Cg0EKKCEs0qVT8MM44/cdn2D++VZsS7yIk52Oj+5vi4OtDBqvMRoN9JwKPV8y/rzhVdx3vM83ozsQ5utCalYB93++lZTM/OueyirXFxTCSsVl2wDQItgH0g5A3nmwc4EGHVROdnVSQAlxJYMBfnwCCjOhQQcORDzHu+svj3u6owUh3s4qB6wjuj8PvacZv9/4P7x2vs/iR6MJ8XLizKV8hn++jfRs42SbVyuUrHZ9QSGsTE5hCftTjFOW3NWhyb+tTyHdwMZOxWTXJgWUEFfaNg9ObQZbZwrumMczKw5SrFfo39Kfe9s3UDtd3dLtOejzqvH7P1/Hd/+nfPdYR+p7OJJwPpeHvthOZl7xVQslq15fUAgrEnviAsV6hYaeToR4OVlE9x2AjdoBhDAb547Dhssf2DH/Y9aWPBLO5eLnZs/rd7eScU9q6DrB+PX36fD7DOrbOrH4sQe5d14sx9KyGb1oB2/dHgJQrlAKDAy03rUFhbAifx5LB6B7Ux80xXmQtNW4w8wLKGmBEgKMUxb8MBZKCqBxbzY43c5325IAeHdoJPWczbcZ2ep1nQDdXzB+/9vzBJ/6nkWPdMDVwYadpy7x2sYUOnbqLMWSEBZIURT+On4OgB7hPpeXbykC94bg1VjldNcmBZQQAJvfg+Td4OBOdr/3efHHgwA81q0RXcK8VQ4n6DEVOj9l/P7/nqb5ubV8OeIW7G20bDiazpRVB1AURd2MQogqSzify5lL+djptHRq7AXxG4w7Gvc0y+VbriQFlBAp++CvN4zf3/42b2zOJC2rkEbezjzX1/wWsKyTNBq4bRbc8iigwA9j6VCwhY8faIdOq2HlrjO8seao2imFEFX05zFj61OHRp442dlA3DrjjrA+KqaqHCmgRN2mL4Efx4OhBJrfwXaX3qauu9n3tJIpC8yJRgP950DkcFD0sPIRbnM8zux7WgHw2V8JLPwnUeWQQoiqKO2+697UBy6cgIsnQGtrbIEyc1JAibpt+2fGOUccPCiIeZspqw4AcH+HhnQMNc/lA+o0rRbu+BCaDQR9ISy5n6H1LzI5xthS+Oovh1l3KFXlkEKIysgv0rM14QJwefzT8bXGHcGdwd5VxWSVIwWUqLsyz8LG143f3/YqH2/LJOF8Lr6u9kzp30zdbOLqdDYw+EsI7gpF2fDtYJ5oreH+DkEoCjy9dA/7TmeonVIIcR1bEy9QVGIg0N2BMF+Xf7vvmvRVN1glSQEl6q61U6EoBxp04EjAIOb9dQKAmXe1xN3RVuVw4ppsHeD+xeDfCnLPofnmbmb18qZ7Ux8Kig2MXrRDlnwRwsz9dXn8U7i7ntSkeOPaowBNY1RMVXlSQIm6Ke53OPwTaHQYbn+HqT8cosRgnDCzX0t/tdOJynBwhwdXQb1GkHEKmyX3MndwGBEBbpzPKWLkgu1k5BWpnVIIcRWl45989ee5tOtH4/QF9ULAK0zVXJUlBZSoe4rzYfVzxu+jH+f75HrsPZ2Bi70Nr97ZQt1sompcfOGhH8DFD9IO4vLTKL56qA0B7g6cOJfLE9/tplhvUDulEOI/Tl3IJfF8Ljot9G4ZRHCRccksmsSY/fQFpaSAEnXP5vfg0klwDSCr0yTeXGP8h/tM7yb4ujmom01UnWcjeGA52DpDwp/4//U8X41oj7Odji0nLjD9/w7JHFFCmJnS1qf2wZ707dEV57OXu+8sZPwTSAEl6poLJ4wFFEC/2Xy0OZXzOYWE+jgzonOIqtHETQiMhKFfg0YH+5bQ/OjHfHBfWzQaWLwtiUVbTqqdUAhxhdLxT93DfSDtIGQng40jhHRVOVnlSQEl6pbfpxv72Rv3It67Dwv+OQnAtIER2NnIPweL1qQP3PG+8ftNb9Enfw1TL19NOfOXw6b1toQQ6ioo1vPPifMA9Gjq++/0BaHdjReIWAj5xBB1x6lYOPIzaLQofV/j1V8OU2JQ6NPclx7hvmqnE9Wh3cNw6/PG7395lscCEhjavgEGBZ5avIf49Gx18wkh2HLiPAXFxukLmge4Qtx64w4L6r4DKaBEXaEosO5l4/dtH+L3C178HXceO52WlwdEqJtNVK+eL0Kb+0HRo1kxitc66+jQyJPswhJGL9opV+YJobINR4ytwb2a+6LJvwRntht3SAElhBk69AOc3Qm2zhR2e4FZvxwGYHS3RoR4O6scTlQrjcY4W/nliTZtl93PZ3cH0aCeI6cu5PHUkj2UyJV5QqhCURT+OGosoHo384MTf4BiAN8I8AhSOV3VSAElrF9JIfw+w/h9l2f45mAhSRfz8HW1Z3xPy5hvRFSRjR0M+wY8G0NmEvV+GsEXD7TA0VbH33HneWvtMbUTClEnHU7JIiWzAEdbHZ0ae/07/snCWp9ACihRF2z/HDJOgYs/We3GMndjPAATb2uKi72NyuFEjXHyhOErwMEDzu6k2dYpvD3EuPDw/E0J/LjnrLr5hKiDSrvvujbxxkEHxP9u3CEFlBDqS05OZvPmzSQnJ0PeRdg0x7ij18vMj03jUl4xjX2cGRLVQN2gouZ5NYZh3xpXdz+0igEXFvJEj8YAvPD9fg6cyVQ5oBB1y4YjaQD0ae4Lp7dD/kXjqgJB0SonqzopoITVSUhIID4+noSEBPj7HSjIAN8WpIfew5ebEwGYHNMMG528/euERt3KTG8wKfAgPcN9KCwxMPabnZzPKVQ1nhB1RXp2Afsu/9HSM9wXjv5i3NEkxrhIuIWRTxBhdUJDQwkLCyPMz9nYfQdw20w+2JhAfrGetg09iGnhp25IUbvaPgidnwZA+3/j+agHhHo7k5xZwFOLZVC5ELVh4+XB420auOPrag9HfzXuaDZAxVQ3TgooYXUCAwPp2rUr/nGLQV8IDTuR4B7N0h2nAXihXzM0FrLWkrhxZbpyAfrMMI6zKCnAZdUIvrinAU52OmITLjBnnQwqF6Km/X55/FPv5n5w7ihcSgSdHYT1VjnZjZECSlinzLOwa6Hx+x5TeWd9HHqDQs9wHzqGeqkaTdSOMl25AFodDP4CvMMhO5nQDWN5527jTOWf/ZXAbwdSVEwrhHUrKNazOc44+3ivZr7/tj6F9gB7V/WC3QQpoIR12vyuccmW4C7st23NrwdS0Gjg+X7N1E4maklpV25oaOi/Gx3c4f4lpivz+ifO5rGuIQBMWrFPZioXoobEJlwgv1hPgLsDLQLdLL77DqSAEtYo4zTs/tr4fc8Xeff3OADujqxP8wA3FYOJ2lTalRsYGFh2h1djGLrIuPDw/qVM8fidjqGe5BbpGfvNLnIKS9QJLIQVK736rlczXzTZKZC8G9BA0/7qBrsJUkAJ6/P3O8bWp5Bu7NW15M9j59BpNTzdu4nayYS5CO0B/WYDoNswg886Z+Hv5sCJc7m88P1+FEVRN58QVkRRFP4wjX/yhWOrjTsa3AKulntBjxRQwrpkJMGeb43f93yRDzcYW5/uigyUJVtEWR3GQOSDoBhw/2UMX9zpjY1Ww6/7U1i05aTa6YSwGodTskjOLMDBVkvnxt5XdN/drm6wmyQFlLAum94GQzE06s4BXQv+OJqOVgNP9ZLWJ/EfGg0MeAfqR0FBBi03jWN6vxAAXlt9hN1Jl9TNJ4SVWHvI2H3XvakPDvocSPzbuKPZQBVT3TwpoIT1uHQK9n4HwD6vgbz56wEA7oqsTyNpfRIVsXUwzlTu7Avph3gw7S0GtPSnWK8w/rvdXMwtUjuhEBZv7cFUAGJa+EPceuMfuV5NwNuy/7C1qgJqxowZaDSaMrdmzf696qqgoIDx48fj5eWFi4sLgwcPJi0trcw5kpKSGDBgAE5OTvj6+jJ58mRKSmRQqUXY8hEYSrjkGcnqM05sTsxEq4Ene8mCweIa3AKNCw9rbdEc+oF3628k1NuZlMwCnlm6B71BxkMJcaMSz+dyLC0bG62G3s38/h3/ZMFX35WyqgIKoEWLFqSkpJhumzdvNu179tln+fnnn1mxYgV//fUXycnJ3HPPPab9er2eAQMGUFRUxJYtW1i0aBELFy5k2rRpajwVURW5501jn/SdnmFnvg8Ad7QJpLGPi5rJhCVo2BFufwsA+7/+x8Lu2TjYavk77jwf/xGvcjghLNfaQ8bWp06NvXC3U4wtUCAFlDmysbHB39/fdPP29gYgMzOTL7/8knfffZdevXoRFRXFggUL2LJlC1u3bgVg3bp1HD58mG+//ZbIyEj69+/PrFmzmDt3LkVF0pRv1rZ/DiX5ENiW9MDe7EorQaOBp6T1SVRW+0eg3cOAQsM/nuK9vp4AvL/hOFviz6ubTQgLVVpA9W3hDyf/hsIsY5d5/fYqJ7t5VldAxcXFERgYSGhoKMOHDycpKQmAXbt2UVxcTJ8+fUzHNmvWjIYNGxIbGwtAbGwsrVq1ws/v38sqY2JiyMrK4tChQ1d9zMLCQrKyssrcRC0qyoXt843fd3mGjzYaWwwGtg4kzNcyZ7gVKuk/BwLbQv4l+h+ezAPtfFAUeHrpXtKzC9ROJ4RFSc0sYE9SBhoNxET4/bt4cHh/0Fp++WH5z+AK0dHRLFy4kDVr1vDpp5+SmJhIt27dyM7OJjU1FTs7Ozw8PMrcx8/Pj9RUY4Wcmppapngq3V+672pmz56Nu7u76RYUFFS9T0xc255vIf8i1GtEgncv1lz+i0dan0SV2TrA0G/AyQtS9jHT5iua+jpzPqeQZ5ftlfFQQlTB+sPG/4vbBnng62ILR3427mh+p4qpqo9VFVD9+/fn3nvvpXXr1sTExLB69WoyMjJYvnx5jT7u1KlTyczMNN1Onz5do48nrqAvgS0fG7/v/BSf/5OEokDvZr409ZPWJ3EDPIJgyALQaLHZv4RvIw/jaKvjn/gLMh5KiCoo/WO2X0t/OPUP5J4zLqMU2l3dYNXEqgqo//Lw8KBp06bEx8fj7+9PUVERGRkZZY5JS0vD398fAH9//3JX5ZX+XHpMRezt7XFzcytzE7Xk8I+QmQRO3pxrPJjvd58BYGz3xurmEpYttDv0ng6A7+ZpfNJdD8AHG46z5YSMhxLiejLyitiacBG4PH3BoR+NO5oNBJ2tesGqkVUXUDk5OZw4cYKAgACioqKwtbVlw4YNpv3Hjh0jKSmJTp06AdCpUycOHDhAenq66Zj169fj5uZGRERErecX16Eo8M/7xu+jH2fRjjSKSgy0bejBLSH1VI0mrECXZyDiLjAU03P/ZEa2ccGgwDNL93Iuu1DtdEKYtd+PpKM3KDTzdyW4nsO/3XctBqmaqzpZVQE1adIk/vrrL06ePMmWLVu4++670el03H///bi7uzN69GgmTpzIxo0b2bVrF6NGjaJTp0507NgRgL59+xIREcFDDz3Evn37WLt2LS+//DLjx4/H3t5e5WcnyjnxB6QeAFtnctuM5JutpwAYe2soGo1G5XDC4mk0cNdc44R/WWd5pfAdmvk6ci67kInL92KQ8VBCXNWaKyfPTIqF3HRwcIdG1tF9B1ZWQJ05c4b777+f8PBwhg4dipeXF1u3bsXHxzgn0HvvvcfAgQMZPHgwt956K/7+/qxatcp0f51Oxy+//IJOp6NTp048+OCDPPzww8ycOVOtpySuZcuHxq9RI1h2MIfM/GIaeTtzW8TVu1uFqBJ7V+NM5bbO6E7+xXdhG03zQ322KUHtdEKYpdzCEv6OOwdcHv90ZfedjZ16waqZRpFlx6tdVlYW7u7uZGZmyniompJ+FD6JBo2W4if30OPzBM5m5PPa3S0ZHh2sdjphbQ6shO9HA7Ap6mMe/scTnVbD8rGdiAqW7mIhrrT6QApPfLebhp5O/PVcNzTvRUBOGjywApr2VTveNVXl89uqWqBEHVI671P47aw+bcvZjHy8XewY3K6BurmEdWo1BDqMBaDboZcY0UxBb1B4eskeMvOKVQ4nhHn59UAKYGx90pzeZiyeHNwhtIe6waqZFFDC8hRkwr6lACgdxjDvL2NXyohOITjY6tRMJqxZ3/9Bg1vQFGQyLe8NwurpOJuRzwvf70ca8oUwyisq4Y8jxguxBrQKMF4pDVbXfQdSQAlLtOc7KM4F3whiDREcScnC0VbHQ52k607UIBs7uHcROHmjSz/AsoY/YqvTsOZQKt9evoDhapKTk9m8eTPJycm1FFYIdWw4kk5+sZ6Gnk60ru8Kh//PuCNikKq5aoIUUMKyGAyw43Pj9x0eY+EW4wfX4Kj6eDhZ1183wgy514fBXwAavI4t4Ys2xwGY9esRjqZefQmnhIQE4uPjSUiQgefCuv2639h9N6B1wOXuu1Sr7L4DKaCEpYn/HS4mgL07Z4Lu5PcjxolOR3QKUTeXqDsa94QeUwG49fgbPNgoh6ISA08t3kN+kb7Cu4SGhhIWFkZoaGhtJhWiVuUUlrDxmLH7bmDrgH+vvgsfYHXddyAFlLA02z8zfm37IN/sOodBgW5NvGkiy7aI2nTrZGjcC01JPjMK3iTYxUBceg6zfj1c4eGBgYF07dqVwMDAWg4qRO35/XAahSUGQr2difB3gSOXu++saPLMK0kBJSzH+XhjCxQa8tuOYsn2JEBan4QKtFq453Nwq4/NpROsDFyMRqOweFsSv12+AkmIuuaX/cYxfgNbB6BJioXsFLC3zu47kAJKWJLSsU9N+vLDSXuyCkpo6OlEz2a+6uYSdZOzN9y7ELQ2+CStZn74HgBe+H4/Zy7lqZtNiFqWmV/MX8eNk2cObBMI+5cZd0TcCTbWuZKHFFDCMhRmw97FgHHqgkVbTgLwcKdgdFpZtkWoJKgD3GZcqaBP0gcM8U8nq6CECUv3UqI3qBxOiNqz/nAaxXqFJr4uNPWyg8M/GXe0HqpusBokBZSwDAdWQGEWeIURq2nNsbRsHG113Ns+SO1koq7r+AQ0G4jGUMwb+rcJtC9g56lLfPRHvNrJhKg1/3bfBULcOuN8fW71IbiryslqjhRQwjLsWmT8GjWKhVuMY58GR9XH3dFWxVBC8O+iw/VCsMk+w/cB3wAKH/0Rx/bEi2qnE6LGXcotYnPceQAGtgn4t/uu5WDjeEErZb3PTFiPlH2Qshe0tpwNvkumLhDmx9HDOMmmzo6A1I182HAzBgUmLJWlXoT1W3solRKDQvMANxq7lMDxtcYdVtx9B1JACUuw+2vj1+YD+fZALgYFuobJ1AXCzARGQr/ZANxxbj4DPU6RnFnA1B9kqRdh3X65PHnmwNYBxqkL9EXg0xz8WqqcrGZJASXMW1Ee7F8BQHGbh1mx8zQAD3ZsqGYqISrWfjS0HIxG0fOu9gN8tdmsPpDKsh2n1U4mRI1IyyrgnxPG7rs72wTC/uXGHa3vNXZvWzEpoIR5O/wTFGaCRzDrC8I5n1OEj6s9vZv7qZ1MiPI0GrjjA/Bqgl1eKiv9F6HBwIyfDxGfnqN2OiGq3U97z6IocEtIPYJ0l+DkZuOOVveqG6wWSAElzNvuy4PH2z3Ekh1nABjavgG2OnnrCjNl72qcH8rGgYYXt/CG7wYKig08s3QPhSUVL/UihKVatfssAIPa1oeDKwEFGnYGD+vvJZBPIWG+zh2HpFjQ6DgTfA9/x51Ho4H7brH+f5jCwvm3hNvnADA0exG9HeM4lJzF22uPqRxMiOpzJCWLo6nZ2Om0DGwVaBpuQWvrb30CKaCEOSttfWoaw3dHjFcydWviQ5Cnk4qhhKiktg9B6/vQKAY+sZ+LF5l8/ncimy7P1iyEpfthj7H1qVczX9yz4yDtAGhtIWKQusFqiRRQwjyVFMG+JQAUt3nQNHj8gQ7S+iQshEYDA98F73DsC9JZ5vMVWgw8t2IfF3IK1U4nxE3RGxR+2mssoO5uVx8OXB483uQ2cPJUMVntkQJKmKdjv0LeBXANYH1Ra87nFOHrak/v5rLunbAgds4wdBHYOhGWvYNp7qs5l13I8ytlagNh2WJPXCAtqxAPJ1t6NvGEfUuNO1oPUzdYLZICSpin0rmf2j7I4p3GJQKGtg+SwePC8vg2hwHvADCiaCndbI+w4Wg6X8eeUjmYEDdu1R7jRT0DWwdgd/JPyE4BR08I769usFokn0bC/GQlw4mNAJwJvofN8cbB48NukXXvhIWKfAAiH0SjGPjM8VO8yeS11Uc4lpqtdjIhqiyvqIQ1B1MBuLttfdjzjXFH62FgY69istolBZQwPwdWUHop7LfHjW/RW2XwuLB0t88Bn+Y4FZ3na4/PKCkp4ekleygolqkNhGVZdyiNvCI9wV5OtPPSw7HfjDvaPqhusFomBZQwL4pi6kvXtxrK97uNzcT3y+BxYcaSk5PZvHkzycnJVz/IzunyeChnIgr28oLTzxxLy+aN347WXlAhqsGqy1ffDYqsj+bACjAUQ2Bb4/QddYgUUMK8pB6A9MOgs+cf+66cyy7Ey9lOBo8Ls5aQkEB8fDwJCQnXPtAnHAa+B8AYw3I6aw+ycMtJ/jiaVgsphbh5aVkFbI4zTsVxd2Tgv913daz1CaSAEuam9EqO8P4sPZAFwF2R9WXwuDBroaGhhIWFERoaev2D2wyDtg+hQWG+06f4cIlJK/aTnlVQ80GFuEkrd53BoED74HqEFB0z/sFr4wAth6gdrdbJp5IwH/qSy+OfICd8CL8fTgdgSFQDNVMJcV2BgYF07dqVwMDAyt3h9jng2wKXkkt84TKPzNx8nluxD4NBpjYQ5stgUFh+eU6+YbcEwZ5vjTua3wGOHuoFU4kUUMJ8JGyE3HRw8uKHnGYU6Q1EBLgREeimdjIhqpeto3E8lJ0LbUoO8JzdKv6OO89X/ySqnUyIq9qWeJFTF/JwsbdhQHN3OLDSuKMOdt+BFFDCnJR237UcwvLdxjEh97aX1idhpbybwB0fADBO+yPdtPt5c81RDp7NVDmYEBVbtiMJgDsjA3E6sQYKs8C9IYTcqnIydUgBJcxDQRYc/QWAkw0GcuBsJrY6DXdF1lc5mBA1qNUQaP8IGhQ+cfgUT/0Fnl66h7yiErWTCVFGZl4xv12e+2lY+6ArBo8PB23dLCXq5rMW5ufI/0FJAXg35bskL8C4QKWns53KwYSoYTGzwb81roZM5jnO5dS5LGb9cljtVEKU8dO+sxSWGGjm70prp4uQuAnQGCeJraOkgBLm4Yq5n37YmwLAkCiZeVzUAbYOcO9CsHOlrXKESTbLWbL9NL8dSFE7mRAmS7cbB4/fd0sQml1fGTc27gUedXeOPimghPoykuDk3wBscerD+ZxCvF3s6BHuo3IwIWqJV2O462MAxtn8TC/tbqasOkByRr7KwYSAg2czOZyShZ2NlkEtPf+9+q7DY+oGU5kUUEJ9B783fg3uyndHDQDc4gvn0lJVDCVELWsxCKIfB+AD+3m45CczYdle9DK1gVDZ0suDx/u18McjcTXkXwL3IGjSV+Vk6pICSqjv4CoA8sIHseHyjMzBhtTrz+oshLW5bRbUj8JVyeFT+4/Yk5jO3I3xaqcSdVh+kZ6f9hiXKBp2SxDs+MK4o/0o0OpUTKY+KaCEui6cgNT9oNGx9GI4xXqFRh62dG3ZqHKzOgthTWzsjOOhHDxorYnnRZvveP/34+w8eVHtZKKOWn0ghezCEoI8HenkcBrO7gStLbR9WO1oqpMCSqjrcusTod1ZfjgPgOgAXdVmdRbCmng0hLs/A2CUzVr6abbyzNK9ZOYXqxxM1EVfbz0FwH23NES760vjxhaDwEXGqEoBJdR1yFhAXQodyNGLejTAfR0bq5tJCLWF94MuEwCYY/c5dpkJvPjDARRFxkOJ2rPvdAb7Tmdgp9NyfyvXf2cev+VRdYOZCSmghHrSjxoXotTasiqvHQAdGnkSGR6ibi4hzEGvV6BhZ5zJ51Pb99mw/6RpHTIhasPXscbWpwGtA/CM+x5K8sGvJQRFq5zMPEgBJdRzufWJxr1YcSgbgEFtZeZxIQDQ2cC9C8DZl2ba0/zPdgHT/+8g8enZaicTdcDF3CJ+3m8cPP5wxysGj98yGjQaFZOZDymghDoUxTT+KSWoP0dTs7HVaejf0l/lYEKYEVd/GPIlikbLEN0m7jT8wZOL91BQrFc7mbByy3eepqjEQKv67kSW7IeLJ8DOFVoNVTua2ZACSqgj7SBciAOdPUuzWgHQI9wXDydZukWIMhrdiqbXywDMsl2ILu0Ar68+UuGhycnJbN68meTk5NpMKKyM3qDwzeXuu4c6BaPZPt+4I/J+sHdRMZl5kQJKqONy65MS1oeVB7MAGCQLBwtRsS7PQtN+2FPMJ7bv82PsYdYeKj/RbEJCAvHx8TKHmrgpG4+mczYjHw8nW+5qkAfHfjPu6DBG3WBmRgooUfsUxTT+KcEvhrMZ+bjY29C7ua/KwYQwU1otDPoUPBoSrE3nHdt5vLBib7mlXkJDQwkLC5M51MRNKZ26YFj7IOx3zgMUaNofvJuoG8zMSAElal/yHrh0Emwc+fZiMwBiWvjjYFu3Z7UV4pqcPGHo1yg6O27T7eKB4lU8s3QPJXqD6ZDAwECZQ03clMTzuWw6fg6NBh5u4wJ7Fxt3dH5S3WBmSAooUfsutz7pm8Tww+FMAO6KlP/whbiuwLZobp8DwHM2y7FN+pv3f49TOZSwJqVjn3qG+1I/fgmUFEBAJAR3UTeYGZICStQuRYFDPwFw2LM3GXnFeLvY07mxl8rBhLAQ7UZA5IPoNAof2X7Eqj+3sTnuvNqphBXIzC9m2eWFg0d28IfSweOdn5KpCyogBZSoXSn7IDPJ2H13oSkAA1r5Y6OTt6IQlaLRwIC3wb81Xpps5tp+wOSlO0jPLlA7mbBwS7cnkVukJ9zPlW75f0DuOXBrABF3qR3NLMmnlqhdR38BQN+4N6uPGLvvBraR7jshqsTWEYZ9g+LgQVttPE8UfsGzy/aiN8hSL+LGFJUYWPDPSQAe7RqCZusnxh0dHwedrXrBzJgUUKJ2HTEWUEc9upNdWIKfmz1RDeupHEoIC1QvBM09n6Og4SGb3/FP+IFP/4xXO5WwUL/sTyY1qwBfV3sGuR6Gc0eNE2e2e1jtaGZLCihRe87Hw7kjoLVh8aXmAPRvGYBWK33rQtyQpn3RdH8BgNdtv2Tt72vZmnBB5VDC0iiKwvxNxrnDRnYJwXbb5danqBHg4K5iMvMmBZSoPUd/BsAQ3JX/O5YHGBepFEJUTZkZx7u/YJxkU1PMp7bv8crivziXXah2RGFBNsef52hqNk52Oh5qeAkS/wKNDqIfVzuaWZMCStSey913x+r1lO47IW5CmRnHtVq4+zMM9UJpoDnP9MK3eW7pLhkPJSqttPVp2C1BuG57z7ix1RDwCFIxlfmTAkrUjqxkOLsT0JjWvru9lXTfCXEjys047uiB9r7vMNg40lV3iM6nPuGjP2R+KHF9R1Ky+DvuPFoNjA3Ph2O/AhroNkntaGZPCihRO47+CoChfntWxZUAMKCVdN8JcSMqnHHcLwLtIOPYlcdtfiZu4zf8Ey/zQ4lr+/xvY+vT7a0C8N/7kXFji7vBp6mKqSyDFFCidhwxjn+K9+pFdmEJ/m4OtJPuOyGqV8t7jJMeAnNsPuOjJT+QliXzQ4mKnbmUx//tTQbgqVYlcNg4yTG3SutTZUgBJWpe3kU4uRmA5bltAOjfyl+674SoCb1noG/UAydNIXOK32TqtxspvmK9PCFKffrnCUoMCl3CvAg/Ph9QoNlA8GuhdjSLIAXUVcydO5eQkBAcHByIjo5m+/btakeyXMfXgKLH4BvB0ngbAAbK1XdC1AydDbp7F1DsFkyQ9hyjU2Yx57eDaqcSZiY5I5/lO08D8PwttnDwe+OOWyermMqySAFVgWXLljFx4kSmT5/O7t27adOmDTExMaSnp6sdzTJdvvou0bsnOYUlBLg70DZIuu+EqDFOntgOX0qJzokuukP4b32NNQdT1E4lzMhnf52gWK/QMdSTNolfgmKApv0gMFLtaBZDCqgKvPvuuzz22GOMGjWKiIgI5s2bh5OTE1999ZXa0SxPUS6c2ADAqvx2gEyeKUSt8IvAZvBnADxis4ZNKz4k4VyOyqGEOUjLKmDJDmPr0+QO9rBvqXHHrc+rmMrySAH1H0VFRezatYs+ffqYtmm1Wvr06UNsbGyF9yksLCQrK6vMTVwWvwFKClA8gvk60QUwjn8SQtSCiDsxdDN2yUxnPh8tWkx+kV7lUEJt8/46QVGJgVtC6tHu1Feg6KFxL2gQpXY0iyIF1H+cP38evV6Pn59fme1+fn6kpqZWeJ/Zs2fj7u5uugUFyeRjJsfXAHDWryfZBXq8Xezl6jshapG254sUNu6HvaaEF7P/x5vL1qMoMslmXZWeXcDibUkAvNBeg2bvd8YdPaaqmMoySQFVDaZOnUpmZqbpdvr0abUjmQeDAY6vBWBtcVsAbovwQyfdd0LUHq0W+6FfkOcRjo8mk3vjnuebTUfKHFJmaRhh1T7flEBhiYF2DT2Iiv/YOPYpfAAEdVA7msWRAuo/vL290el0pKWlldmelpaGv3/FXU/29va4ubmVuQkgeTfknUexd+PLJGOLXkwLv+vcSQhRXUyF0YVsnEauJN+2Hi20p/Dd8AxbT5wzHVdmaRhhtc7nFPLtVmPr08ttctAc/QU0Wug9TeVklkkKqP+ws7MjKiqKDRs2mLYZDAY2bNhAp06dVExmgS53310K6EZyjgFXexs6N/ZWOZQQdUeZwsijIQ4PLqFEY0s/7XYOfDuFlMx8oIKlYYRVmrsxnvxiPW3qu9H2+PvGjZEPgG8zVXNZKimgKjBx4kQ+//xzFi1axJEjRxg3bhy5ubmMGjVK7WiW5ZixgPpH2x6Ans18sbORt5wQteW/hZEmuBOGAe8D8JiyksVfvEthib7ipWGEVTl9MY9vt54C4PVWqWhObQEbBxn7dBNs1A5gjoYNG8a5c+eYNm0aqampREZGsmbNmnIDy8U1ZJ6BtAMoaPgitTEAMS3k6jshalNgYGC5osiu/YNkJR/CbfcnPJn1Hl8tDubxh4aj0dz42MTk5GQSEhIIDQ2VIsxMvbPuGMV6hVvD6tHi8GvGjR3GgHsDdYNZMGkOuIonn3ySU6dOUVhYyLZt24iOjlY7kmW5PHi8wC+KfRdtsLPR0iPcR+VQQggAt4H/43yD27DXFDP0xBR++GPzTZ1PxlCZt4NnM/nx8pp3r4cdhfRD4OAOXZ9VOZllkwJK1IzLBdQeR2Ph2S3MG2d7afAUwixodXg/vIh01+Z4abJps2kM2w/F3/DpZAyVeXtr7TEA7mnlTYM97xk3dn0WnDxVTGX5pIAS1a8oDxL/AuDbi80B6b4TwuzYOePz2A9csvGlsSYZ7YqHSErPuKFTyRgq87Ul/jybjp/DVqdhmtcfkJkEroHQYaza0SyeFFCi+iX+BSUFlLg2YHV6PbQa6N3cV+1UQoj/0LgF4DRqFXkaR9pzmGOfjyKnoFjtWKKaKIrCG2uOAjCurQMeuz407rhtJtg5qZjMOkgBJarf5ekLjrt3ATTcEuKJl4u9upmEEBWyr9+KgkELKEHLbcV/8Oe8CRgMMlO5Nfj1QAr7z2TibKdjfPFCKM6Dhp2h1RC1o1kFKaBE9VIU0/inH3JbAdJ9J4S582zTn7NdjFdmDcz4lnXfzFY5kbhZ+UV6Zq82tj692voC9sd+Mk6aeftbcBNXXIp/SQElqlfqfshOQbF14ptU4+WxfWX2cSHMXvBtT3AkfBwAtyW8xeZfvlY5kbgZn/51grMZ+QS52XBP6gfGjbc8Cv6t1A1mRaSAEtXrcutTildHChQ7mge40aCe9LULYQma3zebA753oNMoRO14jgNb16sdSdyApAt5zPvrBACfNduD9vwxcPKCni+qnMy6SAElqtfl8U9/GNoB0EcGjwthOTQaWjz2FQedo3HUFNFgzShOH9+rdipRRbN+PUxRiYHbG2lofmyucWPv6eBYT91gVkYKKFF9cs/D2d0AfJkWBkDv5tJ9J4Ql0draEfbESo7bNKUe2dguGUJG6km1Y4lK2ngsnfWH07DRanjDZTmawiwIbAttH1I7mtWRAkpUnxMbAYVcj2YkFrrh42pP6/ruaqcSQlSRg7Mbno/9QJImEH/lHNmfD6QgM13tWOI6Ckv0zPz5MACvtTiDW9wPlweOvwNa+bivbvKKiupzYgMAe+yjAOgV7otWK1d7CGGJvP0aUDJ8Fal4EaQ/TeonA9HnZ6kdS1zDl5sTSTyfSyOXEu5Nece4seMT0CBK3WBWSgooUT0MBog3FlArMpoCMnmmEJYuNKw5qXct5aLiSkjhMZLm3oVSnK92LFGBUxdy+WiDcTmeBYE/oc1JBc/G0OtllZNZLymgRPVIOwi56RhsnPgtMwQ7Gy1dm3irnUoIcZMi23bgYM8FZCuONMrZzanP7gO9zFZuTgwGhSnfHyC/WM9jgScJSfoe0MBdH4Oto9rxrJYUUKJ6xP8OQJJ7FEXY0rmxF052sniwENbg1h638Ve7DylUbAk5/ydnvnoY9CVqxxKXLd6eRGzCBbxsi3ih+BPjxg5jILizusGsnBRQonqc+AOA9UXGSdrk6jshrMuAO+/l+7DXKVJ0NDi7mtRvRoNBr3asOu9sRj6zVx8B4Nvg1dhknwGPhtB7msrJrJ8UUOLmFWZDUiwA355vAkDvZjL+SQhrotFouG/4Y3xdfwYlihb/kz9ybsnjxvGPQhWKojB11QFyi/SM9k+g+Znlxh13fgT2LuqGqwOkgBI3L3ETGErIcQrilOJHRIAbgR7S7y6EtdFqNYwY/STzfV5Er2jwiVvOxRVPGdfAFNUmOTmZzZs3k5ycfM3jVu46w6bj56hvk8mLhe8ZN97yKIT2qPmQQgooUQ0uX32301ZmHxfC2tnqtIwaM5G5HpMxKBo8j3xL1qoJ0hJVjRISEoiPjychIeGqx6Rk5jPrl8NoMbDM+yt0+RfAryX0fa0Wk9ZtUkCJm6MopgHkKy6FAzL+SQhr52inY+S453nf+RkMiga3AwvJ+X68jImqJqGhoYSFhREaGlrh/hK9gWeW7CWroISZnmtpkLEDbJ1gyAKwdajltHWXFFDi5lxMgIxTGLS2bCxqho+rPa1k9nEhrJ6bgy0PP/Eibzo8g17R4HJoMXnLx1R4dV5lu6SEUWBgIF27diUwMLDC/a//tIftJy/S1fY4w/O/M268/W3waVqLKUWVC6gRI0awadOmmsgiLNHl1qdTzq3Jw4Ge4T4y+7gQdYS3iz2jnpjKLIfnKFZ0OB1dSf7SkeXmiapMl5SonNgTF1iwPRUPsvnE/iM0igFaD4PIB9SOVudUuYDKzMykT58+NGnShNdff52zZ8/WRC5hKS6Pf1pX2BKAHuEy/kmIusTf3YEx4yYxzX4yRYoOx7ifKVg8HIoLTMdcr0tKVM6FnEImLNuDFj2LXD/FreSCcbbxAe+ARv5wrW1VLqB+/PFHzp49y7hx41i2bBkhISH079+flStXUlwss9PWKSWFcPJvAH7MboZOq6FLmMw+LkRdE+jhyPhxzzDVbioFii0OJ9ZStOhuyM8w7r9Ol5S4PkVRmLRiH2lZhbzpupw2xXvBxhHuXQj2rmrHq5NuaAyUj48PEydOZN++fWzbto2wsDAeeughAgMDefbZZ4mLi6vunMIcJcVCcR55dt4cURoSFVwPd0dbtVMJIVTQoJ4TE8aN5zm7V8hSHLE7s4WiL/tDVora0azCvL8S2HjsHA/abmRI8c/GjXfPg4DW6garw25qEHlKSgrr169n/fr16HQ6br/9dg4cOEBERATvvfdedWUU5urERgD22LYFNPQI91E3jxBCVUGeTkwZ9xjPOL5GuuKB3fnDFH9+G5yPVzuaRVt/OI231h6lo/YwM20WGDf2fBlaDFI1V11X5QKquLiY77//noEDBxIcHMyKFSuYMGECycnJLFq0iN9//53ly5czc+bMmsgrzEnCnwD8lG2cfbxHUxn/JERdF+TpxOxxw5no8iaJBj9ss09T8sVtcGaX2tEs0tHULCYs3UNDUvnK8UO0Sgm0HAK3TlI7Wp1X5dVeAwICMBgM3H///Wzfvp3IyMhyx/Ts2RMPD49qiCfMVt5FSNkHwJ9FLfBzs6d5gPTDCyGMA8s/GHc3T37uzNRLr9C6IBHDgv5o7/kMWtytdjyLcT6nkNELd2JblMFil/dwKsmC+u3hro9l0LgZqHIL1HvvvUdycjJz586tsHgC8PDwIDEx8WazCXN2cjOgcM4hhHTq0b2pDxr5By2EuMzLxZ55j/fjDd85/KGPRKsvhBUj4a+3ZOmXSigs0fP4N7vIyrjAMqe3qF9yGtzqw32LwVaWyjIHVS6gHnroIRwcZKbTOu9y993f+hZA+ekLZOI8IYS7oy2fP9aTbxq9wRcl/Y0bN74G3z8KxfnqhjNjBoPClO8PcPhUCl87zCHccAKcvOGhH8BVVnowFzITubgxiX8B8FtuODqthq5Nyk5fIBPnCSEAnO1t+HxENPFtX2RK8aMUKzo4uBJl4UDIlHkE/0tRFKb/3yFW70nkS7u3acsxcHCHh38En3C144krSAElqi7zDFyIx4CWrYYIooLr4eZQdvoCmThPCFHKRqdl9j2tqN/rcR4unkKG4ozm7E6Uz241Xc0rjMXTG78dZdnWeObZvkcn7WGwc4UHfwD/VmWOlVZ+9UkBJaouwdj6lGjXlGycKpy+QCbOE0JcSaPR8FTvJgwZ/AD3FL/GIUMwmrzzKN/cbRwXZTCoHbHGVLbY+XBDPF9vOsw82/foqdtnXCB4+ApoEFXuWGnlV1+Vr8ITorT7bl1Bc0CmLxBCVN7gqAbUr3cnj33rw1NFX3C/zUbjuKjT2+Ge+eDkqXbEalda7ABX/aPy800JLPp9J0vs3iJSm2CcZfy+xRDcqcLjS1v3pZVfPVJAiapRFNMA8k0lETJ9gRCiyjqGerHi6d6M+dqdXWlN+Z/NVzjEr0f5pBOau+ZCkz5qR6xW1yp2FEXhoz/iWfn733xv9waNtGng6AkPLIOgDlc9Z2BgoLTwq0y68ETVnDsGOWkUa+zYbWgi0xcIIW5IfQ9HVj7emaKW9zOoaBYnDAFoclLhu8Hwy0QoylU7YrW52pAGvUHh5R8Psv73NXxvN51G2jQUj4Ywet01iydhHqSAElVzuftuvzaCQuzoLt13Qogb5Gin44P7Ihlyewx3lcxmQUmMccfOL2FeVzi9Q92ANaigWM+4b3eRs2MxS+1m4aPJAv9WaEavB+8mascTlSAFlKiay9136wuaodFAlzAvdfMIISyaRqPh0W6hfDeuJwvdxzG8aCrJiidcTED5qi+sfh4KMtWOWa0u5RbxyOd/0ev4LD6w+wRnTSE07gUjV4Orv9rxRCVJASUqT19yeQZy2GxoSesGHng42akcSghhDdoEefDr093wa9OPfoVvsErfFY1igO2fwUftYf8Kq5jBfNepSzzx/hKmpT7NfTZ/oqCB7lNg+EpwcFM7nqgCGUQuKi95DxRmkat15bASwvj/TJ4phBA3w8XehneHRfJDU2+m/eTByqJbmWW7kMa5ybDqUdi9CPq/BX4RaketMkVR+GLTCU6t/4QvdN/irC2kxNEHm3u/hNDuascTN0BaoETlJf4JQKyhBQa0dA2TAkoIUf3ubtuADRO74x7Rh/6Fs3mreCiF2MHJv+HTzrBqLFy0nPVWM/KKmPX5EtpvGMb/bL7EWVNIScit2DzxjxRPFkxaoETlXZ5A88/i5jjb6WjbsJ7KgYQQ1srXzYFPH4xizcH6TPvJhf/L6cJUm+8YoNsO+5fCwZXQ7mG4dTK4mefl/Iqi8OuOI+T+NpOXDGvQaRWKdM7Y9nkJm+jHQatTO6K4CVJAicopLjBOdAf8Y2hJp6Ze2NlIA6YQomqSk5NJSEggNDS0UvMY9WvpT6fGXry77hjPbPPl05ITTLJdQQ/2wc6vYM930GoIRD8OAa1r4RlUTsLps2xdPoe+Wd/jrckCDWQ0vguPu94EtwC144lqIAWUqJyzO0FfyCWtJ4mKPyOblF++RQghrqcys3L/l7ujLa/e1ZIRnUN4c40vIw+F0kFzhOftltNefwz2fme8BXeB6LEQPgB0Nffxdq0i8GLaaY7++BatklfwgCYfNHDJMRiXez7Ao0nPGsskap8UUKJySq++K2kGaOgmA8iFEDfgZpYgCfVx4bOH2rPj5EVeX+3BkKRmtNPEMdJmLQN029Gd+gdO/QNOXtD8Tmh5j7GouomusoqKpXJFYEkR5w+s5ezf3xJ+YQOdNcWggbO2wTj0eA6vjg+AzvZaDyMskBRQonIuF1Cx+ubU93CkkbezyoGEEJaoOpYguSXEk1XjOhObcIH5m3x5+lhTXiu+yIM2v/OQ7UY88i7ArgXGm7MPNBsIIV2hYSdwr1+lx6qoxSw0NBRdSR5hNmdJ/24szgmr8dZn4Q2ggeM2TcnvOIE2ve4HrQx1sFYaRbGCiTXMTFZWFu7u7mRmZuLmZgXzehQXwJvBUFJAr8K36dA+mjcGm89YAyFE3XYsNZsv/k7gp73JGPRFdNQeYYB2KwNtd+KqZJc92L0hNOxonArBIxjqBYNHiHER4/8uS6UopJw6TvKx3QR7OeKtyUA5s5OCxG04ZMSh4d+Pz3OKO39rbkET1odBD4xFI4WTRarK57cUUDXA6gqok//Awtu5qPGgXf5c5j4QxYDWMghSCGFeMvOK+e1gCj/uPcu2xIvolBK6aA/RXbuPDjZxNCcRHYYK76vo7NCjQ2tjh9bGDrQ2KPkZaEryr/p4pw0+bNO25lzIHYS16oRj/vlKD44X5qkqn9/ShSeu79Q/APxT0gyNRiPLtwghalRVr9Qr5e5ky30dGnJfh4YkZ+Sz+kAKW04E8m5iFDkFJThRQFttHFGaOEK0qQRp0gnWnseXi2j0RcYPRH0+FBrPV9oelaU4ck7x4KzizX4llKPapng07UT3di25o6k39jYyHUFdJAWUuL6TfwOw1RBB6/rusnyLEKJG3ciVev8V6OHIo91CebRbKCV6A4eSs9iacIEjKaH8daEbX1/IJSOvGAB7ivAmExuNHhv+vWXhRJbOE1/PekQGeRDZ0IOeQR487ueKjU666Oo6KaDEtZUUmuZ/2mpoTn+ZvkAIUcNu5kq9itjotLQJ8qBNkEeZ7Rl5RSRnFFBYoqeoxEBhiYFivQE3R1u8XezxdrHDxd4GzX/HRgmBFFDies7uhpICLuDOCSWQrjJ9gRCihlXHlXqV4eFkV6ZFvbTrsH5oKIHenjX++MKySRukuDbT9AXNcLS1oZ0s3yKEsALJycls3ryZ5ORk07bSrsOEhAQVkwlLIS1Q4tpOGQuorYYIbmnsKcu3CCGswtXmd7ryqxDXIgWUuLqSIkjaBhjHP93bWK6+E0JYh4qKpdrqOhTWQQoocXXJu6EknwuKG/FKfbqEyfgnIYR1kGJJ3CzpjxFXd7K0+64Z7o52NA+wgklBhRBCiGpgVQVUSEgIGo2mzO2NN94oc8z+/fvp1q0bDg4OBAUF8dZbb5U7z4oVK2jWrBkODg60atWK1atX19ZTMC+XC6hthuZ0CvVCp5VLeYUQQgiwsgIKYObMmaSkpJhuTz31lGlfVlYWffv2JTg4mF27djFnzhxmzJjB/PnzTcds2bKF+++/n9GjR7Nnzx4GDRrEoEGDOHjwoBpPRz36YjhdOv4pQmYfF0IIIa5gdWOgXF1d8ff3r3Dfd999R1FREV999RV2dna0aNGCvXv38u677zJmzBgAPvjgA/r168fkyZMBmDVrFuvXr+fjjz9m3rx5tfY8VJe8B4rzuKi4EqfUp1NjGf8khBBClLK6Fqg33ngDLy8v2rZty5w5cygpKTHti42N5dZbb8XO7t+J02JiYjh27BiXLl0yHdOnT58y54yJiSE2NrZ2noC5uLz+3TZDM3zdHGns46xyICGEEMJ8WFUL1NNPP027du3w9PRky5YtTJ06lZSUFN59910AUlNTadSoUZn7+Pn5mfbVq1eP1NRU07Yrj0lNTb3q4xYWFlJYWGj6OSsrq7qeknpOGQvGHYZmdGnsLUsZCCGEEFcw+xaoKVOmlBsY/t/b0aNHAZg4cSI9evSgdevWPP7447zzzjt89NFHZYqbmjB79mzc3d1Nt6CgoBp9vBpnMMDprQDsMITTWaYvEEIIIcow+xao5557jpEjR17zmKvNGhsdHU1JSQknT54kPDwcf39/0tLSyhxT+nPpuKmrHXO1cVUAU6dOZeLEiaafs7KyLLuIOncUCjLJVew5rATTWSbQFEIIIcow+wLKx8cHHx+fG7rv3r170Wq1+Pr6AtCpUydeeukliouLsbW1BWD9+vWEh4dTr1490zEbNmxgwoQJpvOsX7+eTp06XfVx7O3tsbe3v6GMZinJ2H23xxBGQ283Aj0cVQ4khBBCmBez78KrrNjYWN5//3327dtHQkIC3333Hc8++ywPPvigqTh64IEHsLOzY/To0Rw6dIhly5bxwQcflGk9euaZZ1izZg3vvPMOR48eZcaMGezcuZMnn3xSradW+5JKu++aSeuTEEIIUQGzb4GqLHt7e5YuXcqMGTMoLCykUaNGPPvss2WKI3d3d9atW8f48eOJiorC29ubadOmmaYwAOjcuTOLFy/m5Zdf5sUXX6RJkyb8+OOPtGzZUo2npY7LLVA7lHCGy/QFQghBcnIyCQkJhIaGyhIwAgCNoiiK2iGsTVZWFu7u7mRmZuLmZmHLn2SchvdbUqJoaV34BZtfuQNPZ7vr308IIazY5s2biY+PJywsjK5du6odR9SQqnx+W00LlKgml2cfP6SEEBzgK8WTEELw78VKV7toSdQ9UkCJsi533+00hNMx1FPlMEIIYR4CAwOl606UYTWDyEU1uTyAfLshnI6hMoBcCCGEqIgUUOJf+RkoaYcA2K2EE91IWqCEEEKIikgBJf51ejsaFBIM/nj7B+HhJOOfhBBCiIpIASX+JeOfhBBCiEqRAkr8q3QCTSWc6EYy/kkIIYS4GimghFFJIcrZXYCxBUrGPwkhhBBXJwWUMEreg0ZfyDnFDXvfJtST+Z+EEEKIq5ICShhdOf5Jlm8RQgghrkkKKGF0efzTTpn/SQghhLguKaAEGAwYTAVUUzrI+CchhBDimqSAEnAhHm1BBvmKHSW+rWT9OyGEEOI6pIAScGY7APuVUG5p7KdyGCGEEML8SQEl4LSxgNpjaCITaAohhBCVIAWUoCTJWEDtNoTRQSbQFEIIIa5LCqi6riAT3fmjAGR6tZXxT0IIIUQlSAFV153dhQaFJIMP4WGN1U4jhBBCWAQpoOq60zsA2K00kekLhBBCiEqSAqqOKz61DYDdhiZ0CJECSgghhKgMKaDqMoMBzhhboFJdW+Hr5qByICGEEMIySAFVl12Iw7Y4i3zFjnqh7dROI4QQQlgMKaDqsEsH1gHGCTSjQn1VTiOEEEJYDimg6rD8uE2AcQJNGf8khBBCVJ4UUHWYa3Y8AHG24QR7OamcRgghhLAcUkDVVQWZuOQkAmAb0gmNRqNyICGEEMJySAFVV53ZaZpAs3mTMLXTCCGEEBZFCqg6Sl+6/p3ShFtk/JMQQghRJVJA1VF5CbEAHNY1I9zfVeU0QgghhGWRAqouMhiwS90FQJF/FDqtjH8SQgghqkIKqLro/HHsS3LIV+zwbxqldhohhBDC4kgBVQcpp43r3+1XQmkf6qdyGiGEEMLySAFVB2WdMBZQB2hCqwbuKqcRQgghLI8UUHWQ/rRx/FOmZxvsbXQqpxFCCCEsjxRQdU1RHu7ZcQC4NI5WOYwQQghhmaSAqmtS96NDT5riQfOmzdROI4QQQlgkKaDqmOwTWwHYZ2hM2+B6KqcRQgghLJMUUHVM9uUB5MnOLXB1sFU5jRBCCGGZpICqYxzT9wKg1G+nbhAhhBDCgkkBVZfknqdeUTIAvuEdVQ4jhBBCWC4poOqQwlM7AThhCKB1WLDKaYQQQgjLJQVUHZJ+9B8Ajtk0pUE9R5XTCCGEEJZLCqg6xHDGOIFmjlcbNBpZQFgIIYS4UVJA1RWKgmfGAQAcQjqoHEYIIYSwbFJA1RGGiydxNWRRqNgQ0kIKKCGEEOJmSAFVR6QdMY5/OkoIzYN8VE4jhBBCWDYpoOqIzHjjDOQpLhHY6uTXLoQQQtwM+SStI+zT9gJgCJAJNIUQQoibJQVUXaAvJiD/GACe4Z1UDiOEEEJYPimg6oBLp/bhQBFZihPNI9qqHUcIIYSweFJA1QHJh4wDyONtm+DubK9yGiGEEMLySQFVBxQn7QAg07O1ykmEEEII6yAFVB3gcdE4gaZ9sMz/JIQQQlQHKaCsXEFuFkElpwBo2LKLymmEEEII6yAFlJU7eWgrOo3COepRv2Go2nGEEEIIqyAFlJW7FL8dgLNOzWQBYSGEEKKaSAFl5bQpewEo8pUB5EIIIUR1sZgC6rXXXqNz5844OTnh4eFR4TFJSUkMGDAAJycnfH19mTx5MiUlJWWO+fPPP2nXrh329vaEhYWxcOHCcueZO3cuISEhODg4EB0dzfbt22vgGdUOn5yjALiF3qJyEiGEEMJ6WEwBVVRUxL333su4ceMq3K/X6xkwYABFRUVs2bKFRYsWsXDhQqZNm2Y6JjExkQEDBtCzZ0/27t3LhAkTePTRR1m7dq3pmGXLljFx4kSmT5/O7t27adOmDTExMaSnp9f4c6xuqefOE2w4A0DDlp1VTiOEEEJYD42iKIraIapi4cKFTJgwgYyMjDLbf/vtNwYOHEhycjJ+fn4AzJs3jxdeeIFz585hZ2fHCy+8wK+//srBgwdN97vvvvvIyMhgzZo1AERHR3PLLbfw8ccfA2AwGAgKCuKpp55iypQplcqYlZWFu7s7mZmZuLm5VcOzvjGxG3+h01/DOa/xwnt6gmo5hBBCCEtQlc9vi2mBup7Y2FhatWplKp4AYmJiyMrK4tChQ6Zj+vTpU+Z+MTExxMbGAsZWrl27dpU5RqvV0qdPH9MxliQrwTiB5jnX5ionEUIIIayLjdoBqktqamqZ4gkw/ZyamnrNY7KyssjPz+fSpUvo9foKjzl69OhVH7uwsJDCwkLTz1lZWTf1XKqLffo+AJSASHWDCCGEEFZG1RaoKVOmoNFornm7VuFiLmbPno27u7vpFhQUpHYkCkv0NCg4DoBnk2iV0wghhBDWRdUWqOeee46RI0de85jQ0MpN/ujv71/uarm0tDTTvtKvpduuPMbNzQ1HR0d0Oh06na7CY0rPUZGpU6cyceJE089ZWVmqF1FHTyXTimQA/MKlgBJCCCGqk6oFlI+PDz4+PtVyrk6dOvHaa6+Rnp6Or68vAOvXr8fNzY2IiAjTMatXry5zv/Xr19OpUycA7OzsiIqKYsOGDQwaNAgwDiLfsGEDTz755FUf297eHnt7+2p5HtXlzOHttNEoXNT54Onqd/07CCGEEKLSLGYQeVJSEnv37iUpKQm9Xs/evXvZu3cvOTk5APTt25eIiAgeeugh9u3bx9q1a3n55ZcZP368qbh5/PHHSUhI4Pnnn+fo0aN88sknLF++nGeffdb0OBMnTuTzzz9n0aJFHDlyhHHjxpGbm8uoUaNUed43Kj9pFwAZHhEqJxFCCCGsj8UMIp82bRqLFi0y/dy2bVsANm7cSI8ePdDpdPzyyy+MGzeOTp064ezszIgRI5g5c6bpPo0aNeLXX3/l2Wef5YMPPqBBgwZ88cUXxMTEmI4ZNmwY586dY9q0aaSmphIZGcmaNWvKDSw3d64XDgBg06CdykmEEEII62Nx80BZArXngUrPKiDr7baEaZPJH7oMx4h+tZ5BCCGEsDR1ch4o8a99J84QqkkBwLFhlMpphBBCCOsjBZQVSju2Ha1GIcPWF1yqZ5C+EEIIIf4lBZQVKjxlnIH8klszlZMIIYQQ1kkKKCtTrDfgk2OcfDTHqaHKaYQQQgjrJAWUlTmSkkULTSIA/i26qZxGCCGEsE5SQFmZgwlnaKw1DiD3adXnOkcLIYQQ4kZIAWVlQktOAJBt7w/O3iqnEUIIIayTFFBWpqPDaQBcG7VXOYkQQghhvaSAsjYp+4xfAyJVjSGEEEJYMymgrE3qfuPXgNbq5hBCCCGsmBRQ1qQoD84fN37vLwWUEEIIUVOkgLIm6YdBMYCzD7j6q51GCCGEsFpSQFmT0vFP/q1Bo1E3ixBCCGHFpICyJjL+SQghhKgVUkBZk5TLBZSMfxJCCCFqlBRQ1kJfYhwDBRDQRt0sQgghhJWTAspanD8OJQVg5wr1GqmdRgghhLBqUkBZi9LxT/4tQSu/ViGEEKImySettZDxT0IIIUStsVE7gKgmcgWeEEKY6PV6iouL1Y4hzIytrS06na5aziUFlDVQlCu68KSAEkLUXYqikJqaSkZGhtpRhJny8PDA398fzU3OlygFlDXIOAUFmaC1BZ9maqcRQgjVlBZPvr6+ODk53fSHpLAeiqKQl5dHeno6AAEBATd1PimgrEHqAeNX3+ZgY6duFiGEUIlerzcVT15eXmrHEWbI0dERgPT0dHx9fW+qO08GkVuDFBn/JIQQpWOenJycVE4izFnp++Nmx8hJAWUNTOOfZAJNIYSQbjtxLdX1/pACyhpIC5QQQli0Hj16MGHCBLVjAPDjjz8SFhaGTqdjwoQJLFy4EA8PD7VjmR0poCxd7nnITgY04NdS7TRCCCHM0J9//olGo6nU1Yljx45lyJAhnD59mlmzZjFs2DCOHz9u2j9jxgwiIyNrLqyFkEHkli5ln/GrV2Owd1E3ixBCCIuWk5NDeno6MTExBAYGmraXDr4W/5IWKEsn8z8JIYRVKCkp4cknn8Td3R1vb29eeeUVFEUx7S8sLGTSpEnUr18fZ2dnoqOj+fPPP037T506xR133EG9evVwdnamRYsWrF69mpMnT9KzZ08A6tWrh0ajYeTIkeUe/88//8TV1RWAXr16odFo+PPPP8t04S1cuJBXX32Vffv2odFo0Gg0LFy4sKZeErMmLVCWTsY/CSHEVSmKQn6xXpXHdrTVVWnA8qJFixg9ejTbt29n586djBkzhoYNG/LYY48B8OSTT3L48GGWLl1KYGAgP/zwA/369ePAgQM0adKE8ePHU1RUxKZNm3B2dubw4cO4uLgQFBTE999/z+DBgzl27Bhubm4Vtih17tyZY8eOER4ezvfff0/nzp3x9PTk5MmTpmOGDRvGwYMHWbNmDb///jsA7u7uN/dCWSgpoCydtEAJIcRV5RfriZi2VpXHPjwzBie7yn/MBgUF8d5776HRaAgPD+fAgQO89957PPbYYyQlJbFgwQKSkpJMXWuTJk1izZo1LFiwgNdff52kpCQGDx5Mq1atAAgNDTWd29PTEwBfX9+rDgi3s7PD19fXdLy/v3+5YxwdHXFxccHGxqbC/XWJFFCWrCgXLpwwfi8FlBBCWLSOHTuWabHq1KkT77zzDnq9ngMHDqDX62natGmZ+xQWFpomDX366acZN24c69ato0+fPgwePJjWreWzoaZIAWXJ0g4DCrj4gYuP2mmEEMLsONrqODwzRrXHri45OTnodDp27dpVbvZsFxfjBUSPPvooMTEx/Prrr6xbt47Zs2fzzjvv8NRTT1VbDvEvKaAsWdpB41eZvkAIISqk0Wiq1I2mpm3btpX5eevWrTRp0gSdTkfbtm3R6/Wkp6fTrVu3q54jKCiIxx9/nMcff5ypU6fy+eef89RTT2FnZ1zmS6+/+fFgdnZ21XIeSydX4Vmy0gLKXwooIYSwdElJSUycOJFjx46xZMkSPvroI5555hkAmjZtyvDhw3n44YdZtWoViYmJbN++ndmzZ/Prr78CMGHCBNauXUtiYiK7d+9m48aNNG/eHIDg4GA0Gg2//PIL586dIycn54ZzhoSEkJiYyN69ezl//jyFhYU3/+QtkBRQlixVWqCEEMJaPPzww+Tn59OhQwfGjx/PM888w5gxY0z7FyxYwMMPP8xzzz1HeHg4gwYNYseOHTRs2BAwti6NHz+e5s2b069fP5o2bconn3wCQP369Xn11VeZMmUKfn5+PPnkkzecc/DgwfTr14+ePXvi4+PDkiVLbu6JWyiNcuUkE6JaZGVl4e7uTmZmJm5ubjXzIIoCs4OgKBvGxYJfRM08jhBCWIiCggISExNp1KgRDg4OascRZupa75OqfH5LC5SlyjhlLJ50duDdRO00QgghRJ0iBZSlKu2+8wkHna26WYQQQog6RgooS5V2yPjVr5W6OYQQQog6SAooS5V2wPhVrsATQgghap0UUJbKdAVeC3VzCCGEEHWQFFCWqDAHLiUav5cuPCGEEKLWSQFlidIPG7+6BoCzl7pZhBBCiDpICihLlHp5/JN03wkhhBCqkALKEpmuwJMB5EIIIYQapICyRKY18GT8kxBCCHUsXLgQDw8PtWMwcuRIBg0aVOuPKwWUpTEYrmiBki48IYQQ5unkyZNoNBr27t1rlue7WVJAWZqMU1CUAzp78JIlXIQQoq4qKipSO0K1sNTnIQWUpSntvvNtBjobdbMIIYSoFtnZ2QwfPhxnZ2cCAgJ477336NGjBxMmTDAdExISwqxZs3j44Ydxc3NjzJgxAHz//fe0aNECe3t7QkJCeOedd8qcW6PR8OOPP5bZ5uHhwcKFC4F/W3ZWrVpFz549cXJyok2bNsTGxpa5z8KFC2nYsCFOTk7cfffdXLhw4ZrPqVGjRgC0bdsWjUZDjx49gH+73F577TUCAwMJDw+vVM6rna/U22+/TUBAAF5eXowfP57i4uJr5rtZ8glsaUwTaMoAciGEuC5FgeI8dR7b1gk0mkodOnHiRP755x/+7//+Dz8/P6ZNm8bu3buJjIwsc9zbb7/NtGnTmD59OgC7du1i6NChzJgxg2HDhrFlyxaeeOIJvLy8GDlyZJXivvTSS7z99ts0adKEl156ifvvv5/4+HhsbGzYtm0bo0ePZvbs2QwaNIg1a9aYMlzN9u3b6dChA7///jstWrTAzs7OtG/Dhg24ubmxfv36Sue71vk2btxIQEAAGzduJD4+nmHDhhEZGcljjz1WpdegKqSAsjRpUkAJIUSlFefB64HqPPaLyWDnfN3DsrOzWbRoEYsXL6Z3794ALFiwgMDA8rl79erFc889Z/p5+PDh9O7dm1deeQWApk2bcvjwYebMmVPlAmrSpEkMGDAAgFdffZUWLVoQHx9Ps2bN+OCDD+jXrx/PP/+86XG2bNnCmjVrrno+Hx8fALy8vPD39y+zz9nZmS+++KJMEXQ91zpfvXr1+Pjjj9HpdDRr1owBAwawYcOGGi2gpAvP0piuwJMCSgghrEFCQgLFxcV06NDBtM3d3d3UtXWl9u3bl/n5yJEjdOnSpcy2Ll26EBcXh16vr1KO1q1bm74PCAgAID093fQ40dHRZY7v1KlTlc5/pVatWlWpeLqeFi1aoNPpTD8HBASYstcUaYGyJAVZcOmk8XtpgRJCiOuzdTK2BKn12NXM2fn6LVr/pdFoUBSlzLaKxgfZ2tqWuQ+AwWCo8uNVRkXPo7I5K3Jl9tJz1VT2UlJAWZL0I8avroHg5KluFiGEsAQaTaW60dQUGhqKra0tO3bsoGHDhgBkZmZy/Phxbr311mvet3nz5vzzzz9ltv3zzz80bdrU1CLj4+NDSkqKaX9cXBx5eVUbF9a8eXO2bdtWZtvWrVuveZ/SFqbKtoRdL2dVz1fTpICyJGmXl3CR7jshhLAarq6ujBgxgsmTJ+Pp6Ymvry/Tp09Hq9WaWoKu5rnnnuOWW25h1qxZDBs2jNjYWD7++GM++eQT0zG9evXi448/plOnTuj1el544YVyLTbX8/TTT9OlSxfefvtt7rrrLtauXXvN8U8Avr6+ODo6smbNGho0aICDgwPu7u5XPf56Oat6vpomY6AsSUEm2DhK950QQliZd999l06dOjFw4ED69OlDly5daN68OQ4ODte8X7t27Vi+fDlLly6lZcuWTJs2jZkzZ5YZQP7OO+8QFBREt27deOCBB5g0aRJOTlXrXuzYsSOff/45H3zwAW3atGHdunW8/PLL17yPjY0NH374IZ999hmBgYHcdddd1zz+ejmrer4ap1iI//3vf0qnTp0UR0dHxd3dvcJjgHK3JUuWlDlm48aNStu2bRU7OzulcePGyoIFC8qd5+OPP1aCg4MVe3t7pUOHDsq2bduqlDUzM1MBlMzMzCrdr1L0JYpSmFP95xVCCAuXn5+vHD58WMnPz1c7yk3LyclR3N3dlS+++ELtKFbnWu+Tqnx+W0wLVFFREffeey/jxo275nELFiwgJSXFdLtyfZzExEQGDBhAz5492bt3LxMmTODRRx9l7dq1pmOWLVvGxIkTmT59Ort376ZNmzbExMTU+Gj+StPqzL4/XwghRNXs2bOHJUuWcOLECXbv3s3w4cMB1G9lEVdlMWOgXn31VQDTjKRX4+HhUW5+iFLz5s2jUaNGpllamzdvzubNm3nvvfeIiYkBjM2ojz32GKNGjTLd59dff+Wrr75iypQp1fRshBBCiLLefvttjh07hp2dHVFRUfz99994e3urHUtchcW0QFXW+PHj8fb2pkOHDnz11VdlLomMjY2lT58+ZY6PiYkxTVdfVFTErl27yhyj1Wrp06dPuSnthRBCiOrStm1bdu3aRU5ODhcvXmT9+vW0atVK7VjiGiymBaoyZs6cSa9evXBycmLdunU88cQT5OTk8PTTTwOQmpqKn59fmfv4+fmRlZVFfn4+ly5dQq/XV3jM0aNHr/q4hYWFFBYWmn7OysqqxmclhBBCCHOjagvUlClT0Gg017xdq3D5r1deeYUuXbrQtm1bXnjhBZ5//nnmzJlTg8/AaPbs2bi7u5tuQUFBNf6YQgghhFCPqi1Qzz333HXX6gkNDb3h80dHRzNr1iwKCwuxt7fH39+ftLS0MsekpaXh5uaGo6MjOp0OnU5X4TFXG1cFMHXqVCZOnGj6OSsrS4ooIYRQifKf2ayFuFJ1vT9ULaB8fHxMiwPWhL1791KvXj3s7e0B47o9q1evLnPM+vXrTev5lA7c27Bhg+nqPYPBwIYNG3jyySev+jj29vamxxBCCKGO0kkX8/LycHR0VDmNMFels5tXdTLR/7KYMVBJSUlcvHiRpKQk9Ho9e/fuBSAsLAwXFxd+/vln0tLS6NixIw4ODqxfv57XX3+dSZMmmc7x+OOP8/HHH/P888/zyCOP8Mcff7B8+XJ+/fVX0zETJ05kxIgRtG/fng4dOvD++++Tm5truipPCCGEedLpdHh4eJimnXFycrruTN6i7lAUhby8PNLT0/Hw8Ciz+PCNsJgCatq0aSxatMj0c9u2bQHYuHEjPXr0wNbWlrlz5/Lss8+iKAphYWGmKQlKNWrUiF9//ZVnn32WDz74gAYNGvDFF1+YpjAAGDZsGOfOnWPatGmkpqYSGRnJmjVryg0sF0IIYX5Kh1uYzdx9wuxca7qjqtAo0llc7bKysnB3dyczMxM3Nze14wghRJ2j1+spLi5WO4YwM7a2ttdsearK57fFtEAJIYQQlVV6UZAQNcXqJtIUQgghhKhpUkAJIYQQQlSRFFBCCCGEEFUkY6BqQOm4fFnSRQghhLAcpZ/blbm+TgqoGpCdnQ0gs5ELIYQQFig7Oxt3d/drHiPTGNQAg8FAcnIyrq6u1T6JW+kyMadPn5YpEq5DXqvKk9eq8uS1qjx5rSpPXqvKq8nXSlEUsrOzCQwMRKu99ignaYGqAVqtlgYNGtToY7i5uck/skqS16ry5LWqPHmtKk9eq8qT16ryauq1ul7LUykZRC6EEEIIUUVSQAkhhBBCVJEUUBbG3t6e6dOnY29vr3YUsyevVeXJa1V58lpVnrxWlSevVeWZy2slg8iFEEIIIapIWqCEEEIIIapICighhBBCiCqSAkoIIYQQooqkgBJCCCGEqCIpoCzEa6+9RufOnXFycsLDw6PCYzQaTbnb0qVLazeomajM65WUlMSAAQNwcnLC19eXyZMnU1JSUrtBzVBISEi599Ebb7yhdiyzMXfuXEJCQnBwcCA6Oprt27erHcnszJgxo9x7qFmzZmrHMgubNm3ijjvuIDAwEI1Gw48//lhmv6IoTJs2jYCAABwdHenTpw9xcXHqhFXZ9V6rkSNHlnuf9evXr9bySQFlIYqKirj33nsZN27cNY9bsGABKSkpptugQYNqJ6CZud7rpdfrGTBgAEVFRWzZsoVFixaxcOFCpk2bVstJzdPMmTPLvI+eeuoptSOZhWXLljFx4kSmT5/O7t27adOmDTExMaSnp6sdzey0aNGizHto8+bNakcyC7m5ubRp04a5c+dWuP+tt97iww8/ZN68eWzbtg1nZ2diYmIoKCio5aTqu95rBdCvX78y77MlS5bUXkBFWJQFCxYo7u7uFe4DlB9++KFW85i7q71eq1evVrRarZKammra9umnnypubm5KYWFhLSY0P8HBwcp7772ndgyz1KFDB2X8+PGmn/V6vRIYGKjMnj1bxVTmZ/r06UqbNm3UjmH2/vt/tsFgUPz9/ZU5c+aYtmVkZCj29vbKkiVLVEhoPir6fBsxYoRy1113qZJHURRFWqCszPjx4/H29qZDhw589dVXKDLNV4ViY2Np1aoVfn5+pm0xMTFkZWVx6NAhFZOZhzfeeAMvLy/atm3LnDlzpGsTY6vmrl276NOnj2mbVqulT58+xMbGqpjMPMXFxREYGEhoaCjDhw8nKSlJ7UhmLzExkdTU1DLvMXd3d6Kjo+U9dhV//vknvr6+hIeHM27cOC5cuFBrjy2LCVuRmTNn0qtXL5ycnFi3bh1PPPEEOTk5PP3002pHMzupqalliifA9HNqaqoakczG008/Tbt27fD09GTLli1MnTqVlJQU3n33XbWjqer8+fPo9foK3zdHjx5VKZV5io6OZuHChYSHh5OSksKrr75Kt27dOHjwIK6urmrHM1ul//dU9B6r6/8vVaRfv37cc889NGrUiBMnTvDiiy/Sv39/YmNj0el0Nf74UkCpaMqUKbz55pvXPObIkSOVHnz5yiuvmL5v27Ytubm5zJkzx2oKqOp+veqSqrx2EydONG1r3bo1dnZ2jB07ltmzZ6u+dIKwDP379zd937p1a6KjowkODmb58uWMHj1axWTCmtx3332m71u1akXr1q1p3Lgxf/75J717967xx5cCSkXPPfccI0eOvOYxoaGhN3z+6OhoZs2aRWFhoVV88FXn6+Xv71/u6qm0tDTTPmtzM69ddHQ0JSUlnDx5kvDw8BpIZxm8vb3R6XSm90mptLQ0q3zPVCcPDw+aNm1KfHy82lHMWun7KC0tjYCAANP2tLQ0IiMjVUplOUJDQ/H29iY+Pl4KKGvn4+ODj49PjZ1/79691KtXzyqKJ6je16tTp0689tprpKen4+vrC8D69etxc3MjIiKiWh7DnNzMa7d37160Wq3pdaqr7OzsiIqKYsOGDaarWw0GAxs2bODJJ59UN5yZy8nJ4cSJEzz00ENqRzFrjRo1wt/fnw0bNpgKpqysLLZt23bdK7AFnDlzhgsXLpQpPmuSFFAWIikpiYsXL5KUlIRer2fv3r0AhIWF4eLiws8//0xaWhodO3bEwcGB9evX8/rrrzNp0iR1g6vkeq9X3759iYiI4KGHHuKtt94iNTWVl19+mfHjx1tNwXkjYmNj2bZtGz179sTV1ZXY2FieffZZHnzwQerVq6d2PNVNnDiRESNG0L59ezp06MD7779Pbm4uo0aNUjuaWZk0aRJ33HEHwcHBJCcnM336dHQ6Hffff7/a0VSXk5NTpiUuMTGRvXv34unpScOGDZkwYQL/+9//aNKkCY0aNeKVV14hMDCwTk5Jc63XytPTk1dffZXBgwfj7+/PiRMneP755wkLCyMmJqZ2Aqp2/Z+okhEjRihAudvGjRsVRVGU3377TYmMjFRcXFwUZ2dnpU2bNsq8efMUvV6vbnCVXO/1UhRFOXnypNK/f3/F0dFR8fb2Vp577jmluLhYvdBmYNeuXUp0dLTi7u6uODg4KM2bN1def/11paCgQO1oZuOjjz5SGjZsqNjZ2SkdOnRQtm7dqnYkszNs2DAlICBAsbOzU+rXr68MGzZMiY+PVzuWWdi4cWOF/zeNGDFCURTjVAavvPKK4ufnp9jb2yu9e/dWjh07pm5olVzrtcrLy1P69u2r+Pj4KLa2tkpwcLDy2GOPlZmapqZpFEWucxdCCCGEqAqZB0oIIYQQooqkgBJCCCGEqCIpoIQQQgghqkgKKCGEEEKIKpICSgghhBCiiqSAEkIIIYSoIimghBBCCCGqSAooIYQQQogqkgJKCCGEEKKKpIASQgjx/+3dIcoyYRiG0QeDFtEm7mCKgkGsLkH3YXYLRpnmAqxGMSkIgkUMYhYEweICBIP87a+fb3rLOXHSHS+eGRggkYAC+MPr9Yp2ux2z2ez/s+PxGNVqNXa7XcZlQC7+hQfwg81mE+PxOI7HYxRFEb1eL0ajUczn89zTgAwEFMCPJpNJbLfb6Pf7cb1e43Q6Ra1Wyz0LyEBAAfzo/X5Hp9OJx+MR5/M5ut1u7klAJr6BAvjR7XaL5/MZ3+837vd77jlARi5QAD/4fD4xGAyi1+tFURRRlmVcr9dotVq5pwEZCCiAH0yn01itVnG5XKJer8dwOIxmsxnr9Tr3NCADr/AA/rDf76Msy1gul9FoNKJSqcRyuYzD4RCLxSL3PCADFygAgEQuUAAAiQQUAEAiAQUAkEhAAQAkElAAAIkEFABAIgEFAJBIQAEAJBJQAACJBBQAQCIBBQCQSEABACT6B5FSCP5WhrYUAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHHCAYAAABwaWYjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACB/klEQVR4nO3dd3hT1R/H8fdN2nQP6KRQRimUsnfZs1IUFBRZIgIiCILKUnGB4EBFGSrIz8Fwy1AcIDIEkb33LC0UKG1Z3Tu5vz9CI5UCLbTcJv2+nidPk5ubm09CaL4959xzFFVVVYQQQgghRKHptA4ghBBCCGFtpIASQgghhCgiKaCEEEIIIYpICighhBBCiCKSAkoIIYQQooikgBJCCCGEKCIpoIQQQgghikgKKCGEEEKIIpICSgghhBCiiKSAEuKahQsXoigKp0+f1jpKgTp06ECHDh3uyXO9//771KpVC5PJdE+ez1Zs2LABRVHYsGGD1lHuuapVqzJ48GBNnnvixImEhYVp8tyi7JICSogSlpiYiK+vL4qisHTpUq3j3FZycjLvvfceL730Ejrdnf2KSExMZPjw4fj4+ODi4kLHjh3Zs2dPMScVd+q7775j1qxZWscAIDY2ljfeeIN9+/bd8THGjBnD/v37+fXXX4stl6IoBV7efffdG/Y9f/48ffr0wdPTE3d3d3r06EFUVFSxZRGlk53WAYQoLQYOHEi/fv1wcHAo1uNOmjSJ9PT0Yj1mSZo/fz65ubn079//jh5vMpno1q0b+/fv54UXXsDb25u5c+fSoUMHdu/eTY0aNYo5cenRrl07MjIyMBgMWke5pe+++45Dhw4xZswYraMQGxvLlClTqFq1Kg0bNryjY/j7+9OjRw8++OADHnrooWLLdt999/HEE0/k29aoUaN8t1NTU+nYsSNJSUm88sor2NvbM3PmTNq3b8++ffvw8vIqtjyidJECSohr9Ho9er2+WI956NAhPv30UyZNmsSkSZOK9dglZcGCBTz00EM4Ojre0eOXLl3Kli1bWLJkCY8++igAffr0oWbNmkyePJnvvvuuOOOWCpmZmRgMBnQ63R2/b+Lu9OnTh969exMVFUVQUFCxHLNmzZo8/vjjt9xn7ty5nDx5kh07dtCsWTMA7r//furWrcuHH37IO++8UyxZROkjXXhCXFMSY6Cef/55Hn74Ydq2bVtsx7xeVlYWkydPJjg4GAcHBwIDA3nxxRfJysrKt5+iKIwePZrly5dTt25dHBwcqFOnDqtWrcq3X3R0NAcOHCA8PDzf9puN7Tl9+jSKorBw4ULLtqVLl+Ln58cjjzxi2ebj40OfPn345ZdfbshWkD/++IO2bdvi4uKCm5sb3bp14/Dhw5b7//rrL3Q63Q1F6XfffYeiKHz66ac3vPZvv/2WkJAQHB0dadKkCRs3brzhec+fP8+TTz6Jn5+f5T2aP39+ge/FDz/8wGuvvUbFihVxdnYmOTm5wPepQ4cO1K1blwMHDtC+fXucnZ0JDg62dOf+/fffhIWF4eTkREhICGvXrr2rXIsXL+btt9+mUqVKODo60rlzZyIjI/PlWbFiBWfOnLF0S1WtWvW2/yZ5VFXlrbfeolKlSjg7O9OxY8d8/zZ5rly5woQJE6hXrx6urq64u7tz//33s3///nyZ84qOIUOGWPLkfZ7++ecfevfuTeXKlS2f77Fjx5KRkXHD8+V9Zn/55ZdCv5bCyMjIIDMz86b3L126lGbNmlleB0CtWrXo3LkzixcvLtYsonSRFighbiE1NfWWvzzz2Nvb4+HhkW/bkiVL2LJlC0ePHi2Rgekmk4mHHnqITZs2MXz4cEJDQzl48CAzZ87kxIkTLF++PN/+mzZt4qeffuKZZ57Bzc2Njz76iF69ehETE2PpZtiyZQsAjRs3vuNce/fupXHjxjeMn2revDmfffYZJ06coF69ejd9/Ndff82gQYOIiIjgvffeIz09nU8//ZQ2bdqwd+9eqlatSqdOnXjmmWeYNm0aPXv2pHHjxly4cIFnn32W8PBwRowYke+Yf//9Nz/++CPPPfccDg4OzJ07l65du7Jjxw7q1q0LQHx8PC1atLAUXD4+Pvzxxx8MHTqU5OTkG7q73nzzTQwGAxMmTCArK+uW3XZXr16le/fu9OvXj969e/Ppp5/Sr18/vv32W8aMGcOIESN47LHHmD59Oo8++ihnz57Fzc3tjnK9++676HQ6JkyYQFJSEu+//z4DBgxg+/btALz66qskJSVx7tw5Zs6cCYCrq+vN/0H/Y9KkSbz11ls88MADPPDAA+zZs4cuXbqQnZ2db7+oqCiWL19O7969qVatGvHx8fzvf/+jffv2HDlyhICAAEJDQ5k6dSqTJk1i+PDhlj80WrVqBZj/D6WnpzNy5Ei8vLzYsWMHH3/8MefOnWPJkiX5ns/Dw4Pq1auzefNmxo4dm++9NxqNt31dzs7OODs759u2cOFC5s6di6qqhIaG8tprr/HYY49Z7jeZTBw4cIAnn3zyhuM1b96c1atXk5KSYvm3FDZGFUKoqqqqCxYsUAE1Ojrasm3QoEEqcNtL+/bt8x0rPT1drVy5svryyy+rqqqq69evVwF1yZIld5yvffv2+Z7n66+/VnU6nfrPP//k22/evHkqoG7evNmyDVANBoMaGRlp2bZ//34VUD/++GPLttdee00F1JSUlHzHzMu/fv36fNujo6NVQF2wYIFlm4uLi/rkk0/ekH/FihUqoK5ateqmrzElJUX19PRUhw0blm97XFyc6uHhkW97WlqaGhwcrNapU0fNzMxUu3Xrprq7u6tnzpzJ99i8f6Ndu3ZZtp05c0Z1dHRUH374Ycu2oUOHqhUqVFAvXbqU7/H9+vVTPTw81PT09HzvRVBQkGXbrd6n9u3bq4D63XffWbYdO3ZMBVSdTqdu27bNsv3PP/+84f0saq7Q0FA1KyvLst/s2bNVQD148KBlW7du3dQqVaqoRZWQkKAaDAa1W7duqslksmx/5ZVXVEAdNGiQZVtmZqZqNBrzPT46Olp1cHBQp06datm2c+fOG15znv++v6qqqtOmTVMVRbnh31lVVbVLly5qaGhovm1VqlQp1P/hyZMn53tcq1at1FmzZqm//PKL+umnn6p169ZVAXXu3LmWfS5evKgC+V5Pnjlz5qiAeuzYsRvuE7ZBWqCEuIUXX3zxtmMgAMqVK5fv9rvvvktOTg6vvPJKSUVjyZIlhIaGUqtWLS5dumTZ3qlTJwDWr19v+UsezF0c1atXt9yuX78+7u7u+c4Wunz5MnZ2dkVqkfivjIyMAgfi540NKqj7Jc+aNWtITEykf//++V6TXq8nLCyM9evXW7Y5OzuzcOFC2rVrR7t27dixYwdffvkllStXvuG4LVu2pEmTJpbblStXpkePHvz2228YjUZ0Oh3Lli2jT58+qKqa77kjIiL44Ycf2LNnD61bt7ZsHzRoEE5OToV6T1xdXenXr5/ldkhICJ6enlSsWDHf6fd51/P+TVRVLXKuIUOG5GsNy2vViYqKsrS23am1a9eSnZ3Ns88+i6Iolu1jxoy5YazP9Z8Bo9FIYmIirq6uhISEFPqMzOvf37S0NDIyMmjVqhWqqrJ3794b/q3LlSvH3r1782379ttvb/mZy/PfcVObN2/Od/vJJ5+kSZMmvPLKKwwePBgnJyfLce/08y6smxRQQtxC7dq1qV27dpEec/r0aaZPn86cOXPuqhC5nZMnT3L06FF8fHwKvD8hISHf7YIKi3LlynH16tVizeXk5FTgOKe8rtBbFR0nT54E/i0C/8vd3T3f7datWzNy5EjmzJlDREREgV0pQIFn/tWsWZP09HQuXryITqcjMTGRzz77jM8++6zAY/z3/axWrdpNX8d/VapUKV/BAeYup8DAwBu2AZZ/k4sXLxY5V0FFxfXHvBtnzpwBbnw/fXx8bvgjwmQyMXv2bObOnUt0dHS+brTCnpkWExPDpEmT+PXXX2/In5SUdMP+qqre8D5fX1zeDYPBwOjRoxkxYgS7d++mTZs2ls/ynX7ehXWTAkqIW0hKSirUX5AGg4Hy5csD5jEiFStWpEOHDpaxT3FxcYD5C/H06dNUrlz5judYymMymahXrx4zZswo8P7/fjnf7AxDVVUt1728vMjNzb1h3MZ/v5TyFDS2pEKFCly4cOGG7XnbAgICCjwWYJm48+uvv8bf3/+G++3s8v/KysrKsgzYPnXqFOnp6TeMYymMvOd9/PHHGTRoUIH71K9fP9/tonwx3uy9v92/yZ3kKsy/873wzjvv8Prrr/Pkk0/y5ptvUr58eXQ6HWPGjCnUBK1Go5H77ruPK1eu8NJLL1GrVi1cXFw4f/48gwcPLvAYV69exdvbO9+2ixcvFmoMlKur623/4Mn7P3XlyhUAypcvj4ODwx1/3oV1kwJKiFt4/vnnWbRo0W33a9++veWLPCYmhsjIyAJPpX7mmWcA8y96T0/Pu8pWvXp19u/fT+fOnW9a4BRVrVq1APPZeNd/Mee1LiQmJubbP69F4noNGzbkn3/+wWQy5SsSt2/fjrOzMzVr1rzp8+d1Mfr6+t5wJmBBJk+ezNGjR/nggw946aWXmDhxIh999NEN++W1bF3vxIkTODs7W1rw3NzcMBqNhXree8XHx6dEct3p56VKlSqA+f28/vN98eLFG1qIli5dSseOHfnyyy/zbU9MTMxX5Nwsy8GDBzlx4gSLFi3KNxfTmjVrbpovOjqaBg0a5NvWrFmzAj+n/zV58mTeeOONW+6T17Wa95nR6XTUq1ePXbt23bDv9u3bCQoKkgHkNkwKKCFu4U7GQL311lv5xqqAeT6o119/nRdffJGWLVvi4uJy19n69OnDypUr+fzzzxk+fHi++zIyMjCZTEV+npYtWwKwa9eufAVUlSpV0Ov1bNy4kZ49e1q2z50794ZjPProoyxdupSffvrJMg/UpUuXWLJkCQ8++GC+8SKnTp0C/i2cIiIicHd355133qFjx47Y29vnO/bFixctX17bt2/ngw8+YMyYMYwfP55Lly7x3nvv0atXL9q3b5/vcVu3bmXPnj2WswvPnj3LL7/8QteuXS0tNr169bJMMPnfsULXP++9pNfrSySXi4tLgV1gtxMeHo69vT0ff/wxXbp0sRQ/Bc1qrtfrb2j1WrJkCefPnyc4ODhfFrixOM/7d7n+GKqqMnv27AKzJSUlcerUKUaOHJlv+52MgSrofU1JSWHWrFl4e3vnG0/36KOPMnHiRHbt2kXTpk0BOH78OH/99RcTJky47fMK6yUFlBC3cCdjoNq0aXPDtrzWpmbNmuUrQMD8F/j1LViFNXDgQBYvXsyIESNYv349rVu3xmg0cuzYMRYvXsyff/5p+YVeWEFBQdStW5e1a9fmG0/k4eFB7969+fjjj1EUherVq/P777/fMP4GzF8oLVq0YMiQIRw5csQyE7nRaGTKlCn59u3cuTOApavT3d2dTz/9lIEDB9K4cWP69euHj48PMTExrFixgtatW/PJJ5+QmZnJoEGDqFGjBm+//TYAU6ZM4bfffmPIkCEcPHgwX/FYt25dIiIi8k1jkPeYPO+++y7r168nLCyMYcOGUbt2ba5cucKePXtYu3atpdvmXiuJXE2aNOHHH39k3LhxNGvWDFdXVx588MHbPs7Hx4cJEyYwbdo0unfvzgMPPMDevXv5448/bug66969O1OnTmXIkCG0atWKgwcP8u23397QMlu9enU8PT2ZN28ebm5uuLi4EBYWRq1atahevToTJkzg/PnzuLu7s2zZspuO5Vq7di2qqtKjR4982+9kDNScOXNYvnw5Dz74IJUrV+bChQvMnz+fmJgYvv7663yD9J955hk+//xzunXrxoQJE7C3t2fGjBn4+fkxfvz4Ij+3sCLanPwnROlT0DQGxeVm0xikpKSogNqvX7/bHuO/0xioqqpmZ2er7733nlqnTh3VwcFBLVeunNqkSRN1ypQpalJSkmU/QB01atQNx6xSpUq+U89VVVVnzJihurq63nAK+cWLF9VevXqpzs7Oarly5dSnn35aPXToUIGnoF+5ckUdOnSo6uXlpTo7O6vt27dXd+7cWeDzF3Q6/fr169WIiAjVw8NDdXR0VKtXr64OHjzYMhXB2LFjVb1er27fvj3f43bt2qXa2dmpI0eOvOG1f/PNN2qNGjVUBwcHtVGjRjdMyaCqqhofH6+OGjVKDQwMVO3t7VV/f3+1c+fO6meffZYvW0H/ltff999pDOrUqVPga+/WrdsN2wv6t7qbXAVNNZGamqo+9thjqqenpwoUaUoDo9GoTpkyRa1QoYLq5OSkdujQQT106NANn6XMzEx1/Pjxlv1at26tbt26tcDP8S+//KLWrl1btbOzy5f1yJEjanh4uOrq6qp6e3urw4YNs0y/8d/PXN++fdU2bdoU+nXcyurVq9X77rtP9ff3V+3t7VVPT0+1S5cu6rp16wrc/+zZs+qjjz6quru7q66urmr37t3VkydPFksWUXopqnqPRxYKISxWrlxJ9+7d2b9//y0nl7yXkpKSCAoK4v3332fo0KFax7lriqIwatQoPvnkE62jiBISFxdHtWrV+OGHH25ogRKipMhSLkJoaP369fTr16/UFE9g7q578cUXmT59eqHOlhJCa7NmzaJevXpSPIl7SlqghBA2TVqgCud2p/tfP1WHEEIGkQshhOD2p/vfyYkOQtgyKaCEEDZNGtkL53an+/93pnEhyjrpwhNCCCGEKCIZRC6EEEIIUUTShVcCTCYTsbGxuLm5FdsSG0IIIYQoWaqqkpKSQkBAwG3XK5UCqgTExsbesJCrEEIIIazD2bNnqVSp0i33kQKqBOQtHnn27Fnc3d01TiOEEEKIwkhOTiYwMLBQi0BLAVUC8rrt3N3dpYASQgghrExhht/IIHIhhBBCiCKSAkoIIYQQooikgBJCCCGEKCIpoIQQQgghikgKKCGEEEKIIpICSgghhBCiiKSAEkIIIYQoIimghBBCCCGKSAooIYQQQogikgJKCCGEEKKIpIASQgghhCgiKaCEEEIIIYrIqgqojRs38uCDDxIQEICiKCxfvjzf/aqqMmnSJCpUqICTkxPh4eGcPHky3z5XrlxhwIABuLu74+npydChQ0lNTc23z4EDB2jbti2Ojo4EBgby/vvvl/RLE0IIIYQVsaoCKi0tjQYNGjBnzpwC73///ff56KOPmDdvHtu3b8fFxYWIiAgyMzMt+wwYMIDDhw+zZs0afv/9dzZu3Mjw4cMt9ycnJ9OlSxeqVKnC7t27mT59Om+88QafffZZib8+IbQWGxvLpk2biI2N1TqKEEKUaoqqqqrWIe6Eoij8/PPP9OzZEzC3PgUEBDB+/HgmTJgAQFJSEn5+fixcuJB+/fpx9OhRateuzc6dO2natCkAq1at4oEHHuDcuXMEBATw6aef8uqrrxIXF4fBYABg4sSJLF++nGPHjhUqW3JyMh4eHiQlJeHu7l78L16IErJp0yYiIyMJDg6mTZs2WscRQoh7qijf31bVAnUr0dHRxMXFER4ebtnm4eFBWFgYW7duBWDr1q14enpaiieA8PBwdDod27dvt+zTrl07S/EEEBERwfHjx7l69WqBz52VlUVycnK+ixDWKCgoiODgYIKCgrSOIoQQpZrNFFBxcXEA+Pn55dvu5+dnuS8uLg5fX99899vZ2VG+fPl8+xR0jOuf47+mTZuGh4eH5RIYGHj3L0gIDQQEBNCmTRsCAgK0jiKEEKWazRRQWnr55ZdJSkqyXM6ePat1JCGEEEKUIDutAxQXf39/AOLj46lQoYJle3x8PA0bNrTsk5CQkO9xubm5XLlyxfJ4f39/4uPj8+2Tdztvn/9ycHDAwcGhWF6HEIVmMkF2CmQmQ1YyZKWAzg4c3MDB3fzT4AKKonVSIYQoPpci4eppqNLS/DtOIzZTQFWrVg1/f3/WrVtnKZiSk5PZvn07I0eOBKBly5YkJiaye/dumjRpAsBff/2FyWQiLCzMss+rr75KTk4O9vb2AKxZs4aQkBDKlSt371+YEABXouHCfog/DAlHzD+vngZucw6I3gBeNcAnBHxqgW8tCGgMntLNLISwUvu/g38+hAb94eF5msWwqgIqNTWVyMhIy+3o6Gj27dtH+fLlqVy5MmPGjOGtt96iRo0aVKtWjddff52AgADLmXqhoaF07dqVYcOGMW/ePHJychg9ejT9+vWzjPl47LHHmDJlCkOHDuWll17i0KFDzJ49m5kzZ2rxkkVZZcyFs9vhxB9wfBVcPnnzffUGVAd3TAZXTEYjSlYyupxUdKoRjNmQcNh8uV756lC9IwR1hGptwdGjZF+PEEIUl+iN5p9V22oaw6qmMdiwYQMdO3a8YfugQYNYuHAhqqoyefJkPvvsMxITE2nTpg1z586lZs2aln2vXLnC6NGj+e2339DpdPTq1YuPPvoIV1dXyz4HDhxg1KhR7Ny5E29vb5599lleeumlQueUaQzEHbt4HHZ8BoeWQcZ1Z33q7MC/HvjVwehTm9P6quzP9GXPRYX9FzI5HpdCttF03YFUnMjCW0kiWImlhnKOGsp5QnRnqa07gx3/7qsqdqg17kPXsD/U7Ap20h0thCilMpPhvaqgGmHMoWJvTS/K97dVFVDWQgooUSQmE5xcDTv+B6f++ne7Uzmo0QVqdiW9cgc2xmTx5+F41h2NJzkzt8BDuTna4eVioLyLATu9juxcEzlGE9m5JhIzcriYkoUb6bTUHaaN7hCtdYeorrtgeXymnTtZtXri0WooBDQs4RcuhBBFdHwVfN8XygfBc3uL/fBF+f62qi48IWyKqsLRX2HtFLhy6tpGBUIegObDUKu2ZceZJBZtPc26H7aTlftvq5GHkz31K3lQt6IH9Sp6UCfAHX8PRxzs9Ld8yoxsI+euphNzpR2RCam8d+Yql08fIDz7L3rqN1Mh9wqOh76CQ19x1rM59u3G4N/oARmILoQoHfK676q10zYH0gJVIqQFStzW+d3w56sQY57kFUcPaPwENHuKLLdAftt/gfmbojly4d9JWQPLOxFR258udfxpUqUcel3xFDWqqhJ1KY3tpxI4u2c1oRd+4QHdNuwUc8F2xr46qU1HEdp5EDo7+ZtLCKGhT9tA/EF4dD7U7VXsh5cuPI1JASVuKjkW1kyGg4vNt+2coPVz0Oo5cuyc+X5HDB+ti+RSahYAjvY6HmlciQFhlaldwR3lHrQEXU3LZtOuPdjvnEe7lJU4K+YskbqqRDZ4kXb398XZIIWUEOIeS7sM06+tkjDhJLj63nr/OyAFlMakgBIFOrgUVoyDzCTz7Qb9odPrqO4B/HUsgbdXHiXqYhoAFTwceaJlVfo3D8TT2XCLg5ass+fOcmrlbBrHfoc75mxblQbENX+V+8PDcbS/dZehEEIUm8PLYckg8K0Nz2wtkaeQMVBC3EOxsbFERUURFBRU8BIoGYmw8oV/W50CGkP3GRDQiBPxKUxZsp3NkZcBKO9iYGx4Dfo1r4y9XvuFAgIrBRI4/APSrr7I0eVTCT7zPS3V/Zi29eW3nZ3J7vQGPVvWKRVZhRA2rhSNfwIpoIS4a1FRUZb5yW4ooKL/gZ9HQPI5UPTQbgK0ewGjYseXG0/xwZ8nyDaaMOh1DGlTlVEdg3F3tNfgVdyaSzlfQod8Qs7FsZxZ9jJV4v6kh2ktF9fs5N3NT9P5keG0quGjdUwhhC0rZQWUdOGVAOnCK1sKbIFSVdg6B1a/BqhQrho88jkENuPslXTGL9nPjugrAHQM8WFqj7oElnfW7kUUUdapTWT8NBrPtGgA1hob8XeNlxnVoz3+Ho4apxNC2JzkWJgRCooOXowGJ8+SeRoZA6UtKaDKOGMOrBgPexaZbzd8HO5/DxxcWbzrLFN+PUxathEXg57Xu9emb7PAezI4vNjlZpG5fjp2W2Zip+aSqjryrjqYquHDGdImqNjOEhRCCPb/AD8/DQGNYPiGEnuaonx/y8AFIYpT+hX45hFz8aTooOu70OMTcuyceX35IV5ceoC0bCPNqpbjj+fb0a95ZessngDsHHC87zXsRm4mza8Jrkomb+nmUWHNCIbOW03M5XStEwohbEUp674DKaCEKD6XT8EX4eb/6AZX6P8DtBjJlfQcBn65na+3nUFRYPx9NflheEsqezkTGxvLpk2biI2N1Tr9nfOthcvTazB1fgOTYkc3/Q7eiR/Ba7Pn8e32M0gjtxDirqiqFFBC2KyEYzC/q3lGcY9AGLoaakZwLC6Zhz7ZxLaoK7gY9Hw2sCnPdq5h6d7KG4AeFRWl8Qu4Szo9urZj0T21mhzPIAKUKyxUpnL5t0kMmb+NhJRMrRMKIazV1WhIOmteE7RyS63TWEgBJcTdSjgKi7pDWgL41YNhf4FfHTadvESvuVs4dzWDyuWd+XlUa+6r7ZfvoUFBQQQHBxMUFKRR+GJWsQn2I/9Bbfg4OkXlObvlDDn9Iv1n/8H2qMtapxNCWKO81qdKzcDgom2W60gBJcTdiD8CC7tD2kXwrw+DfgVXX9YeiefJhTtJyzbSqroXv4xqTU0/txseHhAQQJs2bQqeP8paObii9JwDvb7EZOdIe/0BFmS/wJtf/sinG05hMkmXnhCiCCzdd+21zfEfUkAJcafiDplbntIvQYUG8MQv4Fye3/bHMuKb3WQbTXSt48+CIc0o53Lr2cRtYizUf9V7FN1T6zB5VqWy7iJL7CZzbPUXDPtqF4np2VqnE0JYg1I6/gmkgBLizlw8DosehPTLUKGhpXhavPMsz/2wl1yTysONKvLJY41wsLv9cic2Mxbqv/zrohu+HjU4HCclm9mGuTSLnM3Dn/zDqYupWqcTQpR2CUfMLfx2TlCpqdZp8pECSoiiSk2Abx+FjCvmOUme+AWcyvHt9jO8uOwAqgr9m1fmw94NsCvkEic2Nxbqes7lUR5bDG0nADDC7jcmpLxL3znr+efkRY3DCSFKtch15p9V24Cdg7ZZ/kMKKCGKIjsNvusDiTHm2cUHLAUnT34/EMtryw8B8GTrarzzcF10RZhI0ibHQl1Pp4fOr8PDn6Hq7Omm38FnpjcYv2AtX289rXU6IURpdeov88/qnbTNUQApoIQoLGMuLH0SYveCU3l4fBm4eLPp5CXG/rgPVYUBYZV5vXuo9U6OWdIa9EV5YjmqoyeNdZEstXudhb+uZvIvhzDK4HIhxPVyMuDMFvN1KaCEsFKqCqteghOrwM4RHvsRvKqz/2wiw7/eRY5RpVv9CkztUVeKp9up2gblqbWo5cyDy5cZ3uDAtrUM/XIzf/39j20NpBdC3LkzW8CYBW4B4BOidZobSAElRGFsnQM7vwAUeOQzCGxOZEIqgxfsID3bSJtgb2b0aSDrvxWWdw2Up9ZBpWZ4Kml8Y3iH3OhNTNlwiYPHT2mdTghRGlzffVcK/zCVAkqI24n+B9a8br7e5S2o3YPLqVkMmr+Dq+k5NKjkwbyBTQp1tp24jou3eQB+9U64KFkssH+f2ll7mbIpmf0nzmidTgihtVPrzT+DS1/3HUgBJcStpcSZxz2pJmjQH1qOIsdo4plv93A+MYOqXs7MH9wMVwc7rZNaJ4OLec3A2j2xV4x8Yv8R7TL/Yuj3hzl9KQ2w0TmyhBC3lhIHCYcBBap10DhMwaSAEuJm8gaNpyWAbx3oNgMUhTd/P8L26Cu4OtjxxaCmeLmWrlNrrY6dAzw6H5oMRq+ovGv/BT2yf6fP/7YSmZBqu3NkCSFuLq/1KaAhuHhpGuVm5M9mIW7mr6lwZjMY3KDPV2Bw5vsdMXy19QyKArP6NiTY98blWcQd0Omh+yxwKgebZvK6/bfo0030+0xl5kNBBAdjm3NkCSEAc0tzVFQUQUFB5ulcSvH0BXmkBUqIghxbAZtnm6/3+AS8g9l1+gqTfjHP9TT+vpqE/2dh4OJUJrutFAU6T4b2EwF4xf57emcs5dnlp/CsVs9258gSQuRvaTaZrKKAkhYoIf7r6hn4eaT5eotnoE5P4pMzGfHNHvN0BfUqMKpjcIlGyPtlApStwkFRoOPL5hap9W/zkv0P6LOM9P9c5asnm9OocrlCH+qGv2iFEKVWXgtzUFAQxB80rzFqcIVKzTVOdnNSQAlxPZMJlj8DWUnm/7j3TcVoUhn74z4upWZRy9+N6b3rl/hcT/l+mZRF7V80F1HrpjLBfgm6HJUn5sN3T7WgXiWPfLverFAqs0WoEFYoICDg3/+nm340/6zaFuxuvRC7lqSAEuJ62+fBmU1g72Ke70lvz7z1kWw5dRknez1zBjTG2VDy/23y/TIpq9qOB0UPayczzn4p2Tl2DJyv8N1TLagd4G7Z7WaFUpkvQoWwVlbQfQdSQAnxr4snYN0U8/WIt6B8NfbEXGXGmhMATOlRh+o+rhoGLIPajDH/XDuZifY/kJHlwMAvFX4Y3oIafuYB/DcrlKQIFcIKZadBzDbzdSmghLACxlz4+WnIzYTqnaHJEJIzc3ju+70YTSoPNQigd5NKWqcsm9qMgZx0+Ps9ptgvIiPTwGNfKPw4vAVBPq5SKAlhS85sAWM2eFQGr+pap7klOQtPCIBNMyF2Dzh6QI9PUIFXfjrIuasZBJZ34q2HZY07TXV4GVo9C8C79l/QMu0vBnyxnfOJGRoHE0IUB1W9tph45Drzz+odS+XyLdeTAkqIC/vh73fN1x/4ANwDWLbnPL8fuICdTuGjfo1wd7TXNmNZpyhw35vQ7Cl0qMw0fEq9lH8Y+OV2LqdmaZ1OCHGXlu4+R9dZG0k+uNK8IThc20CFIAWUKNuMubB8FJhyIfRBqNebuKRMpvx2GICx99Us0qnzogQpCtw/HRoOQI+Jjw2f4Ht5J4MX7CQlM0frdEKIu7Dh+EUy40/gnn4GdPbmFqhSTgooUbbt+J95zhFHT+g2ExV49eeDpGTm0iDQkxHtS3cffJmj08GDH0Gt7jiQwxeGDzHF7mf4V7vJzDFqnU4IcQdyjSY2nrxIJ90+84YqrcCh9K/yIAWUKLuSzsP6d8zX75sCrj78uj+WdccSMOh1TH+0Pnpd6e6DL5P0dtDrS6jSBlcy+MrwHrHRh3nu+73kGk1apxNCFNGemERSMnO5z36/eUONLtoGKiQpoETZ9efLkJ1qnjCz0RNcTMli8q/mrrvnOgdT06/0/wVUZtk7Qv/vwL8eXkoS3xjeZe+RY0z69fC/g1GFEKVebGwsX6/bgzOZNFOOmjfWjNA2VCFJASXKppNr4cgv5okau88AnY7Jvx4iMT2H2hXceVq67ko/Rw94/CcoV41AJYGvDO/x2/ZjzN1wSutkQohCioqKYufZVFrrDmGn5kC5quBVsktlFRcpoETZk5MBK8ebr4eNAP96rDx4gZUH47DTKUzvXR97vfzXsAquvjDwZ3D1I1QXw1z7Wcz68zA/7z2ndTIhRCG4+wUSl2VPJ91e84YaEaV++oI88i0hyp5NM+HqaXCrAB1fJjkzx9J1N7JDdeoEeNz68aJ0KV8NHlsM9i601R/iXfvPeXHpfjZHXtI6mRDiNo4l6QCV+wwHzBusZPwTSAElyprLp8wFFEDXaeDgxqw1J7mYkkU1bxdGd7KOpmPxHwENoc9XqIqeXvp/GK0sYcTXuzkWl6x1MiHELfx9/CKhSgzepstg5wRV22gdqdCkgBJly9rJ5mUCqneC2j05FpfMoq2nAXjjoTo42Om1zSfuXI1wlAdnAfC83c88kLuGJxfsJCElU9tcQogC5U1f0DGv+y6ovfkEESshBZQoO85shaO/gaKDiHdQgUm/HMZoUulax5/2NX20TijuVuMnoN2LALxj/yU1UrYzTOaIEqJUstbpC/JIASXKBlWF1a+ZrzcaCL6h/LIvlh3RV3C01/H6g7W1zSeKT8dXoEF/9JiYY/iIjHMHGb94PyaTTG8gRGmy4XgCnqTQgJPmDVJACVEKHf4Zzu8Cexfo+AopmTm8vdI858jojsFU9HTSOKAoNopinq382kSb8w3T2X7wGDPWnNA6mRDiOhuOX6Sd7iA6TOBbGzwDtY5UJFJACduXmwVr3zBfb/08uPkze6154HhVL2eGtQvSNJ4oAXYG6Ps1lK9OJeUSnxs+5PP1R1i2W6Y3EKI0SEjO5MiFZDrp86YvsK7WJ5ACSpQFOz6HxDPg6g+tRhOZkMqCLacBGThu05zLw4Al4OhJI10kH9jP45Wf9rMn5qrWyYQo8zacuIgOE53sDpo3SAElhPZiY2PZtGkTsbGxkH4FNk4339HpNTC48N6qYxhNKuGhvnQI8dU2rChZXtWh7zeoOnse1G/jGWUJT3+9m7gkOTNPCC39ffwijZUTuKvJ5lUFAsO0jlRkUkAJmxMVFUVkZCRRUVHwz4eQmQi+daDhY+yIvsKaI/HodQoT7w/VOqq4F6q1zTe9QYu09Qz/epecmSeERrJzzdMXdNHvNm+oEWFeJNzKSAElbE5QUBDBwcEE+7mYu+8A7puKqugsA8f7NQsk2NdVw5Tinmr0OLR6DoDphv+hnt/LS8sOyMLDQmhg5+krpGTmcL/dtQKqVjdtA90hKaCEzQkICKBNmzb4n/wOjFlQuSUEd2bFwQvsP5uIs0HP8+E1tI4pSli+rlyA8DegRhccyeFzwwy27DvM/zZGaZpRiLJozZF4aijnCSQO9AYI7qx1pDsiBZSwTUnnYfdC8/UOL5NtVHl/1XEAnm5XHV8365ntVtyZfF25ADo99PoCvEPwV67wmWEmM1cdYP3xBG2DClGGqKrKumPx3KfbZd4Q1AEc3DTNdKekgBK2adMM85ItVVpDtXZ8s+0MMVfS8XFz4Km21bROJ+6BvK7coKDrpqlw9ID+36NeOzPvHbsveP77PZy5nKZdUCHKkBPxqZy9kkFXK+++AymghC1KPAt7vjJf7/gKSZm5fPyXeabbcffVxMXB+gYriqLL68oNCAjIf4dXdZQ+i64tPLyJvjm/8PTXu0nPztUmqBBlyNqj8fhxhfrKKUCBmvdrHemOSQElbM8/H5pbn6q2hapt+HxjFFfTcwj2daV3k0papxOlQVAHlK7TAJho/wPeCVt4cakMKheipK09Gs99eWffVWoGbn7aBroLUkAJ25IYA3u/MV/v+ApX0rJZsDkagAldQrDTy0deXNN8ODR8HD0mPrH/iP0H9/H5PzKoXIiSkpCSyb6ziXTJG/9U6wFtA90l+TYRtmXjB2DKgWrtoUorPtsYRVq2kToB7kTUsd6/dEQJUBTo9iFUbIKnksZn9jOY/cc+Nkde0jqZEDZp/bEEXNV0WurN08lQq7u2ge6SFFDCdlw9A/u+BWC/V3cORZ7hq62nARgbXhNFUTQMJ0ole0fzTOUuvoTqzvKe3Wc8+90eLiRlaJ1MCJuz5kgCHXT7sCcXvGqAt3VPJ2NTBdQbb7yBoij5LrVq1bLcn5mZyahRo/Dy8sLV1ZVevXoRHx+f7xgxMTF069YNZ2dnfH19eeGFF8jNlcGlVmHLx2DK5Wr5huy9ZGDuXydIzzZSv5IHnUNlyRZxE+4BKH2/RtXZ012/jb5Zy3jm2z1k55q0TiaEzcjMMbIp8uK/45+s+Oy7PDZVQAHUqVOHCxcuWC6bNm2y3Dd27Fh+++03lixZwt9//01sbCyPPPKI5X6j0Ui3bt3Izs5my5YtLFq0iIULFzJp0iQtXoooirRLlrFPxpbP410piHUxOYC0PolCqNwC5YH3AXjB/kdcz23k7RVHNA4lhO3YHHkJY042nfT7zRukgCp97Ozs8Pf3t1y8vb0BSEpK4ssvv2TGjBl06tSJJk2asGDBArZs2cK2bdsAWL16NUeOHOGbb76hYcOG3H///bz55pvMmTOH7OxsLV+WuJ0dn0NuBgQ0wrvpw+zN9CYrV6VhoCcdQny0TiesQdMnofET6FD5yP4T1m3bxfK957VOJYRNWHs0nha6I7iSDi6+ULGp1pHums0VUCdPniQgIICgoCAGDBhATEwMALt37yYnJ4fw8HDLvrVq1aJy5cps3boVgK1bt1KvXj38/P4dbBwREUFycjKHDx++6XNmZWWRnJyc7yLuoew02PGZ+Xrr50lIyeKbbWcAGHuftD6JIrh/OgQ0opySyqf2M3njp90cj0vROpUQVs1kUll3NIEI3U7zhpD7QWf95Yf1v4LrhIWFsXDhQlatWsWnn35KdHQ0bdu2JSUlhbi4OAwGA56envke4+fnR1xcHABxcXH5iqe8+/Puu5lp06bh4eFhuQQGBhbvCxO3tvcbyLgC5apB6EPM3XCKrFwTjSt70q6Gt9bphDWxd4Q+X6M6e1FPd5pX1c8Z+fUuUrNkHKQQd2r/uUQupWTQVX9t+oLQh7QNVExsqoC6//776d27N/Xr1yciIoKVK1eSmJjI4sWLS/R5X375ZZKSkiyXs2fPlujziesYc2HLJ+brrZ7lUnou3+8wtzpK65O4I56BKI8uQFV09LbbSMvEX3n5p4MyyaYQd2jVoTjCdEfxVpLA0ROC2msdqVjYVAH1X56entSsWZPIyEj8/f3Jzs4mMTEx3z7x8fH4+/sD4O/vf8NZeXm38/YpiIODA+7u7vku4h45shySYsDZGxo+xsLNp8nKNdGgkgdtgqX1SdyhoPYonScDMNluEecO/G3pFhZCFJ6qqqw6HMcDuu3mDbW6g95e21DFxKYLqNTUVE6dOkWFChVo0qQJ9vb2rFu3znL/8ePHiYmJoWXLlgC0bNmSgwcPkpDw7+rsa9aswd3dndq1a9/z/OI2VBU2zzJfDxtBitHOMu/TyA7VpfVJ3J3Wz0PtHhgUI3MMs/nk9+0cOJeodSohrMrRCymcvZxKV/218U91emqapzjZVAE1YcIE/v77b06fPs2WLVt4+OGH0ev19O/fHw8PD4YOHcq4ceNYv349u3fvZsiQIbRs2ZIWLVoA0KVLF2rXrs3AgQPZv38/f/75J6+99hqjRo3CwcFB41cnbnDqL4g7CPYu0Gwo3++IITkzlyAfF7rUvnmLoRCFoijQYw6qVw0ClCt8qJvN6G92kpSeo3UyIazGqkMXaKYcx0dJAkcP8yoRNsKmCqhz587Rv39/QkJC6NOnD15eXmzbtg0fH/Np7DNnzqR79+706tWLdu3a4e/vz08//WR5vF6v5/fff0ev19OyZUsef/xxnnjiCaZOnarVSxK3suUj888mg8gyePDFP+Y170a0q45OJ61Pohg4uKH0/QbV3oU2+sP0Tv2GCUv3y3goIQrpj0NxPKA3TxVEre5gZ9A2UDFSVPlNUOySk5Px8PAgKSlJxkOVlIRjMDcMFB08v58fT8JLyw7i7+7I3y92wMFOr3VCYUsOLoVlQwF4MnsCre4fwFNtgzQOJUTpFpmQSpcZ69nmMBpfJREeWwI1u2gd65aK8v1tUy1QogzJm/cp5AGM7oH87+8oAJ5qW02KJ1H86j0KzZ8GYKb9XL5b9Tf7ziZqm0mIUu7Pw3E0VY6biydHDwjqoHWkYiUFlLA+mUmw/wfz9bCnWX04jqhLaXg42dOveWVtswnb1eUt1ErN8FDS+Vg/k3HfbpXxUELcwh+HLvCA/rqz72yo+w6kgBLWaO+3kJMGvrVRq7Th079PATCoZRVcHew0Didslp0BpfciTM7e1NGd4anU//FCIcdDxcbGsmnTJmJjY+9BUCG0d/ZKOofPJ3K/fod5Q+2emuYpCVJACetiMsHOz83Xmw9j++mrHDiXhKO9jkGtqmoaTZQBHhXR9foCFYXH7NbjdmwJC7ecvu3DoqKiiIyMJCoqquQzClEKmLvvTuBno913IAWUsDaRa+FKFDh4QP2+zN9kPvOuV+NKeLnKVBPiHqjeEaXDywC8ZT+fpSv/vO38UEFBQQQHBxMUJAPPRdlgPvvuWvddSDeb674DKaCEtdnxP/PPRo8Tk6Kw5qh5pvghratql0mUPe1eQK3eCSclm4/0s3jxuy2kZN58PFRAQABt2rQhICDgHoYUQhvxyZnsOXP53+47G5o883pSQAnrcSnS3AKFAs2fYtHW06gqtKvpQ7Cvm9bpRFmi06E88jkmtwCq6y4wOmU2r8h6eUIA5u675spx/JWr5t4CG+y+AymghDXJG/tUowspzoH8uNO8aPOT0voktODija7PIlTFju76bZQ7vNDymRSiLPt9/wV66jeZb9R+COxsc3iFFFDCOmSlwL7vzNfDhrN09zlSs3Kp7uNCuxo+2mYTZVdgc5Qu5pUKXrP7hqW//cqJ+BSNQwmhndjEDPadjv93/FP9PtoGKkFSQAnrcHAJZCWDVzCmah0tZz4NaV1Nlm0R2mrxDGqt7hgUI7N0M5n47UYyso1apxJCEysOXKCjbh8eSjq4V4QqbbSOVGKkgBLWYfci888mQ/jr+CXOXE7H3dGORxpX1DaXEIqC0mMORo8qVFIuMfLqB0z97ZDWqYTQxG8HYv/tvqvbC3S2W2bY7isTtuPCfriwD3T20KA/8zebpy7oH1YZZ4NMnCm0F3s1nQMh4zAq9tyn34PrnnmsOHBB61hC3FPRl9I4fS6WTrq95g023H0HUkAJa7DnK/PP0O4cS7Fny6nL6HUKT7SsqmksIfJERUWxPwGiQ4YB8JLdD/zw02LOXknXOJkQ987v+2Ppqt+Bg5ILPqHgV1frSCVKCihRumWnw4El5uuNB/HV1jMAdK3jT0VPJw2DCfGvvIkynduOxlTnEewUE++rs3jtuw3kGE1axxPinvjtQCw9dZvNN+r3BsW2x6dKASVKtyO/QFYSeFYhtWJrftl7HoDHW1TROJgQ/7JMlFmxIrqHPiKnXHUqKFcYEv8uM1cf0zqeECXueFwKyfFnaKE7at5Qr7e2ge4BKaBE6bbn2uDxxgNZvu8CadlGqvu40CKovLa5hLgZBzfs+36FUedAB/1+2DyLTScvaZ1KiBL16/7zPKTfgk5RoXIr8KysdaQSJwWUKL0unoCYraDoURsO4Jtt5u67AWFVUGy8aVhYOf+66Lt/AMB4/WK++uFbLqVmaRxKiJKhqiq/7b9AT/0W84b6tt/6BFJAidIsr/WpZgR7rjpxLC4FBzsdvRpX0jaXEIXRaCC5dfuiV1TezJ3BlB82YDLJUi/C9hw4l4Tj1ePU1p1B1dlD7Z5aR7onpIASpVNuNuz/3ny98RN8u93c+vRggwA8nO01DCZEISkKdg/NJKtcDfyURHqfeZOFm09pnUqIYvfb/lh66s2Dx5Ua94Fz2RhiIQWUKJ2Or4D0y+BWgasB7fn92pw6MnhcWBWDCw79vyZX70g7/UGSV7/LofNJWqcSotjkGk2s2HeWR/T/mDfU76ttoHtICihROuXN/dTocZbtiyM710SdAHcaVPLQNpcQReUbir77DACe1S1l/teLSMvK1TiUEMVjU+QlQtJ34q9cRXUqDyH3ax3pnpECSpQ+ybFwaj0AasMBfLs9BpDB48J6KY0GkFWvP3pFZWLGh3zw0z9aRxKiWPy05zx99H8DoNTvC3YOGie6d6SAEqXPwSWA+VTYLVfciL6UhquDHT0aBmidTIg75vDgDNI9a+KrJBJ+5FV+2RujdSQh7kpyZg47Dp8gXLfbvKHR49oGusekgBKli6rC/h/M1xv05btrrU8PN6qIi4OseydKp9jYWDZt2kRsbOzNdzI44zzgG7J1TrTWH+bc8qnEXJalXoT1+uPgBR5Q/8GgGFEDGoG/bS/d8l9SQInSJe4gJBwBvQNXq3Zj9ZE4APo3t/1J2YT1ioqKIjIykqioqFvv6BOC/sGZAIxkKV98tUCWehFWa9muc/TRbwBAKWOtTyAFlCht8lqfQu7n56Op5BhV6lZ0p3aAu7a5hLiFvLXwgoKCbruvvlF/0uo8hk5ReTbxXT5fueUeJBSieMVcTiczZhe1dGdR9Y5Q91GtI91zUkCJ0sOYe238E6j1+7J411kA+jQN1DKVELdlWQsvoHDj9Fx6ziDZvSY+SjKNdr7AlhNxJZxQiOL1097rWp9qPwhOnlrG0YQUUKL0iFoPaQng7MVhl+Yci0vBYKfjoQYyeFzYGHsn3J/4jiydEy11Rzj2w6tcScvWOpUQhaKqKit2R/FQ3tItZbD7DqSAEqVJXvdd3UdZvMf8F3lEHX88nQ0ahhKihHjXQHnwIwAGG5ex8KsvUVVZ6kWUfjtPX6V20t+4KxmYPAKhajutI2lCCihROmQmw7HfAciq05vle88D0KeprHsnbJehUR+uhD6OTlEZFPc2S9fv0DqSELf1055zlrmfdI0eB13ZLCXK5qsWpc/RXyE3E7xr8ufVAJIzc6no6USr6t5aJxOiRJV/5EMuu9XCS0mh6t/PceTcFa0jCXFTGdlG9h/YS2v9YVQUaPiY1pE0IwWUKB3yuu/q92XJ7nMA9GpcEb1OZh4XNs7ekfKDvyNDcaaZcoz9X40nPVuWehGl08qDF+hp/NN8o3on8Cy7U8xIASW0lxgDp81LW8RV7cGmyEsAPNpEzr4TZYPiVZ3cBz8GoH/2Tyz+9nONEwlRsGXbT/67dEvzYRqn0ZYUUEJ7h5aZf1Zpw+KT5snIa3vpsctK1DSWEPeSW+NHia01CICep99k3badGicSIr+T8Sn4n1tFOSUVo1slqNFF60iakgJKaO/QTwCY6vZiyW7z3E8hhqu3n9VZCBsT8OgHXHCtg6eShs+qEZy9mKh1JCEsvt9xloF2awHQN38SdHqNE2lLCiihrcunIO4AKHrWZdfl7JUMnOwUujesVKhZnYWwKXYGvId8R4riSn0i2T//WVnqRZQKmTlGju75m0a6SEw6e2j0hNaRNCcFlNDWtdYngtrz3f4kAJpVsKNz+7aFntVZCFti71WVzO5zAeie8Ssrf/hU40RCwJ+H4+iRs8p8o3ZPcPXRNE9pIAWU0NZhcwGVE9qTXfFGAB5tWkXLREJozqdJD07VNA/Q7XTiTXbvkfFQQlu/bD1Mj2szj+uaP6VxmtJBCiihnYRjkHAEdPb8rWtBSpYRf3dHujWrqXUyITRXve+7RLs0wE3JwP3XJ7l09arWkUQZdepiKlXP/YqTkk2Od20IDNM6UqkgBZTQzrXWJ6p3YunhVAB6NAyQuZ+EANDb4T/0e64ontQghmNfDMMk46GEBn7ccYbH9WsAsG8xDBT5HQ1SQAmtqKpl/FN6zR78dSwBgJ6NKmqZSohSxal8RVK7/w+jqtAmbQ2blszUOpIoY7JyjcTsXkWQLo5cOxeo10frSKWGFFBCG/GH4PJJ0DuwIrsR2UYTtfzdCK3grnUyIUqVyk26cjDkWQDCjk7j+N5NN903NjaWTZs2ERsbe6/iCRu3+nA8vXJWAKBr9Bg4uGqcqPSQAkpoI+/suxr3seSQ+ey7h6X1SYgCNej3BgddWuKg5OD665MkJ14qcL+oqCgiIyNlDjVRbFZv3ERn3R4AdGFPa5ymdJECStx7qmoZ/3S5ajd2RF9BUeChhjJtgRAFUXR6qgz9iljFl4pqPKc/H4hqMt6wX1BQEMHBwTKHmigWB88lERb/AzpFJSuoC3jX0DpSqSIFlLj3YvfC1dNg58Sy1LoAtAzyooKHk7a5hCjF3Mv7kvLQfLJVO+qnbWH/D1Nu2CcgIIA2bdrIHGqiWCzZuI9H9RsBcGj3fIH7lOVuYymgxL13rfVJrRnB4gPmU7Nl8LgQtxfSqC3bak0EoN7xj4jZtVLjRMJWXUrNovzRr3FUckj3qgdVWhe4X1nuNpYCStxbqgqHfwHgbEBXIhNScbDT0bWuv8bBhLAObfqMZ6NLBHpFxX3F06RfPKN1JGGDlmw7yQDdnwA4dxhz06kLynK3sRRQ4t66sB+SYsDOiR+v1gIgPNQPd0d7jYMJYR10eh11nvqMY0o1PNVkLs7vB7lZWscSNiTHaOLy1m/wUZJJd/KH2j1uum9Z7jaWAkrcW8d+B0AN7szyw+buuwcbVNAykRBWx6ucJ5k9F5KoulAl4wiRXz+rdSRhQ1YdvECfnF8BMLR+BvTyB25BpIAS99ZRcwF1xrcz5xMzcDHo6RDiq3EoIaxPwwYN+afe25hUheAzPxL393ytIwkbcWDDUmrqzpOld8Gu6WCt45RaUkCJe+dSJFw8Cjo7FifVBiC8th+O9nqNgwlhnbo9MpjlHgMAKL/+RTJidmucSFi7g+eSaH/5RwCMDQeCo4fGiUovKaDEvXPsNwDUqm356WgaAN3rl71+cyHuVt6p43FxF2j71Af8ozTBQA6ZX/eHtMtaxxNWbM26VbTRH8aIDue2o7WOU6pJASXuneu67+KSM3FztKNdTW+NQwlhfa4/ddzH3QlDny84bfKjXE488QseA2Ou1hGFFYpNzKDeqc8ASKreAzwDNU5UukkBJe6N5Fg4vwtQWJJaD4Autf1xsJPuOyGK6r+njoeFBrG56WzSVQf8Lm3j8m+vaZxQWKPfVq/hPt0uTCiU7/qK1nFKPSmgxL1xzLwYpVqpGYuPm/867l5fzr4T4k4UdOp4/+5dme/9AgBe+z4lY98yreIJK5SYnk2Vw3MAuFT5AfCpqXGi0k8KKHFvHDWPfzrj24mLKVl4ONnTOli674QoLjqdwmNPPs83OvOcPbpfnkGNO6hxKmEtfl+7ni5sB8DnAWl9KgwpoETJS78CpzcBsDS9EQBd6/hjsJOPnxDFqbyLgdCBH7DJVA8HNZO0RX1kULm4rcwcI157P0KnqMRWCEfxr6t1JKsg32A3MWfOHKpWrYqjoyNhYWHs2LFD60jW68QqUI2ovrX57qR5zFN3mTxTiBLRpJovUe0/5ozJF9eMWFK+fVwGlYtbWvX3JrqYNgPg203GzxWWFFAF+PHHHxk3bhyTJ09mz549NGjQgIiICBISErSOZp2unX0X49uJK2nZlHcx0DLIS+NQQtiugZ0asqDyO6SpDrjFbiFz5ctaRxKlVK7RhGHrLPSKylnvdthVaqR1JKshBVQBZsyYwbBhwxgyZAi1a9dm3rx5ODs7M3++zPRbZNlpcGodAD9nNAGga11/7PTy0ROipCiKwrjHe/Ku4xgAHHd/hmnvt9qGEqXS+m076JK7AQCf7q9rG8bKyLfYf2RnZ7N7927Cw8Mt23Q6HeHh4WzdurXAx2RlZZGcnJzvIq6JXAe5maieVfgq2hWAbvWk+06IkubuaM9jg0czx/QIAKZfn4ezMhRB/EtVVUx/f4idYuKMZwscqzbXOpJVkQLqPy5duoTRaMTPzy/fdj8/P+Li4gp8zLRp0/Dw8LBcAgNl8jGLE6sAuODfiSvpOXg62xNWrbzGoYQoG0IruFOhxxRWG5tgp+aQ9W1/SDyrdSxRSmzdvoXwrDUAlHtgksZprI8UUMXg5ZdfJikpyXI5e1Z+QQFgMsGJPwFYnWvuV78v1E+674S4hx5pUpltDadx1BSIQ+Ylsr/pZ+5av07e0jCxsbEapRT3msmkoq57E72icrJcO9xrttY6ktWRb7L/8Pb2Rq/XEx8fn297fHw8/v7+BT7GwcEBd3f3fBcBxO6B9EuoDu58ccbcote1bsHvoRCi+OUVRk80q8iH3lO5pLpjuHQI47Lh5j9wrrl+aRhRNuz45w9a52zFqCr49nxH6zhWSQqo/zAYDDRp0oR169ZZtplMJtatW0fLli01TGaFrnXfJVZoy7kUIy4GvUyeKcQ9lFcYnYs5zdQn7udF/YtkqXboj/+OuuHfL83/Lg0jbJvJaMJ541sAHPHrjkcV8/Ja0hJZNHZaByiNxo0bx6BBg2jatCnNmzdn1qxZpKWlMWTIEK2jWZfj5gJqk64pAB1r+eJoL2vfCXGv5BVEQUFBBHg6MWzAY7y24BzT7eahbJwOPrWg3qMEBATkWxZG2LZd6xbT3HiYTNWeKo+8ZdmeV3AD8nkoBCmgCtC3b18uXrzIpEmTiIuLo2HDhqxateqGgeXiFpLOQfxBVBS+iKsOwP115ew7Ie6l/xZGLat7cbTrCOatOscIu98x/TwSnUclqNzirp4nNjaWqKgoc6EmX7ylmjE3F+9t5tbHQ5X60dS/quW+6wtucXvShXcTo0eP5syZM2RlZbF9+3bCwsK0jmRdrg0ez/Brwv4rdhjsdHQI8dE4lBBiSOuqnKg7jj+NTdGZsjF+3x+u3N3YJxlDZT32rfycINMZknGh5qP5z7wraJFqcXNSQImSca2A2utonlekXQ0fXBykwVMIrSmKwtuPNOR/3hM5YKqGPuMKpm/7mNesvEMyhso6GLMzqbh3BgAHqw7BvZyvxomsmxRQovhlp0P03wB8fSUUkLPvhChNnAx6Zg9szQS7VziveqG7fBL1x8chN/uOjictF9bhyLK38VcTiKc89Xu9qHUcqycFlCh+0X9DbiY5bpVYdbE8ep1CeKj8pSNEaRJY3pmpj3dmWO6LpKhOKGc2w2/PgapqHU2UgMxLZwg+/j8ADtUej5ubh8aJrJ8UUKL4XZu+4Lh7K0ChZZAXns4GbTMJIW7QIsiLxx68n1E5z5Gr6mD/97Be5gSyRWd/GI8TWezT1aZ1zxFax7EJUkCJ4qWqlvFPy1LrAhAh3XdClFqPt6hC5eYP8lruk+YNG9+HXbJwui25engNNS6twagqJHZ4G0eDjEctDlJAieIVdwBSLqDaOfFdfGUAImrL9A9ClGaTH6zD6SqPMjvXvPCwumI8HFupcSpRLIw5ZP86AYA/nLrTvm1HjQPZDimgRPG61vp0rnwLsjDQMNATX3dHjUMJIW7FXq9j7oAmLHV7nB9zO6CoJtSlT8LZHVpHE3cpYd0n+GWd5rLqRoWeb6IoitaRbIYUUKJ4XRv/tNbYGID7pPVJCKtQ3sXA/MHNeVc/nL+MDVFyM1C/6wuXTmodTdyplHhct74PwArfYTSpVU3jQLZFCihRfNIuwfk9AMyPN88+Hh4qBZQQ1qKGnxuzBzTnOePz7DMFoWRcga8fhqTzWkcTdyBh2Qs4q+kcMAXRts84rePYHCmgRPE5tR5QSfEI4WyuJ4Hlnajp56p1KiFEEbSr6cPEh5owNPsFTpkqQNJZcxGVdlnraKIIco6uxPf0LxhVhe2hr1DNx03rSDZHCihRfE6tA2CXvbn7rnMtP+lvF8IKPd6iCj3bNOSJ7IlcUMvDpePwbS/IStE6miiMjESyf34OgO903endo4fGgWyTFFCieJhMEGkuoH68UhOQ8U9CWLNXHgglNLQOj2e/zFXcIHYvfN8fcjK1jiZuI+33l3HJvkiUyR+X+9+QefhKiBRQonjEH4K0BIx2zvyVHoSbox3Nq5XXOpUQ4g7pdQof9W+Ea8XaDMx6iTSc4PQ/sPRJMOZoHU/czKm/cDn8HSZVYaHPBB5uVl3rRDZLCihRPCLXAhDt2phs7OkQ4ou9Xj5eQlgzZ4MdXw5uRnK5ugzNHk829nB8Bfz8NBhztY4n/isrhYxlowH42tSFx/v0k2EUJUi+4UTxOPUXAH9k1gGQte+EsBHerg4serI5J5waMiL7eXKxg0PL4JdRYDJqHU9cJ/fPyTiln+esyYeLYS9R008GjpckKaDE3ctKgZitACxJqoWdTqFDTSmghLAV1bxd+HJQU7bomzIq+1mM6OHAD+bFh00mreMJgMi12O35EoDpDqN5pksDjQPZPimgxN2L3gimXJKdAolR/WherTwezvZapxJCFKNGlcvxcf/GrFGb8Vz2KEzoYO83sHK8eQ1MUWxiY2PZtGkTsbGxhXtAShy5S4cD8FXufXTv2Q9nWe+uxEkBJe7etbPvtioNAZk8UwhbUNCX+H21/Xi3V31WmFowNnsEKop54eGVL0hLVDGKiooiMjKSqKio2+9sMmJcNgy7zMscNVVmd8gEutSRBdzvBSlRxd1RVcsA8qVJIYAUUELYgrwvcYCAgADL9j5NA0nOyOGtFWCfY2S6/WcoOz8HYxZ0nwU6vUaJbUdQUFC+n7e0aQb60xtJVx14zX48nz/SuITTiTxSQIm7cyUKEs9gUuzZbKxNTT9XKns5a51KCHGXbvUl/lTbIBLTc/hkPZjQ8aH9/1D2fAW5WdBjLujzf7XExsYSFRVFUFBQvmJMFCwgIOCW71Pe+1nL+Spe699BASblDmZk3/sp7yJzPt0rRe7CGzRoEBs3biyJLMIaXWt9OuVUl3Qc6VhLBo8LYQsCAgJo06bNTb/Ix3epyeMtKvOTsS3P547GpNjBgR9h2dAb5okqUpeUuK2oqCjOHt+P659jUFQTPxnboDR4jHCZvPieKnIBlZSURHh4ODVq1OCdd97h/HlZZLJMuzb+aWWGefqCTiFSQAlRFiiKwtSH6tKzYQC/5rbgmZznMens4chyWPxEvhnLg4KCCA4OLlyXlLitoKqViUhfhmPWJaJM/nzq/AyvP1RH61hlTpELqOXLl3P+/HlGjhzJjz/+SNWqVbn//vtZunQpOTkyO22ZkptlnpkYWJVZBzdHOxpXKadxKCHEvaLTKXzQuwHd6ldgVW4ThmePw6h3gOMr4ZtekJEI3L41SxRNwKFPKX95NxmqgdE5zzGldxjujnLm8712R2fh+fj4MG7cOPbv38/27dsJDg5m4MCBBAQEMHbsWE6ePFncOUVpFLMVctJJtffiqFqZdjV8ZPZxIcoYO72OWX0b0rWOP2tzGzAo+0Vy7V3hzCZY2A2SL2gd0bbsXgjb5gIwLmckLVp1pFWwt7aZyqi7+ra7cOECa9asYc2aNej1eh544AEOHjxI7dq1mTlzZnFlFKXVqfUA7NA1BBQ6hPhoGkcIoQ17vY6P+jciPNSXTTmhPJr5GtmOPuY1Mud3gUuRWke0DdH/oK4YD8AHOb2JqxTBxPtraRyq7CpyAZWTk8OyZcvo3r07VapUYcmSJYwZM4bY2FgWLVrE2rVrWbx4MVOnTi2JvKI0idoAwG8pNQFoLwWUEGWWwU7HnAGN6VTLl305lbk/9TXSXatAYoy5iDq3W+uI1u3yKVg8EMWUyy/GVnxr6M2cxxpjsJNWf60U+Z2vUKECw4YNo0qVKuzYsYNdu3YxYsQI3N3dLft07NgRT0/P4swpSpkLUUdQL+wHYLOpLrV8nTixf1fhZ84VQtgcBzs9nz7emIg6fpzK9aHDlZdJ9KwD6Zdh4QNw+GetI1qn9CvwfT/IuMpeUzAv5Q5nVv/GBHg6aZ2sTCtyATVz5kxiY2OZM2cODRs2LHAfT09PoqOj7zabKMUS9/2Ggso5XUUSKEctD5OcpiyEwMFOzyePNeahBgEkmNxpGz+OC77tIDcTlgyGv9+XpV+KIjMJvn4YLp3ggurF8OxxPN2pDu1rSou/1opcQA0cOBBHR8eSyCKsSOVcc6H0t7EeAA80rJLvNOUir+UkhLAZ9nodM/s2pG/TQFJUJ1rHDOdwlcfNd65/G5Y9BTkZ2oa0Blmp8G1vuLCPq7jzePZEatUI5rnONbROJpCZyMUdconfBcCGnNqUc7anc6Ng9Lp//1PfbBkIIUTZoNcpTHukHk4GPQu3nKbb8QeYFxpIxJnpKIeWwtXT0Ocr8KioddTSKSfD3G13djupiguPZb6Myasms/s1Qq9TtE4nkMWExZ1IOgeXIzGhY5upNu1r+tzwH1omzhPC+hR3y7FOpzD5wdqMv898osmIo/X4tNJ0VEdPOL8L/tfOcjavuE5uFvw4EE7/Q4bizIDMl4h3rsHCIc0sS7VIK7/2pIASRRf1NwDH9TVIwbnA5Vtk4jwhrE9JLLmiKArPdq7B+4/WR69TeP+EHxPKzcLoVw/SL5nH9/z9PphMxfacpU2Rip3sNPjxcYhcQ7bOkYGZEzimr8kXg5pSxcvFspssj6M9KaBE0UWbC6i1WaEoCrSrIYMZhbAFJdly3KdpIF8MaoqzQc+yaAOPZL1Bap3HANU8Luq7PuazzWxQoYudtEuwsDucXE2uzpEhmWPZTS1m92tI48r5V3mQVn7tSQElikZVLfM/bTHVoVGgJ+Vk9W8hbEJJtxx3DPHlh+Et8HY1sD8ui/bHHiGq9XSwc4TINTC3JZxcWyLPraVCFTtXouDL+yB2D5n2nvTJmMhmUz1efSCUrnUr3LC7tPJrTwooUTQXj0NqPNmKgT2mGnSQxYOFEEVQv5Inv4xuQ50Ady6nZdNlfSVWhn0DXjUgNQ6+7QW/jzN3ZdmI2xY75/fAl13gShQpjgE8kPoae9SajOpYnaFtqt3bsKLQpIASRXOt+26XWossDLSTuUiEEEVU0dOJpSNa0b1+BXJNKs+sy2ZqxXkYmz1t3mHXlzCvDZzdqW3Qe+HAYnO3XdpFLrmG0CnxVaLUAJ7tFMyELiEoipxxV1pJASWK5lr33cac2ng621Ovooe2eYQQVsnJoOfj/o14ISIERYH5O+J5JPoh4nv8CO4VzV1a87vAyhfNk0namux0+GU0/DQMctI4V74lHS69wEXK8VynYMbdV1OKp1JOCihReMZcOL0JgE2murQO9pb5SIQQd0xRFEZ1DOaLJ5ri4WTP/nNJhC9X+LPdMqjfF1QT7PgffNwUDiyxnRnML56ALzrD3q9RUfgnYCjtYkeRijPPda7BWCmerIIUUKLwYvdCVjIpiitH1Kq0l7PvhBDFoHOoHyufb0vTKuVIycrl6aVRvKI8S/ZjP5vHRqUlwE9PwaIHIf6I1nHvnMkEu+bDZx0g4Qiqiy8zKkxnYFRnTOiY0KUmY8NrSPFkJaSAEoUXvQGATbm1MaGjbU1vbfMIIWxGRU8nfhjeglEdq6Mo8N32GLr+qmP3A79Bp9fNZ+qd/gc+bQU/PQ1XrGy91dh95rPsfh8LOWlkBbZloOFDPo4OwGCn46P+jRjdSYonayIFlCi8axNobjbVoYavKxU8ZCVwIUTxsdPreCGiFl892Rw/dweiLqXx6Bd7eCPxfjKGb4XaPQAVDvwAnzQ1FyPJpXwm7oxEWPkCfN7RPPu6wY2zzV+nQ9yzbLqgx8vFwPfDWvBQA5mOwNpIASUKJycTzu4AYLOpLm2l+04IcQcKMyt32xo+rB7bnr5NA1FVWLjlNF0WnuafRh/C8A0QHA6mXHN32OyGsPwZuHDgnr2GQslMgn9mwMdNYMdnoJow1enF/+r/SPt/QrmQkksNX1eWj2pNkyrlbn88UerIYsKicM7vAmMWlyhHtOrPZOm+E0LcgcIuNO7hZM97j9anW/0KvPzTQc5eyWDglzsID/Xj1W5fUS11H/z1JsRshX3fmi9VWkPY0xDSDfQl9/UWGxtLVFQUQUFBN76G1ATYNhd2fglZyeZtXjWIa/MWI7a4se9sIgAPN6rIlB51cHe0L7GcomRJASUK59rZd5uNoRjs9IRV89I4kBDCGuXNxl3YJUja1fRh1Zi2fLj6BF9vO8Pao/H8fSKBQS2r8my/X/G4vA+2z4Mjv8CZzeaLsxeEPgR1HzEXVTr9HectqFi6oQjMzTZP8XJoGRxZDrmZ5gf71MLY6nm+TWvGuz+fIj07EXdHO956uJ502dkARVVt5bzQ0iM5ORkPDw+SkpJwd3fXOk7xWNgdTv/DKzlDianWl2+eCtM6kRCijIlMSOHtFUdZf/wiAJ7O9jzZuhqDWlbFI/eiudVn90LzIsV5XHygVneo2gYqtwSPikV6zk2bNhEZGUlwcDBt2rQBzEXVmROHqOmUiFf8Jjj6K2Rc/fdBFZtA2/GspwlvrzxOZEIqAC2CyjOjT0MCPGX8aGlVlO9vKaBKgM0VUDmZ8F4VyM2kU9YH9O3aiafbV9c6lRCijNpwPIG3Vhy1FCauDnY83qIKQ9tUw8dZZz5b7/DPcPS3/IUNgEdlqNwC/GqDZxUoVwU8q4JzefjvGXCqyoUzJ4g9vocqXk54K4lwbpf5cvEY8O/XZ7bBk0iH+uSEPIhDk76888dxNp4wF3rlnO0Zd19NBoRVQSdz55VqUkBpzOYKqNObYeEDXFQ9aJY1lz+eb0doBRt4XUIIq2U0qaw4eIG56yM5FpcCgIOdjgfqVaB300q0qOaFTs01nz0cuRbObjMPNFeNBR5P1RswokdnZ0BnZwCdnfkMutyMm4fwrAxBHaHeo5yzq8ovO0+xMU7P9hhzHnu9wuBWVRndqQYeTjLWyRoU5ftbxkCJ2zuzGYBtplB83Byp5e+mcSAhhC275SDta/Q6hYcaBPBg/QqsO5rAJ+sj2Xc2kZ/3nufnvecJLO/Eo40D6d6gBUFdO5vnV8pKhXM7zWcUXzkFV89A4hlIuYBizDZ/IRozIOs/T+bgDq5+4FEJKjaGik2hUlNw9SUhOZMVBy/w1dYooi+lA+aGrK51/Hmpay2qeruU6HsltCMFlLi90/8AsM1Um7Y1vGWiNyFEiSrsmXpgXg4mvLYfnUN92Xc2kSW7z/HbvljOXslg5toTzFx7gkrlnGhX04d2NXxoWb0NHtU75j9ITibxUQc5eyaaypUC8PUqB8YccPQwF04GZ8uuJpPKkQvJrNuWwLpjJzhw7t91+twc7OjTLJBBLatS2csZYdukC68E2FQXXm4WvFsZcjPpnDWdZ/t0o2ejog3CFEKIoihMC9StZGQb+fNwHMv2nGN71BWyjaZ89wd4OFLT340Qfzeq+7hS3tmAu5M97k52uDnak51rIjUzl5SsHFIyczl3NYPjcckcj0vhRHwqGTn/dgMqCjSo5MkjjSvSq3ElXBykXcKaSReeKD7n90BuJhdVd06pAbQOlvmfhBAlKyAg4I4KpzxOBj09G1WkZ6OKpGfnsi3qMn8fv8jGk5eIvpRGbFImsUmZbLh2Nl+Rj2+vp00Nb+4L9aNjLV983BzuOKuwXlJAiVu7Nv/TdlMotfzd5ReFEMKqOBvs6FTLj061/ABIysjhRHwKO46fY19UPIkmB7JVHcmZuVxOTictx4RBr+Dp4oirgx2ujnb4ujkQ4u9OrWutVlXKO2Onl4U8yjopoMStnTEXUNtMtWlVXVqfhBDWzcPJnmZVy5N17gguTudvmN/pv12H/24LICCggpbRRSkjBZS4udxsiNkOmM/Ae6WGzD4uhLANBc2IXlDXYVEGtIuyRQoocXOxeyA3g0uqO6eVSjSX5VuEEDaisOOsirr0jCg7pIASN2cZ/1SLBoHlcJWzS4QQZczdDmgXtsumRsFVrVoVRVHyXd599918+xw4cIC2bdvi6OhIYGAg77///g3HWbJkCbVq1cLR0ZF69eqxcuXKe/USSpfrBpDL2XdCCCHEv2yqgAKYOnUqFy5csFyeffZZy33Jycl06dKFKlWqsHv3bqZPn84bb7zBZ599Ztlny5Yt9O/fn6FDh7J371569uxJz549OXTokBYvRzvGHNSzeeOfatO6unTfCSGsX2xsLJs2bSI2NlbrKMLK2VyfjJubG/7+/gXe9+2335Kdnc38+fMxGAzUqVOHffv2MWPGDIYPHw7A7Nmz6dq1Ky+88AIAb775JmvWrOGTTz5h3rx59+x1aC52L0pOOpdVN87ZVaZR5XJaJxJCiLsmg8JFcbG5Fqh3330XLy8vGjVqxPTp08nNzbXct3XrVtq1a4fBYLBsi4iI4Pjx41y9etWyT3h4eL5jRkREsHXr1nvzAkqLa+vf7TDVolk1bwx2NvdREUKUQUFBQQQHB8ugcHHXbKoF6rnnnqNx48aUL1+eLVu28PLLL3PhwgVmzJgBQFxcHNWqVcv3GD8/P8t95cqVIy4uzrLt+n3i4uJu+rxZWVlkZf27+mRycnJxvSTtnDEXjDtNtWgdLN13QgjbIIPCRXEp9c0KEydOvGFg+H8vx44dA2DcuHF06NCB+vXrM2LECD788EM+/vjjfMVNSZg2bRoeHh6WS2BgYIk+X4kzmVDPbgNgpylEJtAUQggh/qPUt0CNHz+ewYMH33KfmzXFhoWFkZuby+nTpwkJCcHf35/4+Ph8++Tdzhs3dbN9bjauCuDll19m3LhxltvJycnWXURdPIaSmUSa6sAFx2BqV7DyBZGFEEKIYlbqCygfHx98fHzu6LH79u1Dp9Ph6+sLQMuWLXn11VfJycnB3t4egDVr1hASEkK5cuUs+6xbt44xY8ZYjrNmzRpatmx50+dxcHDAwcGG1oiLMXff7TUFE1bTD51O0TiQEEIIUbqU+i68wtq6dSuzZs1i//79REVF8e233zJ27Fgef/xxS3H02GOPYTAYGDp0KIcPH+bHH39k9uzZ+VqPnn/+eVatWsWHH37IsWPHeOONN9i1axejR4/W6qXdezF53Xe1aCXjn4QQQogb2EwB5eDgwA8//ED79u2pU6cOb7/9NmPHjs03x5OHhwerV68mOjqaJk2aMH78eCZNmmSZwgCgVatWfPfdd3z22Wc0aNCApUuXsnz5curWravFy9KE6cwWAHaqIbSRCTSFEELmjxI3UFRVVbUOYWuSk5Px8PAgKSkJd3crGz+UeBZm1SVX1dHV8RvWTHwARZEuPCFE2bZp0yYiIyMJDg6mTZs2WscRJaQo39+lfgyUuMeuzT5+WK1Kw+BKUjwJIQSyqLC4kRRQIr9rA8h3mUJoESTjn4QQAmT+KHEjmxkDJYqH8doEmjtMIbQIKq9xGiGEEKJ0kgJK/CsjEV3CEQAueDSgUjlnjQMJIYQQpZMUUOJfZ3egoBJl8ickqLrWaYQQQohSSwoo8S8Z/ySEEEIUihRQwiJv/NNONYQW1aWAEkIIIW5GCihhlpsF53cDcN6tARU9nTQOJIQQQpReUkAJs9i96E3ZXFTdqVS97My6LoQQQtwJKaCE2fXjn6rL8i1CCCHErUgBJQDIjTavfycDyIUQQojbkwJKgMmEem0Jl3Nu9QmQ8U9CCCHELUkBJeByJPbZSWSoBspXb6Z1GiGEEKLUkwJKwLkdABxQgwgL9tM4jBBCCFH6SQElyD69DYC9phqEyfp3QgghxG1JASXIPn1t/JNLHSp4yPgnIYQQ4nakgCrrMpNwSToJgGO1lhqHEUIIIayDFFBl3fndKKjEmHyoExKsdRohhBDCKkgBVcbldd/tUWvQrKqMfxJCCCEKQwqoMi410jyBZpRDHSqVc9Y4jRBCCGEdpIAqy0wmnBP2mq9WaqpxGCGEEMJ6SAFVll0+iaMxhQzVQMUQmUBTCCGEKCwpoMqwS/v/BMwTaDarLhNoCiGEEIUlBVQZdvnoRgAOKzWo7uOicRohhBDCekgBVYaVTzPP/5Tq1QBFUTROI4QQQlgPKaDKqswkvDLPAOBVp6PGYYQQQgjrIgVUGWU8uwvdtQk0G9SqoXUcIYQQwqpIAVVGXTr6DwAHlBBCK7hrnEYIIYSwLlJAlVE5Z8wzkF8t3wC9TsY/CSGEEEUhBVRZZDJR/up+ABxkAWEhhBCiyKSAKoPUS8dxNqWRoRoIqttc6zhCCCGE1ZECqgxKOLIJgINUp15lb43TCCGEENZHCqgyKOXUNgAuuNbBwU6vcRohhBDC+kgBVQY5JuwDQJEFhIUQQog7IgVUWZOdjn9WFAC+oa01DiOEEEJYJymgypjLkbuww0S86kndWqFaxxFCCCGskhRQZUzcUfMA8ihDLVwd7TVOI4QQQlgnKaDKGPXcLgDSvOtrnEQIIYSwXlJAlTHeSYcAcK4m8z8JIYQQd0oKqDIk7Woc/qZ4AKrWb6txGiGEEMJ6SQFVhpw5YF5A+IxSkQB/f43TCCGEENZLCqgyJOWUeQHheLc6GicRQgghrJsUUGVI3gSaakBjbYMIIYQQVk4KqDLCaDRROeMYAN61ZAJNIYQQ4m5IAVVGREceppySQrZqR5XQZlrHEUIIIayaFFBlxIUjmwGIMVTHzsFJ4zRCCCGEdZMCqozIjTFPoJni3UDjJEIIIYT1kwKqjCifeBAA56rSfSeEEELcLSmgyoC4KynUNEUBUKmeTKAphBBC3C0poMqAE4d24KRkk6q44OIfonUcIYQQwupJAVUGJEVuAyDeNRR08k8uhBBC3C35Ni0DHOL3AWCs0ETbIEIIIYSNkALKxqVn51I54ygA3iEtNU4jhBBC2AYpoGzcwagL1FDOAVC+RguN0wghhBC2QQooG3fu2Hb0ikqi3gvcK2gdRwghhLAJUkDZuOyYPQAklaujcRIhhBDCdkgBZcNUVcXtqnkCTfvAxhqnEUIIIWyH1RRQb7/9Nq1atcLZ2RlPT88C94mJiaFbt244Ozvj6+vLCy+8QG5ubr59NmzYQOPGjXFwcCA4OJiFCxfecJw5c+ZQtWpVHB0dCQsLY8eOHSXwikpezJV0ahpPAeBTU8Y/CSGEEMXFagqo7OxsevfuzciRIwu832g00q1bN7Kzs9myZQuLFi1i4cKFTJo0ybJPdHQ03bp1o2PHjuzbt48xY8bw1FNP8eeff1r2+fHHHxk3bhyTJ09mz549NGjQgIiICBISEkr8NRa3/VHnqK7EAmBfSVqghBBCiOKiqKqqah2iKBYuXMiYMWNITEzMt/2PP/6ge/fuxMbG4ufnB8C8efN46aWXuHjxIgaDgZdeeokVK1Zw6NAhy+P69etHYmIiq1atAiAsLIxmzZrxySefAGAymQgMDOTZZ59l4sSJhcqYnJyMh4cHSUlJuLu7F8OrvjOff/MtwyKfIdneB/dXIzXLIYQQQliDonx/W00L1O1s3bqVevXqWYongIiICJKTkzl8+LBln/Dw8HyPi4iIYOvWrYC5lWv37t359tHpdISHh1v2sSam2L0ApHvX0ziJEEIIYVvstA5QXOLi4vIVT4Dldlxc3C33SU5OJiMjg6tXr2I0Ggvc59ixYzd97qysLLKysiy3k5OT7+q1FIf07Fx8U46CHlyqNtU6jhBCCGFTNG2BmjhxIoqi3PJyq8KltJg2bRoeHh6WS2BgoNaROHAuibpKNABu1ZppnEYIIYSwLZq2QI0fP57Bgwffcp+goKBCHcvf3/+Gs+Xi4+Mt9+X9zNt2/T7u7u44OTmh1+vR6/UF7pN3jIK8/PLLjBs3znI7OTlZ8yLqYNQ5hl4bQE5AQ02zCCGEELZG0wLKx8cHHx+fYjlWy5Ytefvtt0lISMDX1xeANWvW4O7uTu3atS37rFy5Mt/j1qxZQ8uW5jXiDAYDTZo0Yd26dfTs2RMwDyJft24do0ePvulzOzg44ODgUCyvo7hcObUbnaKS6uCHq6uv1nGEEEIIm2I1g8hjYmLYt28fMTExGI1G9u3bx759+0hNTQWgS5cu1K5dm4EDB7J//37+/PNPXnvtNUaNGmUpbkaMGEFUVBQvvvgix44dY+7cuSxevJixY8danmfcuHF8/vnnLFq0iKNHjzJy5EjS0tIYMmSIJq/7Tqiqij5uPwC5fvU1TiOEEELYHqsZRD5p0iQWLVpkud2oUSMA1q9fT4cOHdDr9fz++++MHDmSli1b4uLiwqBBg5g6darlMdWqVWPFihWMHTuW2bNnU6lSJb744gsiIiIs+/Tt25eLFy8yadIk4uLiaNiwIatWrbphYHlpdvZKBtVzT4IeXGX8kxBCCFHsrG4eKGug9TxQy/eep+7P4QTrYmHAUqhx3z3PIIQQQlibMjkPlPjXoehzBCkXzDcqNNQ0ixBCCGGLpICyQSmn96BTVDKcKoBr8QzSF0IIIcS/pICyMRnZRtyvHAQgyytU4zRCCCGEbZICysYcOJdInWsTaCY6VNQ4jRBCCGGbpICyMXtiEqmXNwN5zbYapxFCCCFskxRQNqZFRXuq68wDyL3qdtY4jRBCCGGbpICyMY3sY8xXPALBxVvbMEIIIYSNkgLK1sTuM/+s0EDTGEIIIYQtkwLK1lwwL+Ei8z8JIYQQJUcKKFsTd8D8s4KsgSeEEEKUFCmgbEl2Olw6Yb7uLwWUEEIIUVKkgLIlCUdANYGLD7j5a51GCCGEsFlSQNmSvPFP/vVBUbTNIoQQQtgwKaBsiYx/EkIIIe4JKaBsyYVrBZSMfxJCCCFKlBRQtsKYax4DBTIHlBBCCFHCpICyFZdOQG4mGNygXDWt0wghhBA2TQooW5E3/sm/Lujkn1UIIYQoSfJNaytk/JMQQghxz9hpHUAUEzkDTwghLIxGIzk5OVrHEKWMvb09er2+WI4lBZQtUNXruvCkgBJClF2qqhIXF0diYqLWUUQp5enpib+/P8pdzpcoBZQtSDwDmUmgswefWlqnEUIIzeQVT76+vjg7O9/1l6SwHaqqkp6eTkJCAgAVKlS4q+NJAWUL4g6af/qGgp1B2yxCCKERo9FoKZ68vLy0jiNKIScnJwASEhLw9fW9q+48GURuCy7I+CchhMgb8+Ts7KxxElGa5X0+7naMnBRQtsAy/kkm0BRCCOm2E7dSXJ8PKaBsgbRACSGEVevQoQNjxozROgYAy5cvJzg4GL1ez5gxY1i4cCGenp5axyp1pICydmmXICUWUMCvrtZphBBClEIbNmxAUZRCnZ349NNP8+ijj3L27FnefPNN+vbty4kTJyz3v/HGGzRs2LDkwloJGURu7S7sN//0qg4OrtpmEUIIYdVSU1NJSEggIiKCgIAAy/a8wdfiX9ICZe1k/ichhLAJubm5jB49Gg8PD7y9vXn99ddRVdVyf1ZWFhMmTKBixYq4uLgQFhbGhg0bLPefOXOGBx98kHLlyuHi4kKdOnVYuXIlp0+fpmPHjgCUK1cORVEYPHjwDc+/YcMG3NzcAOjUqROKorBhw4Z8XXgLFy5kypQp7N+/H0VRUBSFhQsXltRbUqpJC5S1k/FPQghxU6qqkpFj1OS5nez1RRqwvGjRIoYOHcqOHTvYtWsXw4cPp3LlygwbNgyA0aNHc+TIEX744QcCAgL4+eef6dq1KwcPHqRGjRqMGjWK7OxsNm7ciIuLC0eOHMHV1ZXAwECWLVtGr169OH78OO7u7gW2KLVq1Yrjx48TEhLCsmXLaNWqFeXLl+f06dOWffr27cuhQ4dYtWoVa9euBcDDw+Pu3igrJQWUtZMWKCGEuKmMHCO1J/2pyXMfmRqBs6HwX7OBgYHMnDkTRVEICQnh4MGDzJw5k2HDhhETE8OCBQuIiYmxdK1NmDCBVatWsWDBAt555x1iYmLo1asX9erVAyAoKMhy7PLlywPg6+t70wHhBoMBX19fy/7+/v437OPk5ISrqyt2dnYF3l+WSAFlzbLT4PIp83UpoIQQwqq1aNEiX4tVy5Yt+fDDDzEajRw8eBCj0UjNmjXzPSYrK8syaehzzz3HyJEjWb16NeHh4fTq1Yv69eW7oaRIAWXN4o8AKrj6gauP1mmEEKLUcbLXc2RqhGbPXVxSU1PR6/Xs3r37htmzXV3NJxA99dRTREREsGLFClavXs20adP48MMPefbZZ4sth/iXFFDWLP6Q+adMXyCEEAVSFKVI3Wha2r59e77b27Zto0aNGuj1eho1aoTRaCQhIYG2bdve9BiBgYGMGDGCESNG8PLLL/P555/z7LPPYjCYl/kyGu9+PJjBYCiW41g7OQvPmuUVUP5SQAkhhLWLiYlh3LhxHD9+nO+//56PP/6Y559/HoCaNWsyYMAAnnjiCX766Seio6PZsWMH06ZNY8WKFQCMGTOGP//8k+joaPbs2cP69esJDQ0FoEqVKiiKwu+//87FixdJTU2945xVq1YlOjqaffv2cenSJbKysu7+xVshKaCsWZy0QAkhhK144oknyMjIoHnz5owaNYrnn3+e4cOHW+5fsGABTzzxBOPHjyckJISePXuyc+dOKleuDJhbl0aNGkVoaChdu3alZs2azJ07F4CKFSsyZcoUJk6ciJ+fH6NHj77jnL169aJr16507NgRHx8fvv/++7t74VZKUa+fZEIUi+TkZDw8PEhKSsLd3b1knkRVYVogZKfAyK3gV7tknkcIIaxEZmYm0dHRVKtWDUdHR63jiFLqVp+Tonx/SwuUtUo8Yy6e9AbwrqF1GiGEEKJMkQLKWuV13/mEgN5e2yxCCCFEGSMFlLWKP2z+6VdP2xxCCCFEGSQFlLWKP2j+KWfgCSGEEPecFFDWynIGXh1tcwghhBBlkBRQ1igrFa5Gm69LF54QQghxz0kBZY0Sjph/ulUAFy9tswghhBBlkBRQ1iju2vgn6b4TQgghNCEFlDWynIEnA8iFEEIILUgBZY0sa+DJ+CchhBDaWLhwIZ6enlrHYPDgwfTs2fOeP68UUNbGZLquBUq68IQQQpROp0+fRlEU9u3bVyqPd7ekgLI2iWcgOxX0DuAlS7gIIURZlZ2drXWEYmGtr0MKKGuT133nWwv0dtpmEUIIUSxSUlIYMGAALi4uVKhQgZkzZ9KhQwfGjBlj2adq1aq8+eabPPHEE7i7uzN8+HAAli1bRp06dXBwcKBq1ap8+OGH+Y6tKArLly/Pt83T05OFCxcC/7bs/PTTT3Ts2BFnZ2caNGjA1q1b8z1m4cKFVK5cGWdnZx5++GEuX758y9dUrVo1ABo1aoSiKHTo0AH4t8vt7bffJiAggJCQkELlvNnx8nzwwQdUqFABLy8vRo0aRU5Ozi3z3S35BrY2lgk0ZQC5EELclqpCTro2z23vDIpSqF3HjRvH5s2b+fXXX/Hz82PSpEns2bOHhg0b5tvvgw8+YNKkSUyePBmA3bt306dPH9544w369u3Lli1beOaZZ/Dy8mLw4MFFivvqq6/ywQcfUKNGDV599VX69+9PZGQkdnZ2bN++naFDhzJt2jR69uzJqlWrLBluZseOHTRv3py1a9dSp04dDAaD5b5169bh7u7OmjVrCp3vVsdbv349FSpUYP369URGRtK3b18aNmzIsGHDivQeFIUUUNYmXgooIYQotJx0eCdAm+d+JRYMLrfdLSUlhUWLFvHdd9/RuXNnABYsWEBAwI25O3XqxPjx4y23BwwYQOfOnXn99dcBqFmzJkeOHGH69OlFLqAmTJhAt27dAJgyZQp16tQhMjKSWrVqMXv2bLp27cqLL75oeZ4tW7awatWqmx7Px8cHAC8vL/z9/fPd5+LiwhdffJGvCLqdWx2vXLlyfPLJJ+j1emrVqkW3bt1Yt25diRZQ0oVnbSxn4EkBJYQQtiAqKoqcnByaN29u2ebh4WHp2rpe06ZN890+evQorVu3zretdevWnDx5EqPRWKQc9evXt1yvUKECAAkJCZbnCQsLy7d/y5Yti3T869WrV69IxdPt1KlTB71eb7ldoUIFS/aSIi1Q1iQzGa6eNl+XFighhLg9e2dzS5BWz13MXFxu36L1X4qioKpqvm0FjQ+yt7fP9xgAk8lU5OcrjIJeR2FzFuT67HnHKqnseaSAsiYJR80/3QLAuby2WYQQwhooSqG60bQUFBSEvb09O3fupHLlygAkJSVx4sQJ2rVrd8vHhoaGsnnz5nzbNm/eTM2aNS0tMj4+Ply4cMFy/8mTJ0lPL9q4sNDQULZv355v27Zt2275mLwWpsK2hN0uZ1GPV9KkgLIm8deWcJHuOyGEsBlubm4MGjSIF154gfLly+Pr68vkyZPR6XSWlqCbGT9+PM2aNePNN9+kb9++bN26lU8++YS5c+da9unUqROffPIJLVu2xGg08tJLL93QYnM7zz33HK1bt+aDDz6gR48e/Pnnn7cc/wTg6+uLk5MTq1atolKlSjg6OuLh4XHT/W+Xs6jHK2kyBsqaZCaBnZN03wkhhI2ZMWMGLVu2pHv37oSHh9O6dWtCQ0NxdHS85eMaN27M4sWL+eGHH6hbty6TJk1i6tSp+QaQf/jhhwQGBtK2bVsee+wxJkyYgLNz0boXW7Roweeff87s2bNp0KABq1ev5rXXXrvlY+zs7Pjoo4/43//+R0BAAD169Ljl/rfLWdTjlTjVSrz11ltqy5YtVScnJ9XDw6PAfYAbLt9//32+fdavX682atRINRgMavXq1dUFCxbccJxPPvlErVKliurg4KA2b95c3b59e5GyJiUlqYCalJRUpMcVijFXVbNSi/+4Qghh5TIyMtQjR46oGRkZWke5a6mpqaqHh4f6xRdfaB3F5tzqc1KU72+raYHKzs6md+/ejBw58pb7LViwgAsXLlgu16+PEx0dTbdu3ejYsSP79u1jzJgxPPXUU/z555+WfX788UfGjRvH5MmT2bNnDw0aNCAiIqLER/MXmk5f6vvzhRBCFM3evXv5/vvvOXXqFHv27GHAgAEA2reyiJuymjFQU6ZMAbDMSHoznp6eN8wPkWfevHlUq1bNMktraGgomzZtYubMmURERADmZtRhw4YxZMgQy2NWrFjB/PnzmThxYjG9GiGEECK/Dz74gOPHj2MwGGjSpAn//PMP3t7eWscSN2E1LVCFNWrUKLy9vWnevDnz58/Pd0rk1q1bCQ8Pz7d/RESEZbr67Oxsdu/enW8fnU5HeHj4DVPaCyGEEMWlUaNG7N69m9TUVK5cucKaNWuoV6+e1rHELVhNC1RhTJ06lU6dOuHs7Mzq1at55plnSE1N5bnnngMgLi4OPz+/fI/x8/MjOTmZjIwMrl69itFoLHCfY8eO3fR5s7KyyMrKstxOTk4uxlclhBBCiNJG0xaoiRMnoijKLS+3Klz+6/XXX6d169Y0atSIl156iRdffJHp06eX4CswmzZtGh4eHpZLYGBgiT+nEEIIIbSjaQvU+PHjb7tWT1BQ0B0fPywsjDfffJOsrCwcHBzw9/cnPj4+3z7x8fG4u7vj5OSEXq9Hr9cXuM/NxlUBvPzyy4wbN85yOzk5WYooIYTQiPqf2ayFuF5xfT40LaB8fHwsiwOWhH379lGuXDkcHBwA87o9K1euzLfPmjVrLOv55A3cW7duneXsPZPJxLp16xg9evRNn8fBwcHyHEIIIbSRN+lieno6Tk5OGqcRpVXe7OZFnUz0v6xmDFRMTAxXrlwhJiYGo9HIvn37AAgODsbV1ZXffvuN+Ph4WrRogaOjI2vWrOGdd95hwoQJlmOMGDGCTz75hBdffJEnn3ySv/76i8WLF7NixQrLPuPGjWPQoEE0bdqU5s2bM2vWLNLS0ixn5QkhhCid9Ho9np6elmlnnJ2dbzuTtyg7VFUlPT2dhIQEPD098y0+fCespoCaNGkSixYtstxu1KgRAOvXr6dDhw7Y29szZ84cxo4di6qqBAcHW6YkyFOtWjVWrFjB2LFjmT17NpUqVeKLL76wTGEA0LdvXy5evMikSZOIi4ujYcOGrFq16oaB5UIIIUqfvOEWpWbuPlHq3Gq6o6JQVOksLnbJycl4eHiQlJSEu7u71nGEEKLMMRqN5OTkaB1DlDL29va3bHkqyve31bRACSGEEIWVd1KQECXF5ibSFEIIIYQoaVJACSGEEEIUkRRQQgghhBBFJGOgSkDeuHxZ0kUIIYSwHnnf24U5v04KqBKQkpICILORCyGEEFYoJSUFDw+PW+4j0xiUAJPJRGxsLG5ubsU+iVveMjFnz56VKRJuQ96rwpP3qvDkvSo8ea8KT96rwivJ90pVVVJSUggICECnu/UoJ2mBKgE6nY5KlSqV6HO4u7vLf7JCkveq8OS9Kjx5rwpP3qvCk/eq8Erqvbpdy1MeGUQuhBBCCFFEUkAJIYQQQhSRFFBWxsHBgcmTJ+Pg4KB1lFJP3qvCk/eq8OS9Kjx5rwpP3qvCKy3vlQwiF0IIIYQoImmBEkIIIYQoIimghBBCCCGKSAooIYQQQogikgJKCCGEEKKIpICyEm+//TatWrXC2dkZT0/PAvdRFOWGyw8//HBvg5YShXm/YmJi6NatG87Ozvj6+vLCCy+Qm5t7b4OWQlWrVr3hc/Tuu+9qHavUmDNnDlWrVsXR0ZGwsDB27NihdaRS54033rjhM1SrVi2tY5UKGzdu5MEHHyQgIABFUVi+fHm++1VVZdKkSVSoUAEnJyfCw8M5efKkNmE1drv3avDgwTd8zrp27XrP8kkBZSWys7Pp3bs3I0eOvOV+CxYs4MKFC5ZLz549703AUuZ275fRaKRbt25kZ2ezZcsWFi1axMKFC5k0adI9Tlo6TZ06Nd/n6Nlnn9U6Uqnw448/Mm7cOCZPnsyePXto0KABERERJCQkaB2t1KlTp06+z9CmTZu0jlQqpKWl0aBBA+bMmVPg/e+//z4fffQR8+bNY/v27bi4uBAREUFmZuY9Tqq9271XAF27ds33Ofv+++/vXUBVWJUFCxaoHh4eBd4HqD///PM9zVPa3ez9WrlyparT6dS4uDjLtk8//VR1d3dXs7Ky7mHC0qdKlSrqzJkztY5RKjVv3lwdNWqU5bbRaFQDAgLUadOmaZiq9Jk8ebLaoEEDrWOUev/9nW0ymVR/f391+vTplm2JiYmqg4OD+v3332uQsPQo6Ptt0KBBao8ePTTJo6qqKi1QNmbUqFF4e3vTvHlz5s+fjyrTfBVo69at1KtXDz8/P8u2iIgIkpOTOXz4sIbJSod3330XLy8vGjVqxPTp06VrE3Or5u7duwkPD7ds0+l0hIeHs3XrVg2TlU4nT54kICCAoKAgBgwYQExMjNaRSr3o6Gji4uLyfcY8PDwICwuTz9hNbNiwAV9fX0JCQhg5ciSXL1++Z88tiwnbkKlTp9KpUyecnZ1ZvXo1zzzzDKmpqTz33HNaRyt14uLi8hVPgOV2XFycFpFKjeeee47GjRtTvnx5tmzZwssvv8yFCxeYMWOG1tE0denSJYxGY4Gfm2PHjmmUqnQKCwtj4cKFhISEcOHCBaZMmULbtm05dOgQbm5uWscrtfJ+9xT0GSvrv5cK0rVrVx555BGqVavGqVOneOWVV7j//vvZunUrer2+xJ9fCigNTZw4kffee++W+xw9erTQgy9ff/11y/VGjRqRlpbG9OnTbaaAKu73qywpyns3btw4y7b69etjMBh4+umnmTZtmuZLJwjrcP/991uu169fn7CwMKpUqcLixYsZOnSohsmELenXr5/ler169ahfvz7Vq1dnw4YNdO7cucSfXwooDY0fP57Bgwffcp+goKA7Pn5YWBhvvvkmWVlZNvHFV5zvl7+//w1nT8XHx1vuszV3896FhYWRm5vL6dOnCQkJKYF01sHb2xu9Xm/5nOSJj4+3yc9McfL09KRmzZpERkZqHaVUy/scxcfHU6FCBcv2+Ph4GjZsqFEq6xEUFIS3tzeRkZFSQNk6Hx8ffHx8Suz4+/bto1y5cjZRPEHxvl8tW7bk7bffJiEhAV9fXwDWrFmDu7s7tWvXLpbnKE3u5r3bt28fOp3O8j6VVQaDgSZNmrBu3TrL2a0mk4l169YxevRobcOVcqmpqZw6dYqBAwdqHaVUq1atGv7+/qxbt85SMCUnJ7N9+/bbnoEt4Ny5c1y+fDlf8VmSpICyEjExMVy5coWYmBiMRiP79u0DIDg4GFdXV3777Tfi4+Np0aIFjo6OrFmzhnfeeYcJEyZoG1wjt3u/unTpQu3atRk4cCDvv/8+cXFxvPbaa4waNcpmCs47sXXrVrZv307Hjh1xc3Nj69atjB07lscff5xy5cppHU9z48aNY9CgQTRt2pTmzZsza9Ys0tLSGDJkiNbRSpUJEybw4IMPUqVKFWJjY5k8eTJ6vZ7+/ftrHU1zqamp+VrioqOj2bdvH+XLl6dy5cqMGTOGt956ixo1alCtWjVef/11AgICyuSUNLd6r8qXL8+UKVPo1asX/v7+nDp1ihdffJHg4GAiIiLuTUDNzv8TRTJo0CAVuOGyfv16VVVV9Y8//lAbNmyourq6qi4uLmqDBg3UefPmqUajUdvgGrnd+6Wqqnr69Gn1/vvvV52cnFRvb291/Pjxak5OjnahS4Hdu3erYWFhqoeHh+ro6KiGhoaq77zzjpqZmal1tFLj448/VitXrqwaDAa1efPm6rZt27SOVOr07dtXrVChgmowGNSKFSuqffv2VSMjI7WOVSqsX7++wN9NgwYNUlXVPJXB66+/rvr5+akODg5q586d1ePHj2sbWiO3eq/S09PVLl26qD4+Pqq9vb1apUoVddiwYfmmpilpiqrKee5CCCGEEEUh80AJIYQQQhSRFFBCCCGEEEUkBZQQQgghRBFJASWEEEIIUURSQAkhhBBCFJEUUEIIIYQQRSQFlBBCCCFEEUkBJYQQQghRRFJACSGEEEIUkRRQQgghhBBFJAWUEELcxsWLF/H39+edd96xbNuyZQsGg4F169ZpmEwIoRVZC08IIQph5cqV9OzZky1bthASEkLDhg3p0aMHM2bM0DqaEEIDUkAJIUQhjRo1irVr19K0aVMOHjzIzp07cXBw0DqWEEIDUkAJIUQhZWRkULduXc6ePcvu3bupV6+e1pGEEBqRMVBCCFFIp06dIjY2FpPJxOnTp7WOI4TQkLRACSFEIWRnZ9O8eXMaNmxISEgIs2bN4uDBg/j6+modTQihASmghBCiEF544QWWLl3K/v37cXV1pX379nh4ePD7779rHU0IoQHpwhNCiNvYsGEDs2bN4uuvv8bd3R2dTsfXX3/NP//8w6effqp1PCGEBqQFSgghhBCiiKQFSgghhBCiiKSAEkIIIYQoIimghBBCCCGKSAooIYQQQogikgJKCCGEEKKIpIASQgghhCgiKaCEEEIIIYpICighhBBCiCKSAkoIIYQQooikgBJCCCGEKCIpoIQQQgghikgKKCGEEEKIIvo/l2eX6bieaTIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "u0 = s\n", "for i in range(5):\n", diff --git a/src/autora/state.py b/src/autora/state.py index aeb7cce7..71fa8860 100644 --- a/src/autora/state.py +++ b/src/autora/state.py @@ -45,8 +45,95 @@ def __add__(self: C, other: Union[Delta, Mapping]) -> C: S = TypeVar("S", bound=DeltaAddable) +class StateDict(UserDict): + def __init__(self, data: Optional[Dict] = None): + super().__init__(data) + + def add_field(self, name, default=None, delta="replace", aliases=None): + self.data[name] = default + if "_metadata" not in self.data.keys(): + self.data["_metadata"] = {} + self.data["_metadata"][name] = {} + self.data["_metadata"][name]["default"] = default + self.data["_metadata"][name]["delta"] = delta + self.data["_metadata"][name]["aliases"] = aliases + + def set_delta(self, name, delta): + if "_metadata" not in self.data.keys(): + self.data["_metadata"] = {} + if name not in self.data["_metadata"].keys(): + self.data["_metadata"][name] = {} + self.data["_metadata"][name]["default"] = None + self.data["_metadata"][name]["aliases"] = None + self.data["_metadata"][name]["delta"] = delta + + def __setitem__(self, key, value): + if key != "_metadata" and ( + "_metadata" not in self.data.keys() + or key not in self.data["_metadata"].keys() + ): + warnings.warn( + f"Adding field {key} without metadata. Using defaults." + "Use add_field to safely initialize a field" + ) + self.add_field(key) + super().__setitem__(key, value) + + def __getattr__(self, key): + if key in self.data: + return self.data[key] + raise AttributeError(f"'StateDict' object has no attribute '{key}'") + + def __add__(self, other: Union[Delta, Mapping]): + updates = dict() + other_fields_unused = list(other.keys()) + for self_key in self.data: # Access the data dictionary within UserDict + other_value = other[self_key] if self_key in other else None + if other_value is None: + continue + other_fields_unused.remove(self_key) + + self_field_key = self_key + self_value = self.data[ + self_field_key + ] # Access the value from the data dictionary + delta_behavior = self.data["_metadata"][self_field_key]["delta"] + + if ( + constructor := self.data["_metadata"][self_field_key].get( + "converter", None + ) + ) is not None: + coerced_other_value = constructor(other_value) + else: + coerced_other_value = other_value + + if delta_behavior == "extend": + extended_value = _extend(self_value, coerced_other_value) + updates[self_field_key] = extended_value + elif delta_behavior == "append": + appended_value = _append(self_value, coerced_other_value) + updates[self_field_key] = appended_value + elif delta_behavior == "replace": + updates[self_field_key] = coerced_other_value + else: + raise NotImplementedError( + "delta_behaviour=`%s` not implemented" % delta_behavior + ) + + new_data = self.data.copy() + new_data.update(updates) + new = self.__class__( + new_data + ) # Create a new instance of the same class with updated data + return new + + +State = StateDict + + @dataclass(frozen=True) -class State: +class StateDataClass: """ Base object for dataclasses which use the Delta mechanism. @@ -57,7 +144,7 @@ class State: We define a dataclass where each field (which is going to be delta-ed) has additional metadata "delta" which describes its delta behaviour. >>> @dataclass(frozen=True) - ... class ListState(State): + ... class ListState(StateDataClass): ... l: List = field(default_factory=list, metadata={"delta": "extend"}) ... m: List = field(default_factory=list, metadata={"delta": "replace"}) @@ -99,7 +186,7 @@ class State: We can also define fields which `append` the last result: >>> @dataclass(frozen=True) - ... class AppendState(State): + ... class AppendState(StateDataClass): ... n: List = field(default_factory=list, metadata={"delta": "append"}) >>> m = AppendState(n=list("ɑβɣ")) @@ -113,7 +200,7 @@ class State: The metadata key "converter" is used to coerce types (inspired by [PEP 712](https://peps.python.org/pep-0712/)): >>> @dataclass(frozen=True) - ... class CoerceStateList(State): + ... class CoerceStateList(StateDataClass): ... o: Optional[List] = field(default=None, metadata={"delta": "replace"}) ... p: List = field(default_factory=list, metadata={"delta": "replace", ... "converter": list}) @@ -134,7 +221,7 @@ class State: With a converter, inputs are converted to the type output by the converter: >>> @dataclass(frozen=True) - ... class CoerceStateDataFrame(State): + ... class CoerceStateDataFrame(StateDataClass): ... q: pd.DataFrame = field(default_factory=pd.DataFrame, ... metadata={"delta": "replace", ... "converter": pd.DataFrame}) @@ -183,7 +270,7 @@ class State: Without a converter: >>> @dataclass(frozen=True) - ... class CoerceStateDataFrameNoConverter(State): + ... class CoerceStateDataFrameNoConverter(StateDataClass): ... r: pd.DataFrame = field(default_factory=pd.DataFrame, metadata={"delta": "replace"}) ... there is no coercion – the object is passed unchanged @@ -197,7 +284,7 @@ class State: A converter can cast from a DataFrame to a np.ndarray (with a single datatype), for instance: >>> @dataclass(frozen=True) - ... class CoerceStateArray(State): + ... class CoerceStateArray(StateDataClass): ... r: Optional[np.ndarray] = field(default=None, ... metadata={"delta": "replace", ... "converter": np.asarray}) @@ -211,7 +298,7 @@ class State: names. >>> @dataclass(frozen=True) - ... class FieldAliasState(State): + ... class FieldAliasState(StateDataClass): ... things: List[str] = field( ... default_factory=list, ... metadata={"delta": "extend", @@ -442,7 +529,7 @@ def _get_value(f, other: Union[Delta, Mapping]): return value, used_key -def _get_field_names_and_aliases(s: State): +def _get_field_names_and_aliases(s: StateDataClass): """ Get a list of field names and their aliases from a State object @@ -454,14 +541,14 @@ def _get_field_names_and_aliases(s: State): Examples: >>> from dataclasses import field >>> @dataclass(frozen=True) - ... class SomeState(State): + ... class SomeState(StateDataClass): ... l: List = field(default_factory=list) ... m: List = field(default_factory=list) >>> _get_field_names_and_aliases(SomeState()) ['l', 'm'] >>> @dataclass(frozen=True) - ... class SomeStateWithAliases(State): + ... class SomeStateWithAliases(StateDataClass): ... l: List = field(default_factory=list, metadata={"aliases": {"l1": None, "l2": None}}) ... m: List = field(default_factory=list, metadata={"aliases": {"m1": None}}) >>> _get_field_names_and_aliases(SomeStateWithAliases()) @@ -655,7 +742,7 @@ def inputs_from_state(f): The `State` it operates on needs to have the metadata described in the state module: >>> @dataclass(frozen=True) - ... class U(State): + ... class U(StateDataClass): ... conditions: List[int] = field(metadata={"delta": "replace"}) We indicate the inputs required by the parameter names. @@ -692,7 +779,7 @@ def inputs_from_state(f): ... return model >>> @dataclass(frozen=True) - ... class V(State): + ... class V(StateDataClass): ... variables: VariableCollection # field(metadata={"delta":... }) omitted ∴ immutable ... experiment_data: pd.DataFrame = field(metadata={"delta": "extend"}) ... model: Optional[BaseEstimator] = field(metadata={"delta": "replace"}, default=None) @@ -762,9 +849,13 @@ def inputs_from_state(f): def _f(state_: S, /, **kwargs) -> S: # Get the parameters needed which are available from the state_. # All others must be provided as kwargs or default values on f. - assert is_dataclass(state_) - from_state = parameters_.intersection({i.name for i in fields(state_)}) - arguments_from_state = {k: getattr(state_, k) for k in from_state} + assert is_dataclass(state_) or isinstance(state_, UserDict) + if is_dataclass(state_): + from_state = parameters_.intersection({i.name for i in fields(state_)}) + arguments_from_state = {k: getattr(state_, k) for k in from_state} + elif isinstance(state_, UserDict): + from_state = parameters_.intersection(set(state_.keys())) + arguments_from_state = {k: state_[k] for k in from_state} if "state" in parameters_: arguments_from_state["state"] = state_ arguments = dict(arguments_from_state, **kwargs) @@ -895,7 +986,7 @@ def delta_to_state(f): The `State` it operates on needs to have the metadata described in the state module: >>> @dataclass(frozen=True) - ... class U(State): + ... class U(StateDataClass): ... conditions: List[int] = field(metadata={"delta": "replace"}) We indicate the inputs required by the parameter names. @@ -963,7 +1054,7 @@ def delta_to_state(f): ... return Delta(model=new_model) >>> @dataclass(frozen=True) - ... class V(State): + ... class V(StateDataClass): ... variables: VariableCollection # field(metadata={"delta":... }) omitted ∴ immutable ... experiment_data: pd.DataFrame = field(metadata={"delta": "extend"}) ... model: Optional[BaseEstimator] = field(metadata={"delta": "replace"}, default=None) @@ -1062,7 +1153,7 @@ def on_state( The `State` it operates on needs to have the metadata described in the state module: >>> @dataclass(frozen=True) - ... class W(State): + ... class W(StateDataClass): ... conditions: List[int] = field(metadata={"delta": "replace"}) We indicate the inputs required by the parameter names. @@ -1118,7 +1209,7 @@ def decorator(f): return decorator(function) -StateFunction = Callable[[State], State] +StateFunction = Callable[[StateDataClass], StateDataClass] class StandardStateVariables(Enum): @@ -1129,24 +1220,24 @@ class StandardStateVariables(Enum): @dataclass(frozen=True) -class StandardState(State): +class StandardStateDataClass(StateDataClass): """ Examples: The state can be initialized emtpy >>> from autora.variable import VariableCollection, Variable - >>> s = StandardState() + >>> s = StandardStateDataClass() >>> s - StandardState(variables=None, conditions=None, experiment_data=None, models=[]) + StandardStateDataClass(variables=None, conditions=None, experiment_data=None, models=[]) The `variables` can be updated using a `Delta`: >>> dv1 = Delta(variables=VariableCollection(independent_variables=[Variable("1")])) - >>> s + dv1 - StandardState(variables=VariableCollection(independent_variables=[Variable(name='1',...) + >>> s + dv1 # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS + StandardStateDataClass(variables=VariableCollection(independent_variables=[Variable(name='1',...) ... and are replaced by each `Delta`: >>> dv2 = Delta(variables=VariableCollection(independent_variables=[Variable("2")])) - >>> s + dv1 + dv2 - StandardState(variables=VariableCollection(independent_variables=[Variable(name='2',...) + >>> s + dv1 + dv2 # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS + StandardStateDataClass(variables=VariableCollection(independent_variables=[Variable(name='2',...) The `conditions` can be updated using a `Delta`: >>> dc1 = Delta(conditions=pd.DataFrame({"x": [1, 2, 3]})) @@ -1181,7 +1272,8 @@ class StandardState(State): 1 7 Datatypes which are incompatible with a pd.DataFrame will throw an error: - >>> s + Delta(conditions="not compatible with pd.DataFrame") + >>> s + Delta(conditions="not compatible with pd.DataFrame") \ +# doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ... @@ -1232,7 +1324,8 @@ class StandardState(State): 1 2 b `experiment_data` which are incompatible with a pd.DataFrame will throw an error: - >>> s + Delta(experiment_data="not compatible with pd.DataFrame") + >>> s + Delta(experiment_data="not compatible with pd.DataFrame") \ +# doctest: +NORMALIZE_WHITESPACE +ELLIPSIS Traceback (most recent call last): ... ValueError: ... @@ -1293,6 +1386,36 @@ def model(self): return None +class StandardStateDict(StateDict): + def __init__(self, data: Optional[Dict] = None, **kwargs): + if data is None: + data = { + "_metadata": { + "variables": {"default": None, "delta": "replace"}, + "conditions": {"default": None, "delta": "replace"}, + "experiment_data": {"default": None, "delta": "extend"}, + "models": {"default": None, "delta": "extend"}, + }, + "variables": None, + "conditions": None, + "experiment_data": None, + "models": None, + } + super().__init__(data) + for key in kwargs: + self.data[key] = kwargs[key] + + @property + def model(self): + """Alias for the last model in the `models`.""" + try: + return self.data["models"][-1] + except IndexError: + return None + + +StandardState = StandardStateDict + X = TypeVar("X") Y = TypeVar("Y") XY = TypeVar("XY") @@ -1310,18 +1433,18 @@ def estimator_on_state(estimator: BaseEstimator) -> StateFunction: >>> from sklearn.linear_model import LinearRegression >>> state_fn = estimator_on_state(LinearRegression()) - Define the state on which to operate (here an instance of the `StandardState`): - >>> from autora.state import StandardState + Define the state on which to operate (here an instance of the `StandardStateDataClass`): + >>> from autora.state import StandardStateDataClass >>> from autora.variable import Variable, VariableCollection >>> import pandas as pd - >>> s = StandardState( + >>> s = StandardStateDataClass( ... variables=VariableCollection( ... independent_variables=[Variable("x")], ... dependent_variables=[Variable("y")]), ... experiment_data=pd.DataFrame({"x": [1,2,3], "y":[3,6,9]}) ... ) - Run the function, which fits the model and adds the result to the `StandardState` + Run the function, which fits the model and adds the result to the `StandardStateDataClass` >>> state_fn(s).model.coef_ array([[3.]]) @@ -1335,7 +1458,7 @@ def theorist( dvs = [v.name for v in variables.dependent_variables] X, y = experiment_data[ivs], experiment_data[dvs] new_model = estimator.set_params(**kwargs).fit(X, y) - return Delta(model=new_model) + return Delta(models=[new_model]) return theorist @@ -1345,9 +1468,9 @@ def experiment_runner_on_state(f: Callable[[X], XY]) -> StateFunction: returns both $x$ and $y$ values in a complete dataframe. Examples: - The conditions are some x-values in a StandardState object: - >>> from autora.state import StandardState - >>> s = StandardState(conditions=pd.DataFrame({"x": [1, 2, 3]})) + The conditions are some x-values in a StandardStateDataClass object: + >>> from autora.state import StandardStateDataClass + >>> s = StandardStateDataClass(conditions=pd.DataFrame({"x": [1, 2, 3]})) The function can be defined on a DataFrame, allowing the explicit inclusion of metadata like column names. @@ -1368,7 +1491,8 @@ def experiment_runner_on_state(f: Callable[[X], XY]) -> StateFunction: ... return result With the relevant variables as conditions: - >>> t = StandardState(conditions=pd.DataFrame({"x0": [1, 2, 3], "x1": [10, 20, 30]})) + >>> t = StandardStateDataClass( \ +conditions=pd.DataFrame({"x0": [1, 2, 3], "x1": [10, 20, 30]})) >>> experiment_runner_on_state(xs_to_xy_fn)(t).experiment_data x0 x1 y 0 1 10 11 @@ -1395,12 +1519,12 @@ def combined_functions_on_state( `functions`. Args: - function: the list of functions to be wrapped + functions: the list of functions to be wrapped output: list specifying State field names for the return values of `function` Examples: >>> @dataclass(frozen=True) - ... class U(State): + ... class U(StateDataClass): ... conditions: List[int] = field(metadata={"delta": "replace"}) >>> identity = lambda conditions : conditions >>> double_conditions = combined_functions_on_state( @@ -1439,7 +1563,7 @@ def combined_functions_on_state( """ - def f_(_state: State, params: Optional[Dict] = None): + def f_(_state: StateDataClass, params: Optional[Dict] = None): result_delta = None for name, function in functions: _f_input_from_state = inputs_from_state(function) From a0a866f0151ee815d8d879faaefc61119aaef2b3 Mon Sep 17 00:00:00 2001 From: Younes Strittmatter Date: Thu, 31 Aug 2023 19:24:17 -0400 Subject: [PATCH 2/4] fix: pre-commit failed --- ...Introduction to Functions and States.ipynb | 456 +--- ...ombining Experimentalists with State.ipynb | 1927 +---------------- ...Workflows using Functions and States.ipynb | 497 +---- 3 files changed, 42 insertions(+), 2838 deletions(-) diff --git a/docs/cycle/Basic Introduction to Functions and States.ipynb b/docs/cycle/Basic Introduction to Functions and States.ipynb index b397842a..f85585b7 100644 --- a/docs/cycle/Basic Introduction to Functions and States.ipynb +++ b/docs/cycle/Basic Introduction to Functions and States.ipynb @@ -83,23 +83,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", - "0 5.479121\n", - "1 -1.222431\n", - "2 7.171958\n", - "3 3.947361\n", - "4 -8.116453, 'experiment_data': None, 'models': None}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from autora.experimentalist.random_ import random_pool\n", "from autora.state import on_state\n", @@ -121,28 +105,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", - "0 5.479121\n", - "1 -1.222431\n", - "2 7.171958\n", - "3 3.947361\n", - "4 -8.116453, 'experiment_data': x y\n", - "0 5.479121 24.160713\n", - "1 -1.222431 -2.211546\n", - "2 7.171958 30.102304\n", - "3 3.947361 16.880769\n", - "4 -8.116453 -32.457650, 'models': None}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from autora.state import on_state\n", "import numpy as np\n", @@ -174,23 +137,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'experiment_data': x y\n", - "0 5.479121 24.221201\n", - "1 -1.222431 -3.929709\n", - "2 7.171958 31.438285\n", - "3 3.947361 18.730007\n", - "4 -8.116453 -32.416847}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from autora.state import inputs_from_state, outputs_to_delta\n", "\n", @@ -220,28 +167,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", - "0 5.479121\n", - "1 -1.222431\n", - "2 7.171958\n", - "3 3.947361\n", - "4 -8.116453, 'experiment_data': x y\n", - "0 5.479121 25.241429\n", - "1 -1.222431 -1.237150\n", - "2 7.171958 31.258674\n", - "3 3.947361 18.018944\n", - "4 -8.116453 -31.809938, 'models': None}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def experiment_runner_alt_2_core(conditions: pd.DataFrame, c=[2, 4], random_state=None):\n", " x = conditions[\"x\"]\n", @@ -286,28 +212,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-10, 10), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", - "0 3.056586\n", - "1 -7.392792\n", - "2 -4.502129\n", - "3 -7.037973\n", - "4 8.613511, 'experiment_data': x y\n", - "0 3.056586 16.271935\n", - "1 -7.392792 -27.401449\n", - "2 -4.502129 -17.914406\n", - "3 -7.037973 -25.823687\n", - "4 8.613511 36.439628, 'models': [LinearRegression()]}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "theorist(experiment_runner(experimentalist(s_0)))" ] @@ -343,346 +248,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
xy
01.5211278.997542
13.36212015.339784
21.0653915.938495
3-5.844244-21.453802
4-6.444732-24.975886
55.72458524.929289
61.7818059.555725
7-1.015081-2.632280
82.04408312.001204
97.70932430.806166
10-6.680454-24.846327
11-3.630735-11.346701
12-0.4983221.794183
13-4.043702-15.594289
145.77286525.094876
159.02893137.677228
168.05263734.472556
173.77411516.791553
18-8.405662-31.734315
195.43350622.975112
20-9.644367-36.919598
211.6731317.548614
227.60031632.294054
234.35466620.998850
246.04727326.670616
25-5.608438-20.570161
260.7338905.029705
27-2.781912-9.190651
28-2.308464-6.179939
29-3.547105-12.875100
300.9450896.013183
312.69489714.141356
327.44589331.312279
334.42310519.647015
342.20096111.587911
35-4.915881-17.061782
36-2.997968-10.397403
370.0994544.949820
38-3.924786-13.532503
397.05095031.085545
40-8.077780-31.084307
414.39148117.991533
426.74916230.242121
432.24680410.411612
444.47798919.571584
45-0.2627341.181040
46-7.187250-26.718313
47-0.7909850.058681
486.54533427.510641
49-7.185274-26.510872
\n", - "
" - ], - "text/plain": [ - " x y\n", - "0 1.521127 8.997542\n", - "1 3.362120 15.339784\n", - "2 1.065391 5.938495\n", - "3 -5.844244 -21.453802\n", - "4 -6.444732 -24.975886\n", - "5 5.724585 24.929289\n", - "6 1.781805 9.555725\n", - "7 -1.015081 -2.632280\n", - "8 2.044083 12.001204\n", - "9 7.709324 30.806166\n", - "10 -6.680454 -24.846327\n", - "11 -3.630735 -11.346701\n", - "12 -0.498322 1.794183\n", - "13 -4.043702 -15.594289\n", - "14 5.772865 25.094876\n", - "15 9.028931 37.677228\n", - "16 8.052637 34.472556\n", - "17 3.774115 16.791553\n", - "18 -8.405662 -31.734315\n", - "19 5.433506 22.975112\n", - "20 -9.644367 -36.919598\n", - "21 1.673131 7.548614\n", - "22 7.600316 32.294054\n", - "23 4.354666 20.998850\n", - "24 6.047273 26.670616\n", - "25 -5.608438 -20.570161\n", - "26 0.733890 5.029705\n", - "27 -2.781912 -9.190651\n", - "28 -2.308464 -6.179939\n", - "29 -3.547105 -12.875100\n", - "30 0.945089 6.013183\n", - "31 2.694897 14.141356\n", - "32 7.445893 31.312279\n", - "33 4.423105 19.647015\n", - "34 2.200961 11.587911\n", - "35 -4.915881 -17.061782\n", - "36 -2.997968 -10.397403\n", - "37 0.099454 4.949820\n", - "38 -3.924786 -13.532503\n", - "39 7.050950 31.085545\n", - "40 -8.077780 -31.084307\n", - "41 4.391481 17.991533\n", - "42 6.749162 30.242121\n", - "43 2.246804 10.411612\n", - "44 4.477989 19.571584\n", - "45 -0.262734 1.181040\n", - "46 -7.187250 -26.718313\n", - "47 -0.790985 0.058681\n", - "48 6.545334 27.510641\n", - "49 -7.185274 -26.510872" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "s_.experiment_data" ] @@ -698,15 +264,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[2.08476524] [[4.00471062]]\n" - ] - } - ], + "outputs": [], "source": [ "print(s_.model.intercept_, s_.model.coef_)\n" ] diff --git a/docs/cycle/Combining Experimentalists with State.ipynb b/docs/cycle/Combining Experimentalists with State.ipynb index 0efb9e8b..aaec2877 100644 --- a/docs/cycle/Combining Experimentalists with State.ipynb +++ b/docs/cycle/Combining Experimentalists with State.ipynb @@ -91,88 +91,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2
0-3.0-1.0
1-2.00.0
2-1.01.0
30.02.0
41.03.0
52.04.0
63.05.0
\n", - "
" - ], - "text/plain": [ - " x1 x2\n", - "0 -3.0 -1.0\n", - "1 -2.0 0.0\n", - "2 -1.0 1.0\n", - "3 0.0 2.0\n", - "4 1.0 3.0\n", - "5 2.0 4.0\n", - "6 3.0 5.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "conditions_ = pd.DataFrame({\"x1\": np.linspace(-3, 3, 7), \"x2\": np.linspace(-1, 5, 7)})\n", "conditions_" @@ -182,96 +101,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2downvotes
30.02.00
41.03.00
52.04.00
63.05.00
1-2.00.01
2-1.01.01
0-3.0-1.02
\n", - "
" - ], - "text/plain": [ - " x1 x2 downvotes\n", - "3 0.0 2.0 0\n", - "4 1.0 3.0 0\n", - "5 2.0 4.0 0\n", - "6 3.0 5.0 0\n", - "1 -2.0 0.0 1\n", - "2 -1.0 1.0 1\n", - "0 -3.0 -1.0 2" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def avoid_negative(conditions: pd.DataFrame):\n", " downvotes = (conditions_ < 0).sum(axis=1)\n", @@ -286,28 +116,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "Text(0.5, 1.0, 'Avoid-even function')" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGzCAYAAAD9pBdvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABqTUlEQVR4nO3deXxc1Xk38N+dXaNlRpsla19sMDa2vGDLlq0ArYuzkbqB1EnzBvCb0pTabyFumsRtgsnqNCm80AQCISHwUvKxkzTQtEmgxMFBkjfwhllsZO22rF0aSSPNeu/7h3RHki3ZGmlmzr0zv+/no0/i8SyP5MPVc895nnMkRVEUEBEREQliEB0AERERJTYmI0RERCQUkxEiIiISiskIERERCcVkhIiIiIRiMkJERERCMRkhIiIioZiMEBERkVBMRoiIiEgoJiNEOiVJEh566KFrPu+hhx6CJEnRD0igQCCAL37xiygsLITBYMDWrVtFhzStZ599FpIkobm5WXQoRJrCZIQoQp544glIkoTKykrRoSScZ555Bt/73vdw55134rnnnsPnP/95ofF8+9vfxksvvSQ0BiI9kXg2DVFkbNy4Ee3t7WhubkZ9fT0WLVoU1c/zeDwwmUwwmUxXfd5DDz2Er33ta4jn/9Q/+clPora2FhcuXBAdCgAgJSUFd955J5599tkpjweDQfj9flit1rifrSIKB2dGiCKgqakJhw4dwiOPPILs7Gy88MILUf9Mm812zUQkUXR1dcHpdIoO45qMRiNsNhsTEaLLMBkhioAXXngB6enp+MhHPoI777xzSjLi9/uRkZGB7du3X/G6wcFB2Gw2fOELXwg91tXVhc9+9rPIycmBzWZDRUUFnnvuuSteO13NSG1tLdauXQubzYby8nI89dRTYX0fsizj0UcfxbJly2Cz2ZCTk4PPfe5z6O/vDz3nox/9KMrKyqZ9/YYNG3DTTTdNeezf//3fsWbNGiQlJSEjIwOf/OQn0dbWNuU5t9xyC2688Ua8++67uPXWW2G325Gfn4/vfve7V423ubkZkiThtddewzvvvANJkiBJEg4ePIiDBw+G/v90r5k8a3HPPfcgJSUFFy9exNatW5GSkoLs7Gx84QtfQDAYvOJn9Nhjj2H58uWw2WzIzs7GBz/4Qbz55psAxv5d3G43nnvuuVA899xzD4CZa0aeeOIJLFu2DFarFXl5edixYwcGBgYi8jMi0gMmI0QR8MILL+DjH/84LBYLPvWpT6G+vh5vvPEGAMBsNuMv/uIv8NJLL8Hn80153UsvvQSv14tPfvKTAIDR0VHccssteP755/HpT38a3/ve9+BwOHDPPffgscceu2oMZ86cwW233Yauri489NBD2L59O/bs2YMXX3xx1t/H5z73OfzjP/4jNm7ciMceewzbt2/HCy+8gC1btsDv9wMAtm3bhqamptD3p2ppacGRI0dC3wsAfOtb38Jdd92FxYsX45FHHsEDDzyAAwcO4AMf+MAVv2z7+/vxwQ9+EBUVFXj44YexZMkSfOlLX8Lvfve7GePNzs7G888/jyVLlqCgoADPP/88nn/+edxwww2z/p5VwWAQW7ZsQWZmJv71X/8VN998Mx5++GH86Ec/mvK8z372s3jggQdQWFiIf/mXf8GXv/xl2Gw2HDlyBADw/PPPw2q1orq6OhTP5z73uRk/96GHHsKOHTuQl5eHhx9+GHfccQeeeuop3HbbbaGf+Xx+RkS6oBDRvLz55psKAOXVV19VFEVRZFlWCgoKlPvvvz/0nFdeeUUBoPzXf/3XlNd++MMfVsrKykJ/fvTRRxUAyr//+7+HHvP5fMqGDRuUlJQUZXBwMPQ4AGXPnj2hP2/dulWx2WxKS0tL6LF3331XMRqNymz+U6+pqVEAKC+88MKUx19++eUpj7tcLsVqtSr/8A//MOV53/3udxVJkkKf39zcrBiNRuVb3/rWlOedOXNGMZlMUx6/+eabFQDK//t//y/0mNfrVXJzc5U77rjjmrHffPPNyrJly6Y89tprrykAlNdee23K401NTQoA5ac//WnosbvvvlsBoHz961+f8txVq1Ypa9asCf35D3/4gwJA+fu///srYpBlOfT/k5OTlbvvvvuK5/z0pz9VAChNTU2KoihKV1eXYrFYlNtuu00JBoOh5/3gBz9QACjPPPPMlO9xPj8jIi3jzAjRPL3wwgvIycnBrbfeCmBsmn7btm3Yt29faIr/T/7kT5CVlYX9+/eHXtff349XX30V27ZtCz3229/+Frm5ufjUpz4VesxsNuPv//7vMTw8jD/+8Y/TxhAMBvHKK69g69atKCoqCj1+ww03YMuWLbP6Pn7xi1/A4XDgz/7sz9DT0xP6WrNmDVJSUvDaa68BANLS0vChD30IP//5z6cUxe7fvx/r168Pff6vfvUryLKMv/zLv5zyfrm5uVi8eHHo/VQpKSn4X//rf4X+bLFYsG7dOjQ2Ns4q/kj427/92yl/rq6unvL5//Ef/wFJkrBnz54rXjuXOpDf//738Pl8eOCBB2AwTFyO7733XqSlpeE3v/nNlOdr4WdEFA1MRojmIRgMYt++fbj11lvR1NSE8+fP4/z586isrERnZycOHDgAADCZTLjjjjvwn//5n/B6vQDGfln7/f4pyUhLSwsWL1485RcTgNCyQ0tLy7RxdHd3Y3R0FIsXL77i766//vopf+7r60NHR0foy+VyAQDq6+vhcrmwYMECZGdnT/kaHh5GV1dX6D22bduGtrY2HD58GADQ0NCA48ePT/le6uvroSgKFi9efMX7vffee1PeDwAKCgqu+IWenp4+pV4lmtT6j6t9fkNDA/Ly8pCRkRGRz1T/PS//N7JYLCgrK7vi31v0z4goWliKTzQPf/jDH3Dp0iXs27cP+/btu+LvX3jhBdx2220AxtpPn3rqKfzud7/D1q1b8fOf/xxLlixBRUVFTGP++Mc/PmWG5e6778azzz4LWZaxYMGCGTuBJv+ivv3222G32/Hzn/8cVVVV+PnPfw6DwYBPfOIToefIsgxJkvC73/0ORqPxivdLSUmZ8ufpngNgzi3JM81UXF6Qeq3P15JI/4yItILJCNE8vPDCC1iwYAEef/zxK/7uV7/6FV588UU8+eSTSEpKwgc+8AEsXLgQ+/fvx6ZNm/CHP/wB//zP/zzlNcXFxXjrrbcgy/KU2ZGzZ8+G/n462dnZSEpKQn19/RV/d+7cuSl/fvjhh6fcSefl5QEAysvL8fvf/x4bN25EUlLSVb/v5ORkfPSjH8UvfvELPPLII9i/fz+qq6tD76W+n6IoKC0txXXXXXfV94uG9PR0ALiiUHam2aXZKC8vxyuvvIK+vr6rzo7MdslG/fc8d+7clA4ln8+HpqYmbN68ec6xEukJl2mI5mh0dBS/+tWv8NGPfhR33nnnFV87d+7E0NAQfv3rXwMADAYD7rzzTvzXf/0Xnn/+eQQCgSnLGgDw4Q9/GB0dHVNqSwKBAL7//e8jJSUFN99887SxGI1GbNmyBS+99BJaW1tDj7/33nt45ZVXpjx3zZo12Lx5c+hr6dKlAIC//Mu/RDAYxDe+8Y0r3j8QCFzxS33btm1ob2/Hj3/8Y5w+ffqK7+XjH/84jEbjtBuuKYqC3t7eab+XSCkuLobRaMTrr78+5fEnnnhizu95xx13QFEUfO1rX7vi7yZ/j8nJyVf8vKazefNmWCwW/Nu//duU1//kJz+By+XCRz7ykTnHSqQnnBkhmqNf//rXGBoawsc+9rFp/379+vWhDdDUX9Tbtm3D97//fezZswfLly+/ogX1b/7mb/DUU0/hnnvuwfHjx1FSUoJf/vKXqKurw6OPPorU1NQZ4/na176Gl19+GdXV1fi7v/u7UBKzbNkyvPXWW9f8fm6++WZ87nOfw969e3Hq1CncdtttMJvNqK+vxy9+8Qs89thjuPPOO0PP//CHP4zU1FR84QtfgNFoxB133DHl/crLy/HNb34Tu3fvRnNzM7Zu3YrU1FQ0NTXhxRdfxN/8zd9M2V8l0hwOBz7xiU/g+9//PiRJQnl5Of77v//7ilqVcNx66634zGc+g3/7t39DfX09PvjBD0KWZdTU1ODWW2/Fzp07AYwlfL///e/xyCOPIC8vD6WlpdMeE5CdnY3du3fja1/7Gj74wQ/iYx/7GM6dO4cnnngCa9eunVKsShTXRLXxEOnd7bffrthsNsXtds/4nHvuuUcxm81KT0+Poihj7Z+FhYUKAOWb3/zmtK/p7OxUtm/frmRlZSkWi0VZvnz5lDZUFS5r7VUURfnjH/+orFmzRrFYLEpZWZny5JNPKnv27JlVa6/qRz/6kbJmzRolKSlJSU1NVZYvX6588YtfVNrb26947qc//WkFgLJ58+YZ3+8//uM/lE2bNinJyclKcnKysmTJEmXHjh3KuXPnQs+ZrjVXUcZabouLi68Z80yv7+7uVu644w7Fbrcr6enpyuc+9znl7bffnra1Nzk5+YrXT/ezCwQCyve+9z1lyZIlisViUbKzs5UPfehDyvHjx0PPOXv2rPKBD3xASUpKUgCE2nwvb+1V/eAHP1CWLFmimM1mJScnR7nvvvuU/v7+WX2Ps/0ZEWkZz6YhIiIioVgzQkREREIxGSEiIiKhmIwQERGRUExGiIiISCgmI0RERCQUkxEiIiISShebnsmyjPb2dqSmps7pZEwiIiKKPUVRMDQ0hLy8vCsOAJ1MF8lIe3s7CgsLRYdBREREc9DW1oaCgoIZ/14XyYi6BXZbWxvS0tIER0NERESzMTg4iMLCwqseZQHoJBlRl2bS0tKYjBAREenMtUosWMBKREREQjEZISIiIqGYjBAREZFQTEaIiIhIKCYjREREJBSTESIiIhKKyQgREREJxWSEiIiIhGIyQkREREIxGSEiIiKhwk5GXn/9ddx+++3Iy8uDJEl46aWXrvmagwcPYvXq1bBarVi0aBGeffbZOYRKRERE8SjsZMTtdqOiogKPP/74rJ7f1NSEj3zkI7j11ltx6tQpPPDAA/jrv/5rvPLKK2EHS0RERPEn7IPyPvShD+FDH/rQrJ//5JNPorS0FA8//DAA4IYbbkBtbS3+7//9v9iyZcu0r/F6vfB6vaE/Dw4OhhsmaUj3kBf/ceIC/tf6YqRYdXE2I9GMFEXBz99sw/W5aVhZ6BQdDtG8Pfb7eviDMj5xUwGKM5OFxBD1mpHDhw9j8+bNUx7bsmULDh8+PONr9u7dC4fDEfoqLCyMdpgURd/53Vl853dn8cRr50WHQjRvhxp68aX/OIP7/v04FEURHQ7RvCiKguePtOAHr51H+4BHWBxRT0Y6OjqQk5Mz5bGcnBwMDg5idHR02tfs3r0bLpcr9NXW1hbtMClKFEXB6/XdAIA/vt8tOBqi+VPH8SWXB/Vdw4KjIZqfsx1D6Bn2IslsxOpip7A4NDlnbrVaYbVaRYdBEXCucwjdQ2NLbu+0D6LP7UNGskVwVERzV1PfE/r/tfU9uC4nVWA0RPNTOz6eK8syYDUZhcUR9ZmR3NxcdHZ2Tnmss7MTaWlpSEpKivbHk2C1ky7cAFB3vmeGZxJpX8+wF+9dmqhhq+V4Jp1Tx/CmRVlC44h6MrJhwwYcOHBgymOvvvoqNmzYEO2PJg1QB3qabWwS7vLkhEhP6i4bz0cae+ELyCJDIpozbyCIo029AIBNi3WWjAwPD+PUqVM4deoUgLHW3VOnTqG1tRXAWL3HXXfdFXr+3/7t36KxsRFf/OIXcfbsWTzxxBP4+c9/js9//vOR+Q5Is7yBII429gEA/u7WRQDGkhMW/ZFeqcn0trWFyEy2YMQXxKm2AbFBEc3R8ZZ+ePwyslOtuF7wcmPYycibb76JVatWYdWqVQCAXbt2YdWqVXjwwQcBAJcuXQolJgBQWlqK3/zmN3j11VdRUVGBhx9+GD/+8Y9nbOul+HGydQCj/iCyUqz4zPpiWIwGXBwYRXPviOjQiMKmKEpoZqR6cTaqxqe1a+tZmE36pCbXmxZlQZIkobGEXcB6yy23XPXOdrrdVW+55RacPHky3I8inZsY6JlItpqwutiJI419qK3vRmmWmF52orlq7HGj3eWBxWTAutIMdLg8+K/T7ag534Ndt10vOjyisKnJ9UbB9SIAz6ahKKq5bKCrBVIs+iM9UpPrm4rTYTMbsXF8jf102wAGPX6RoRGFbWDEh7cuugCIL14FmIxQlLhG/DhzYQDA2JQ2AGwa/99DDb0IBFn0R/qitvSqhX75ziSUZSVDVoDDDb0iQyMK26GGXigKsHhBCnIdNtHhMBmh6Djc2ANZARZNGujL8x1wJJkx5AmEMnIiPQgEZRxpHEs4qhdlhx5XExN2iZHehFp6BXfRqJiMUFTU1F/Zu240SKgqzwTAizfpy+kLAxj2BuC0m7EsLy30OJceSa9qp7lGi8RkhKJipo10NvLiTTqkJtcby7NgMEx0Hawvz4TRIKGpx40L/ewSI31o7R1Ba98ITAYJlWWZosMBwGSEoqCtbwQtvWMDfX351IFePT4leLK1H25vQER4RGGrrZ9+SjvNZkZFgQMAdxcm/ag5P9aOvrooXTMnqTMZoYhTZz1WFTmvGOjFmckozEiCP6iEdv4j0rIhjx8nxzc2m25KWy3MruHSI+lEncbqRQAmIxQF6l3kTL3roXX2eiYjpH1HG/sQlBUUZ9pRmGG/4u/V8XyooReyzN2FSduCsoK682PXXi3sL6JiMkIRFZQV1DWou1TOlIyM3UnWnufOlaR91zpIbFWRE8kWI/rcPrw76RA9Ii16+6ILrlE/Um2m0BKjFjAZoYh6p92FgRE/Uq0mVBQ4p33OxkWZkCTg/c5hdA56YhsgUZhqxrd7nym5NhsNWD9eBMjCbNI6dYxuKMuEyaidFEA7kVBcUAf6+vKZB7rTbsHyfBb9kfZdco2iodsNgwRsKJt5Sltde+d4Jq1Tl9FnSq5FYTJCETXb3vVQiy+L/kjD1PG5vMAJh9084/PU8X6sqQ8efzAmsRGFa9QXxPGWfgDaqhcBmIxQBI36gnizeWygX6tKu3rSfiNXO3iRSCR1pq/6GhfuRQtSkJNmhTcgh/4bINKao0298AVl5DuTNHdYKZMRipg3mvvgC8rIc9hQdo2Bvro4HTazAV1DXtR3DccoQqLZUxRl1i2QkiRNKszmbB9pU92kYmxJkq7x7NhiMkIRUzvplN5rDXSb2Yi1JRkAuD8DadPZjiH0DPuQZDZiVZHzms/ftFgtYmWXGGlTaCdhjdWLAExGKIIuP9X0WqpDh4zx4k3ao9aLVJZlwGoyXvP56hr8O+2D6HP7ohobUbi6h7w42zEEANhYro0t4CdjMkIR0TPsxXvjeyzMtjBKndY+2tQHX0COWmxEc3Gt/UUutyDVhiW5qVAU4FADZ/tIW9QxuSwvDZkpVsHRXInJCEWEuhZ5w8I0ZM1yoC/JTUVmsgUjviBOtrLoj7TDGwiGjisIZ8tsdomRVk13krqWMBmhiJhL77rBIPEUX9Kk4y398PhlZKdacX1O6qxfpyYuNfXsEiPtUBRlxsMetYLJCM2boihhT2mrJl+8ibRi8n454XQdVJZmwGyUcHFgFM29I9EKjygsDd3D6Bj0wGIyhBoHtIbJCM1bY48bl1weWIzhD3Q1eXnrwgBco/5ohEcUtrpJnWHhsFtMWF2UDoCzfaQdanK9tiQdNvO1i7FFYDJC86YO9JtK0pFkCW+g5zmTUJadDFkBDjfwFF8Sb2DEh7cuugDMbX2dXWKkNRMz19mCI5kZkxGat3Bbei83sRsrL94k3qGGXigKsHhBCnIdtrBfv2lxduh9AkF2iZFY/qCMI419ALR3Hs1kTEZoXgJBGUcax2Y0queYdasX77rznBkh8WpnuevqTJbnO5BmM2HIE8CZ8RkWIlFOtw1g2BtAut2MpQvTRIczIyYjNC+nL4wNdKfdjKV5cxvolWUZMBokNPW4caGfRX8k1mwPe5yJ0SChqpwtvqQN6sx11aIsGAza2gJ+MiYjNC+h7YXLs2Cc40BPs5mxstAJgBdvEqu1dwStfSMwGSRUls19l8pQlxiLWEmw2R72KBqTEZqXuXYdXG4T9xshDVDH36oiJ1Kspjm/j7o2f7K1H25vICKxEYVryOPHqbYBAPO/RkcbkxGas2FvACdbBwDMvzBKvZM81NALWeZmUSSGWkQ9366Dogw7CtKT4A8qONbUF4nQiMJ2pLEPQVlBSaYdhRl20eFcFZMRmrMjDb0IyAqKIzDQVxaO3Yn2uX14d/yMG6JYCspKqIh6vrtUSpIUStC5oR+JoraXa3XX1cmYjNCczXXX1emYjQasLxvbMI0XbxLhnXYXXKN+pFpNqChwzPv91NkVtqyTKHrYX0TFZITmLJLJyOT3qWPdCAmgJsHryzNhMs7/0lhVnglJAt7vHEbXoGfe70cUjkuuUTR0u2GQgA3lcy/GjhUmIzQnl1yjON81DIOEUBvjfKlTicea++DxByPynkSzNZfDHq8mPdmCG/PGZlhYmE2xpibXKwqccCSZBUdzbUxGaE7UtfXlBU447JEZ6OXZKchNs8EXkPFGM4v+KHZGfUEcb+kHENkj1jct5n4jJIY6w6zlXVcnYzJCcxIqjFoUuek/SZJ48SYhjjX3wReUkeewoTQrOWLvWz2pZV1R2CVGsSHLSsS2XYgVJiMUNkVRUKt2HUS4MCp0yBintSmGJncdSFLkdqlcXZwOm9mAriEv6ruGI/a+RFdztmMIPcM+2C3G0CnSWsdkhMI2NtC9SDIbsbrYGdH3VutP3mkfRO+wN6LvTTSTicMeI5tc28xGrC1hlxjFltrBVVmaAYtJH7/m9RElaYo6/beuNANWkzGi752dasWS3NSxz2ngwXkUfd1DXpztGAIw1gETaaHZvnq2+FJsqDPXelmiAZiM0BzURLjr4HK8eFMsHWoYG89LF6YhK8Ua8fdXlzKPNvXBF5Aj/v5Ek3n8QRxrGj9JPcIzfdHEZITC4g0EcbQpMrtUzkSdKq+tZ9EfRV+0k+sluanISrFgxBfEydb+qHwGkepESz88fhkLUq24LidFdDizxmSEwnKiZQAev4ysFCuuz0mNymesK8mAxWhAu8uDph53VD6DCBgrxlaXHaOVXBsMUqgWioXZFG2TN6OMZDF2tDEZobBMHCSWGbWBnmQxYk1x+vjn8eJN0dPQ7cYllwcWkyFUaBoNm3hODcVIrc5aelVMRigstVHqOrgcL94UC2pd0tqSdNjMkS3GnkxdAnrrwgBcI/6ofQ4ltn63D2cuugDo43C8yZiM0Ky5Rvx4Sx3oUc661Yv3kYZeBIIs+qPoiNZ+OZdb6EhCeXYyZAU43MgEm6LjcGMvFAW4LicFOWk20eGEhckIzdqhhh4oCrBoQQpyHdEd6MvyHHDazRjyBnD6giuqn0WJyR+UcaRRTUaifxe5aRHrRii61JlkvS3RAExGKAw1ET6l92qMBim05wO3hqdoON02gGFvAOl2M5blpUX98yZ3iRFFg1rTp5fzaCZjMkKzFulTTa9FnTqv450kRYF6F1m1KAsGQ/S7DtaXZcBokNDcO4K2vpGofx4llpZeN9r6RmE2SqgsjfzmfdHGZIRmpbV3BK19IzAZJFSWxWagqzMwJ1r7MewNxOQzKXGETjWN0ZR2qs2MlYXOKZ9NFCnq8t+qonQkW02CowkfkxGalYmB7kRKjAZ6UaYdRRl2BGQFRxu5NTxFzpDHj5NtAwBiu76uJtg1TEYowkKdjjqsFwGYjNAsTewvEtvthdniS9FwpLEPQVlBSaYdhRn2mH2uusR56HwPZJm7C1NkBGUFhxqiuzN2tDEZoWsKygrqzosZ6GqWz2ltiiR1f5FYj+eKwrGZxf4RP969NBjTz6b4deaiC65RP1JtJqzId4gOZ06YjNA1vdM+PtCtJlQUxHagV5VnQpKA+q5hdLg8Mf1sil8TW2bHdqbPbDRgfdnYTq+c7aNIUW/WqsozYTLq89e6PqOmmFIvmusFDHSn3RLK9Lk/A0XCJdcoGrrdMEjAhvLYdx1M7DfCU6kpMmrUmT6d1osATEZoFmLd0nu5jVyqoQhSk+sVBU44kswx/3x1aeiN5n54/MGYfz7FlxFfAMdbxk6DjvYxHdHEZISuatQXnBjogrJu9eJde74HisKiP5of0cl1eXYKctNs8AVkvNHcJyQGih9Hm/rgDyrIdyahJDN2xdiRxmSErupoUy98QRn5ziSUZiULiWFNcTqSzEZ0D3lxrnNISAwUH2RZCc2wiUquJUmaSLBZN0LzNDm5jtZJ6rHAZISuqi50HHWmsIFuNRmxrnSs6I8Xb5qPsx1D6HX7YLcYsaooXVgc1Yt5Tg1FxsQ1Wr/1IsAck5HHH38cJSUlsNlsqKysxLFjx676/EcffRTXX389kpKSUFhYiM9//vPweNgZoQfq+rrotUgeMkaRoBaNVpZmwGISdy9WVT42nt9pH0TvsFdYHKRvXUMenO0YgiQlYDKyf/9+7Nq1C3v27MGJEydQUVGBLVu2oKura9rn/+xnP8OXv/xl7NmzB++99x5+8pOfYP/+/finf/qneQdP0dU95MXZjrFlkY0Cug4mU6e1jzb2wRtg0R/NjVaS6+xUK5bkpgIA6hq4uzDNjTorsiwvDRnJFsHRzE/YycgjjzyCe++9F9u3b8fSpUvx5JNPwm6345lnnpn2+YcOHcLGjRvxV3/1VygpKcFtt92GT33qU9ecTSHx1IG+dGEaMlOsQmNZkpuKrBQLRv1BnGgZEBoL6ZPHH8SxprGCUS20QIaWaurZ4ktzoybXep8VAcJMRnw+H44fP47NmzdPvIHBgM2bN+Pw4cPTvqaqqgrHjx8PJR+NjY347W9/iw9/+MMzfo7X68Xg4OCUL4o9dUlEC8dRS5IU+g+O+zPQXJxo6Yc3ICM71YrrclJEhzMxnuvZJUbhUxRl0mGP+m3pVYWVjPT09CAYDCInJ2fK4zk5Oejo6Jj2NX/1V3+Fr3/969i0aRPMZjPKy8txyy23XHWZZu/evXA4HKGvwsLCcMKkCFAUZeLgJQ0kI8DkuhFOa1P4aiad0quFroPK0kxYjAa0uzxo6nGLDod05nzXMDoHvbCaDLipRFwxdqREvYLr4MGD+Pa3v40nnngCJ06cwK9+9Sv85je/wTe+8Y0ZX7N79264XK7QV1tbW7TDpMs0dA+jY9ADi8mAtSUZosMBMJEUnbkwANeIX3A0pDdaS66TLEasKR77JcLCbAqXukSzrjQDNrNRcDTzF1YykpWVBaPRiM7OzimPd3Z2Ijc3d9rXfPWrX8VnPvMZ/PVf/zWWL1+Ov/iLv8C3v/1t7N27F7IsT/saq9WKtLS0KV8UW+qFe21JumYG+kJHEsqzkyErwOFGXrxp9vrdPrzd7gKgrfV17jdCcxUvLb2qsJIRi8WCNWvW4MCBA6HHZFnGgQMHsGHDhmlfMzIyAoNh6scYjWO/3LhOql2iDhK7lurxLggeMkbhONTQC0UBrstJQU6aTXQ4IerS4+GGXgSC09+cEV3OH5RxpHH8JPVETEYAYNeuXXj66afx3HPP4b333sN9990Ht9uN7du3AwDuuusu7N69O/T822+/HT/84Q+xb98+NDU14dVXX8VXv/pV3H777aGkhLRlbKCPdR1ooXh1Mu43QnOhFj1rLbm+Md8BR5IZQ94ATl9wiQ6HdOJk6wDcviAyky1YujA+Vg5M4b5g27Zt6O7uxoMPPoiOjg6sXLkSL7/8cqiotbW1dcpMyFe+8hVIkoSvfOUruHjxIrKzs3H77bfjW9/6VuS+C4qo020DGPYGkG43a26gry/PhNEgoaV3BG19IyjM0O9ZDBQ7WuoMm8xokLBxUSZ+e6YDded7QjUkRFejjueqRVkwGMQXY0fCnApYd+7ciZaWFni9Xhw9ehSVlZWhvzt48CCeffbZ0J9NJhP27NmD8+fPY3R0FK2trXj88cfhdDrnGztFiboEosWBnmI1YVWhEwBnR2h2WnrdaOsbhdkohY4V0JLJLb5Es6HuTbNpkdjNKCOJZ9PQFWontUBqEYv+KBxqcr2qKB3J1rAng6NO3SPiRGs/hr0BwdGQ1g16/KElPdE7CUcSkxGaYsjjx6m2AQDaaYG8nDrVXtfQA1lmETRdXZ3Gk+uiTDuKMuwIyAqONXEPHbq6Iw29CMoKyrKSke9MEh1OxDAZoSmONPYhKCsoybSjIF2b9RgrCpxIsZowMOLHO+3cnZdmFpQVHBo/+2WjRpNrYGKphl1idC21cdbSq2IyQlOE1iI1fOE2Gw1YXza2VlrDreHpKs5cdME16keqzYQV+Q7R4cyomkuPNEta27wvUpiM0BQ1Gt1f5HK8eNNsqMl1VXkmTEbtXu6qyjMhSUB91zA6XB7R4ZBGXRwYRWOPGwYJ2CD4JPVI0+5/nRRz7QOjaOzWx0BXpyjfbO7HqC8oOBrSqonN+7R9F+m0W7B8fOamjl1iNIO68ZuvikIn0mxmwdFEFpMRClEv3CsKnHAkaXugl2cnY6HDBl9QxhvNfaLDIQ0a8QVwvKUfgD66DrihH11LjcaLseeDyQiFqEseWtsYajqSJPHiTVd1tKkP/qCCfGcSSjK1WYw9Wahl/XwPj8qgK8iyEpo100NyHS4mIwTgsoGuk6yb+43Q1dRNSq4lSVub901nTXE6bGYDuoe8eL9zWHQ4pDHvdQyiz+1DssWIVUVO0eFEHJMRAgCc7RhCr9sHu8WIVUX62JJarRt599Igeoa9gqMhrdFbC6TVZMS60vEusXp2idFU6k1XZVkmzBouxp6r+PuOaE7Ug8QqSzNgMeljWGSlWHHD+Nk5LPqjybqGPDjbMQRJ0k8yAkzUAnDpkS6nl2LsudLHbx2Kutrz48dR62wtki2+NJ1D4+N5WV4aMpItgqOZPXXp8WhjH7wBdonRGI8/iGNN2jxJPVKYjND4QB9PRnSWdat3vXUs+qNJ1J1M9TQrAgDX56QiK8WCUX8QJ1sHRIdDGnG8pR/egIycNCsWLUgRHU5UMBkhnGjph8cvY0GqFdfl6GugryvJgMVoQLvLg8Yet+hwSAMURQktO1ZrfPO+yxkMEk/xpStMTq71UIw9F0xGaMpapN4GepLFiJtKxgpuefEmAGjoHkbnoBdWkyE0NvREnZ2sYd0IjQsd9hinSzQAkxGC/roOLreRRX80iXoXubYkAzazUXA04VPrRs5cGIBrxC84GhKt3+3D2+0uAMDGcn1eo2eDyUiC63f7cObi2EDX68FL6t3CkYZeBIKy4GhINL0fJLbQkYTy7GTICnC4kQl2oqtr6IGijNUTLUiziQ4napiMJLjDjb1QFOC6nBTk6HSgL8tzwGk3Y8gbwOkLA6LDIYH8QRlHGvVZjD1Z9XhXWw2XHhPexK6r+h3Ps8FkJMHptetgMqNBQlW5ulkUL96J7FTbANy+IDKSLVg6vgeNHvGoAwLGirHVa5qek+vZYDKS4EJdBzrPujeNd01w87PEpl64q8ozYTDoqxh7svXlmTAaJLT0jqCtb0R0OCRIS+8ILvSPwmyUUFmWITqcqGIyksBaet1o6xsf6OPbUOuVmkydbB3AsDcgOBoSpbY+PpLrFKsJqwqdADg7ksjUjqrVRemwW0yCo4kuJiMJTL3IrSpKR7JV3wO9MMOO4kw7ArKCIw29osMhAQY9fpy+oBZj62t/kenwIEiq09FJ6vPFZCSB1cbZWiRbfBPbkYZeBGUFpVnJyHcmiQ5n3tRfQHUNPQjK3F040QRlBYca9F/TN1tMRhLU2EBXz6OJj4HOQ8YSW7wdJFZR4ESK1YSBET/ebR8UHQ7F2FsXBjDoCSDNZsKKAqfocKKOyUiCevuiC65RP1JtJqzId4gOJyKqyrMgScD5rmFcco2KDodirDbOWiBNRgPWl413iY0XmlPiUIvxq8qzYNRxMfZsMRlJUOqFe0NZJkzG+BgGDrs5lFhxnT2xtA+MorHbDYOE0C/weMBTqRNXaNuFOEmuryU+fgtR2GripOvgcqGiPy7VJBT1l3VFoROOJLPgaCJHHc9vNvdj1BcUHA3FyogvgBOt/QAmlp/jHZORBDTiC+BEywCA+Og6mGzyfiOKwqK/RKEmn/F24S7LSkaewwZfUMYbzX2iw6EYOdrUB39QQUF6Eooz7aLDiQkmIwnoWFMffEEZ+c4klMTZQF9d7ESS2YieYR/OdgyJDodiQJaV0Pp6vHUdSJLELrEENLnTUW8nqc8Vk5EEFM8D3WoyYl3p2E6FXGdPDO91DKLX7YPdYsSqonTR4USculTDow4Sh94Pe5wLJiMJKN66Di5XzbqRhKJeuNeXZcJiir9Lmjoz8t6lQfQMewVHQ9HWNejBuc4hSNJYJ02iiL//cumquoY8oeWLeJvSVqlJ1tGmXngDLPqLd/G2v8jlslKsuGH80D+evRT/6sY3OluWl4aMZIvgaGKHyUiCOXR+bKOzeB7o1+ekIivFCo9fxvGWftHhUBR5/EEcaxor7IzXmT6ALb6JZOKU3vhqLrgWJiMJpiYB1iIlScKmRWN7TfBOMr4db+mHNyAjJ82KxQtSRIcTNeqsD7vE4puiKKGEM962XbgWJiMJRFEU1I7v5Fgd51m32rLMO8n4FtoYKg6LsSdbW5IBi9GAdpcHjT1u0eFQlNR3DaNryAuryYA1xfFXjH01TEYSSEP3MDoHxwb6TSXxPdDVO8m3LrowMOITHA1FizrzFe93kUkWY+i/WSbY8Uv9t11XmgGb2Sg4mthiMpJA1LvItSXxP9BzHTYsWpACRUHoQECKL/1uH95udwEANiZA1wFbfONfvBdjXw2TkQSSaL3rm7hZVFyra+iBoowVLC9Is4kOJ+rU8XyksReBoCw4Goo0X0DGkcaxG6d47XS8GiYjCcIfnBjoiZJ1swMhviVacr0szwGn3YxhbwCnLwyIDoci7GRrP0Z8QWQmW7B0vJU7kTAZSRCn2gbg9gWRkUADvbIsEyaDhNa+EbT2jogOhyJIUZSE6AybzGiQQstRXKqJP2r9U9WiLBgM8VuMPRMmIwlCvXhVlWcmzEBPsZqwqsgJgEs18aaldwQXB0ZhNkqoHN/+PxGoiRdb1uNPTZwe9jhbTEYSRG39eEtvgtxFqtSNg9SWZooP6oV7dVE67BaT4GhiR11iPdk6gGFvQHA0FCmuUT9Otw0AADYm2DVaxWQkAQx6/Dh9YazrQN1/I1FM3En2Iihzs6h4kajJdWGGHcWZdgRkBUfYJRY3Djf0QlaAsqxk5DuTRIcjBJORBHCkYewXcWkCDvSKAgdSrSa4Rv14Z7wNlPQtKCuhdu1E7Dpgl1j8UZfdEnE8q5iMJIBE7l03GQ1YXz62NTyL/uLDWxcGMOQJIM1mwooCp+hwYo7JSPyJ95PUZ4PJSAJItBbIy7HFN77Uhoqxs2BMkGLsyarKs2CQgPNdw7jkGhUdDs3Thf4RNPW4YTRI2DB+45SImIzEuYsDo2jsccMgIWEHunonebylH6O+oOBoaL4S/S7SYTdj+fiMUN151o3onbpEU1HgQJrNLDgacZiMxLm68bvIikJnwg700qxk5Dls8AVlHGvuEx0OzYPbG8CJ1n4AibnsqFJPpVYLeUm/JvbLSazmgssxGYlzid67DgCSJIXuonnx1rdjTX3wBxUUpCehONMuOhxhJlrWe6Eo7BLTK3lSMXYiJ9cAk5G4JssKDp1n1g1MfP+1nNbWtdpJp/RKUuLVi6hWFzuRZDaiZ9iLc51DosOhOXr30iD63D4kW4yhDRoTFZOROPZexyB63T7YLUasLHSKDkeoqvF6mfcuDaJ7yCs4GportXg1kVsgAcBqMmLd+M6zLMzWLzW5Xl+WCbMxsX8dJ/Z3H+fUi9T6skxYTIn9T52VYg2dyXOogRdvPeoa9OBc5xAkCaEzWhKZ2iXGlnX9SvROx8kS+zdUnEvk/UWmw4u3vqnj+cY8B9KTLYKjEU/9BXa0qRfeALvE9MbjD4YK6nmNZjIStzz+II41jQ90Zt0AJqb26873sOhPh2q5S+UU1+ekIivFCo9fxomWAdHhUJjebO6HLyAjJ82KRQtSRIcjHJOROHW8pR/e8YG+mAMdALCuNAMWkwGXXB40dLtFh0NhUBQlNKWdaOfRzESSpIkWXx4EqTs14/9mmxZlJ3QxtorJSJyqmVTox4E+xmY2Ym1JOgC2+OpNfdcwuoa8sJoMWFOcLjoczQh1iXHpUXeYXE81p2Tk8ccfR0lJCWw2GyorK3Hs2LGrPn9gYAA7duzAwoULYbVacd111+G3v/3tnAKm2ak7z4E+ncn7M5B+qBfudaUZsJmNgqPRDrXW4K2LLrhG/IKjodnqc/vwTvsgAKBqUWLujH25sJOR/fv3Y9euXdizZw9OnDiBiooKbNmyBV1dXdM+3+fz4c/+7M/Q3NyMX/7ylzh37hyefvpp5Ofnzzt4ml6/24e3x0+oZdfBVOrF+0hjL/xBWXA0NFssxp5ersOGRQtSoCjsEtMT9WZxSW4qFqTaBEejDWEnI4888gjuvfdebN++HUuXLsWTTz4Ju92OZ555ZtrnP/PMM+jr68NLL72EjRs3oqSkBDfffDMqKirmHTxNr66hB4oyVuC2II0DfbJleWlIt5sx7A3gdNuA6HBoFnwBGUcax3ep5EzfFdQErYan+OpGqKWXyXVIWMmIz+fD8ePHsXnz5ok3MBiwefNmHD58eNrX/PrXv8aGDRuwY8cO5OTk4MYbb8S3v/1tBIMzt6J5vV4MDg5O+aLZq0vwg8SuxmCQULWILb56cqptACO+IDKTLbghN010OJrDU6n1RVGUhD/scTphJSM9PT0IBoPIycmZ8nhOTg46OjqmfU1jYyN++ctfIhgM4re//S2++tWv4uGHH8Y3v/nNGT9n7969cDgcoa/CwsJwwkxoiqJMHLzErHtamya1+JL2qcXGVYuyYDCwGPtylWWZMBkktPaNoK1vRHQ4dA3NvSO4ODAKs1EK7aJLMeimkWUZCxYswI9+9COsWbMG27Ztwz//8z/jySefnPE1u3fvhsvlCn21tbVFO8y40dI7ggv9YwO9sowDfTpqMnKybQBDHhb9aR0Pe7y6FKspdK4JZ/u0T02u1xSnw24xCY5GO8JKRrKysmA0GtHZ2Tnl8c7OTuTm5k77moULF+K6666D0ThRAX/DDTego6MDPp9v2tdYrVakpaVN+aLZUaf/VhdxoM+kMMOOkkw7grKCI419osOhqxj0+EO1PRs5pT2jiS4xtqxr3cRhj4l9eOnlwkpGLBYL1qxZgwMHDoQek2UZBw4cwIYNG6Z9zcaNG3H+/HnI8kTnwvvvv4+FCxfCYuGWzpHGwqjZ2cilGl043NALWQHKspKR70wSHY5mqbUHhxp6EZS5u7BWBYIyDjWMFWNzJ+Gpwl6m2bVrF55++mk899xzeO+993DffffB7XZj+/btAIC77roLu3fvDj3/vvvuQ19fH+6//368//77+M1vfoNvf/vb2LFjR+S+CwIABGUl1N7HwqirmzinhneSWsaDxGanosCBVKsJAyN+vDPe1k/a89ZFF4Y8ATiSzFie7xAdjqaEPY+/bds2dHd348EHH0RHRwdWrlyJl19+OVTU2traCoNhIscpLCzEK6+8gs9//vNYsWIF8vPzcf/99+NLX/pS5L4LAgC8dWEAg54AUm0mrChwig5H0zaUZcEgAQ3dblxyjWKhg3fdWsT9RWbHZDRgfXkmXn23EzX1PfzvX6PU5LqqPBNGFmNPMaeigp07d2Lnzp3T/t3BgweveGzDhg04cuTIXD6KwqAuOXCgX5vDbsbyAidOtw2gpr4Hf3kTO7a05kL/CJp63DAaJKwv5y6V11K9OAuvvtuJ2voe7Lh1kehwaBo87HFmPJsmjoRaelkYNSvVrBvRNPXfpaLAgTSbWXA02qfOHh1v6ceob+Z9nEgMtzeAk639AHhMx3SYjMQJtzeAE+pAZ9Y9K2odQt35Hsgs+tMcJtfhKc1KRp7DBl9QxrFmdolpzdGmXviDCgozklCcmSw6HM1hMhInjjX3wR9UkO9MQnGmXXQ4urCqyIkksxE9wz6c7RgSHQ5NIstKqOuA9SKzI0lSKMHmqdTaU1vP8Xw1TEbixOTjqCWJ9SKzYTUZQxvDcX8GbXn30iD63D4kW4yhDb3o2tRZJG5+pj3qNUbdE4amYjISJ9gCOTebeE6NJqmFfuvLMmE28jI1WxvHC33Pdgyhe8grOBpSdQ568H7nMCRprMGArsT/yuNA15AH5zqHxgc6k5FwqLsgvtHcB4+fRX9awcMe5yYzxYqlC8d2rFb3HCLx1PG8PN+B9GRu9jkdJiNxQB3oy/LSkMGBHpbrclKQnWqFxy/jREu/6HAIgMcfxLGmsQJMrq+Hb2JDPyYjWqHOXLOld2ZMRuLAxCm9XIsMlyRJE0s1bPHVhDeb++ENyMhJs2LRghTR4ejORBFrDxSFXWKiKYoycR4Nk5EZMRnROUVRphSvUvjUZKSWd5KaUDOp0I/F2OFbW5IBi8mAjkEPGrqHRYeT8N7vHEbXkBc2swGri9NFh6NZTEZ07nzX2EC3mgxYw4E+J+qd5NvtLvS7pz9JmmJnol6EhX5zYTMbsbZk7FrApRrx1FmRtSUZsJmN13h24mIyonPqxWZdKQf6XOWk2bB4QQoUBaG9LUiMPrcP77QPAuD6+nyoS7bcXVg8dc8XzlxfHZMRneNBYpERWmfnfiNC1Z3vgaIAS3JTsSDVJjoc3VJ/8R1p7IM/KAuOJnH5AjKOhoqxWdN3NUxGdMwXkHGkcXxXP2bd81IdSkZ4JylSaL8cJtfzsnRhGtLtZgx7AzjdNiA6nIR1orUfI74gMpMtWJKbKjocTWMyomOn2gZCA/2G3DTR4ejautJMmAwS2vpG0dLrFh1OQprcdbCRyfW8GAwSqrihn3B1k07pNfAk9atiMqJj6lpkFQf6vKVYTVhdxKI/kZp7R3BxYBQWowGVpRmiw9E9tY2Us33i1HBn7FljMqJjNexdj6jJp/hS7KnJ9epiJ+wWk+Bo9E8dz6faBjDk8QuOJvG4Rvx468IAAC47zgaTEZ1yjfpDa8Gc0o4M9eJ9qKEXQZmbRcVaTWi/HBb6RUJBuh0lmXYEZQVHGvtEh5NwDjf2QFaAsuxk5DmTRIejeUxGdOpIY+/YQM9KRj4HekSsyHcg1WaCa9SPMxddosNJKIGgjMPjxdhs6Y2cid1Y2SUWa9x1NTxMRnSKp/RGnslowIaysY22uFQTW29ddGHIE4AjyYzl+Q7R4cQNtZ2UdSOxN3GN5kzfbDAZ0SnuLxIdE4eM8U4yltQLd1V5Jowsxo6YDeWZMEhAQ7cbl1yjosNJGG19I2juHYHRIKGyjMXYs8FkRIcu9I+gqccNo0HC+nJumR1J6l3M8ZZ+jPgCgqNJHJzpiw5HkhkrCpwA2CUWS+rN4spCJ9JsZsHR6AOTER1SlxAqChwc6BFWkmlHvjMJ/qAS2jmRosvtDeBEaz8AzvRFQ/ViHgQZa5y5Dh+TER2q4Vpk1EiSFLqA1PHiHRNHm3oRkBUUZiShODNZdDhxRy0IrjvfA5ldYlEnywoOnedMX7iYjOiMLCuhw9x48FJ0bOLW8DEVSq55dkdUrC5Kh91iRK/bh7MdQ6LDiXvvtA+if8SPFKsJKwudosPRDSYjOvPupUH0uX1Ithg50KNEvZM82zGEriGP4GjiX21ofxEm19FgMU3saMuDIKOvZvxnvL4sA2Yjf8XOFn9SOqPera8vy+RAj5KMZAuW5Y2d9XPofK/gaOJb56AH9V3DkCSE2qop8tQl3VqO56irY73InPC3mc6w6yA2Ni3mIWOxoI7n5fkOpCdbBEcTv9RfjMeaeuHxBwVHE788/iDeaB4vxuY1OixMRnTE4w/iWPNYhwentKOrOrRZVDcUhUV/0cKug9i4LicFC1Kt8PhlnGjpFx1O3DrW1AdfQEZumg3l2Smiw9EVJiM68mZzPwd6jNxUkg6ryYDOQS8auodFhxOXFEWZSEaYXEfV5C4xFmZHT92k8SxJ3LwvHExGdEQtjNq4iAM92mxmI9aWjBX9cakmOt7vHEb3kBc2swFritNFhxP3NjIZibqJzjAm1+FiMqIj7DqIrU3cLCqq1C3315VmwmoyCo4m/qnj+cxFF/rdPsHRxJ+eYS/evTQIgIc9zgWTEZ3oc/vwTjsHeiypdzdHGnvhD8qCo4k/dTzVNKZy0my4LicFioLQCckUOer+T0tyU5GdahUcjf4wGdEJ9cLNgR47SxemISPZArcviFNtA6LDiSu+gBzabp/JdeyoP2suPUZe7fhMH2eu54bJiE7Uci0y5gwGCVXjBxHy4h1ZJ1r7MeILIivFgiW5qaLDSRihc2q4+VlEKYoSukYzuZ4bJiM6wK4DcdSLdx2L/iJK/XluXJQFg4HF2LFSWZoJk0FCW98oWntHRIcTN5p63Gh3eWAxGlBZys375oLJiA40947g4sAoLEYD1o1v60yxod7lnGobwKDHLzia+FHDu0ghkq0mrC4a61yq4exIxKg3i2uK05FkYTH2XDAZ0QF1LXJ1sRN2i0lwNImlIN2O0qxkBGUFRxpY9BcJrhE/3rowAIDr6yKwSyzyargz9rwxGdGBmlBLL081FYGbRUXW4cYeyApQnp2MhY4k0eEkHPUX5qGGXgRl7i48X4GgHLpRYU3f3DEZ0bhAUA614XGgixG6k2QyEhHqz5HJtRgr8h1ItZngGvXj7Ysu0eHo3ukLLgx5A3AkmXFjvkN0OLrFZETj3rrowpCHA12k9WWZMEhAY7cb7QOjosPRPXYdiGUyGkInJDPBnr+J8ZwJI4ux54zJiMapA72qnANdFEeSGRWFTgBcZ5+vtr4RNPeOwGiQsL6MxdiiVIdOpWYR63ypbdKbFnGmbz6YjGgcW3q1oZp1IxGhtvSuKnQi1WYWHE3i2jS+RHaiZQAjvoDgaPRr2BvAydYBAFxGny8mIxrm9gZwsnXsuG8OdLHUJYW68z2QWfQ3ZzXnuUSjBSWZduQ7k+ALyjg2vhMuhe9oYy8CsoKiDDuKMu2iw9E1JiMadrSpF/6ggsKMJBRnJosOJ6GtKkqH3WJEr9uH9zoGRYejS7Ks4NB5HvaoBZIkTXSJcelxztjSGzlMRjSstl7touFapGgWkwHrx4v+uBvr3Lx7aRD9I36kWE2hGhwSh11i88fDHiOHyYiGTRRGcaBrAQ8Zmx/157a+LANmIy89oqnnLp3tGEL3kFdwNPrT4fKgvmsYkgRsKOcW8PPFK4JGdQ568H7n2ECv4kDXBHVp4VhTHzz+oOBo9IfJtbZkplixLC8NAGf75kKdUVqR74DTbhEcjf4xGdEo9eKwPN+B9GQOdC1YvCAFC1Kt8AZkHG/pFx2Ornj8QbzRPF6Mzc3ONGPTYs72zVUdOx0jismIRnFjKO2ZUvTHO8mwvNHcB19ARm6aDeXZLMbWiurxerS68z1QFHaJzdbkk9R5jY4MJiMaNHmgszBKW3jI2NzUTuo6kCRu3qcVN5Wkw2IyoGPQg4buYdHh6Ma5zrE6mySzEWuK00WHExeYjGhQfdcwuoa8sJkNWM2BrinqzMjb7S70u32Co9GPWrb0apLNbMS6krGdcLlUM3tqcr2uNANWk1FwNPGByYgGqReFtSUZsJk50LVkQZoN1+WkQFGAugZevGejd9iLd9rH9mapKmcyojWc7QtfaGdszlxHDJMRDaodPy+Cd5HatGnSOjtdW9348epLclORnWoVHA1dTv2FeqSxF/6gLDga7fMGgjjaOLZrLYtXI4fJiMb4AjKOjm/PzM3OtKl6UgcCi/6ujcm1ti1dmIaMZAvcviBOtQ2IDkfzTrQMYNQfRFaKBUtyU0WHEzeYjGjMydZ+jPiCyEzmQNeqdaUZMBslXOgfRUvviOhwNE1RFHaGaZzBIIX2MmLdyLXVTeqiYTF25DAZ0ZjJ7WIGAwe6FiVbTVhVNFZYXMOlmqtq6nGj3eWBxWhAZSk379Oq6lDdSLfgSLSvhvUiUTGnZOTxxx9HSUkJbDYbKisrcezYsVm9bt++fZAkCVu3bp3LxyYEHrykD2rLdR3vJK9KTa7XFKcjycJibK1SN6I7fcGFQY9fcDTa5Rrx48yFAQBANTfvi6iwk5H9+/dj165d2LNnD06cOIGKigps2bIFXV1dV31dc3MzvvCFL6C6unrOwcY716gfb40PdGbd2qYmi4caehCUWTcyk1om17qQ70xCaVYygrKCI+MFx3Slw409kBVg0YIU5DpsosOJK2EnI4888gjuvfdebN++HUuXLsWTTz4Ju92OZ555ZsbXBINBfPrTn8bXvvY1lJWVzSvgeHa4oReyApRlJyPPmSQ6HLqK5fkOpNpMGPQEQgkkTRUIyjjcoJ48zWRE67i78LWFZq45niMurGTE5/Ph+PHj2Lx588QbGAzYvHkzDh8+POPrvv71r2PBggX47Gc/O6vP8Xq9GBwcnPKVCNSDxLjrqvaZjIZQ0R/3Z5je6QsuDHkDcCSZcWO+Q3Q4dA3cb+TauL9I9ISVjPT09CAYDCInJ2fK4zk5Oejo6Jj2NbW1tfjJT36Cp59+etafs3fvXjgcjtBXYWFhOGHqVt35sbtIdh3og7rOzjvJ6aldB1XlmTCyGFvzNpRnwiABjT1uXBwYFR2O5rT1jaCldwRGg4TKsgzR4cSdqHbTDA0N4TOf+QyefvppZGXN/hfs7t274XK5Ql9tbW1RjFIbLvSPoKnHDaNBwvpydh3ogXp3dKK1H25vQHA02sN6EX1Js5lRUegEwMLs6ag3HasKnUi1mQVHE39M4Tw5KysLRqMRnZ2dUx7v7OxEbm7uFc9vaGhAc3Mzbr/99tBjsjy2w5/JZMK5c+dQXl5+xeusVius1sTaqVG9cK8sdCKNA10XSjLtyHcm4eLAKI419eHWJQtEh6QZw94ATrT2A5g4GZa0r3pRFk62DqDmfA/+cm1izEjPFpPr6AprZsRisWDNmjU4cOBA6DFZlnHgwAFs2LDhiucvWbIEZ86cwalTp0JfH/vYx3Drrbfi1KlTCbP8MhvsXdcfSZIm9mfgUs0URxt7EZAVFGXYUZRpFx0OzZK69HjofA9kdomFBGUldBYVdxKOjrBmRgBg165duPvuu3HTTTdh3bp1ePTRR+F2u7F9+3YAwF133YX8/Hzs3bsXNpsNN95445TXO51OALji8UQmywoO8VRTXdq0OAv73mhj0d9lQoV+HM+6srLQCbvFiF63D+91DGJZHguPAeDd9kEMjPiRYjVhRYFTdDhxKexkZNu2beju7saDDz6Ijo4OrFy5Ei+//HKoqLW1tRUGAzd2Dce7lwbRPz7Q1TVb0oeq8ixIEnCucwhdgx4sSOPeA8CkKW3O9OmKxWTA+rJM/OFsF2rre5iMjKsZ73RcX5YJs5G/36Ih7GQEAHbu3ImdO3dO+3cHDx686mufffbZuXxkXFN719eXZXCg60xGsgXL8tLw9sVB1DX04C9WFYgOSbgOlwf1XcOQJITan0k/Ni3KGktGzvfgczdfWdOXiNTkmjPX0cPffBqg7i/Cu0h9Uk9X5iFjY9QlmhX5DjjtFsHRULjUpbVjTX3w+IOCoxFv1BfEm81jxdjcdiF6mIwI5vEH8cb4QN/Esw50qXrSZlGKwqK/OtaL6NriBSnISbPCG5BxvKVfdDjCvdHcB19QxkKHDeXZyaLDiVtMRgR7o7kPvoCM3DQOdL1aU5wOq8mAriEv6ruGRYcjlKIoU06eJv2RJCn0b8fZvqm7rkoSN++LFiYjgk3uXedA1yeb2Yh1pWM7MiZ6V825ziF0D3mRZDZiTXG66HBojtQl4zq2rPMk9RhhMiJYDQuj4gIPGRujJmPrSjNgNRkFR0NzpY7nt9td6Hf7BEcjTveQF+9dGjsbjTN90cVkRKDeYS/eHR/oVeUc6Hqm3jUdaeyFLyALjkacWu6XExcWpNlwfU4qFAWhzb4S0aHx7/2GhWnISkmsXcFjjcmIQHXjx6svyU1FdioHup7dkJuGzGQLRnxBnGobEB2OEN5AEEcb+wDwLjIeqAl2Ii/VsKU3dpiMCFRbP9bSy4GufwaDhCp1qWb83zXRnGgZwKg/iKwUK5bkpooOh+Zp06Qi1kTsEmMxdmwxGRFEUZRJxats6Y0H1erFO0HvJCf2y8lkMXYcqCzLgNko4UL/KFp6R0SHE3MN3W5ccnlgMRqwriRDdDhxj8mIIE09brRzoMeVjeMzXKfbBuAa9QuOJvZqz48tOzK5jg92iwmri8Y6ohIxwVaXp24qSUeShcXY0cZkRBB1+m9NMQd6vMh3JqEsKxmyMlbImkhcI36cuTAAANi4iFvAx4tQi28CtqyrnY5cookNJiOCsHc9Pm2atBtrIjnU0ANZARYtSMFCR5LocChC1PF8qKEHQTlx6kb8QTl0Q8GavthgMiJAICjjSAMHejxK1M2iJu9SSfFjRYETqTYTBj0BnLnoEh1OzLx1YQDD3gCcdjNPLo4RJiMCnL7gwpA3AEcSB3q8WV+eCaNBQmOPGxcHRkWHEzNMRuKT0SCFTl5OpC6x0BJNeRaMBhZjxwKTEQFqQ2uRmRzocSbNZkZFwViCmSgX77a+EbT0jsBkkLC+nPUi8UYtSE6kc2pqWS8Sc0xGBJhogWTXQTxKtIu3+n2uKnIixWoSHA1FmtqyfqK1H25vQHA00Tfk8ePk+MaFXEaPHSYjMTbsDeBk6wAATmnHK/Xf9VBDL+QEKPqr48ZQca040458ZxL8QQXHmvtEhxN1Rxv7EJQVFGfaUZhhFx1OwmAyEmNHG3sRkBUUZdhRlMmBHo9WFTmRbDGiz+0LnT0Ur4KyEjq7hHeR8UmSpNC/bSJ0ibH+SQwmIzHGlt74ZzYasL5svOgvzrtq3ml3YWDEjxSrCRUFTtHhUJQkUst6Tb26jM5rdCwxGYmxOmbdCWFjgrT4qsnW+rJMmIy8nMSrqvIsSBJwrnMIXUMe0eFEzSXXKBq63TBIPEk91nj1iKEOlwf1XcOQJITa5Sg+qdPax5r64PEHBUcTPTzVNDFkJFuwLC8NQHwn2Op4Xl7ghMNuFhxNYmEyEkPqXeSKfAecdovgaCiaFi1IQU6aFd6AjDeb+0WHExWjvmDoe+OyY/xTu//iuUtMvUZXc+Y65piMxFBoiYYX7rgnSVLo4h2vdSNvNPfBF5SR57ChLCtZdDgUZersV935HihK/HWJKYrCzjCBmIzEiKIooV9KHOiJYdNitYg1Pjc/mzyeJYmb98W7NcXpsJoM6Bz04nzXsOhwIu5sxxB6hn1IMhuxutgpOpyEw2QkRs51DqF7yIsksxFritNFh0MxoCad77QPos/tExxN5LEzLLHYzEasK80AEJ9LNWq9SGVZBqwmnqQea0xGYkQd6OtKOdATxYJUG5bkpkJR4q/or3vIi/fG91DhTF/iULsA43HpsYadjkIxGYkRbqSTmNRf1PG2P8Oh8Y3ObliYhqwUq+BoKFbU8XyksRe+gCw4msjxBoI41jR2kjpn+sRgMhID3kAQRxvHtlHmQE8soc2i4qzojy29iWnpwjRkJlsw4gvi1Pj5LfHgeEs/PH4Z2alWXJ+TKjqchMRkJAZOtAxg1B9EVooFS3I50BNJZWkGzEYJFwdG0dw7IjqciJhcjM2ZvsRiMEioCs32xU9htppcb2IxtjBMRmKgjl0HCctuMWF10VjBcrxcvBt73Ljk8sBiNGBtSYbocCjG1D04auKoboQtveIxGYkBFkYlturF8VX0p95F3lSSjiQLi7ETzcbx8Xy6bQCDHr/gaOZvYMSHty66APAaLRKTkShzjfhx5sIAAKB6cbbYYEiITeP/7ocaehEI6r/ojy29iS3fmYSyrGTICnC4oVd0OPN2qKEXigIsXpCCXIdNdDgJi8lIlB1u7IGsjG0PzoGemJbnO5BmM2HIEwjdgelVICjjSOPYL6DqRUyuE1U8neJby52xNYHJSJTV1HOJJtEZDVLoBFC9X7xPXxjAsDcAp92MpeMHp1Hiiaf9Rmp5jdYEJiNRxq4DAqa2+OqZmlxvLM+C0cBi7ES1vjwTRoOEph43LvTrt0ustXcErX0jMBkkVJbxJHWRmIxEUVvfCFp6R2A0SFhfzoGeyNQi1pOt/XB7A4KjmTse9kgAkGYzo6LAAUDfuwurNweri9KRYjUJjiaxMRmJInWgryp0cqAnuKIMOwrSk+APKjjapM+iv2FvACdbBwBwpo8mCrP1fE6NeoglW3rFYzISRbXsOqBxkiSFZkf0evE+0tCLgKygONOOwgy76HBIMHU8H2rohSzrb3fhoKyg7jy3gNcKJiNREpQV1DVwy2yasGm8+0Sv09qsf6LJVhY6kWwxos/tw7vjhybqydsXXXCN+pFqNYWWnEgcJiNR8m77IAZG/EixmrCiwCk6HNKAqvJMSBLwfucwOgc9osMJG5MRmsxsNGD9eNGnHguz1ZjXl2fCZOSvQtH4LxAlNeNrkevLMmHmQCcA6ckW3Jg3dgemtxbfS65RnO8ahkFCqE2ZSM/7jfCwR23hb8ko4UCn6ei1xVcdz8sLnHDYzYKjIa1Qr2/Hmvvg8QcFRzN7o74gjrf0A+BMn1YwGYmCUV8QbzaPD3QmIzRJ9aTNohRFP0V/ap1LNS/cNEl5dgpy0qzwBeTQNU8PjjX3wReUke9MQmlWsuhwCExGouKN8YG+0GFDGQc6TbK6OB02swHdQ1683zksOpxZURQFteNdB2yBpMkkSQoVZqtL03qgnqC9cVEmT1LXCCYjUTC50I8DnSazmY1YW5IBAKip18fF+2zHEHqGvUgyG7G62Ck6HNKYah3WjUwc9sjzlbSCyUgU8FRTuhr14q2XFl/1l0xlWQasJqPgaEhr1Nmyd9oH0ef2CY7m2rqHvDjbMQQA2MidsTWDyUiE9Qx78d54zz2ntGk66rg42tQHX0AWHM21saWXriY71YoluakA9JFgHxrf/2npwjRkplgFR0MqJiMRpv7HeMPCNGRxoNM0bshNQ2ayBSO+IE60arvozxsIhrav50wfzSR0iq8Olmpq2OmoSUxGIowtvXQtBoMUmh3R+p3k8ZZ+ePwyslOtuD4nVXQ4pFGTW9a13CWmKAqP6dAoJiMRpCjKxKmmnNKmq9ikk3Nq6liMTbOwrjQDFqMBFwdG0dw7IjqcGTV0u9Ex6IHFZAgVkpM2MBmJoMYeN9pdHliMHOh0dWqy+taFAbhG/IKjmZl6F8n6J7oau8UU6rSq1XCXmBrb2pJ02MwsxtYSJiMRpF64bypJR5KFA51mludMQll2MmQFONzYKzqcaQ2M+PDWRRcAzvTRtVWPt8lqeXfhiWJstvRqDZORCGJLL4VjYjdWbd5JHmrohaIAixekINdhEx0OaZw6e3aooReBoPa6xPxBGUca+wAwudYiJiMREgjKODJ+h1vNrJtmQd1wSasdCKG7SCbXNAvL8x1wJJkx5AmEZtS05HTbAIa9AaTbzViWlyY6HLoMk5EIOX1hbKA77WYs5UCnWagsy4DRIKG5dwRtfdor+gt1HfAukmbBaJBQNb6JmBYTbHXmumpRFgwGFmNrDZORCFEH+sbyLBg50GkW0mxmrCx0AtBei29r7wha+0ZgMkioLOMulTQ7Wj6VupaHPWranJKRxx9/HCUlJbDZbKisrMSxY8dmfO7TTz+N6upqpKenIz09HZs3b77q8/WKves0F+qsQ43GLt7qoWeri9KRYjUJjob0Qh3PJ1v74fYGBEczYdDjx6m2AQDsDNOqsJOR/fv3Y9euXdizZw9OnDiBiooKbNmyBV1dXdM+/+DBg/jUpz6F1157DYcPH0ZhYSFuu+02XLx4cd7Ba8WQx4+T4wOdU9oUDnVzvEPneyDL2tksqo71IjQHxZnJKMxIgj+ohHbu1YKjjX0IygpKMu0ozLCLDoemEXYy8sgjj+Dee+/F9u3bsXTpUjz55JOw2+145plnpn3+Cy+8gL/7u7/DypUrsWTJEvz4xz+GLMs4cODAvIPXCnWgF3OgU5gqCp1IsZrQP+LHu+NnGokWlBXUnR/7RcK7SAqX2jZbW6+dZETdX4TJtXaFlYz4fD4cP34cmzdvnngDgwGbN2/G4cOHZ/UeIyMj8Pv9yMiYeVMwr9eLwcHBKV9axoPEaK7MRgPWl439t6CV3VjfvuiCa9SPVJsJFQUO0eGQzmzSYMt6Da/RmhdWMtLT04NgMIicnJwpj+fk5KCjo2NW7/GlL30JeXl5UxKay+3duxcOhyP0VVhYGE6YMVcznnXzPBqaC61dvNXkekNZJkxG1rhTeDYuyoQkAe93DqNz0CM6HLQPjKKx2w2DBGwo4zVaq2J6pfnOd76Dffv24cUXX4TNNvMmSrt374bL5Qp9tbW1xTDK8FxyjaKBA53mQd1v5I3mfnj8QcHR8LBHmh+n3YLl+WMzalroElOT6xUFTjjsZsHR0EzCSkaysrJgNBrR2dk55fHOzk7k5uZe9bX/+q//iu985zv4n//5H6xYseKqz7VarUhLS5vypVXqhXs5BzrNUXl2MnLTbPAFZLzR3Cc0llFfEMdb+gGwXoTmTh07WthvhPvl6ENYyYjFYsGaNWumFJ+qxagbNmyY8XXf/e538Y1vfAMvv/wybrrpprlHq0HsXaf5kiRpYn8GwRfvo0298AVl5DuTUJqVLDQW0q+Jow56oCjiusRkWWFnmE6EvUyza9cuPP3003juuefw3nvv4b777oPb7cb27dsBAHfddRd2794dev6//Mu/4Ktf/SqeeeYZlJSUoKOjAx0dHRgeHo7cdyGIonCgU2RUa2SzqLpJhX6SxM37aG5WF6fDZjaga8iL+i5x1/qzHUPodftgtxixuihdWBx0bWHvZrRt2zZ0d3fjwQcfREdHB1auXImXX345VNTa2toKg2Eix/nhD38In8+HO++8c8r77NmzBw899ND8ohfsbMcQeoZ9SDIbsarIKToc0rGq8rFk5J32QfQOe5GZYhUSR2gnYSbXNA82sxFrSzJQU9+DmvoeXJeTKiQOtSi8sjQDFhOLsbVsTlsr7ty5Ezt37pz27w4ePDjlz83NzXP5CF1Qp9QryzJgNRkFR0N6lp1qxZLcVJztGEJdQy8+VpEX8xi6h7w42zEEANhYzi3gaX6qF2ehpr4HtfXd+OymUiExhJJrLqNrHlPFeeD+IhRJ6lJNnaC6kUMNY5+7LC9N2MwMxQ9187OjTX3wBeSYf77HHwwVhFcv5knqWsdkZI68gWBou2PWi1AkbBRc9FfDrgOKoCW5qchMtmDEF8TJ1v6Yf/6Jln54/DIWpFpxXU5KzD+fwsNkZI6Ojw/07FQrrhe0HkrxpbI0ExajARcHRtHU447pZyuKwsMeKaIMBmlKgh1rNSzG1hUmI3M0uXedA50iIclixJrisYr/WF+8G7qH0THogcVkwNqSmY9qIAqHmtiKOOqglvUiusJkZI7UFkgOdIokUfuNqJ+3tiQdNjOLsSky1CW/ty4MwDXqj9nn9rt9eLvdNRYDZ/p0gcnIHAyM+PDWxfGBzmSEIkgdT4cbehEIxq7ob6IYm4V+FDl5ziSUZSdDVsbGdKwcauiFogDX5aQgJ23mo0dIO5iMzIE60BcvSEGugwOdIufGfAccSWYMeQM4fcEVk8/0B2UcaVS7DphcU2RVCzgIUv0sJtf6wWRkDmq56ypFidEgYeOisT0+YnXI2Om2AQx7A0i3m7F0oXbPgSJ9Ug+CrDsfu5mRiWs098vRCyYjc8CDlyiaYn3ImFpcWLUoCwYDi7EpsirLMmA0SGjqceNC/0jUP6+l1422vlGYjRIqS5mM6AWTkTC19o6gtW8EJoOEyjIOdIq86vGp5ROt/Rj2BqL+eTzskaIpzWbGykIngNgk2GpyvaooHcnWOW0yTgIwGQmTeuFeVeRECgc6RUFRph1FGXYEZAXHmqI7tT3k8eNU2wAAdoZR9GyK4X4jddwZW5eYjISJhVEUC2piEO39GY409iEoKyjJtKMwwx7Vz6LEpdbXHWrohSxHb3fhoKzgUAN3xtYjJiNhCMpKqAiLA52iqTpG+43U1o8n1xzPFEUrC8dmkvvcPrx7aTBqn3PmoguuUT9SbSasyHdE7XMo8piMhOGd9vGBbjWhooADnaKnqjwTkgTUdw2jw+WJ2udwfxGKBbPRgPVlYzv7RnO2T12iqSrPhMnIX296wn+tMKj/Ea3nQKcoc9otWD5+ZxetFt9LrlE0dLthkIAN5SzGpuhSazii2bJeo870sV5Ed/gbNQzqlDk3hqJYiHbRn5pcryhwwpFkjspnEKnUpcBjzX3w+IMRf/8RXwDHW/rHP4szfXrDZGSWRn3BiYHOrJtiIHROzfkeKErki/7UO1Qm1xQL5dkpyE2zwReQ8UZzX8Tf/1hTH/xBBfnOJJRkshhbb5iMzNKx5j74gjLyHDaUZiWLDocSwJridNjMBnQPeXGucyii7y3LCg97pJiSJCmqB0HyJHV9YzIyS5O7DjjQKRasJiPWje8gGemL99mOIfQM+2C3GLG6KD2i7000k+rF0Vt65DEd+sZkZJbU9XWuRVIsVUepbkTdL6eyNAMWEy8DFBtV5WPj+Z32QfQOeyP2vl1DHpztGJs95EyfPvEqNAvdQ97QQK9i1wHFkHphPdrYB28gckV/teP75fDCTbGUnWrFktxUAEBdQ+R2Fz40Pp6X5aUhI9kSsfel2GEyMguHGsbuSpcuTENWilVwNJRIluSmIivFglF/ECdaBiLynh5/MLTNfDVn+ijGJjb0647Ye07MXDO51ismI7NQw5ZeEsRgkEKzF5Han+FESz88fhkLUq24LiclIu9JNFvqUndtfWS6xBRFCS07VnPzPt1iMnINijLRdcCsm0RQW8lrIpSM1J5n1wGJs64kAxajAe0uD5p63PN+v4buYXQOemE1GXBTCYux9YrJyDU0dLtxyeWBxWTA2pIM0eFQAlKT4DMXBuAa8c/7/WrZ0ksCJVmMWFM8ljREojBbnbleW5IBm9k47/cjMZiMXIO6rrm2JJ0DnYRY6EhCeXYyZGWifmmu+t0+nLnoAsCZPhJHHXuROKemlvUicYHJyDWoXQc8SIxEUgtN57tUc7ixF4oCXJeTgpw0WyRCIwqbWn93pKEXgaA85/fxB2UcaVSv0UxG9IzJyFVwoJNWRKqIVb0T5RINibQszwGn3YwhbwCnL7jm/D6n2gbg9gWRkWzB0oVpEYyQYo3JyFWcbhvAsDeAdLsZy/I40Emc9WUZMBoktPSOoK1vZM7vE+o64JQ2CWQ0SKE9m+azu7CaXFeVZ8JgYDG2njEZuYrQQF+UxYFOQqXazFhV6AQw96K/ll432vpGYTZKqCzl5n0klrr0PZ/ZPrWmj8m1/jEZuYrQqaac0iYNmO8hY2oSs6ooHclWU8TiIpoLden7RGs/hr2BsF8/6PGHlni47Kh/TEZmMOTx42TbAAAOdNIG9eJd19CDoBz+ZlGTTzUlEq0o046iDDsCsoKjjeFvDX+koRdBWUFpVjIK0u1RiJBiicnIDI409iEoKyjJtKMwgwOdxKsodCLFasLAiB/vtIdX9BeUFRwaPwuELZCkFfNp8Z28eR/pH5ORGahrkbxwk1aYjQasLxsv+gtznf3MRRdco36k2kxYke+IRnhEYds0jy6xWnaGxRUmIzOYyLq5vwhpR/Uc60bUi31VeSZMRv5nT9pQVZ4JSQLqu4bR4fLM+nUXB0bR2OOGQQI28CT1uMCr0jQuuUbR0M2BTtqj3gW+2dyPUV9w1q+rUWf6eBdJGuK0W0IzdeHM9tWNJ+MVhU44ksxRiY1ii8nINNT1yxUFHOikLeXZyVjosMEXlPFGc9+sXjPiC+B4Sz+AiRNTibRiLhv61bBeJO4wGZmGOgXO3nXSGkmSQhfg2d5JHm3qgz+oIN+ZhJJMFmOTtoRa1s/3QFGu3SUmy5NOUmcyEjeYjFyGA520LtwOhMnJtSRx8z7SljXF6UgyG9E95MW5zqFrPv/dS4Poc/tgtxixqig9BhFSLDAZuczZjiH0cqCThqnT2u9dGkTPsPeaz1eTa3YdkBZZTUasK80AMLvCbHU8ry/LhMXEX2Hxgv+Sl1HP7qgszeBAJ03KSrHihvFDwa61zt415MHZjiFIEpMR0q5wlh5rmVzHJf62vYw69c1CP9Ky2bb4qsnKsrw0ZCRboh4X0VyoS49HG/vgDczcJebxB3GsaaxwmzV98YXJyCSTBzrrRUjLNi6aXdFfDTeGIh1YkpuKrBQLRv1BnGgZmPF5bzb3wxuQsSDVisULUmIXIEUdk5FJTrSMDfTsVCuuy+FAJ+1aVzK2jHjJ5UFDt3va5yiKMumwR870kXZJkjQpwe6e8XmTt4BnMXZ8YTIySc2kU3o50EnLkixG3FQ8VmA9U93I+a5hdA56YTUZcFMJi7FJ2ybqRmY+NE9NVHhMR/xhMjJJ6FRTDnTSgWu1+KqPryvNgM1sjFlcRHOhjuczFwbgGvFf8fd9bh/eaR8cey6XHeMOk5Fx/W4f3h4/CZXr66QH6gX5SGMvAkH5ir9nSy/pyUJHEsqzkyErwOHGKxPsQw09UBTg+pxULEizCYiQoonJyLhDDb1QFOC6nBTkcKCTDizLc8BpN2PYG8DpCwNT/s4flHGkcWy6m3eRpBfV412M08328ZTe+MZkZFxoLZKFfqQTRoOEjeXTL9WcahuA2xdEZrIFS8f3JCHSupn2G1EUJTTG2dIbn5iMjAtVaS/mKb2kH5tm2G9EvXBXLcqCwcBibNKH9eWZMBoktPSOoK1vJPR4S+8ILg6MwmyUUFmWITBCihYmIwBaet1o6xsf6KVMRkg/1DvJk20DGPJMFP3V1qszfRzPpB8pVhNWFToBTJ0dUTsdVxelw24xiQiNoozJCCbuIlcVpSPZyoFO+lGYYUdxph1BWcHRxrEN+wY9fpy+MFaMzZ2ESW+mm+2rq5/YX4TiE5MRYNLGUBzopD+Xr7MfaehFUFZQlpWMfGeSyNCIwqbWhNQ19CAoKwjKCg41cNuFeJfwycjYQB/rOtjIgU46dHkywoPESM9WFDiRYjVhYMSPd9sH8daFAQx6AkizmbCiwCk6PIqShE9Gzlx0wTXqR6rNhBX5DtHhEIWtqjwLBmlsx9VLrtFJxdhMRkh/zEYD1peN1TrVnO8OzVxXlWfByGLsuJXwycjEQM+EyZjwPw7SIYfdjOXjd4y/ePMCGrvdMEjAhnIWr5I+TT6VOnTYI5PruJbw1Zo1oa4DDnTSr02LMnG6bQA/er0RAFBR6ESazSw4KqK5UZcY32zuh4KxU6lZ0xff5jQV8Pjjj6OkpAQ2mw2VlZU4duzYVZ//i1/8AkuWLIHNZsPy5cvx29/+dk7BRtqIL4DjLf0A2HVA+qZu1jfsDQDghZv0rTw7GQsdNviCMvxBBQXpSSjOtIsOi6Io7GRk//792LVrF/bs2YMTJ06goqICW7ZsQVdX17TPP3ToED71qU/hs5/9LE6ePImtW7di69atePvtt+cd/Hwda+qDP6gg35mEEg500rHVxU4kTToMj8k16ZkkSVNmq6sX8yT1eBd2MvLII4/g3nvvxfbt27F06VI8+eSTsNvteOaZZ6Z9/mOPPYYPfvCD+Md//EfccMMN+MY3voHVq1fjBz/4wYyf4fV6MTg4OOUrGmon9a5zoJOeWU3G0M6UyRYjVhU5xQZENE+TC7DZGRb/wkpGfD4fjh8/js2bN0+8gcGAzZs34/Dhw9O+5vDhw1OeDwBbtmyZ8fkAsHfvXjgcjtBXYWFhOGHOGrsOKJ7cct3YbEjVoiyYWYxNOrdxURbMRglmo4Sqcl6j411YBaw9PT0IBoPIycmZ8nhOTg7Onj077Ws6OjqmfX5HR8eMn7N7927s2rUr9OfBwcGIJySKouC+W8pRW9/DrJviwqfXF8NsMuBPl+Rc+8lEGpeVYsVP71kHgwRkJFtEh0NRpsluGqvVCqvVGtXPkCQJf74yH3++Mj+qn0MUK2ajAZ+uLBYdBlHEcNY6cYQ1l5uVlQWj0YjOzs4pj3d2diI3N3fa1+Tm5ob1fCIiIkosYSUjFosFa9aswYEDB0KPybKMAwcOYMOGDdO+ZsOGDVOeDwCvvvrqjM8nIiKixBL2Ms2uXbtw991346abbsK6devw6KOPwu12Y/v27QCAu+66C/n5+di7dy8A4P7778fNN9+Mhx9+GB/5yEewb98+vPnmm/jRj34U2e+EiIiIdCnsZGTbtm3o7u7Ggw8+iI6ODqxcuRIvv/xyqEi1tbUVBsPEhEtVVRV+9rOf4Stf+Qr+6Z/+CYsXL8ZLL72EG2+8MXLfBREREemWpCiKIjqIaxkcHITD4YDL5UJaWprocIiIiGgWZvv7m5sREBERkVBMRoiIiEgoJiNEREQkFJMRIiIiEorJCBEREQnFZISIiIiEYjJCREREQjEZISIiIqE0eWrv5dR92QYHBwVHQkRERLOl/t6+1v6qukhGhoaGAACFhYWCIyEiIqJwDQ0NweFwzPj3utgOXpZltLe3IzU1FZIkRex9BwcHUVhYiLa2Nm4zH0X8OccOf9axwZ9zbPDnHBvR/DkrioKhoSHk5eVNObfucrqYGTEYDCgoKIja+6elpXGgxwB/zrHDn3Vs8OccG/w5x0a0fs5XmxFRsYCViIiIhGIyQkREREIldDJitVqxZ88eWK1W0aHENf6cY4c/69jgzzk2+HOODS38nHVRwEpERETxK6FnRoiIiEg8JiNEREQkFJMRIiIiEorJCBEREQnFZISIiIiEYjIy7lvf+haqqqpgt9vhdDpFhxNXHn/8cZSUlMBms6GyshLHjh0THVLcef3113H77bcjLy8PkiThpZdeEh1S3Nm7dy/Wrl2L1NRULFiwAFu3bsW5c+dEhxWXfvjDH2LFihWhHUE3bNiA3/3ud6LDimvf+c53IEkSHnjgASGfz2RknM/nwyc+8Qncd999okOJK/v378euXbuwZ88enDhxAhUVFdiyZQu6urpEhxZX3G43Kioq8Pjjj4sOJW798Y9/xI4dO3DkyBG8+uqr8Pv9uO222+B2u0WHFncKCgrwne98B8ePH8ebb76JP/mTP8Gf//mf45133hEdWlx644038NRTT2HFihXiglBoip/+9KeKw+EQHUbcWLdunbJjx47Qn4PBoJKXl6fs3btXYFTxDYDy4osvig4j7nV1dSkAlD/+8Y+iQ0kI6enpyo9//GPRYcSdoaEhZfHixcqrr76q3Hzzzcr9998vJA7OjFDU+Hw+HD9+HJs3bw49ZjAYsHnzZhw+fFhgZETz53K5AAAZGRmCI4lvwWAQ+/btg9vtxoYNG0SHE3d27NiBj3zkI1Ou0yLo4tRe0qeenh4Eg0Hk5ORMeTwnJwdnz54VFBXR/MmyjAceeAAbN27EjTfeKDqcuHTmzBls2LABHo8HKSkpePHFF7F06VLRYcWVffv24cSJE3jjjTdEhxLfNSNf/vKXIUnSVb/4S5GIwrVjxw68/fbb2Ldvn+hQ4tb111+PU6dO4ejRo7jvvvtw991349133xUdVtxoa2vD/fffjxdeeAE2m010OPE9M/IP//APuOeee676nLKystgEk4CysrJgNBrR2dk55fHOzk7k5uYKiopofnbu3In//u//xuuvv46CggLR4cQti8WCRYsWAQDWrFmDN954A4899hieeuopwZHFh+PHj6OrqwurV68OPRYMBvH666/jBz/4AbxeL4xGY8ziietkJDs7G9nZ2aLDSFgWiwVr1qzBgQMHsHXrVgBj09sHDhzAzp07xQZHFCZFUfB//s//wYsvvoiDBw+itLRUdEgJRZZleL1e0WHEjT/90z/FmTNnpjy2fft2LFmyBF/60pdimogAcZ6MhKO1tRV9fX1obW1FMBjEqVOnAACLFi1CSkqK2OB0bNeuXbj77rtx0003Yd26dXj00Ufhdruxfft20aHFleHhYZw/fz7056amJpw6dQoZGRkoKioSGFn82LFjB372s5/hP//zP5GamoqOjg4AgMPhQFJSkuDo4svu3bvxoQ99CEVFRRgaGsLPfvYzHDx4EK+88oro0OJGamrqFfVOycnJyMzMFFMHJaSHR4PuvvtuBcAVX6+99pro0HTv+9//vlJUVKRYLBZl3bp1ypEjR0SHFHdee+21acfv3XffLTq0uDHdzxeA8tOf/lR0aHHnf//v/60UFxcrFotFyc7OVv70T/9U+Z//+R/RYcU9ka29kqIoSuxTICIiIqIxcd1NQ0RERNrHZISIiIiEYjJCREREQjEZISIiIqGYjBAREZFQTEaIiIhIKCYjREREJBSTESIiIhKKyQgREREJxWSEiIiIhGIyQkREREL9fzX0+uzhuD+SAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "def avoid_even_function(x):\n", " y = 1 - np.minimum(np.mod(x, 2), np.mod(-x, 2))\n", @@ -322,96 +131,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2downvotes
0-3.0-1.00.0
2-1.01.00.0
41.03.00.0
63.05.00.0
1-2.00.02.0
30.02.02.0
52.04.02.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 downvotes\n", - "0 -3.0 -1.0 0.0\n", - "2 -1.0 1.0 0.0\n", - "4 1.0 3.0 0.0\n", - "6 3.0 5.0 0.0\n", - "1 -2.0 0.0 2.0\n", - "3 0.0 2.0 2.0\n", - "5 2.0 4.0 2.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def avoid_even(conditions: pd.DataFrame):\n", " downvotes = avoid_even_function(conditions_).sum(axis=1)\n", @@ -426,112 +146,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x20.downvotes1.downvotesdownvotes
0-3.0-1.0101
1-2.00.0112
2-1.01.0123
30.02.0134
41.03.0145
52.04.0156
63.05.0167
\n", - "
" - ], - "text/plain": [ - " x1 x2 0.downvotes 1.downvotes downvotes\n", - "0 -3.0 -1.0 1 0 1\n", - "1 -2.0 0.0 1 1 2\n", - "2 -1.0 1.0 1 2 3\n", - "3 0.0 2.0 1 3 4\n", - "4 1.0 3.0 1 4 5\n", - "5 2.0 4.0 1 5 6\n", - "6 3.0 5.0 1 6 7" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def combine_downvotes(conditions, *arrays: pd.DataFrame):\n", " result = conditions.copy()\n", @@ -552,96 +167,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2downvotes
0-3.0-1.00.0
1-2.00.00.0
2-1.01.00.0
30.02.00.0
41.03.00.0
52.04.00.0
63.05.00.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 downvotes\n", - "0 -3.0 -1.0 0.0\n", - "1 -2.0 0.0 0.0\n", - "2 -1.0 1.0 0.0\n", - "3 0.0 2.0 0.0\n", - "4 1.0 3.0 0.0\n", - "5 2.0 4.0 0.0\n", - "6 3.0 5.0 0.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def downvote_order(conditions: pd.DataFrame, experimentalists: List):\n", " downvoted_conditions = []\n", @@ -660,104 +186,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2avoid_negative.downvotesdownvotes
30.02.000
41.03.000
52.04.000
63.05.000
1-2.00.011
2-1.01.011
0-3.0-1.022
\n", - "
" - ], - "text/plain": [ - " x1 x2 avoid_negative.downvotes downvotes\n", - "3 0.0 2.0 0 0\n", - "4 1.0 3.0 0 0\n", - "5 2.0 4.0 0 0\n", - "6 3.0 5.0 0 0\n", - "1 -2.0 0.0 1 1\n", - "2 -1.0 1.0 1 1\n", - "0 -3.0 -1.0 2 2" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "downvote_order(conditions_, experimentalists=[avoid_negative])" ] @@ -766,112 +195,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2avoid_negative.downvotesavoid_even.downvotesdownvotes
41.03.000.00.0
63.05.000.00.0
2-1.01.010.01.0
0-3.0-1.020.02.0
30.02.002.02.0
52.04.002.02.0
1-2.00.012.03.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 avoid_negative.downvotes avoid_even.downvotes downvotes\n", - "4 1.0 3.0 0 0.0 0.0\n", - "6 3.0 5.0 0 0.0 0.0\n", - "2 -1.0 1.0 1 0.0 1.0\n", - "0 -3.0 -1.0 2 0.0 2.0\n", - "3 0.0 2.0 0 2.0 2.0\n", - "5 2.0 4.0 0 2.0 2.0\n", - "1 -2.0 0.0 1 2.0 3.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "downvote_order(conditions_, experimentalists=[avoid_negative, avoid_even])\n" ] @@ -887,112 +211,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2avoid_negative.downvotesavoid_even.downvotesdownvotes
41.03.000.00.0
63.05.000.00.0
2-1.01.010.01.0
0-3.0-1.020.02.0
30.02.002.02.0
52.04.002.02.0
1-2.00.012.03.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 avoid_negative.downvotes avoid_even.downvotes downvotes\n", - "4 1.0 3.0 0 0.0 0.0\n", - "6 3.0 5.0 0 0.0 0.0\n", - "2 -1.0 1.0 1 0.0 1.0\n", - "0 -3.0 -1.0 2 0.0 2.0\n", - "3 0.0 2.0 0 2.0 2.0\n", - "5 2.0 4.0 0 2.0 2.0\n", - "1 -2.0 0.0 1 2.0 3.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "from autora.state import Delta, on_state, State, StandardState, inputs_from_state\n", "\n", @@ -1016,88 +235,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2
30.02.0
41.03.0
52.04.0
63.05.0
1-2.00.0
2-1.01.0
0-3.0-1.0
\n", - "
" - ], - "text/plain": [ - " x1 x2\n", - "3 0.0 2.0\n", - "4 1.0 3.0\n", - "5 2.0 4.0\n", - "6 3.0 5.0\n", - "1 -2.0 0.0\n", - "2 -1.0 1.0\n", - "0 -3.0 -1.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def avoid_negative_separate(conditions: pd.DataFrame):\n", " downvotes = (conditions_ < 0).sum(axis=1).sort_values(ascending=True)\n", @@ -1111,33 +249,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "( x1 x2\n", - " 0 -3.0 -1.0\n", - " 2 -1.0 1.0\n", - " 4 1.0 3.0\n", - " 6 3.0 5.0\n", - " 1 -2.0 0.0\n", - " 3 0.0 2.0\n", - " 5 2.0 4.0,\n", - " 0 0.0\n", - " 2 0.0\n", - " 4 0.0\n", - " 6 0.0\n", - " 1 2.0\n", - " 3 2.0\n", - " 5 2.0\n", - " dtype: float64)" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def avoid_even_separate(conditions: pd.DataFrame):\n", " downvotes = avoid_even_function(conditions_).sum(axis=1).sort_values(ascending=True)\n", @@ -1151,33 +263,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'conditions': x1 x2\n", - " 0 -3.0 -1.0\n", - " 1 -2.0 0.0\n", - " 2 -1.0 1.0\n", - " 3 0.0 2.0\n", - " 4 1.0 3.0\n", - " 5 2.0 4.0\n", - " 6 3.0 5.0,\n", - " 'downvotes': initial total\n", - " 0 0 0\n", - " 1 0 0\n", - " 2 0 0\n", - " 3 0 0\n", - " 4 0 0\n", - " 5 0 0\n", - " 6 0 0}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def downvote_order_separate(conditions: pd.DataFrame, experimentalists: List):\n", " downvote_arrays = {\"initial\": pd.Series(0, index=conditions.index)}\n", @@ -1199,120 +285,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2initialavoid_even_separateavoid_negative_separatetotal
0-3.0-1.000.022.0
1-2.00.002.013.0
2-1.01.000.011.0
30.02.002.002.0
41.03.000.000.0
52.04.002.002.0
63.05.000.000.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 initial avoid_even_separate avoid_negative_separate total\n", - "0 -3.0 -1.0 0 0.0 2 2.0\n", - "1 -2.0 0.0 0 2.0 1 3.0\n", - "2 -1.0 1.0 0 0.0 1 1.0\n", - "3 0.0 2.0 0 2.0 0 2.0\n", - "4 1.0 3.0 0 0.0 0 0.0\n", - "5 2.0 4.0 0 2.0 0 2.0\n", - "6 3.0 5.0 0 0.0 0 0.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "results = downvote_order_separate(conditions_, experimentalists=[avoid_even_separate, avoid_negative_separate])\n", "\n", @@ -1333,96 +306,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2downvotes
0-3.0-1.02.0
1-2.00.00.0
2-1.01.00.0
30.02.00.0
41.03.00.0
52.04.00.0
63.05.01.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 downvotes\n", - "0 -3.0 -1.0 2.0\n", - "1 -2.0 0.0 0.0\n", - "2 -1.0 1.0 0.0\n", - "3 0.0 2.0 0.0\n", - "4 1.0 3.0 0.0\n", - "5 2.0 4.0 0.0\n", - "6 3.0 5.0 1.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def avoid_repeat(conditions, experiment_data: pd.DataFrame, variables: VariableCollection):\n", " iv_column_names = [v.name for v in variables.independent_variables]\n", @@ -1453,28 +337,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), 'conditions': x1 x2 downvotes\n", - "0 -3.0 -1.0 2.0\n", - "1 -2.0 0.0 0.0\n", - "2 -1.0 1.0 0.0\n", - "3 0.0 2.0 0.0\n", - "4 1.0 3.0 0.0\n", - "5 2.0 4.0 0.0\n", - "6 3.0 5.0 1.0, 'experiment_data': x1 x2\n", - "0 -3 -1\n", - "1 3 5\n", - "2 -3 -1, 'models': None}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "avoid_repeat_state = on_state(avoid_repeat)\n", "s = StandardState(\n", @@ -1497,129 +360,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2avoid_repeat.downvotesavoid_negative.downvotesavoid_even.downvotesdownvotes
41.03.00.000.00.0
2-1.01.00.010.01.0
63.05.01.000.01.0
30.02.00.002.02.0
52.04.00.002.02.0
1-2.00.00.012.03.0
0-3.0-1.02.020.04.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 avoid_repeat.downvotes avoid_negative.downvotes \\\n", - "4 1.0 3.0 0.0 0 \n", - "2 -1.0 1.0 0.0 1 \n", - "6 3.0 5.0 1.0 0 \n", - "3 0.0 2.0 0.0 0 \n", - "5 2.0 4.0 0.0 0 \n", - "1 -2.0 0.0 0.0 1 \n", - "0 -3.0 -1.0 2.0 2 \n", - "\n", - " avoid_even.downvotes downvotes \n", - "4 0.0 0.0 \n", - "2 0.0 1.0 \n", - "6 0.0 1.0 \n", - "3 2.0 2.0 \n", - "5 2.0 2.0 \n", - "1 2.0 3.0 \n", - "0 0.0 4.0 " - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "@on_state()\n", "def combine_downvotes_state(\n", @@ -1669,33 +410,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'conditions': x1 x2\n", - " 0 -3.0 -1.0\n", - " 1 -2.0 0.0\n", - " 2 -1.0 1.0\n", - " 3 0.0 2.0\n", - " 4 1.0 3.0\n", - " 5 2.0 4.0\n", - " 6 3.0 5.0,\n", - " 'downvotes': 0 2.0\n", - " 1 0.0\n", - " 2 0.0\n", - " 3 0.0\n", - " 4 0.0\n", - " 5 0.0\n", - " 6 1.0\n", - " Name: downvotes, dtype: float64}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "def avoid_repeat_separate(\n", " conditions: pd.DataFrame,\n", @@ -1735,88 +450,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2
41.03.0
2-1.01.0
63.05.0
30.02.0
52.04.0
1-2.00.0
0-3.0-1.0
\n", - "
" - ], - "text/plain": [ - " x1 x2\n", - "4 1.0 3.0\n", - "2 -1.0 1.0\n", - "6 3.0 5.0\n", - "3 0.0 2.0\n", - "5 2.0 4.0\n", - "1 -2.0 0.0\n", - "0 -3.0 -1.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "@on_state()\n", "def combine_downvotes_separate_state(\n", @@ -1903,96 +537,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2downvotes
0-3.0-1.01
1-2.00.01
2-1.01.01
30.02.01
41.03.01
52.04.01
63.05.01
\n", - "
" - ], - "text/plain": [ - " x1 x2 downvotes\n", - "0 -3.0 -1.0 1\n", - "1 -2.0 0.0 1\n", - "2 -1.0 1.0 1\n", - "3 0.0 2.0 1\n", - "4 1.0 3.0 1\n", - "5 2.0 4.0 1\n", - "6 3.0 5.0 1" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "combine_downvotes(\n", " conditions_,\n", @@ -2011,96 +556,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2downvotes
0-3.0-1.01
1-2.00.02
2-1.01.03
30.02.04
41.03.05
52.04.06
63.05.07
\n", - "
" - ], - "text/plain": [ - " x1 x2 downvotes\n", - "0 -3.0 -1.0 1\n", - "1 -2.0 0.0 2\n", - "2 -1.0 1.0 3\n", - "3 0.0 2.0 4\n", - "4 1.0 3.0 5\n", - "5 2.0 4.0 6\n", - "6 3.0 5.0 7" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "combine_downvotes(\n", " conditions_,\n", @@ -2120,28 +576,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), 'conditions': x1 x2 downvotes avoid_even.downvotes\n", - "0 -3.0 -1.0 0.0 0.0\n", - "1 -2.0 0.0 2.0 2.0\n", - "2 -1.0 1.0 0.0 0.0\n", - "3 0.0 2.0 2.0 2.0\n", - "4 1.0 3.0 0.0 0.0\n", - "5 2.0 4.0 2.0 2.0\n", - "6 3.0 5.0 0.0 0.0, 'experiment_data': x1 x2\n", - "0 -3 -1\n", - "1 3 5\n", - "2 -3 -1, 'models': None}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "@on_state()\n", "def avoid_even_chainable(conditions: pd.DataFrame, variables: VariableCollection):\n", @@ -2157,28 +592,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), 'conditions': x1 x2 downvotes avoid_negative.downvotes\n", - "0 -3.0 -1.0 2 2\n", - "1 -2.0 0.0 1 1\n", - "2 -1.0 1.0 1 1\n", - "3 0.0 2.0 0 0\n", - "4 1.0 3.0 0 0\n", - "5 2.0 4.0 0 0\n", - "6 3.0 5.0 0 0, 'experiment_data': x1 x2\n", - "0 -3 -1\n", - "1 3 5\n", - "2 -3 -1, 'models': None}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "@on_state()\n", "def avoid_negative_chainable(conditions: pd.DataFrame, variables: VariableCollection):\n", @@ -2194,28 +608,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x1', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False), Variable(name='x2', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[], covariates=[]), 'conditions': x1 x2 downvotes avoid_repeat.downvotes\n", - "0 -3.0 -1.0 2.0 2.0\n", - "1 -2.0 0.0 0.0 0.0\n", - "2 -1.0 1.0 0.0 0.0\n", - "3 0.0 2.0 0.0 0.0\n", - "4 1.0 3.0 0.0 0.0\n", - "5 2.0 4.0 0.0 0.0\n", - "6 3.0 5.0 1.0 1.0, 'experiment_data': x1 x2\n", - "0 -3 -1\n", - "1 3 5\n", - "2 -3 -1, 'models': None}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "@on_state()\n", "def avoid_repeat_chainable(\n", @@ -2240,96 +633,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2downvotesavoid_repeat.downvotes
1-2.00.00.00.0
2-1.01.00.00.0
30.02.00.00.0
41.03.00.00.0
52.04.00.00.0
63.05.01.01.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 downvotes avoid_repeat.downvotes\n", - "1 -2.0 0.0 0.0 0.0\n", - "2 -1.0 1.0 0.0 0.0\n", - "3 0.0 2.0 0.0 0.0\n", - "4 1.0 3.0 0.0 0.0\n", - "5 2.0 4.0 0.0 0.0\n", - "6 3.0 5.0 1.0 1.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "@on_state()\n", "def sample_downvotes(conditions: pd.DataFrame, num_samples:Optional[int]=None):\n", @@ -2346,129 +650,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2downvotesavoid_repeat.downvotesavoid_even.downvotesavoid_negative.downvotes
41.03.00.00.00.00
2-1.01.01.00.00.01
63.05.01.01.00.00
30.02.02.00.02.00
52.04.02.00.02.00
1-2.00.03.00.02.01
0-3.0-1.04.02.00.02
\n", - "
" - ], - "text/plain": [ - " x1 x2 downvotes avoid_repeat.downvotes avoid_even.downvotes \\\n", - "4 1.0 3.0 0.0 0.0 0.0 \n", - "2 -1.0 1.0 1.0 0.0 0.0 \n", - "6 3.0 5.0 1.0 1.0 0.0 \n", - "3 0.0 2.0 2.0 0.0 2.0 \n", - "5 2.0 4.0 2.0 0.0 2.0 \n", - "1 -2.0 0.0 3.0 0.0 2.0 \n", - "0 -3.0 -1.0 4.0 2.0 0.0 \n", - "\n", - " avoid_negative.downvotes \n", - "4 0 \n", - "2 1 \n", - "6 0 \n", - "3 0 \n", - "5 0 \n", - "1 1 \n", - "0 2 " - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "s_0 = s + Delta(conditions=conditions_) # add the seed conditions\n", "s_1 = avoid_repeat_chainable(s_0)\n", @@ -2526,64 +708,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
x1x2ynew_column
0-10-10-10NaN
155515.0
\n", - "
" - ], - "text/plain": [ - " x1 x2 y new_column\n", - "0 -10 -10 -10 NaN\n", - "1 5 5 5 15.0" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "s_1.experiment_data" ] diff --git a/docs/cycle/Linear and Cyclical Workflows using Functions and States.ipynb b/docs/cycle/Linear and Cyclical Workflows using Functions and States.ipynb index 5384c9e6..e1aba3a4 100644 --- a/docs/cycle/Linear and Cyclical Workflows using Functions and States.ipynb +++ b/docs/cycle/Linear and Cyclical Workflows using Functions and States.ipynb @@ -60,33 +60,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-15, 15), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': x\n", - "0 -15.0\n", - "1 -14.7\n", - "2 -14.4\n", - "3 -14.1\n", - "4 -13.8\n", - ".. ...\n", - "96 13.8\n", - "97 14.1\n", - "98 14.4\n", - "99 14.7\n", - "100 15.0\n", - "\n", - "[101 rows x 1 columns], 'experiment_data': Empty DataFrame\n", - "Columns: [x, y]\n", - "Index: [], 'models': None}" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "s" ] @@ -148,115 +122,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
xy
0-15.0-1459.626544
1-14.7-1274.924484
2-14.4-1103.501192
3-14.1-936.513786
4-13.8-781.771299
.........
9613.8503.745992
9714.1609.525166
9814.4722.577968
9914.7843.765689
10015.0971.678104
\n", - "

101 rows × 2 columns

\n", - "
" - ], - "text/plain": [ - " x y\n", - "0 -15.0 -1459.626544\n", - "1 -14.7 -1274.924484\n", - "2 -14.4 -1103.501192\n", - "3 -14.1 -936.513786\n", - "4 -13.8 -781.771299\n", - ".. ... ...\n", - "96 13.8 503.745992\n", - "97 14.1 609.525166\n", - "98 14.4 722.577968\n", - "99 14.7 843.765689\n", - "100 15.0 971.678104\n", - "\n", - "[101 rows x 2 columns]" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "experiment_runner(s, std=1).experiment_data" ] @@ -321,82 +187,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tcoefficient
010.000000
1x-145.723526
2x^2-2.909293
3x^31.048788
4x^4-0.000242
5x^5-0.000252
\n", - "
" - ], - "text/plain": [ - " t coefficient\n", - "0 1 0.000000\n", - "1 x -145.723526\n", - "2 x^2 -2.909293\n", - "3 x^3 1.048788\n", - "4 x^4 -0.000242\n", - "5 x^5 -0.000252" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "get_equation(t.model)" ] @@ -435,82 +226,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tcoefficient
010.000000
1x-145.723526
2x^2-2.909293
3x^31.048788
4x^4-0.000242
5x^5-0.000252
\n", - "
" - ], - "text/plain": [ - " t coefficient\n", - "0 1 0.000000\n", - "1 x -145.723526\n", - "2 x^2 -2.909293\n", - "3 x^3 1.048788\n", - "4 x^4 -0.000242\n", - "5 x^5 -0.000252" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "u = pipeline(s, random_state=1)\n", "get_equation(u.model)" @@ -527,82 +243,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tcoefficient
010.000000
1x-145.738569
2x^2-2.898667
3x^31.042038
4x^4-0.000893
5x^5-0.000218
\n", - "
" - ], - "text/plain": [ - " t coefficient\n", - "0 1 0.000000\n", - "1 x -145.738569\n", - "2 x^2 -2.898667\n", - "3 x^3 1.042038\n", - "4 x^4 -0.000893\n", - "5 x^5 -0.000218" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "u_ = pipeline(pipeline(s, random_state=1), random_state=2)\n", "get_equation(u_.model)" @@ -619,92 +260,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
tcoefficient
010.000000
1x-145.738569
2x^2-2.898667
3x^31.042038
4x^4-0.000893
5x^5-0.000218
\n", - "
" - ], - "text/plain": [ - " t coefficient\n", - "0 1 0.000000\n", - "1 x -145.738569\n", - "2 x^2 -2.898667\n", - "3 x^3 1.042038\n", - "4 x^4 -0.000893\n", - "5 x^5 -0.000218" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnmElEQVR4nO3dd3xT9eLG8U+S7pa2QDcUStl7U4qILCmKXlFEVFRQrgNBRcCrXAXXVVTcovJzAW5RlOtEEUFEoChY9ioFCpS2zC46k/P7o9IrUqCFtidJn/frlRc2OUmexEKenPM936/FMAwDEREREakwq9kBRERERFyNCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSh9kB3JHD4SAtLY06depgsVjMjiMiIiIVYBgGOTk5REVFYbWeeR+TClQ1SEtLIzo62uwYIiIicg727t1Lw4YNz7iNClQ1qFOnDlD6PyAwMNDkNCIiIlIR2dnZREdHl32On4kKVDU4cdguMDBQBUpERMTFVGT4jQaRi4iIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSIm0hLS2P58uWkpaWZHUVExO15mB1ARKpGSkoKycnJAERFRZmcRkTEvalAibiJ2NjYk/4UEZHqowIl4iaioqIqvecpLS2NlJQUYmNjtddKRKQSVKBEajEd9hMROTcqUCK1mA77iYicGxUokVrsXA77iYiIpjEQERERqTQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKUoESERERqSQVKBEREZFKcqkCtWzZMi6//HKioqKwWCwsWLDgpNsNw2DatGlERkbi6+vLwIED2bFjx0nbHDlyhJEjRxIYGEhwcDBjxowhNzf3pG3Wr1/PhRdeiI+PD9HR0TzzzDPV/dJERETEhbhUgcrLy6Njx468+uqr5d7+zDPP8PLLLzNr1iwSExPx9/cnISGBgoKCsm1GjhzJpk2bWLRoEV9//TXLli3jtttuK7s9OzubQYMG0bhxY9asWcOMGTN45JFHeOONN6r99Yk4g7S0NJYvX05aWprZUUREnJbFMAzD7BDnwmKx8MUXXzB06FCgdO9TVFQUkyZNYvLkyQBkZWURHh7OnDlzuPbaa9myZQtt2rTht99+o1u3bgAsXLiQSy+9lH379hEVFcXrr7/Ogw8+SHp6Ol5eXgA88MADLFiwgK1bt5abpbCwkMLCwrKfs7OziY6OJisri8DAwGp8F0Sq3vLly0lOTqZZs2b07t3b7DgiIjUmOzuboKCgCn1+u9QeqDPZtWsX6enpDBw4sOy6oKAg4uLiWLlyJQArV64kODi4rDwBDBw4EKvVSmJiYtk2ffr0KStPAAkJCWzbto2jR4+W+9zTp08nKCio7BIdHV0dL1GkTHXuJYqNjaVZs2bExsZW+3OJiLgqtylQ6enpAISHh590fXh4eNlt6enphIWFnXS7h4cH9erVO2mb8h7jr8/xd1OmTCErK6vssnfv3vN/QSJ/8fcSk5KSQnJyMikpKVX+XFFRUfTu3ZuoqKhqfy4REVflYXYAd+Dt7Y23t7fZMcSNnSgxUFpwoqJj2JdjJ8e7Pj+v20F+3jEKc7MwLDY8/ILw8q2Dt38ggb5eNK7vTz1/r7M8w+md2BN14k8REVMdS4WcDGjQBaw202K4TYGKiIgAICMjg8jIyLLrMzIy6NSpU9k2mZmZJ92vpKSEI0eOlN0/IiKCjIyMk7Y58fOJbUTKk5aWRkpKCrGxsWV7b6pCXkExWcfzceTsIzPxNxYvfYqooj1cZskkwFJw2vs5DAvZ+LHbiOBXa0Oy/GMortsMv8ZdaNe2Pa0jArFaLWd9/qioqCp9PSIi5+WP9+Hnp6Hj9XDl66bFcJsC1aRJEyIiIli8eHFZYcrOziYxMZGxY8cCEB8fz7Fjx1izZg1du3YF4KeffsLhcBAXF1e2zYMPPkhxcTGenp4ALFq0iJYtW1K3bt2af2HitP5emP6+l+h87EnLZHvit1h2/kiLnESGWE4u/n8/+F6CBwVWP6zY8XHkY8WB1WIQTB6dLDvpxE7I+xnygH2w95dQvrS25XBIHP6t+nFht040CPY9r8wiIjVi50+lfzbuZWoMlypQubm5ZR9QUDpwPCkpiXr16tGoUSMmTJjAf/7zH5o3b06TJk2YOnUqUVFRZWfqtW7dmsGDB3Prrbcya9YsiouLGT9+PNdee23ZB97111/Po48+ypgxY7j//vvZuHEjL730Ei+88IIZL1mc2N8L0/ke6iooLGL14vl4Jc2lS+FqGlvspTdYoBgP0n2akV+3OZ7hrakX04Gghq3Aty5418HDw5uAEw9kGFCcD4U5cPwQhRnbydq7iaKM7Xge2U793O1EWw8SzVI4tBSWP03Ssqb8EDiAgC5Xc1H3joTV8Tmv90ZEpFrkH4X9a0r/u2l/U6O41DQGS5cupV+/fqdcP2rUKObMmYNhGDz88MO88cYbHDt2jN69e/Paa6/RokWLsm2PHDnC+PHj+eqrr7BarQwbNoyXX36ZgICyjx/Wr1/PuHHj+O233wgJCeGuu+7i/vvvr3DOypwGKa6rqg7Z7UvdRfIPr9Ni3+dEcbDs+kxbBIci+lC34yVEdLwYi3edqogNhbnY96zk8MbFGLt+ITRnM1YcQOlhv9+MlmwMHULz/qPp3Tq6Qof5RERqxKYv4NPRENoKxiVW+cNX5vPbpQqUq1CBkorITN/Ljk8foduhBXhbSgDIxp9dDf5B44F3EBzTESw1UF5yM8le8yn5a+cRnpVUdvURI4DvvAfjE38bg3t1xd/bpXZYi4g7+vIuWPsu9LwTBk+v8odXgTKZCpScSfaxQ2z69D902Pch/pbSCVh3eLWhqNMoWg24CZu3n3nhju3laOIHWNbMJriodNqOYsPGj5Y4Dne5m6EJFxOgIiUiZjAMeKEdZO+DkfOh+cCz36eSVKBMpgIl5TEcdtZ8NoPmm18miDwAtnu05Fi3uykKiKnys/fKU+HDjvYS8jd9RdZPrxBxrHS8gcOw8L31ArLjJnPFgD74eJp3+rCI1EIHt8Or3cHmDffvBq+q/7JZmc9vfZUUqQEZuzZy7KPb6Fa0CYDd1miO9byfjgNH8uuKFScNRq+u6RDg1IHvp2XzwLfDlfh2uBLH/iQOfDudBvsXcomxnJKVK/hmdT+46H4uu7AHNo2REpGasHNx6Z+N46ulPFWWCpRINTLsxaz/9AlabZlJuKWYPMOHpFb3Enf1JGL+nCbj72fvVeV0CH93LmcKWht0osGtn1CyL4mML6fRIPNnrnAspuCnZXySeA3thk+jQxPNkSYi1ezP6QuyQruzYfnyGtlrfyY6hFcNdAhPAI7t38GRuSOJLdoGwB9eXag/4nUaNW11xvtV5x6oqlC0exWHF/ybyD8P7e0xwvi5yUQuHz6Guucx47mIyGmVFMLTMVB8nI+bv8iHewK5pHU9xl556pn556NWLiYs4kz2JP4X65t9iS3aRrbhx9JWD9Ph/sVnLU9w6lp0zsYrpieR9ywma8j/ccwjlMaWTG7a/QAbZiTww4rV6DuZiFS51JVQfBwCwllW3JL12T7sLvQ3NZIKlEhVcjjYMu9hor8dRSC5bLY25+CNS+l77URsNjf662axENT9WoLvSyKt7W0U40Ef1hL//T/44LXHOJRTcMoCyCIi5+zPw3eO2H4k7i09CeeKbuauz+lG/6KLmMuen8X2V4bSevOLWC0GPwUMocGEpTRt1tLsaNXHO4Co4TNg7K+kBXagjiWfGw4+z47nBvH10uUkJyeTkpJidkoRcWFpaWnkrvsSgN3BPTmcV0QdHw+6N6lnai4VKJEqUHBkP2kv9KXF0Z8pNDz4tskULpr4AUGBAWe/sxvwDG9F1ISlpPecSiFexLOOa7fdTcHBbYQ3aGR2PBFxYXu3/E5A7i4Avskr/UJ6UYtQPE3eq68CJXKejqcnk/XqAKKLUsg0glnV930uHfWA6af3V+chtHIf22ojYvBkLHcsIy2gLYGWfO7Ie43dH4xn624dxhORc9PCth+AopA2fJVcDMDA1uFmRgJUoETOS07qegreuJhw+wFSjXD2XbmAi/pdYnYs4H/TIVTHIbQzPbZXRGuiJv7Cvi6TKcHKxSU/4z27H/M+/4xffvlFY6JEpFLqHvkDgIKYAWzPyMVmtdC3ZajJqTQPlMg5y9r+K9aPrqGekcsOoim4bj5dWjnPeKdzmfOpyh7baqPhP6aS3bIvxfNupok9nah1tzPbNoKCkmud9gxDEXEyDkfZAPJfjQ4AdG1cl2A/86dMUYESOQdHty7D5+Ph+FLAOlrgM3o+7WOca6xPVFRUtRWVij52YMsLcdybyJ45o2l8aBl3OD5g8fJU9rZuQ3RESLVkExE3kr4O8g6CVwAfp0cBWQxsHWZ2KkCH8EQqLXfPWjw/uRZfClht6Ujgbd/Q0snKkzOxBtSn8bgv2dtjKiXYGGD/hbxZA1iTtM7saCLi7Lb/AEBxzEWs2J0NwAAnGP8EKlAilVKYvo2SuVcSYOSxltaE3zafJlHO8W3IqVksRF86mazhn3HMEkQrdhPzxRAWfjVPE2+KyOnt+B6ALf49KbYbNAnxp2moc5zdrAIlUkElR1LJffMygh3H2Gw0wXf0pzSONH8goyup37Y/PuN+Ya9PC+pbchj4++38981HKbY7zI4mIs4m9yDsXwvA5zltABjQynm+sKpAiVSAkXuQI7OGUN+eSYoRyfFrPqF1TLTZsVyST0hjGk5cSnL4JXhYHAxNe4GfXryF3PxCs6OJiDNJXgQYGBEd+G9K6ZcsZzl8BypQImdXXMCBWVcQVpRKmlGffZd9SLe2znO2nSuyePnT7I6PSO4wGYCEnC9Y//w/yDh8xORkIuI0tpcevjsQ1oejx4sJ9PGgW0xdk0P9jwqUyJkYBnvfvZWo3E0cM/xZ13cOfbp3MTuVe7BYaHbVVPb0m0khnvQqXsXhmRezc5eWfhGp9ezFZdMXLCrpBEDflmGmzz7+V86TRMQJHVg4g+i9X1JiWPmu9dNc0q+P2ZHcTuOLbuTY1Z+RZalDGyMZ77mDWPfHarNjiYiZUldBYTb41eeDvfUBGOAk0xecoAIlchpZ678hPPFJAN4LvJUGDWI0i3Y1CW/XF8Ys4oAtioYcJHrBVfy+YrHZsUTELDtKpy/Ije7H9oP5pbOPt1CBEnF6xRlb8fzin1gx+NpjEFGdLyNl585qWRZFSgU1bE3du5ayy6sF9Sw5tPr+elb8+IXZsUTEDH8WqFW2rgDEx9YnyM/TzESnUIES+bv8Yxx76yr8jOOsMVrSasws2rdqRrNmzaplWRT5H5/gcBpO+JHtfp0JsBTQ9Zd/suzL2WbHEpGadHQPHNwKFhuzM5sCkNDWec6+O0EFSuSvDIP9791GaPF+9hkhrGk9hWaR9YmKiqJ3795aw60GePoF0WzCd2wOuhBvSwkXrLmXpR8/b3YsEakpf+59Korqwa/7SgAY1DbCzETlUoES+YvDv7xFg7TvKTZsfBo+mcv6xJkdqVayevnS+u4vWB96OTaLQd+tj7LwrYfNjiUiNeHP6Qs2+Jf++9u5UTDhgT5mJiqXCpTIn0rSNxPw04MAfFxnFHfdfnuV73FKS0tj+fLlGoxeARabJx3ufI9lgZcBMHjfiyyd+6jJqUSkWhUdh92/ADAvq3T28QQn3PsEKlAipYoLOPrujXhTyAo60O+Wx/GohvlGUlJSSE5OdrvB6NVWDC0Wmo14hqWBVwLQd9fzLJs9VevnibirXcugpABHYDTz95aueacCJeLE0j+bTOjxZA4ageRdOpOG9apnscrY2Fi3HIxencUwqkED+t47mzUxtwHQZ8/LLH/nAZUoEXe0fSEAu+pdQIkDWobXoUmIv8mhyqcCJbVe3rr/ErHtPQD+23gqF/foWG3P5a6D0auqGJ52T5bFQtfRM/g99k4ALtw7ixXv3H9ezyUiTsbhgG3fAfBVQSfAOc++O0EFSmq3vMM4vrwbgE88h3LdyFtMDuSaqqoYnm1PVrebpvNb83sAuGDv/7Fy7oPn9Xwi4kTS1kJuOoZXAG/vbwBAQjvnPHwHKlBSy6V9cjd17MfY5oimzQ0z8Pf2MDtSrVaRPVndRz5GYuxdAMTvmkni+4/UUDoRqVZbvwEgPawPOcU2Gtb1pU1koMmhTk8FSmqtvA1fEZX6NXbDQmKHx2jf2LmWCagN/n7IrqJ7suJu+g8rG91e+t/JL/Dbx09We1YRqWZ/FqhFjm5A6eBxi8ViZqIzUoGS2in/GCX/nQDAJx5X0DA0VFMLmOB8Bp/3vPlpVjS4GYDuW59mzWczqjqeiNSUQ8lwaBuG1ZNZaaV7oAc78eE7UIGSWirjs/sIKjlEiiOCwnbXk7pL69yZ4XwGn1ssFuLHPM+v4SMB6LrxP6z/5vWqjigiNWFb6d6nY+FxpBV4ERLgRZdGdU0OdWYqUFLrFG77kfCd83AYFha3mEZCXHu3nFrAFZzv4HOL1Uqv22eyJGgoAG1W/5vNP31YhQlFpEb8efhumbV09vGL24Rjszrv4TsAjZiV2qUwl/z54/AG5tsGc+3V11DHx9PtphWoTSxWK7aut/DDkkMMYjnNfr6LHX6BNO95mdnRRKQicjNh72oAXj/QAoBL20eamahCtAdKapXMb/5DcFE6+4wQwq+cTh0fT7MjSRVo1qw5Xn3uY5VXPF6WEhosvIVF8/5P49pEXMG27wCDnPod2Hq8DnX9PImPrW92qrNSgZJaw5G5nbrr3wTg24YT6dO+icmJpKpERUXRt19f2t8znz88O+NHIXGbHmFL4iKzo4nI2fx5+G6FZ+nhu8HtIqtlKa2q5vwJRaqCYXDw0wl4UsLPRmeuuEYTZrojf39/Yu78go3WlgRajtNx3cNkpSWbHUtETqcwB1KWAvBGRmsALuvg/IfvQAVKaon8jV8RfvBXCg0P9sc9THiQb408b7UtsiunVbduXUJv/5KdlkaEcJTct/9B/tEMs2OJSHmSF4O9kPyAxqzJD6e+vxdxTeqZnapCVKDE/RXnU/B16bppn3pdwbBBfWrsqatzkd3aqiKlNDw8AssN80kjhAb2/aS/fjkl+dk1mFJEKmTbtwCs9okHLAxuF+ESh+9ABUpqgSOLnqVuYRoHjHpE/+MhvD1sNfbcVbXIrvxPRUtpbNMWHB76MUeNOjQp2kbKq1dhlBTWUEoROSt7MY6tpYsHv3Ww9PDdEBc5fAcqUOLmjKN7CPjtZQAWhN7BRe1rtshU1SK78j+VKaXtO3Vna/+3OW540yL3N9Y+fzVp+/fVQEoROatdP2MtyibXUodfC5sSEuBNXBPnP/vuBBUocWuZ8/+Fl1FEoqM1g0eMMzuOVIHKltL4ixJY2e0Fig0bXY8vY/f8qdWcUEQqZNMCABK943Fg5dL2EU4/eeZfqUCJ2yrZk0j4voXYDQsbOz5Ik9AAsyOJSQZcPpKvGk4CoNeRz9n57csmJxKp5ezFsPVrAD4s6AnAEBeYPPOvVKDEPRkGhxdMAeBra19GXHZJ2U06M652Gjrm33xTv3Tx4ZjEaexb9fkp2+h3Q6SG7FoG+Ucp8q7H0oLmhNXxpltMPZf6O6gCJW6pcMv3hB9dQ6HhSWHv+wnw/t+qRTozrnayWi0MuP1ZFvsmYLMY1F94B0e2rzxpG/1uiNSQzQsA+N2vN3ZsXNo+EpvV4lJ/B1WgxP047OR88yAAn9ouJcyz5KRvMzozrvby8fKgy9jZJNq64Esh1o9GcDz9fxNtlve74UrfiEVcgr0YtpQevnvnaEfgf2ffudK/z1pMWNxO3u8fEpKXTJbhx+GmwyhJ2YmH1VI26DgqKkpnxdVidQP9ifznx2z5vwRaG7s48PZQvCf8gs2/brm/Gye+EQP6vRGpCrt/gfwjFHnVZUl2CyICfejaqC7gWv8+aw+UuJfiAkp+/A8An/ldw7C+3Vzm24zUnEaR4RSN+IQ0oz6RxXvZO+sqKCkqd1tX+kYs4hI2/xeARJ8LsGPjik5RWF3o7LsTVKDErWT98jpBRekcMOrR7LJJNGzQQPMwSbk6tm7J9gFvk2P4EpOzlpTZY8AwTtlOc3mJVCF7CWz5CoC3j5QevhvauYGZic6ZCpS4j/xjeCx/DoD5ASPp0yba5EDi7Pr26ceP7Z6ixLASu/9L9ix4zOxIIu5tz3I4fpgCr7r8UtKKluF1aB0ZaHaqc+JWBeqRRx7BYrGcdGnVqlXZ7QUFBYwbN4769esTEBDAsGHDyMg4eZHR1NRUhgwZgp+fH2FhYdx3332UlJTU9EuRc3D4p5fwd+Sww9GAOi37YbG43i5hqXlDrx7F5+H3ANB43fNk/Pq+yYlE3Nifk2f+6tETOzaX3fsEblagANq2bcuBAwfKLsuXLy+77d577+Wrr77i008/5eeffyYtLY2rrrqq7Ha73c6QIUMoKipixYoVzJ07lzlz5jBt2jQzXoqcxUlnRxVk4bvmDQC+9B/Oxd1am5xOXIXFYuEft07lS98rAai76B6yt/9qcioRN/SXw3dzjnUC4B+dXPfQuNsVKA8PDyIiIsouISEhAGRlZfH222/z/PPP079/f7p27crs2bNZsWIFq1atAuCHH35g8+bNvP/++3Tq1IlLLrmExx9/nFdffZWiovIHmIp5/jpfyJElr+DnyGW7owGDb5ig8SpSISdK+JGDGfQa+xrLrD3wogTj4+spPrzb7Hgi7mXPr3D8EPmewaxwtCGuST0aBPuaneqcuV2B2rFjB1FRUcTGxjJy5EhSU1MBWLNmDcXFxQwcOLBs21atWtGoUSNWriydTG/lypW0b9+e8PDwsm0SEhLIzs5m06ZNp33OwsJCsrOzT7pI9TtxdlTThuH4/DYLgKXho2jboK7JycRV/LWEhwT6EX7zu2w1GhPkOMbhN6+EwhyzI4q4j01fALDU0sPlD9+BmxWouLg45syZw8KFC3n99dfZtWsXF154ITk5OaSnp+Pl5UVwcPBJ9wkPDyc9PR2A9PT0k8rTidtP3HY606dPJygoqOwSHa3ByzXhxNlRPtvm4+fIYacjkrjL/ml2LHEhf5+ioGV0JJmXv0umEUxEQQr73roOHHaTU4q4gZIiHBtLl096P7crXjYrl7ZzrbXv/s6tCtQll1zC8OHD6dChAwkJCXz77bccO3aMefPmVevzTpkyhaysrLLL3r17q/X55C8Kc/Fc/RoAi0NvpGPj+iYHEldS3hQFfbp14peuL1NgeNLw4C/sn3efiQlF3ETyj1gLszhqCWKloy39WoUS5Odpdqrz4lYF6u+Cg4Np0aIFycnJREREUFRUxLFjx07aJiMjg4iICAAiIiJOOSvvxM8ntimPt7c3gYGBJ12kZhxbNosAexa7HOF0vew2s+OIm7jq8n8wr+G/AWiw9W0O/vyGyYlEXNyGTwH4xrgAB1aGdnLtw3fg5gUqNzeXnTt3EhkZSdeuXfH09GTx4sVlt2/bto3U1FTi4+MBiI+PZ8OGDWRmZpZts2jRIgIDA2nTpk2N55ezKDqOR+IrAPxQ/0a6Ngk1OZC4C4vFwjWj7+Ej/5EABC+ZQt72nwGtjSdSaYU5sO07AD4u7EUdHw/6tQozOdT5c6sCNXnyZH7++Wd2797NihUruPLKK7HZbFx33XUEBQUxZswYJk6cyJIlS1izZg0333wz8fHx9OzZE4BBgwbRpk0bbrzxRtatW8f333/PQw89xLhx4/D29jb51cnfZS1/g4CSY6Q6QumivU9SxXw8bQy4/Tl+tPbCkxIcH9+I/chul1otXsQpbPkaSvLJ9GrERqMJl7aLxMfTZnaq8+ZWBWrfvn1cd911tGzZkmuuuYb69euzatUqQkNL90y88MILXHbZZQwbNow+ffoQERHB559/XnZ/m83G119/jc1mIz4+nhtuuIGbbrqJxx7T7MROp6QIy8rSvU/f1b2e7k3Dz3IHkcoLC/Ql/KZ32Gg0oY4ji8NvDaNpw3CtjSdSGRtKxyF/UtATsHBVF9c/fAdgMYxyFn+S85KdnU1QUBBZWVkaD1VNclfNJWDh3aQbdUm5fgW9WmreJ6k+369cQ+eFVxFmOcaBiP5E3jYfrG71/VOkeuRkwPOtwHBwUeHzWOrFsmRyX6ddKaIyn9/6F0Bcj2FQsOxFAL7zH0p8C9c+FVacX0J8V75r9xyFhieR6T+R+d+pZkcScQ2bvgDDwQ7PVuwxIri6a0OnLU+VpQIlLqdo2w+EHE8h1/AhvN8dbvOXUZzbDcOGMTd0EgBh62aS/dvHJicScQF/Hr57/3gcFgtc1aWhyYGqjgqUuJwji54D4CuPQQzq0sLkNFJb2KwWrv3nZD7yKl0/0/ubuyne+0e52+pMPRHg8E7YvwYHNr629+TC5qFEufDSLX+nAiUuxbH/DyIOJ1JiWLHEj8XDpl9hqTmBPp70GPMivxid8aaQ4+9eA7mZp2ynM/Wktin3S8Ofcz8lWjpwmCCGd3WfvU+gAiUuJuP70r1P31t6cdmFPUxOI7VR0/AgjGFvstMRSVBxJgffvgZKCk/a5u9LxIi4u1O+NBgGrP/z7LvCeAJ9PLi4jXudLa0CJa7j2F7CUr8BILPdbQR4e5gcSGqrPh2asypuJtmGH6FH/+DgvLtKPzD+VN4SMSLu7JQvDfvXwJGdFFm8WeToytDODdxi7qe/UoESl5G56AVsOPjV0Y5LLk4wO47UctdfOoB3G0zFYVgI3f4J2cteNzuSiGlO+dLwx3sAfGvvQR6+DO8abWK66qECJa4h/xiBmz8EYFPMKCKCfEwOJLWdxWLh5lG38Y7vaAD8ljxEUfLP5oYScQZFx2Fj6STVn5T0oVVEHdo1cL85EVWgxCUc/fUdfIx8tjqi6XPJCLPjiADg7+3BoH8+wXdcgAd2ij66EePoHrNjiZhry1dQmE26NZxVjtYM7xbtltPNqECJ83M4MH57C4Bf6w+jVWSQyYFE/qdRiD+BI2ax0RFDgD2Lo+9cU/oNXKS2SnofgA8LL8RmtTG0k3uOBVSBEqdXuO0H6hXuJ8vwI7b/aLPjiJzigtaNSLrgVQ4ZgdTL2crhD289aVC5SK1xdDfsWoYDC/PtF5LQLoL6Ad5mp6oWKlDi9A7/NBOAhZ4D6NM2xtwwIqcxctAFvBf9GMWGjfq7vyZn8bNmRxKpeUkfAbDKaMd+QhkZ18jkQNVHBUqcmnE4hYiDywFwdB2Dzep+x9HFPVgsFm6/6UZm+d0GgP/yJyja9v1pt9ds5eJ2HA5IKj3Z5+PiPsSG+BMfW9/kUNVHBUqcWsZPr2HFYJmjI4P7XGB2HJEz8vPy4IoxU/mMAVgxKPnkFoxDyeVuq9nKxe3sXgZZqeRa/Pne0Z3r4xq55eDxE1SgxHkVHSdwS+nu4B0x15OfdUjf2MXpNQrxJ2zEy6xxNMfPkUvWnGugMOeU7TRbubidP0oHjy8o7onh4cPVbrZ0y9+pQInTyvn9Y/wcuaQ6Qom7+Bp9YxeX0ad1QzZeMJN0oy7BuTs5+sEtpYc3/kKzlYtbyT9WOn0B8Kn9Ii7rEEmwn5e5maqZCpQ4J8Og4NfSmZ1/CvwH7aLr6Ru7OK3yxjPdNCiOdxv9h0LDg7qpP5C7aLqJCUWq2cb5UFLAdqMh64ymjIxrbHaiaqcCJU6pZM8qQvO2U2B4EnrhGEDf2MV5lbd31GKxMO6Ga3nF704AAlY+Q/Hmr82KKFJ9DAPWzAFgXslFtIoIpEujYFMj1QQVKHFKmYtfAWCh9UIGdm1lchqRMzvd3lF/bw+uHvMAHzIYAPtnt8LB7WZEFKk++9dC+nqK8GS+/UJG9mzs1oPHT1CBEudz/Aihe38AILvdTXh7uNcK3uJ+zrR3NCbEn6gRz5PoaIWP4zjZc4ZDQZYJKUWqye9vA/C1PY5Cr7puO/P436lAidM5vPI9PClmgyOGdu06mx1H5Lz1bd2Ajb1eZr9Rn8C83WR9MPqUQeUiLun4kdLxT8D7JQO5olMD6vh4mhyqZqhAiXMxDBy/zwXgJ9uFHD+4z+RAIlXj5kE9mBP9HwoMT4L2/kTeD4+ZHUnk/K37CEoK2OJoxFqjOTf2dP/B4yeoQIlTKdn7G6H5O8k3vPBsmaAz7sRtWK0W7rnxGl7wHQ+A/6oXKN743zPeR7OVi1MzDPj9HQDetw+kZ2x92kQFmhyq5qhAiVNJX/IGAD9Ze/LPq4fojDtxKwHeHlwzZjJzjcsAcHx+O2RsPu32mvtMnNquZXA4mTx8WGC/gFsuaGJ2ohqlAiXOozCXkN2lp3kfbXkdXh769RT3cWJvkm9xNg2HP8Nye1u8Hfnkzh1eOo6kHJr7TJzan4PHvyi5gHr16jGgdbjJgWqWPqHEaWT9Pg8fI58URwTx/S83O45Ilfrr3qQB7RqwsdeL7HWEEnB8HzkfjAJ7ySn30dxn4rRy0jG2fgPA+/aLGd2rSa1b7F0FSpzG8cTZAKwIHELTsDompxGpWn/fm3RbQnfebvgExw1v6uxfxvHvppmcUKQS1r6HxVHC744W7PVswvBu7r3uXXlUoMQpONI3E5m9nmLDRlD8jWbHEalyf9+bZLVamHTTVczwvRsAv99fpWTdPDMjilSMvaRs5vH3SwYyvFs0gbVk6oK/UoESp5C+9E0AltGFAd3bm5xGpGbU8fFk5C0TeMsYCoCxYDwcWGduKJGz2fYNZO/jiBHAd0YPRvWKMTuRKVSgxHwlhQTu+AyA/bHD8fPyMDmQSM1pFhZA4+HTWWrviKdRSN67IyD3oNmxRE5v5atA6dQFvVs2pEmIv8mBzKECJabL2/AVAfZsDhj16NzvarPjiNS4i9tFsbnXC6Q4IvDPP0Du+yPBXmx2LJFT7VsDexMpNmy8V3Ixt/SuXVMX/JUKlJjuyIp3AfjZdwDtouuZnEbEHHckdGF29JPkGL4EpCeS/+V9ZkcSOdWq0r1PXzp64VOnPjG+hSYHMo8KlJgr7xCRB5cD4Nn5ulqxgrdIeaxWC/+68R887TcRh2HBd91sSla/Y3Yskf/J2oexaQEAb5dcQveAY+zatcvcTCZSgRJTHVz1ER7Y2eBowkUX9DY7joip6vh4csstdzKTEaVXfHcfpK4yN5TICavfwGLYWWFvw9E6Lbiic8MzTvLq7ksRqUCJqUr++AiADfUHExLgbXIaEfPFhgbQ7tpH+dbeAw+jhIL3r4MsLaotJivMxfi9dK6+t+2XMLZfcy7qc+EZJ3l196WIVKCkxp34VpK+aTmRuZsoMazU73m92bFEnEb/1hHsu+g5tjga4VN0pPTMvKLjZseS2izpQyyF2aQ4IkjyiWN41+iz3sXdlyJSgZIad+JbyYFlcwFYSUcu6tLW5FQizuXWAe35IPYpDht18D+8kfzP7gDDMDuW1EYOB0bi6wDMtg9m9AWx+HrZzno3d1+KSAVKalxsbCzNmjal0eGfAdgbfTk+nmf/yyhSm1gsFqZcl8D0Ov+m2LDhu/2/FP/8nNmxpDbavhDLkRSOGf58Z+vHTfExZidyCipQUuOioqLo3sBK/ZIMcgxfml44wuxIIk7J39uDe24ZzdPWMQDYlv6nbAFXkRphGPDrSwB8ZO/PlXEtCPKrfcu2lEcFSkyRvmwOAMs84unevIHbn60hcq6i6/kx4IYHeM9+MVYMij/9J2RuMTuW1BZ7foW9qyg0PHnXcQljervneKZzoQIlNa+4gJDUbwHIaTEMq9Xi9mdriJyP+Kb1YfB0Vtrb4GU/TtZbV5CessnsWFIbLHsWgHn2i2jRIJSIIB+TAzkPFSipcTkbvsbfkUuaUY9ufS8H3P9sDZHzdUOvZvzY/hn2OMIIKsrA+sVtUFJkdixxZ/vXQMoSSgwrb9gv585+zcxO5FRUoKTGHV35HgAr/PrTLDwIcP+zNUQq4kyHsi0WC/dfdQEzgqeSY/gSlrORwi8n6sw8qT7LSk9a+K/jAuK6dCaujb7g/pUKlNSs/GNlS7fYOl1rchgR53K2Q9leHlYevW0Ej3pNwmFY8F7/HvZVs2o4pdQKGZth2zc4DAuz7Fdwd//mZidyOipQUqMOrfkcT0rY5mjIhRf0MTuOiFOpyKHs+gHejLnldp41RgJg+f7fkPxjTUUUN1PeXs+0tDQyv5gCwHeO7nTpEkej+n5mRXRaKlBSo/LWfgbAhuD+WrpF5G8qeii7dWQgHa95iHklF2HFQdHHoyFza82EFLdS3l7PtI3LCUkvnafv/xxDGd9fY5/KowIlNef4ERocKV0Y1a/z1SaHEXFtCe0iOdzvKVY7WuJVkkPBu1dD3iGzY4mLKW+vZ+sj32PF4Cd7J9p160N0Pe19Ko8KlNSYzNWf4YGdzY7G9IqLNzuOiMu7o39rFrR4mlRHKD65e8l//zooKTQ7lriQU/Z6HtuL7/b/AvB/xlDG6cy701KBkhqTn/QpAJvrDSDYz8vkNCKuz2KxMG1EH54NeZxswxffA6sp+mK8zsyTc/fzU1gdxaywt6FFt4tpEOxrdiKnpQIlNcLIzaThsd8BCOh6jclpRNyHj6eNqTdfxcNe/6LEsOK1aR4lP88wO5a4okM7MJI+AuBF41ru7NfU5EDOTQVKakT6qnnYcLDBiOWC7t3MjiPiVkLreHP7mH/ypHEzAB5Ln8DY+LnJqcTVOJY8icWws8jehQ49LyYySHufzkQFSmpE8fr5AGytfzF1fLQQpUhVaxURSO/r72d2yWAA7J/fDntXm5xKXMaB9Vg3lZbuWbbrdOZdBahASbUzsg/QMPsPAOp21+E7kerSv1U4RsITLLJ3wcNRRNF718ARrS8pZ2df/DgA/7X3IqG/xqlWhArUabz66qvExMTg4+NDXFwcq1frm9y5Slv5MVYM/jBa0KtrJ7PjiLi1m3s3ZVWnp9ngiMGr6CgFc4bB8SNmxxJnlroKW/IPlBhWPvQdyU3xMWYncgkqUOX45JNPmDhxIg8//DBr166lY8eOJCQkkJmZaXY0l+TYULpbeGfYxfh5eZicRsS9WSwWRsU14LnAKew36uOTnULB+9dqegMpn2FQ/MMjAMyzX8R1l/TDx9NmbiYXoQJVjueff55bb72Vm2++mTZt2jBr1iz8/Px45513yt2+sLCQ7Ozsky5SynF0L9G563EYFjxaDDI7jkitkLp7F/H1CnjQ8wGyDV980hJJ+7/hpO3fb3Y0cTY7f8Jz30oKDU9+CLmJf3TUgu4VpQL1N0VFRaxZs4aBAweWXWe1Whk4cCArV64s9z7Tp08nKCio7BIdHV1TcZ3e/pXzAFhjtCDQS99qRGpCbGwsbVs0495rBvGQ530UGzaiDv5M8Q/TzI4mzsRhp3DhQwC8bx/IbZf1wWq1mBzKdahA/c2hQ4ew2+2Eh4efdH14eDjp6enl3mfKlClkZWWVXfbu3VsTUV2CY/OXAGwJiKdVc80pIlITTswu3bFFDHfccisPG7cC0HjPZzgS3wTKX0RW3N9J/9//eA/vQ5vJMvz4I2YMvZqFmB3PpWhAShXw9vbG21sL4/6dkZtJw9z1ADTuN+qsC6SKSNVrExXI4Bsm88K7h7nX41Ms390HgRGkHK5LcnIygP5u1iInFg+2leQRsvJRvICX7Vdz9+U9zY7mcrQH6m9CQkKw2WxkZGScdH1GRgYREREmpXJNaYmfY8PBRiOWHh07mh1HpNbq0yKU6KEP82FJPywYlHw6hpZ+WacsIivu78Tiwa0PfYdX4RF2OiKx9biVFuF1zI7mclSg/sbLy4uuXbuyePHisuscDgeLFy8mPl4L4FZG4YbSw3c76/fFV+OfREx1dbdojvabzo/2zng4CglaeCe9W4Zp71MtExUVRe/WkdTZ9B4Ar3jezF2DWpucyjWpQJVj4sSJvPnmm8ydO5ctW7YwduxY8vLyuPnmm82O5joKsml4LBGAgM5XmhxGxH1VZizTnf1b8UvHZ0hyNMWr6BiFc66ALJ2ZV9sc/2YKNqOEpfaO9Lv8Bq0OcY5UoMoxYsQInn32WaZNm0anTp1ISkpi4cKFpwwsl9NLX/MVXpSw04iie3ftuROpLifGtKSknH3GcYvFwtQruzEn5ml2OiLxzkujcM5QTbRZm6QsxS/le0oMK1+G36lpC86DCtRpjB8/nj179lBYWEhiYiJxcXFmR3IpOUlfALAlqA+B+nYjUm1OjGmp6FgmD5uV6Tf0Z0bYdNKNungf3U7hu1dDUV41JxXT2UvI/e99AHzguJjbrx6CxaJpC86VCpRUveICGhxcDoBXuytMDiPi3k5MWVCZsUy+XjaevuUyptV5nGOGP97payj68AawF1djUjFb8YpXCcjazjHDn4Nd76VlhAaOnw8VKKlyh9Z/jx/5pBn16BLf3+w4IlKOID9PHr9tOP/yfoh8wwuv3T9RPP92cDjMjiZV5KTxcUf3YCx5EoCZHjdx++BuJqdzfSpQUqXS0tLYs3QuAOv9exNSx8fkRCJyOuGBPky5bRT/sk2m2LDhuXk+JV9PBMMwO5pUgbLxcTt3kj3/LrwcBaxytKb7lfdo4HgVUIGSKpWSvIOmOaVn39H6MnPDiMhZNQnx5/Yxd/BvxpWuWbl2NvbvH1KJcgMnxse1tG8hcN/PFBoeLGo6hYR2kWZHcwsqUFKlGlgPEkwuR40AOlxwqdlxRKQC2jUIYtioCUx1lC75Yls1E/vSp01OJecrKiqK3l3a4PfrdADesQ7jzmGDTU7lPlSgpEoV7SidgHStT0+i6mmAooir6Blbn4tvuI8n7DcCYPt5Oo5fXzE5lZyvo19Owb/4CNsdDWh0xb+pH6Blx6qKCpRUHcOg/r4fAShsrr1PIq6mb8swuo54iOdLhgNgXfQQxm9vm5xKzlVJyi/U3foxAAsa3selHRubnMi9qEBJlclLTSLEnkm+4UWrC/5hdhwROQeD20UQe9UjzCq5HADLNxMxfp9jaiY5B4U55M27HYBPuZjR112nOZ+qWKUL1KhRo1i2bFl1ZBEXt2/1AgD+8OhIbGSouWFE5JwN7dKQoMuf4J2S0vEylq/vwVgzt1LLxoi5Dn02kaCC/ewzQvC59HHCdEZ0lat0gcrKymLgwIE0b96cJ598kv37tY6SlPLZ+QMAxxpq7icRV3ddXGM8L32K2SUJpVd8dQ+5v7xe4WVjxDx5SV8QsmMeDsPC/MbTuKx7K7MjuaVKF6gFCxawf/9+xo4dyyeffEJMTAyXXHIJn332GcXFmsW2trJnZxBdsAWA8O6afVzEHdzYqwkelz7NnJJBWDBotuUV4n13VXjZGKl5RnYaxpd3A/CB51Xccv31OnRXTc5pDFRoaCgTJ05k3bp1JCYm0qxZM2688UaioqK499572bFjR1XnFCeXmrgAKwabaULH1q3NjiMiVeTGXk2wXvoM75ZcjBWDFlteIvLAIrNjSXkcDtLfHUOAI5uNjiZ0uOEpTZhZjc5rEPmBAwdYtGgRixYtwmazcemll7JhwwbatGnDCy+8UFUZxQUUbv4WgNT6ffCw6dwEEXdyU68mcOkM5pZcjAUDy1d341j5utmx5G8yf3qFyEMryDe82NjzWTrGhJkdya1V+pOuuLiY+fPnc9lll9G4cWM+/fRTJkyYQFpaGnPnzuXHH39k3rx5PPbYY9WRV5xRSSGNjq4CwK+9Zh8XcUc39WqCdciz/F/JEACs3z+AY9nzFbqvBp9Xv4K9SQQt/w8AH9S5hWsGDzA5kfvzqOwdIiMjcTgcXHfddaxevZpOnTqdsk2/fv0IDg6ugnjiCtLX/0gEBWQYwXSKu8jsOCJyDtLS0khJSSE2NpaoqKhyt7kxPobPPJ/m5QXe3O3xOdafHsVefBxb/wfhDONsTqzJBpz2seXcGcePkPvutYRQxFJHJyI6XorVqnFP1a3SBeqFF15g+PDh+Pic/pTI4OBgdu3adV7BxHUcXvslEcAm/57099UstyKuqKIl5+pu0Xzr/SQz5nlzn+0jbL/MoKQwB4/B08Fa/kGNE4PONfj83J224Drs7H3rehoVH2CPEcaejvdxcdvm5gWtRSpdoG688cbqyCEuKm3/furvL12+xd5cayyJuKrKlJxL20fi6/kYj3/gzVTbHDxWz6I49yCeV80iLfPQKR/0UVFR2vN0nk5XcHd/9hAxR1aSb3ixoddMRiUkmBWx1ql0gRL5q5S1S+htHKTQ8KRV/OVmxxGRc1TZktOvVRjeo6fywLsBPM7reG6eT2HeYfY0GUfy7rSyxzxXFTmk6K7Ke+3lFdwDifOJ2fwaAF82eoBrBg2q+bC1mAqUnBffIxsA+MPWnp4RISanEZGa1KtpCIG3/YuJbwfzlH0G/nuW0j47E2v7B4k+z8N1tXncVHmv/e8FN2f/Fup8Nx6Ab3yv4MpR92q+pxqm883lvASnLwcgq9FAk5OIiBnaNQjivnHjmOz3Hw4bdQg4upmOSQ8S5Z1/Xo8bGxtLs2bNauW4qbO99sKsDPJmX0UAx/nD0oYet7+Gl4c+zmuaxTAMw+wQ7iY7O5ugoCCysrIIDAw0O061Kc45iPW55tgwWDf8Vzq2bWd2JBGpQpU5jHY4t5CH3l7Ag0f+TUPLIYq8gvC6/iOIuaCG0tYO9oJc9r4wgJjCrew3Qske+R2tW2jQeFWpzOe3Kqucs92rFmDDYCsxtGvd1uw4IlLFThxKOtPadyfmeCrMPsxzY4fxbPRrJDma4lWUhX3uPzD++KAGE7s3w17MjleHE1O4laNGAAf+8YHKk4lUoOScFW4tXTx4X/0LsGnOERG3U5HDaH8tWX5eHjx3yyC+7foWX9vjsBklWP57JyU/PAIOR80Fd0eGwcb/u4VWOSsoMDzZ1PcNunWNMztVraYCJefGYSf6yEoAfNpo+gIRdxQVFUXv3r3PePju7yXLZrXw7yu6kD3kDV61DwXAY8ULFH54PRRk10Rst/THe/fTPvNL7IaFlV2fpXe/IWZHqvVUoOScHNyeSJCRQ47hS7seWjJApLY6Xcm6vmcMnUc/x4OMp9DwwDv5O/Jfuwgyt5qU1HWt/WAqnVP+D4Cfmz9Av3+MNjeQACpQco4OrPkagI0+nQmu429yGhFxRr2ahvDP8f9mUsBTpBn18M1Oofj/+mJs/MLsaK7BMPhtzv102fEyAEuibqPfyPtNDiUnqEDJOfFLXQrA8eh+5gYREafWJMSfp+++mZnN3uFXe1s87flYPhtN0XcPgr3Y7HhOy3A4WPX2RLrvngXAz43upO+tz2iuJyeiAiWVVpRzhCYFmwGI6qbj8CJyZv7eHjxxQ192JrzLG/bSFQu8EmdyfNZAOLwT+N/ZfGlpaWZGdQqGw8Gq/xtHz33vALA89l4uumX6SeVJ75f5VKCk0nb99g02i8FOGtKyRRuz44iIC7BYLNzUuxndbn2FBzz+xTHDH7+DSRS91hvHHx+QsnPnWadMqA0KCwtY9coo4jM+BGBVywfofdMjp2xXkSkmpHppKRepsBOT6vmsLx3/tLdeL5pq+gIRqYQujerS5N77eHpeF67Y9Sg92QL/vZM2jQZja3IzjWvhzOMnHDqYQdqb1xBflITDsLC2/UP0vHpyudtWZvFnqR7aAyUVlpKSQvKOHTQ+lgiAVystXCkilVfX34snRw9m7+Uf86LjWkoMK/VSF9Ip8S4is/84r8euyKGt6jr8dT6Pu33TH+S91pcORUkcx5vNF71Ot9OUJ6jYFBNSvVSgpMJiY2NpVNdGKEfJN7xoHZdgdiQRcVEWi4Xh3WO48p7n+Xe9Z9nlCMe3IBPLx9eT98GNkHvwnB63Ioe2quvw17k+7qofPyd83hAaG2lkWEI5MuJr2vW/rkqzSdVTgZIKi4qKol7BLgA2eXekbpD7rvMnIjWjcX1/nhx/Mz9c9DlvOi6nxLDiv+NLCl7sSsnaD6GSy7VWZPb06lqouLKPm3c8n8WvTaDbL2MIsuSxw6sNvuN+pmHrHlWaS6qHFhOuBu68mPDWp/vSKv8PlsROpt9NU82OIyJuZM/hPN785HOuT59BG+seALJCuhA09Flo2NXkdFVr4/rfsS24g9aOHQCsD7mUtre9g83L1+RktZsWE5ZqUZyfTdPj6wEI73KZyWlExN00ru/P42NvYPsV/+Vly0iOG94EHVoLb/Un68NbINv1T9kvKrbzw9wniZ1/Ka0dO8jGn20XvkSH8R+pPLkY7YGqBu66B2rbz/NoueRW9hJOg6lbsdrUv0WkehzNK2LOwhU0XvcsV1l/AaDI4kNR9zsI6HsP+NUzOWHFnDh7uUmTJuxLTcbzx4foYi/9IrrdrwuRo+dQJ6yxySnlBO2BkmqRt3khALuD41WeRKRa1fX34t5hfely9yc8Hf0avzta4GUUELD6RQqfbcOxL6ec80DzmpSSksIf69axYfZddFt4BV3s6ynEky0dHqDF5MUqTy5Mn4JSYZEHfwXAs+XFJicRkdoiJsSf+8eMxHLLQp4NfohNjsZ4O/IJXvsaRc+15dBn95bNZl4eM2fs3p2WzpG18xmd+TiDSxZjsxhsrjeAojsSaX3VFLDqI9iV6RBeNXDHQ3iH926j/ts9KDZsZN+zg/r16psdSURqod92HebXbz+gb8ZsOln/N11Aev04gi68Hd/2/wCbZ9n1y5cvJzk5mWbNmtG7d+9qz2cYBuvWr+Pg4pfpmfUtdSz5AOzxboHPkKcJ79C/2jPIuavM57dmIpcKSf39O+oD2zxb0k7lSURMkJaWRuH+FK658mqOGaN49buPaZP6IRdZ1hFxOBEWJJL9VT2ym/2DsB5X49WkV43N2H3wWA4bln+F1/r3iS9cgc1igAXSPBtREHc3sf3HaI+Tm1GBkorZ9TMAR8N7mRxERGqrExNVAvTu3Zs2/7ydgzmj+XjFahxr5jKocBFh9iMEbpsD2+aQYw2iIKo/7br8g+CgVlWe58Chw2z9ZQG27V/T6fgq+luOl95ggR0B3fHvew9RXYaoOLkpFSg5K8NhJyb7dwAC22j8k4iYo7y9SaF1vLk+4UKMQb1ZuzuThUvnUz/1ey5w/EawI4s6+76AfV8AkOkRxdF6nbA16k5gdHuCo5riVbcheHid8XntdgdHjhwmfc9WjuxIxHIgidCczTR17KafxV66kQWOWOqSFjWQ6IvvonlMx+p5E8RpaAxUNXC3MVB7Nq2i8acJ5Bo+eEzZg4+Pj9mRREROy+Ew2LTvMNtWf4938re0Ov4Hza37y98WC0csdcn2CKHE4oHDYsOOBw6LFe+SHAJKjlLPOIaPpbjc+2daw0hvMIjwuOGEt+mjvU0uTmOgpEplJC2kMbDdtyNdVJ5ExMlZrRbaNwqhfaORwEhyCor5bfc+Dm5ZAftWU+/YBsJK0ojiED6WYkKMI4QUHzn9A1pK/8jGn33ezSgM64Rfk+40bNuLsLBYwiyWGnld4lxUoOSsfPeWTmKX3/BCk5OIiFReHR9PurdqAq2aACOB0rPljuYVsSdjPznpKRRlpWNxlIBhx+IoxuIowTsgmIB6kQSHNmDLzr3s3LO/xs7mE+enAiVnVFSQT7P89WCBsI4JZscREakSFouFegHe1AuIhaZnP0OvqUcgFk/faj+bT1yHCpScUfLan2hjKeIQwTRt083sOCIipoiKiiIqKsrsGOJENNpNzih78yIAUgK7a/kWEXFL5zpbeVXNcm7mbOly7rQHSs6obvqK0v+IucjcICLiNk4ssBsbG3tee3Wq6nH+Or9UZR7nXO9XXY8jNUsFSk4r6+ghmhVvBws06n6J2XFExE04W/E419nKq2qW85qaLV2qlgqUnNbO1QvpYjFItTagUXQzs+OIiJtwtuJxruObqmpclMZXuSYVKDmtoh2LAThQL45GJmcREfeh4iHuwK1GBcfExGCxWE66PPXUUydts379ei688EJ8fHyIjo7mmWeeOeVxPv30U1q1aoWPjw/t27fn22+/ramX4FSiDicC4N1ygMlJREREnItbFSiAxx57jAMHDpRd7rrrrrLbsrOzGTRoEI0bN2bNmjXMmDGDRx55hDfeeKNsmxUrVnDdddcxZswY/vjjD4YOHcrQoUPZuHGjGS/HNGl7kmlk7MduWGjafbDZcURERJyK2x3Cq1OnDhEREeXe9sEHH1BUVMQ777yDl5cXbdu2JSkpieeff57bbrsNgJdeeonBgwdz3333AfD444+zaNEiZs6cyaxZs2rsdZgtdc13RAE7vVrQIjjE7DgiIiJOxe32QD311FPUr1+fzp07M2PGDEpKSspuW7lyJX369MHL638rbyckJLBt2zaOHj1ats3AgQNPesyEhARWrlx52ucsLCwkOzv7pIurs+wuXb7laHi8yUlEREScj1vtgbr77rvp0qUL9erVY8WKFUyZMoUDBw7w/PPPA5Cenk6TJk1Ouk94eHjZbXXr1iU9Pb3sur9uk56eftrnnT59Oo8++mgVvxrzGIZBdPZaAOq07GdyGhER91FVc1eJ+Zx+D9QDDzxwysDwv1+2bt0KwMSJE+nbty8dOnTgjjvu4LnnnuOVV16hsLCwWjNOmTKFrKysssvevXur9fmq256dm4niIMWGjdgu/c2OIyLiNk7MXZWSkmJ2FDlPTr8HatKkSYwePfqM25xuDpC4uDhKSkrYvXs3LVu2JCIigoyMjJO2OfHziXFTp9vmdOOqALy9vfH29j7bS3EZaUmLiAFSvFvS0j/Q7DgiIm5Dk2a6D6cvUKGhoYSGhp7TfZOSkrBarYSFhQEQHx/Pgw8+SHFxMZ6engAsWrSIli1bUrdu3bJtFi9ezIQJE8oeZ9GiRcTH156xQNY9vwKQEx5nchIREfeiuavch9MfwquolStX8uKLL7Ju3TpSUlL44IMPuPfee7nhhhvKytH111+Pl5cXY8aMYdOmTXzyySe89NJLTJw4sexx7rnnHhYuXMhzzz3H1q1beeSRR/j9998ZP368WS+tRjnsDhrnlI5/Cmyjw3ciIiLlcZsC5e3tzccff8xFF11E27ZteeKJJ7j33ntPmuMpKCiIH374gV27dtG1a1cmTZrEtGnTyqYwAOjVqxcffvghb7zxBh07duSzzz5jwYIFtGvXzoyXVeNSkjcRySGKDRu+4a21QriI1EppaWn690/OyOkP4VVUly5dWLVq1Vm369ChA7/88ssZtxk+fDjDhw+vqmguJS3pR5oBu3xakZmWoRXCRaRWqqqFisV9uU2BkqrhsffP8U8RPTXYUURqLf37J2ejAiVl7HYHsbml45/qtumvwY4iUmvp3z85G7cZAyXnb8e2DURwmGJsNO6kCTRFRERORwVKgNIBkxt/+hiAXd6tsXn7m5xIRETEealACVA6YDL48B8A5EX1MjmNiIiIc9MYKAGgUaMYvBzbwFI6/klEREROT3ugBIDsrINEWI5QhAeNOvQxO46IiIhTU4ESADLXLwJgj09rrBr/JCIickYqUAKA974VABxvoPFPIiIiZ6MCJRQV22l2PAmAkHYa/yQiInI2KlDCtm0bCLccpRgPotpq/JOIiMjZqEAJmRuXAJDq0wKLl5/JaURERJyfCpTgsa90EebjET1MTiIiIuIaVKBqObvDoFHOOgACW+rwnYiISEWoQNVy25N30sRyAAcWGnbQAHIREZGKUIGq5fZv+Kn0T88YbP51TU4jIiLiGrSUSy2VlpZGSkoK9pTlAGSHdjM5kYiIiOvQHqhaKiUlhe07kmmYux4Av+a9TU4kIiLiOlSgaqnY2FgCQ8NpxW4AGnQcYG4gERERF6ICVUtFRUURzDFsFoNMWzhe9aLNjiQiIuIyVKBqsZJdvwJwuF5Xk5OIiIi4FhWoWsowDEKPrAXAq6nGP4mIiFSGClQtlXrwKG0d2wFo2FHzP4mIiFSGClQtlZy0HB9LMdmWQLwjWpkdR0RExKWoQNVSBcml8z9lBHcGi8XkNCIiIq5FBaqWCj60BgBrTC+Tk4iIiLgeFahaKO1oHm3tWwCI1Pp3IiIilaYCVQttXb+aYEse+fjg16iL2XFERERcjgpULZS7YxkAB+q0B5uWQxQREaksFahaKCCjdP4ne8MeJicRERFxTSpQtUx2QTFNizYDENqmj8lpREREXJMKVC2zcdsOGlsycWAhuHm82XFERERckgpULXNoc+n4p3TvJuATZHIaERER16QCVctY9/8GQF6Yzr4TERE5VypQtUix3UFUznoAAppdYHIaERER16UCVYts3XeQtuwCIFwDyEVERM6ZClQtsnvjKrwtxWRbg7CGNDU7joiIiMtSgapFinatBOBw3U5aQFhEROQ8qEDVEoZhUPfwHwDYGmkCTRERkfOhAlVL7DtynDaObQCEt73I5DQiIiKuTQWqlti8dRMRlqOUYMO7UVez44iIiLg0FahaImv7cgAy/FqAl5/JaURERFybClQt4X1gDQDFUd1NTiIiIuL6VKBqgeyCYmILNgJQt6Um0BQRETlfKlC1wLqUNFpbUgEIatHb5DQiIiKuTwWqFjiw6Vc8LA6OeoRCUEOz44iIiLg8FahawNibCEB2iBYQFhERqQoqUG6uxO4gPKt0AWGf2HiT04iIiLgHFSg3ty09m45sByC09YUmpxEREXEPKlBuLnnreupacinCE2tkB7PjiIiIuAUVKDeXu3MVAIfqtAIPL5PTiIiIuAcVKDfndzAJAHukBpCLiIhUFRUoN3Y0r4gmhVsAqNeil8lpRERE3IfLFKgnnniCXr164efnR3BwcLnbpKamMmTIEPz8/AgLC+O+++6jpKTkpG2WLl1Kly5d8Pb2plmzZsyZM+eUx3n11VeJiYnBx8eHuLg4Vq9eXQ2vqPqt351BG8seAPxj40xOIyIi4j5cpkAVFRUxfPhwxo4dW+7tdrudIUOGUFRUxIoVK5g7dy5z5sxh2rRpZdvs2rWLIUOG0K9fP5KSkpgwYQL//Oc/+f7778u2+eSTT5g4cSIPP/wwa9eupWPHjiQkJJCZmVntr7GqpW1NxMtiJ9cWBHVjzI4jIiLiNiyGYRhmh6iMOXPmMGHCBI4dO3bS9d999x2XXXYZaWlphIeHAzBr1izuv/9+Dh48iJeXF/fffz/ffPMNGzduLLvftddey7Fjx1i4cCEAcXFxdO/enZkzZwLgcDiIjo7mrrvu4oEHHqhQxuzsbIKCgsjKyiIwMLAKXvW5ee/FB7jx2OvsC+1Dw3FfmZZDRETEFVTm89tl9kCdzcqVK2nfvn1ZeQJISEggOzubTZs2lW0zcODAk+6XkJDAypUrgdK9XGvWrDlpG6vVysCBA8u2KU9hYSHZ2dknXczmcBjUO7oBAK/G3U1OIyIi4l7cpkClp6efVJ6Asp/T09PPuE12djb5+fkcOnQIu91e7jYnHqM806dPJygoqOwSHR1dFS/pvCQfzKWtsQOA+hpALiIiUqVMLVAPPPAAFovljJetW7eaGbFCpkyZQlZWVtll7969ZkdiU3IKMdYMAGzR3UxOIyIi4l48zHzySZMmMXr06DNuExsbW6HHioiIOOVsuYyMjLLbTvx54rq/bhMYGIivry82mw2bzVbuNiceozze3t54e3tXKGdNObq9dALNwz6Nqe8bbG4YERERN2NqgQoNDSU0NLRKHis+Pp4nnniCzMxMwsLCAFi0aBGBgYG0adOmbJtvv/32pPstWrSI+PjSRXa9vLzo2rUrixcvZujQoUDpIPLFixczfvz4KslZUzzT1wJQGN7Z5CQiIiLux2XGQKWmppKUlERqaip2u52kpCSSkpLIzc0FYNCgQbRp04Ybb7yRdevW8f333/PQQw8xbty4sr1Dd9xxBykpKfzrX/9i69atvPbaa8ybN49777237HkmTpzIm2++ydy5c9myZQtjx44lLy+Pm2++2ZTXfS6yC4pplL8ZgMBmPU1OIyIi4n5M3QNVGdOmTWPu3LllP3fuXLpnZcmSJfTt2xebzcbXX3/N2LFjiY+Px9/fn1GjRvHYY4+V3adJkyZ888033Hvvvbz00ks0bNiQt956i4SEhLJtRowYwcGDB5k2bRrp6el06tSJhQsXnjKw3JmtSz1KR8tOAAI0gaaIiEiVc7l5oFyB2fNAvfvVj9y0ZhjFFk88H0zTIsIiIiIVUCvngZL/KdidCMDRwNbg4UVaWhrLly8nLS3N5GQiIiLuwWUO4UnFGIZBncPrACio3w6AlJQUkpOTAYiKijItm4iIiLtQgXIzuw7l0caxA6yQ69sA+N9UEBWdEkJERETOTAXKzazblcEQyx4A6rcfBJTuddKeJxERkaqjMVBu5uCO3/Cy2MnzqEt4S62BJyIiUh1UoNyMJW0NALkhHcFiMTmNiIiIe1KBciOFJXbCcjYB4BOjvU8iIiLVRQXKjWw5kEM7UgAIjO1hchoRERH3pQLlRjbv2kdT6wEALA26mJxGRETEfalAuZGjyb8BkO0dCf4hJqcRERFxXypQbsQj4w8ACsI6mJxERETEvalAuYnsgmIaHN8GQEATDSAXERGpTipQbmLDvizaW0oHkPs17mZyGhEREfemAuUmtqTsobE1s/SHqE6mZhEREXF3WsrFTeTuKh1AnuUbTZBvXZPTiIiYy263U1xcbHYMcTKenp7YbLYqeSwVKDfhnbkOgJKITuYGERExkWEYpKenc+zYMbOjiJMKDg4mIiICy3mu1qEC5eLS0tL4fVMyTYp2gA3qxGoAuYjUXifKU1hYGH5+fuf9ISnuwzAMjh8/TmZm6XCXyMjI83o8FSgXl5KSwq9b93G3tXQAuVe0BpCLSO1kt9vLylP9+vXNjiNOyNfXF4DMzEzCwsLO63CeBpG7uNjYWGxeXjSwHMaBBSI1B5SI1E4nxjz5+fmZnESc2Ynfj/MdI6cC5eKioqKoV5QGQE5AE/CuY3IiERFz6bCdnElV/X6oQLk4h8PA9/B6AIzIzianERERqR1UoFzcrsN5tLQnA1AntofJaURE5Fz07duXCRMmmB0DgAULFtCsWTNsNhsTJkxgzpw5BAcHmx3L6ahAubh1qUfp+OcAclvDLianERERZ7R06VIsFkuFpne4/fbbufrqq9m7dy+PP/44I0aMYPv27WW3P/LII3Tq1Kn6wroInYXn4nbvSuYqSxYObFjD25kdR0REXFhubi6ZmZkkJCQQFRVVdv2Js9fkf7QHysUVpv4OQE5Qc/DSmSciIn9lGAbHi0pMuRiGUamsJSUljB8/nqCgIEJCQpg6depJj1FYWMjkyZNp0KAB/v7+xMXFsXTp0rLb9+zZw+WXX07dunXx9/enbdu2fPvtt+zevZt+/foBULduXSwWC6NHjz7l+ZcuXUqdOqUnIvXv3x+LxcLSpUtPOoQ3Z84cHn30UdatW4fFYsFisTBnzpxKvU53oT1QLqyoxEHQsU1gBWsDDSAXEfm7/GI7baZ9b8pzb34sAT+vin/Mzp07lzFjxrB69Wp+//13brvtNho1asStt94KwPjx49m8eTMff/wxUVFRfPHFFwwePJgNGzbQvHlzxo0bR1FREcuWLcPf35/NmzcTEBBAdHQ08+fPZ9iwYWzbto3AwMBy9yj16tWLbdu20bJlS+bPn0+vXr2oV68eu3fvLttmxIgRbNy4kYULF/Ljjz8CEBQUdH5vlItSgXJh2zNyaGeUDiAPaKIZyEVEXFl0dDQvvPACFouFli1bsmHDBl544QVuvfVWUlNTmT17NqmpqWWH1iZPnszChQuZPXs2Tz75JKmpqQwbNoz27dsDpfMEnlCvXj0AwsLCTjsg3MvLi7CwsLLtIyIiTtnG19eXgIAAPDw8yr29NlGBcmEb9x0jwboLAEuU9kCJiPydr6eNzY8lmPbcldGzZ8+T5iiKj4/nueeew263s2HDBux2Oy1atDjpPoWFhWWzrt99992MHTuWH374gYEDBzJs2DA6dNDkytVFBcqFpe7eTl1LLnaLB7bwtmbHERFxOhaLpVKH0ZxVbm4uNpuNNWvWnLL8SEBAAAD//Oc/SUhI4JtvvuGHH35g+vTpPPfcc9x1111mRHZ7GkTuwkr2/QFAbmBz8PA2OY2IiJyPxMTEk35etWoVzZs3x2az0blzZ+x2O5mZmTRr1uyky18PpUVHR3PHHXfw+eefM2nSJN58802g9PAclK4XeL68vLyq5HFcnQqUiyodQL4ZAFuDTuaGERGR85aamsrEiRPZtm0bH330Ea+88gr33HMPAC1atGDkyJHcdNNNfP755+zatYvVq1czffp0vvnmGwAmTJjA999/z65du1i7di1LliyhdevWADRu3BiLxcLXX3/NwYMHyc3NPeecMTEx7Nq1i6SkJA4dOkRhYeH5v3gXpALlorZn5NCa0vFP/o01gaaIiKu76aabyM/Pp0ePHowbN4577rmH2267rez22bNnc9NNNzFp0iRatmzJ0KFD+e2332jUqBFQundp3LhxtG7dmsGDB9OiRQtee+01ABo0aMCjjz7KAw88QHh4OOPHjz/nnMOGDWPw4MH069eP0NBQPvroo/N74S7KYlR2ogo5q+zsbIKCgsjKyiIwMLBanuOj1an0/+ZCwi3HYMwiiNYyLiJSuxUUFLBr1y6aNGmCj4+P2XHESZ3p96Qyn9/aA+Widu3aSbjlGA6soAHkIiIiNUoFykUV7UsCIK9OLHj5mxtGRESkllGBckGFJfbSGcgBa1RHk9OIiIjUPipQLmh7ei6t2Q2AX2NNoCkiIlLTVKBc0Pr9x2h3YgbyyE7mhhEREamFVKBcUMqeVBpaDpX+ENHe3DAiIiK1kAqUCyrYmwRAnn8j8A02NYuIiEhtpALlYv46gNwSqQHkIiIiZlCBcjHb0nNo9ecAcl/NQC4iImIKFSgXs35fFm0tuwHtgRIREfPMmTOH4OBgs2MwevRohg4dWuPPqwLlYnakptHUeqD0BxUoERFxUrt378ZisZCUlOSUj3e+VKBcTP6fA8jzfSPAP8TcMCIiYpqioiKzI1QJV30dKlAupKDYTp2jm0t/0N4nEZGzMwwoyjPnYhgVjpmTk8PIkSPx9/cnMjKSF154gb59+zJhwoSybWJiYnj88ce56aabCAwM5LbbbgNg/vz5tG3bFm9vb2JiYnjuuedOemyLxcKCBQtOui44OJg5c+YA/9uz8/nnn9OvXz/8/Pzo2LEjK1euPOk+c+bMoVGjRvj5+XHllVdy+PDhM76mJk2aANC5c2csFgt9+/YF/nfI7YknniAqKoqWLVtWKOfpHu+EZ599lsjISOrXr8+4ceMoLi4+Y77z5VGtjy5Valt6Dm0spRNoFgc3w9fkPCIiTq/4ODwZZc5z/zutwmuVTpw4kV9//ZUvv/yS8PBwpk2bxtq1a+nUqdNJ2z377LNMmzaNhx9+GIA1a9ZwzTXX8MgjjzBixAhWrFjBnXfeSf369Rk9enSl4j744IM8++yzNG/enAcffJDrrruO5ORkPDw8SExMZMyYMUyfPp2hQ4eycOHCsgyns3r1anr06MGPP/5I27Zt8fLyKrtt8eLFBAYGsmjRogrnO9PjLVmyhMjISJYsWUJycjIjRoygU6dO3HrrrZV6DypDBcqFrN+fRfc/B5Dvs9enjblxRESkCuTk5DB37lw+/PBDBgwYAMDs2bOJijq1+PXv359JkyaV/Txy5EgGDBjA1KlTAWjRogWbN29mxowZlS5QkydPZsiQIQA8+uijtG3bluTkZFq1asVLL73E4MGD+de//lX2PCtWrGDhwoWnfbzQ0FAA6tevT0RExEm3+fv789Zbb51Ugs7mTI9Xt25dZs6cic1mo1WrVgwZMoTFixerQEmp/Lxsmlv2AVCvXX+T04iIuABPv9I9QWY9dwWkpKRQXFxMjx49yq4LCgoqO7T1V926dTvp5y1btnDFFVecdN0FF1zAiy++iN1ux2azVThuhw4dyv47MjISgMzMTFq1asWWLVu48sorT9o+Pj7+jAXqTNq3b1+p8nQ2bdu2Pem1RkZGsmHDhip7/PKoQLmQ21oWwi8Ghl8oEc06mR1HRMT5WSwVPozmCvz9K/9aLBYLxt/GY5U3PsjT0/Ok+wA4HI5KP19FlPc6KpqzPH/NfuKxqiv7CRpE7koOrAPAEtmh9B8FERFxebGxsXh6evLbb7+VXZeVlcX27dvPet/WrVvz66+/nnTdr7/+SosWLcr2yISGhnLgwIGy23fs2MHx48crlbF169YkJiaedN2qVavOeJ8Te5jsdnuFnuNsOSv7eNVNe6BcScEx8PDVGXgiIm6kTp06jBo1ivvuu4969eoRFhbGww8/jNVqLdsTdDqTJk2ie/fuPP7444wYMYKVK1cyc+ZMXnvttbJt+vfvz8yZM4mPj8dut3P//fefssfmbO6++24uuOACnn32Wa644gq+//77sx6+CwsLw9fXl4ULF9KwYUN8fHwICgo67fZny1nZx6tu2gPlSi6cBP/eX/qniIi4jeeff574+Hguu+wyBg4cyAUXXEDr1q3x8fE54/26dOnCvHnz+Pjjj2nXrh3Tpk3jscceO2kA+XPPPUd0dDQXXngh119/PZMnT8bPr2Ljs07o2bMnb775Ji+99BIdO3bkhx9+4KGHHjrjfTw8PHj55Zf5v//7P6Kiok4Zq/V3Z8tZ2cerdoaL+M9//mPEx8cbvr6+RlBQULnbAKdcPvroo5O2WbJkidG5c2fDy8vLaNq0qTF79uxTHmfmzJlG48aNDW9vb6NHjx5GYmJipbJmZWUZgJGVlVWp+4mIyLnLz883Nm/ebOTn55sd5bzl5uYaQUFBxltvvWV2FLdzpt+Tynx+u8weqKKiIoYPH87YsWPPuN3s2bM5cOBA2eWv6+Ps2rWLIUOG0K9fP5KSkpgwYQL//Oc/+f7778u2+eSTT5g4cSIPP/wwa9eupWPHjiQkJJCZmVldL01ERGq5P/74g48++oidO3eydu1aRo4cCWD+XhY5LZcZA/Xoo48ClM1IejrBwcGnzA9xwqxZs2jSpEnZLK2tW7dm+fLlvPDCCyQkJAClu1FvvfVWbr755rL7fPPNN7zzzjs88MAD5T5uYWEhhYWFZT9nZ2dX6rWJiIg8++yzbNu2DS8vL7p27covv/xCSIiW7HJWLrMHqqLGjRtHSEgIPXr04J133jnplMiVK1cycODAk7ZPSEgom66+qKiINWvWnLSN1Wpl4MCBp0xp/1fTp08nKCio7BIdHV3Fr0pERNxZ586dWbNmDbm5uRw5coRFixbRvn17s2PJGbhVgXrssceYN28eixYtYtiwYdx555288sorZbenp6cTHh5+0n3Cw8PJzs4mPz+fQ4cOYbfby90mPT39tM87ZcoUsrKyyi579+6t2hcmIiIiTsXUQ3gPPPAATz/99Bm32bJlC61atarQ452Yyh5K23xeXh4zZszg7rvvPq+cZ+Pt7Y23t3e1PoeIiFSMUYlFfKX2qarfD1ML1KRJk866Vk9sbOw5P35cXByPP/44hYWFeHt7ExERQUZGxknbZGRkEBgYiK+vLzabDZvNVu42pxtXJSIizuHEnEHHjx/H11fLrUv5TkzOWdm5sP7O1AIVGhpatjhgdUhKSqJu3bple4fi4+P59ttvT9pm0aJFxMfHA5QN3Fu8eHHZ2XsOh4PFixczfvz4asspIiLnz2azERwcXHbWtJ+f31knopTawzAMjh8/TmZmJsHBwZVaJ7A8LnMWXmpqKkeOHCE1NRW73U5SUhIAzZo1IyAggK+++oqMjAx69uyJj48PixYt4sknn2Ty5Mllj3HHHXcwc+ZM/vWvf3HLLbfw008/MW/ePL755puybSZOnMioUaPo1q0bPXr04MUXXyQvL6/srDwREXFeJ44WaOoZOZ0zna1fGRbDRQ4Wjx49mrlz555y/ZIlS+jbty8LFy5kypQpJCcnYxgGzZo1Y+zYsdx6661Yrf8bK7906VLuvfdeNm/eTMOGDZk6deophxFnzpzJjBkzSE9Pp1OnTrz88svExcVVOGt2djZBQUFkZWURGBh4zq9ZRETOjd1ur/BCtFJ7eHp6nnHPU2U+v12mQLkSFSgRERHXU5nPb7eaxkBERESkJqhAiYiIiFSSCpSIiIhIJbnMWXiu5MSwMq2JJyIi4jpOfG5XZHi4ClQ1yMnJAdCaeCIiIi4oJyeHoKCgM26js/CqgcPhIC0tjTp16lT5JG7Z2dlER0ezd+9eneF3FnqvKk7vVcXpvao4vVcVp/eq4qrzvTIMg5ycHKKiok6aAqk82gNVDaxWKw0bNqzW5wgMDNRfsgrSe1Vxeq8qTu9Vxem9qji9VxVXXe/V2fY8naBB5CIiIiKVpAIlIiIiUkkqUC7G29ubhx9+uGyBZDk9vVcVp/eq4vReVZzeq4rTe1VxzvJeaRC5iIiISCVpD5SIiIhIJalAiYiIiFSSCpSIiIhIJalAiYiIiFSSCpSLeOKJJ+jVqxd+fn4EBweXu43FYjnl8vHHH9dsUCdRkfcrNTWVIUOG4OfnR1hYGPfddx8lJSU1G9QJxcTEnPJ79NRTT5kdy2m8+uqrxMTE4OPjQ1xcHKtXrzY7ktN55JFHTvkdatWqldmxnMKyZcu4/PLLiYqKwmKxsGDBgpNuNwyDadOmERkZia+vLwMHDmTHjh3mhDXZ2d6r0aNHn/J7Nnjw4BrLpwLlIoqKihg+fDhjx44943azZ8/mwIEDZZehQ4fWTEAnc7b3y263M2TIEIqKilixYgVz585lzpw5TJs2rYaTOqfHHnvspN+ju+66y+xITuGTTz5h4sSJPPzww6xdu5aOHTuSkJBAZmam2dGcTtu2bU/6HVq+fLnZkZxCXl4eHTt25NVXXy339meeeYaXX36ZWbNmkZiYiL+/PwkJCRQUFNRwUvOd7b0CGDx48Em/Zx999FHNBTTEpcyePdsICgoq9zbA+OKLL2o0j7M73fv17bffGlar1UhPTy+77vXXXzcCAwONwsLCGkzofBo3bmy88MILZsdwSj169DDGjRtX9rPdbjeioqKM6dOnm5jK+Tz88MNGx44dzY7h9P7+b7bD4TAiIiKMGTNmlF137Ngxw9vb2/joo49MSOg8yvt8GzVqlHHFFVeYkscwDEN7oNzMuHHjCAkJoUePHrzzzjsYmuarXCtXrqR9+/aEh4eXXZeQkEB2djabNm0yMZlzeOqpp6hfvz6dO3dmxowZOrRJ6V7NNWvWMHDgwLLrrFYrAwcOZOXKlSYmc047duwgKiqK2NhYRo4cSWpqqtmRnN6uXbtIT08/6XcsKCiIuLg4/Y6dxtKlSwkLC6Nly5aMHTuWw4cP19hzazFhN/LYY4/Rv39//Pz8+OGHH7jzzjvJzc3l7rvvNjua00lPTz+pPAFlP6enp5sRyWncfffddOnShXr16rFixQqmTJnCgQMHeP75582OZqpDhw5ht9vL/b3ZunWrSamcU1xcHHPmzKFly5YcOHCARx99lAsvvJCNGzdSp04ds+M5rRP/9pT3O1bb/10qz+DBg7nqqqto0qQJO3fu5N///jeXXHIJK1euxGazVfvzq0CZ6IEHHuDpp58+4zZbtmyp8ODLqVOnlv13586dycvLY8aMGW5ToKr6/apNKvPeTZw4sey6Dh064OXlxe2338706dNNXzpBXMMll1xS9t8dOnQgLi6Oxo0bM2/ePMaMGWNiMnEn1157bdl/t2/fng4dOtC0aVOWLl3KgAEDqv35VaBMNGnSJEaPHn3GbWJjY8/58ePi4nj88ccpLCx0iw++qny/IiIiTjl7KiMjo+w2d3M+711cXBwlJSXs3r2bli1bVkM61xASEoLNZiv7PTkhIyPDLX9nqlJwcDAtWrQgOTnZ7ChO7cTvUUZGBpGRkWXXZ2Rk0KlTJ5NSuY7Y2FhCQkJITk5WgXJ3oaGhhIaGVtvjJyUlUbduXbcoT1C171d8fDxPPPEEmZmZhIWFAbBo0SICAwNp06ZNlTyHMzmf9y4pKQmr1Vr2PtVWXl5edO3alcWLF5ed3epwOFi8eDHjx483N5yTy83NZefOndx4441mR3FqTZo0ISIigsWLF5cVpuzsbBITE896BrbAvn37OHz48EnlszqpQLmI1NRUjhw5QmpqKna7naSkJACaNWtGQEAAX331FRkZGfTs2RMfHx8WLVrEk08+yeTJk80NbpKzvV+DBg2iTZs23HjjjTzzzDOkp6fz0EMPMW7cOLcpnOdi5cqVJCYm0q9fP+rUqcPKlSu59957ueGGG6hbt67Z8Uw3ceJERo0aRbdu3ejRowcvvvgieXl53HzzzWZHcyqTJ0/m8ssvp3HjxqSlpfHwww9js9m47rrrzI5mutzc3JP2xO3atYukpCTq1atHo0aNmDBhAv/5z39o3rw5TZo0YerUqURFRdXKKWnO9F7Vq1ePRx99lGHDhhEREcHOnTv517/+RbNmzUhISKiZgKad/yeVMmrUKAM45bJkyRLDMAzju+++Mzp16mQEBAQY/v7+RseOHY1Zs2YZdrvd3OAmOdv7ZRiGsXv3buOSSy4xfH19jZCQEGPSpElGcXGxeaGdwJo1a4y4uDgjKCjI8PHxMVq3bm08+eSTRkFBgdnRnMYrr7xiNGrUyPDy8jJ69OhhrFq1yuxITmfEiBFGZGSk4eXlZTRo0MAYMWKEkZycbHYsp7BkyZJy/20aNWqUYRilUxlMnTrVCA8PN7y9vY0BAwYY27ZtMze0Sc70Xh0/ftwYNGiQERoaanh6ehqNGzc2br311pOmpqluFsPQee4iIiIilaF5oEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKREREpJJUoEREREQqSQVKROQsDh48SEREBE8++WTZdStWrMDLy4vFixebmExEzKLFhEVEKuDbb79l6NChrFixgpYtW9KpUyeuuOIKnn/+ebOjiYgJVKBERCpo3Lhx/Pjjj3Tr1o0NGzbw22+/4e3tbXYsETGBCpSISAXl5+fTrl079u7dy5o1a2jfvr3ZkUTEJBoDJSJSQTt37iQtLQ2Hw8Hu3bvNjiMiJtIeKBGRCigqKqJHjx506tSJli1b8uKLL7JhwwbCwsLMjiYiJlCBEhGpgPvuu4/PPvuMdevWERAQwEUXXURQUBBff/212dFExAQ6hCcichZLly7lxRdf5L333iMwMBCr1cp7773HL7/8wuuvv252PBExgfZAiYiIiFSS9kCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVJIKlIiIiEglqUCJiIiIVNL/A7HAAmZTKmL3AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "from matplotlib import pyplot as plt\n", "\n", @@ -741,18 +297,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACAYUlEQVR4nO3deVhV1frA8e8+h3mWmQOoIM4iOKJppeZ1yGwys9nKJtPKbL6VNtyyObtl9auu2a1udRtvpZlmWqk4C+IsoiIgkyLzzP79QZzgsIEDAmfg/TwPj3LO3vusfdjDu9d611qKqqoqQgghhBDCbDpLF0AIIYQQwtZIACWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0koOlC2CPampqyMjIwNPTE0VRLF0cIYQQQphBVVUKCwsxGAzodM3XMUkA1QEyMjIIDw+3dDGEEEII0QYnT54kLCys2WUkgOoAnp6eQO0fwMvLy8KlEUIIIYQ5CgoKCA8PN97HmyMBVAeoa7bz8vKSAEoIIYSwMeak30gSuRBCCCFEK0kAJYQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIYQQQrSSBFBCCCGEEK0kAZQQQgghRCtJACWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQNysjIYOPGjWRkZFi6KEII0SU5WLoAQojWS0lJITk5GQCDwWDh0gghRNcjAZQQNigyMrLBv0IIITqXBFBC2CCDwdAuNU8ZGRmkpKQQGRkpNVlCCNEKEkAJ0YVJU6AQQrSNBFBCdGHSFCiEEG0jAZQQXVh7NQUKIURXI8MYCCGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJ0YFkyhUhhLBP0gtPiA4k4ywJIYR9kgBKiA5kD+MsyWjlQgjRmARQQnQgexhnSWrRhBCiMcmBEkI0y9PTEwcHBzw9PS1dFCGEsBoSQAnRhZmT5F5YWEhVVRWFhYWdWDIhhLBuEkAJ0YVt2rTJ+FPHNKiKjIwkKiqq2Twu6W0ohOhqJAdKCDtlTvJ3fn4+lZWV5OfnG19LSEjgyJEjFBQUGHO4Wsp9kjwpIURXIwGUEHbKnKBmxIgRJCUlER0dfU6fZQ+9DYUQtsFaegZLACWEDTLnAmJOUBMTE0NMTEyD12JjY/Hy8mpVMGQPvQ2FENYpMTHR+KAXExNjNTXeEkAJYYPMuYC0NaiRYEgIYU2SkpJIS0sDah/6rKXGWwIoITpRe1U9W8sFRAghOlpdisG5phq0NwmghOhE5tQcmRNkadUSmVZzt3XbbWEtOQlCCPtjmmogTXhCdAGmgYU5NUdaFwdzAhTTam5zt90erOWCJoSwf9ZSAy8BlBAdyHRIAHNoXRzMCVDCwsLIy8sjLCzM7G3bQpOi1G4JIayRTQ2k+fvvvzN9+nQMBgOKovDdd981eF9VVRYtWkRISAiurq5MnDiRI0eONFjmzJkzXH/99Xh5eeHj48OcOXMoKipqsMyePXs4//zzcXFxITw8nJdeeqmjd010EQkJCezcuZOEhIRWrWfOYJZ10604OJj/XFQXmKWkpBhfa8ugmAaDgbFjx3ZIgKNVRiFE12Ut1wSbCqCKi4uJiYlh2bJlmu+/9NJL/POf/+Tdd99l69atuLu7M3nyZMrKyozLXH/99ezbt4+1a9fy448/8vvvv3PHHXcY3y8oKGDSpEn06NGDnTt38vLLL/PUU0/x3nvvdfj+CfsTGhqKn58foaGhZq/T1ouDOUGW6ba11jFdRiugMn2tI0ciN2e/hBBdh7VcE2yqCW/q1KlMnTpV8z1VVVm6dClPPPEEl112GQD//ve/CQoK4rvvvuOaa67hwIEDrF69mu3btzN8+HAA3nzzTS6++GJeeeUVDAYDn376KRUVFSxfvhwnJycGDhxIQkICr732WoNASwhzmM4jpzXGkjl5UuY0BZomlms1fZlODKyVjG76+VrNh6avtTVvyxwyrIIQoj5ruSbYVADVnGPHjpGZmcnEiRONr3l7exMXF0d8fDzXXHMN8fHx+Pj4GIMngIkTJ6LT6di6dStXXHEF8fHxXHDBBTg5ORmXmTx5Mi+++CJ5eXl069at0WeXl5dTXl5u/L2goKCD9lJ0hI7MsTENRrROfNPgo60XB9P90ApqzJkY2PTzTYMurf1qa96WEELUZ0s5j3YTQGVmZgIQFBTU4PWgoCDje5mZmQQGBjZ438HBAV9f3wbLRERENNpG3XtaAdSSJUt4+umn22dHRKdrrxu91olvTjBkTmK3ac2V1pAFpvuhFdS0JdlbK+gy3S9zarJs6cIohLCM9hrqpTPYTQBlSY899hgLFy40/l5QUEB4eLgFSyRao716kLX1xDcNPrS2Y7qM1pAF5uyHOQGdaRm1aqDasl9t6ZEohOhazLmOfbX6V3akFjAyMpP5N13VWUVrxG4CqODgYACysrIICQkxvp6VlUVsbKxxmezs7AbrVVVVcebMGeP6wcHBZGVlNVim7ve6ZUw5Ozvj7OzcLvshOl97tae3dYwnc7aTkXaCU/viifCsxLcml4srtlJJMp45wD9fhfIiDBXFGHR62OoOTh64lVXTvRyqEiNgyATw6wV+UdAtAvS1p75W4GMa6JjT7CfNdUKI9mDO9dgz/XfeV7/hh+N/AySAOmcREREEBwezbt06Y8BUUFDA1q1bmTt3LgCjR4/m7Nmz7Ny5k2HDhgHw66+/UlNTQ1xcnHGZxx9/nMrKShwdHQFYu3Ytffv21Wy+E6KOWSe+GbU5BoMBQ3AwZO+DzV9DygaCUv7AUPNXnp1v3X/KNDZQXpuD5/PnDzkpsGad8e0qvStVIUNx6T2e3AIPjuXojZ+rxZzA0Jxl2jJJsRBC1KeqKgNqDuCsVGIItWxLj00FUEVFRcanXKhNHE9ISMDX15fu3buzYMEC/vGPf9C7d28iIiJ48sknMRgMXH755QD079+fKVOmcPvtt/Puu+9SWVnJ/Pnzueaaa4w3j+uuu46nn36aOXPm8Mgjj7B3717eeOMNXn/9dUvssrBibWmHb7Y2R1UhfRckfIJ64AeU4hzjW3qgRHXmqBrCUdXA0RoDJ9RgCnCjSHWhGFeKcEFPDe6U4UEZbkoZvhTSU5dJhJJJhHKKnkom7tWlOKRtgrRNDAYG6RwpV84HzzToM6VRoKMVGJruuznBo7X0nBFC2K7jGdnE1uwHBWKm3mLRsthUALVjxw7Gjx9v/L0u72j27NmsWLGChx9+mOLiYu644w7Onj3L2LFjWb16NS4uLsZ1Pv30U+bPn89FF12ETqdjxowZ/POf/zS+7+3tzZo1a5g3bx7Dhg3D39+fRYsWyRAGohHTZiutgMqsfKKiHNjzBTW7P0aXcxAABShWndla059NNYPYWDOI44qBYA8nBvUIwrW6COVsJsN6hNM3KgJXJz3xG3/nZPopugUaGDR0BAWlleQWVZCUU8R3OUWcOF1CdU01fZU0RuoOMFJ3iJG6gwTWnMX1xK9w4lfQOWLoNR5D9EwIHGH2vpvDWhI/hRC26+jWlUQoVWTqQwgO6WfRsthUADVu3DhUVW3yfUVReOaZZ3jmmWeaXMbX15f//Oc/zX7O4MGD+eOPP9pcTtE1tGW8pAY1UAUZqH+8hrpzBbqaSnRAmerITzUj+br6Ag46DmDMwHBGRfoxyaOKitPp9OrVC4PB8GcvvFSie7oRM7A2N+/Qb3lUcJZgnQtXD29ctV1ZXcP2A8dZv8edtIpYlmSWkn62hH7KSabqtzFVt5U+pMORNbU/qx+FITfC8FugW89m912LaU9ByZMSQpwr3dG1AOSGXEiwoli0LDYVQAlhTdoyXpKnpyeeFNH36AfU/PojuppKFCCxJpIvqsezw30co/oYmOZWzIsxUSYjmP8VrGj1whsxYoQxYNHiqNdx3qBIzhv013bS8krYcCiHVUlDeCPlKiJJ4xL9Fq7Wb8BQcho2LUXd9AZ5fsOoOe9e/IddprnvWkzLaC0TgAohbFNJeSX9i7aAAr6x0yxdHAmghGgv6enpnD59mvT0dGNQ0yDQqCjGd+dSLkv9HgeqANha04+3aq5CCR7M1SN78o/hfdDpWn6qqguS6gdLAQEB9OzZk4CAALPLHNbNjRtG9eCGUT3ILSpnzb4sfkiM4c2UK7hIt4sb9L9wgT4J39M74IebYM9YuPBhMpyjSDl2rNnmONMySg6UEOJc7Nm5mVHKGcpw4liRG2RkyDhQQtiruryf/voTeGx8jvDidKA2cHqXmfSJu5hXz48k0Mul0TrN5VLFxMQYg7Q65uRkaQ3AWcffw5nr4rpzXVx3juYU8emWKObtHI1f+Unm6H9iln4DTic2wr834uHdn2KX8aQwrckLmGkZJQdKCHEuCpJWAnDIKZojx9NQHVwkgBLC2rTlZq/VTT9t/zaCd76GX2li7e+qP0uUOUSNncHrYyPwcXMiMTGRNS3kCpmOzWTOPHda29Fq+tPSK8CDRdMH8ODkPrz61e+8cfAmlpVfxp0OP3Kd/le88g8wOf8AZc77oG8gGZUeLX5fkgMlhGiLjIwMjh49SkDm7wBURU4gKkwmExbCKrXHqNk1Sd8QEz8f5+piqlQdH1RPIzV6Pk9PG4K/x18Dr7YlV8icee60crK0mv5MmdZSXTrQjx7VGRR49+azo/N4O+tS7nb4nhscfsEl9TfUd0ZD6FROMrpBeUyZs19SSyWEMJWSksKuvfuZV3MIFBgw4TpcAy2fSykBlBDtpC7oKjqbS7etG3BN/BBnYHdNFO9738ecqy7hUscyDiZsbxAgmJMrFBoaypkzZ4xJ5ebMc6c15pRW058p04CusLCQmuoqYn2rufuSC/h5XyYv/BjIxwV/4zGH//A3dmE4+QNXOaynuOdDUHMe6HRtGitKaqmEEKYiIyM5mbgOB6WGNMcehFlB8AQSQAmhqa2jZntXn2ZI0nJcy48D8Hb15WRGXc+jFw2ke5gvGzdubBQgmCZ/a9XCmAZDWsGI6Wtt7fVmGtDV345OpzA1OoSchHWsS6nh/sqFxFTs4wmHT+hfdRKfPxZD6hqY/gYpKVmtDoakp54QwpTBYCC0aA8AeYZx6KykploCKCE0tKXHWF81mfEF/4crZZxWPXnF/QEGDxqKW/YxUo+70T0sVLNZbdOmTRw9epRTp04xc+ZMzVqYzmz+MqeWqnt4GMPPJnFNfw/2Vl/O5b8N5AZlNQ84fInbiU2o74yhV58bSNUPNu6rOeWTnnpCdG1a14misgoGlmwDBfyHTOeoldRUSwAl7Epbgghz1mlpmeLf3yRi+yJ0qGyr6cv6gUtYfOU4zuRkkZKib7ZZLT8/n6qqKvLz8wHtYKktzV9agZjpfpiz71r5YHVBoKeLIw+N7ceEHi784ycnJmWP4B8OyxlHIiEH/sUURwPHAx4HMwfSbI+/RVMkv0oI66d1ndi7fQOjlAKKcSUkehxqVu00V5auqZYAStiVtuTQmLNOk0nlNTWc/d8j+CS+B8BnNRNhwmIeGTfYuL2WmtVMB8Bsay2M6ba1Pst0P9qac2S67WH9evJN3x78tDeTh/4XyuiS9Sx2/Dd+lRn4bLsffAqJjJjeqDymzClPW8ss+VVCWD+t61ZR0ioATvjEMUDvaDU11RJACbvSlhyaNufdVJZx+pNb8DtRe3K/43AjE297nt7BXsZFzKn1aK/xkkwvKuZcZLSaFE0/XysfTGvbiqJwcXQIY3r588LqICZvG8SLju9xEbth9aMYIn/GcPk74BXSZHnM+Vu09e8l+VVCWD/Ta4uqqoTk1E6tpus7xVLF0iQBlLArbXkyMWcd015wlOWT+fZ0ggsSqVD1vOW1kBvveIgAT+cG67WlWU2rtqu9mp9MgyGt0dNNy2jO92M69MGSKwczwKOUhX8s5JLK9Tzh8AmuKetR3xmNcvm78OeFsC099drKWp5ahRBNM70mHD6azEC19nrUM+5SC5euIQmghDBDg9yl8kKy37mE4II9FKiuvOK6kL/f+wAujvpG65nTrGYasBQXF1NWVkZxcXGTy5ijrUFXW2pqtAboLE9N4lKnHHYpY5hWPICljssYXHoMPpsFY++H8U+0abwtaYoTwn6ZXhNObvmWvsAx575E+NY+wFpLPqMEUKLLacvJVxc8qWWFZL4zneD8PeSrbjyrv5dx0QM1gycwr1nNtBnN3d0dFxcX3N3dm1zGHFqBhulr5jbPtSQsLIy8vDzCwsKMrzk5OeGsVDOrewk+MdOY/U0I91R9zK0Oq2Hj65C2gyqnyyktLW0QLLZEmuKE6Dq8TqwBoKjnJONr1vIQJQGU6HLMmTPOVHJyMiVncwjc/BHBNUcoUN34v4BFdK+pwqNeoGPKnG2b9szTCmq0eu+1xJzBNturWasuuHNw+OuS4u/vT15eHv7+/lwcY0DNTuaVzdeyo7wPLzm+h8fxP/ibfg+F+kuAXoD299Xc/H1CCPtSP10iMzeXwRUJoEDYqBnGZazlIUoCKNHlmJ585jzN+Hq6MCptJX1JplB15YfBbxFSUkp6epqx6UqLOds2J6hprwtGR+UBaZXPNBDsGejNbZGp7K6eyKWHuvOO41L6ksY11Z9xoMgZmKnZpGfaPGgtT59CiPZX/2Exb9P3jFMqydIHE9Qz1tJFa0QCKNHltHrE7uoqYjM+JpJkilQXfhz8JtddeSV79uxBUZqfV86cwMecoKYtgU97jbtkznrmjIxeWFiIWl3FVVF6Lh4xnZu+DOSx6ne5XL+ZQSeWw0odinpho88ybR60lqdPIUT7q39+H41fCsBJv7Ec2bTJeL2xlocoCaCE0GBsNho0CK/Ed4jM30Kp6sSq6H9y7YyZQOMpWLSYE/h0VEKkOXlTbb0QtSX5u/6F0WAIpn/I35jxehWHKrvzkMMX6LZ/wARDEt2iF9C9X6xxPdPmQelNJ4T9qju/C0tKGVgUDwoU+g3hRL3rlLU8REkAJbo8rSBi+/btZGZm4pe+lpjS76hRFX6Iepqrr5plXK8tQYS5n98ezMmb0roQdVTOkWngE+7rxrPjfHlt4wQOl4fyhuMyPDK2ElfyGEr0f5stoxDCvu3d+gujlSLy8cS3z2jS9x0wPgxay0OUBFCiy9O6QXt7e+OUuY3JJf8DBb4NuIurrp/b7HY6c9iA9tqu1oVIa0gCU22dbNnU5IvGM2mCyju/HWXGmkDed3iF7mePU/X+RByu+xx6jrGai6UQovOUJf0AQKrfWAqLS1vdiaYzSAAlhIYYgzPd932DTlFZ7XYJQ6fPY/PmTQ2CI9Mgoq01SR0VILR1u3U5Xc3ldrVnmRVF4e5xUfQN8uTqT7xZxqsMqziC+u/LUa58lwzf0R02P54QwvpUVVUTeeY3AFwGXYKfldZCSwAlujzTwKco6xgBv9yDC5Vs0Q9j1N3vs/n3DY2a60yDiLaM1WSNTKeWaavWBjUX9Q/ieKwXdyU8zLPqe0xhO3x1K+W9byW54q+5BbVYS1KpEKJ1tCY43/j7L1xNJhU4EDnqUrLyiixdTE0SQIkur35Tl1pVTs7ya4hQz3KICMJu/wIfDzfN9UxzhdoyVpOtMic4aksvwKljhhDsm8xbiY+SceZ9bnVYTcSR5ZR7X0i5x9NNlkfypISwTVoTnFcnrwfgqMcw+rt6kbJzj1U+IEkAJbq8+jVJSe/fQXT5Qc6q7lRd/W/Cgmt72Gnl/JjmCmndxDuqacnSTVZtGd9Kq8xNzbs34fxq7vvch/RD/jzu8Cn98n8jO34xRH8NesdGn2VaG2jp70cI0TYeHh4MrNwDCtT0uRiw3gckCaCE+NOhXz4kOv0LAHYPf5HxAwcb39PK+dGavsRURzUtWbrJqi0J6lplbmo7rk563rlhGM+tdOPe+G687vg2gVm/oX52HZkXvMDR1FPnXPslhLA804naj584zqUcBSDivNrRx3Nycjh+/Dienp5WdT5LACUEkJWSSPjGRwH4xf9G/MOj+eSTT4zNc1o1GqbjE7UmQDhX1vpE1hytMjeXjK7XKSyaPoAPfG7l9p9cecdxKa7Ja3DKPEGS/spmh4+wxe9HiK7INPXBOXcPOkUl2bEPUf7hgHk9gy1BAihh18xpyikvKaD80xsIooxEh8GMvf1VvvryyxanDzG9Sbc2QDgXlu7a35k1PLedH4mv+2xmf+3GBw4v4Vd0iCuUf7Et/xHjMjJfnhC2yfS66XeqNv/pdMiFRP25jDk9gy1BAihh18y50e9//3aGVKeSTTf8b/4EF2fnRiesOcFRewU1tpC/05YannMJuq4cGoaP23Xc+KkrH+ieJ5hsLjz2MhRcDF4GmS9PCBtV/7qZlpFBbGUiKFAWMNS4THv1DG5vEkAJu6Y1tED9ACU3aS1D8lZTrSqkT1zGkLAeQOMTtjNrfGzh5t+W78OcoKu54HFCvyC85lzNDR84slz/HKEVmVQvn4r+5h8b5aPZy5ASQnQlyRu/JEyp5pgSTu9h44yvW+tDpQRQwq5pDS1Q120299QJxu17HIAthpsYc/40SxWzAXvN3zEn6GppepzhPX154upx3Pa1A/9X8yzdzx6nevlU3KOfapCP1pWGlBDCXrgnrwQgP/ISYlvogGINJIASdq2pmgi1RsVw4H18KOSILoLKPpeTkZFhPDktmVNj6fwma9fL35VbR/fk7u3P8M/Kp4ksOEnMrr+jDHkWQzP5aFqs9clWiK6i7hz07ubD4PKdoEDYmGsaLGOtD5USQAm7plUTUV1djVfBXkaqu6lQHTgyYCHZJ1JxcHT6azwoK+31Ye/MmWMvJSWF4sxjzImLZOHu53i5eBG9S9MZuP1RCsI+gXrjSbXEWp9shegq6mqd/ckiWqkiTR9OWETDa661PlRKACXsmtaTS8qhPcyp+QEU2N37HmLPm2ishahjrb0+bJk5tT3mXCjr/01Hx43k7vcceL7wCfpVnkT99gYI+gX8eplVpnPNyxJCtI8e+dsAyAmfTJiiWLg05pEAStg10xtyZWUl44v/h4dSxl5dP0Zc8wQ6B4dGN0Zr7fVhyzqitifY24X35k7lzrerWVL0JH0q06n6cBoOt64C35ar+80J2KSWSoiOExsbi85Bz/BNz4ICLv3+xsaNG23igUVn6QII0VYZGRls3LiRjIwMs9eJ/+JFBquHKMaFwNkfoXNwIDExkU8++YTExMQOLK2IjIwkKirqnPMYEhIS2LlzJwkJCQD4ezjz/rzpLPJZwpGaUByKTlG5fBrkHW9xW6bHkNYx1V7lFkI0ZjAYcC9JxUWp5JQuhNOV7iQnJ5OSkmLporVIaqCEzTKnZqB+Mng3b3eGHnkLFDgS/SCxPfoB2vlO0mzT/joyj6EsP5fZsd14bPszvFj8BL2KMqhcPg3HOT+BT/cm1zM9hrR6AVpr/oUQ9iAjIwN179cAnAqdTGSvXqAoNvHAIgGUsFnmTN5bFxypKvRJ/4zuSimHHfpSGDDS2OtOK99Jmm06hzmBqukyWonmKSkpZKWmMGdEJE8mLOEfZx8lsjCNyuXTcbxtNXiFaG7b9BjKzc2lsLCQ3Nzcdt5TIYTW+Z60by9jK3eBAsGjZtnUA4sEUMJmaZ1opjUIdQMsOpacJK5sI1WqjkM9byZldwKFRcUYDAYCAgLo2bMnAQEBxu1Ya7dZa9XWGjtzAlXTZbT+7vX/XnFxo5j7ViUvF/+d7gXHqVhxKU5zfgJ3/0bbNt1WRUVFg3+FEO1H63xXTh/GXSknUwnAMGC0JYvXahJACbvm4OCAo7MzF6QvBQX2dr8evW9POH3EuIzWSW16Y5Umvea1tcbOnEC1tcGsr7sTs4cHc89vj/Ku+hwhZw5TseIyTl/8L46m5zb7NxwxYoSxybeO/O2FaB9a57Jn6joAMgyTCbaR3nd1JIASdsW0eScyMpK8jf+HQcklSxfAwOuWEJhX2GAZc6b9kCa95rW1xs6cQLUtPeVi+0dxuwoPbnuKpeVPEJCzF+dvZnO8263GZbRo1UbK316I9mF6LucXFhJdHA8KBMbNtGDJ2kYCKGFXGt2QTx5laumPoEDJRS8Q5OoJeQ2n9zBn2g9p0mtee+UtaAUr5tQAaf19fFx0PDTjQh769ineKH0C38KDTNF9QkX3f7fq82VePSE6xt4NXzFGKSVH8Sds0AWWLk6rSQAl7FZ5ZRVOPz+Eg1LDAZ9x9B9zFdD4JmlOcGRLiY22xDQ40hz41IwaINO/T10uXO/eBTx7x7U88E4FSyuewj9/D4VrF8LNX4K+8eVP6/NlXj0hOobD/m8AOBk6lQCd7Y2qJAGUsFu/ffsek2oOUIoz3a//p/F105ukBEeWY05wdK61f+G+bjxx500seLOIZeqLeJ78lcr/3YPjFW+DSc5FSwnqQoi2q//A5OjkSExJbfNdyJjrNZex9uuyBFDCLmXnnWXgvtdAgZS+tzEwoIfxPQmYrIdpcNJe+UbV1dWUl5dTXV0NQE9/dy67aDwPriliqf4NHPf8hyrXbjhMea5RECWE6Bj1z++aU7u5QKnkpC6UE7lVqH8OK2NLOYcSQAm7tOOz57hYySFX50//Kx9v8J4tPeHYO9NgVqu2R2twS1Omf9Pk5GRKS0uNF2KAsqxjOLr48njZ7bzg8B4OW5dxttqJvT4Tmz0WzPl8IUTL6p/fmb8vAuCw91hOHj0KimJ2SoW1kABK2KymAqH9hw9zQda/QYHCsY/j7+zeYD1besLpatpaO2j6N/Xz86O4uBg/Pz/jMvn5+fhSSHlQNEuyb+Qx/cf47HgdfDNI4SY5FoRoZ01do3OyTzG4fDcoEDr2epxL9TaZUiEBlLBZWoGQqqqkf/skA5QyTrj0J2LczY3Ws6UnHNF4aAotpj3lJk6caLxw16k/xtNp58m8/Wkhd+u/47wzX5KnjAHGtvnzhRCNmV6j6373KthLjFJDimNvvEJ6k2sD895pkQBK2Axzemx9/+N3TC/5GRRwv+wl0OjZYUtPOMK8v5dpTzmtdeqP8RRjCKJoxvN8/lU+1zisx+uXByGsD/SwrZGQhbBmptfoun+9f30XgPxel5Fhwy0CEkAJm2Gai2J6kywtryJk58voFJXdbmMY0t/2xhURbdOWwVAvjQ3lvg3X4He6gL/pd1L+8Uycb18DQQOaXU8IYR6tB5kzuZmMrTlAjarQa/xNHMs82+K5a615q7Y38IIQTVj3w8eMZB/lOOJ/yVOWLo7oROYOhhoVFdWgxvLW8f352mcOO2r64FxVSOmHl8PZky2uJ4RovZSUFEr2rQLgiGs0XkE9SE9P5/Tp06Snpze7XnJyMilW1tRnVwHUU089haIoDX769etnfL+srIx58+bh5+eHh4cHM2bMICsrq8E2UlNTmTZtGm5ubgQGBvLQQw9RVVXV2bsiNMTGxjJs2DBiY2MbvZdfXE7U3tcB2O17CXqfsE4unbAkc4Icg8HA2LFjGzzBxsTE8M7C61gb8waHa0JxLcuiZPllUHKm2fWEEC3LyMhg48aNZGRkAFBZWUlsxXYASvteYfZ2rPUhxu6a8AYOHMgvv/xi/N3B4a9dvP/++1m5ciVffvkl3t7ezJ8/nyuvvJJNmzYBtWPHTJs2jeDgYDZv3sypU6e46aabcHR05Pnnn+/0fRENNZcLs+G797mMExThyq6qvpxJSMBgMJCYmGhMHI6JienkEovOYk6eVFPNAIqi8MgVo1lU9Bp3p8zFUHCUon/PwmPOD+DoYvZ2hBANmTZ/J+/fzXgllUpVT5/xNwDmddKw1rxVu6qBgtqAKTg42Pjj7+8P1HZh/te//sVrr73GhAkTGDZsGB9++CGbN29my5YtAKxZs4b9+/fzySefEBsby9SpU3n22WdZtmwZFRUVTX5meXk5BQUFDX5E58k+W0T04WUA7Oo2jUq9m/G9pKQk0tLSSEpKslTxhJVorhlAp1NYdP0kXvF9hgLVDY/MbRR/cRvU1LRqO0J0Vaa1TdC45iis/CAAe51jcfMJBGy7htfuAqgjR44Ye2hdf/31pKamArBz504qKyuZOHGicdl+/frRvXt34uPjAYiPjyc6OpqgoCDjMpMnT6agoIB9+/Y1+ZlLlizB29vb+BMeHt5Beyfqqzth1332OpFKBgWKF1GXPtygmS86OpqwsDCio6MtW1hhcS01Azg56Bgb4csjNfOoUPW4J/9AycrHWr0dIboirQeL+sFRZVUVMQW/AuA49PqmNmNT7KoJLy4ujhUrVtC3b19OnTrF008/zfnnn8/evXvJzMzEyckJHx+fBusEBQWRmZkJQGZmZoPgqe79uvea8thjj7Fw4ULj7wUFBRJEdYKUlBR27DvMjMyPQIEzQ+6mZ0RfDBF9jcvExMRI050AzGsGcHFQCO/mw9MFd/Ecy3Db+S7lPuE4nz+/k0ophG1qaXy9xI2rGE4ORbjRb9w1nVm0DmNXAdTUqVON/x88eDBxcXH06NGD//73v7i6unbY5zo7O+Ps7Nxh2++KzMkziYyM5Ej8t4QrOeTpfOk55b5OLqWwN3X5GI6+F/PGl/ncp36C47onqPQJxTG6NulVhjUQorGWHlAqd34CwGH/vzHUxb3J5WyJ3TXh1efj40OfPn1ITk4mODiYiooKzp4922CZrKwsgoODAQgODm7UK6/u97plROcwJ8/kWHYeU4u+BqBk1AJwcmtyWSHMUdfkEDcgknG3/INP1cnoUOGbO1BTa3Mltcac0sr/EELUyss7w+CCDQD4jplt2cK0I7sOoIqKijh69CghISEMGzYMR0dH1q1bZ3z/0KFDpKamMnp07ejDo0ePJikpiezsbOMya9euxcvLiwEDBjTavug45uSZHFq1jGAlj2zFn9AJczWXkRubqKN1LDR3fMR070boNW/wS81QHNUKSv99NZw+qjnmlCSWC9G0fb98grtSTrouhJ6xEyxdnHZjV014Dz74INOnT6dHjx5kZGSwePFi9Ho91157Ld7e3syZM4eFCxfi6+uLl5cX99xzD6NHj2bUqFEATJo0iQEDBnDjjTfy0ksvkZmZyRNPPMG8efOkia6TtVQdfDA1i0vLfwAFDhquJNDBSXM5aW4RdbSOBdPR7U2N6x/C1xe/S+Kqa4ipSqHgX5cTddXnQMPgXuZXFKKxulQMz4NfAHA85GKObdpkN0OA2FUAlZaWxrXXXsvp06cJCAhg7NixbNmyhYCAAABef/11dDodM2bMoLy8nMmTJ/P2228b19fr9fz444/MnTuX0aNH4+7uzuzZs3nmmWcstUuiCUk/vMlMpYAsXSBRU+9pcjm5sYk6WsdCcXExZWVlFBcXN7lelGsZH3rN58HC5wkrSaXif3eiG/p0g2WsdZwaISwpJSWFvYk7uKt6LzWqQrnhPFLt6IHWrgKozz//vNn3XVxcWLZsGcuWLWtymR49erBq1ar2LppoR0czzzAm+1NQoGbM/RjCuhvfM00+lxubaImqqsb/a3VeSEpKIqgyh5ddFvBs2fP45yeRvflZUnTPGJeRwTWFaCwyMpKzW/8NwCHXWPzCepORl9TsvHe2xK5zoITtai43Zcf/3sWgnCFP50uKQ78GyyQkJLBz504SEhI6sbTCFmjlKbm7u+Pq6oq7u3uTy0RHRxMeHsZNU87n7eCnqVD1DCjfTWT6t01uW3LvhIDAwCBiCzcAUBl9jVlzVtoSu6qBEvajqdylk7mFjMyoHfdpj/dEtmzZTkb2aWbOnAnUNsmUlpY22yQjuiatJjzTaSS0etjVH0us34BBLH09jYfL3sBwcDnF8YNwHz2n0bYl904I2BO/mqFkUYwL/cZfT+7Z2sDJXlIqJIASVqmp3KWN3/+La5VMinSeHNIPoLy8kJycHOP7pjUKQtQxpzm3pSdkd2cHBgyfyDu/pzJX9y0uPz9IhV9PDH0uarBtreNXmvmEPdM6vsu2/zn2k99FDHHzxODmaVfHvgRQwipp3ewSDh4j9vi/QAf5g2+jW2UYecUpxk4CYN7ElELUMa0pMifwGTogiuKKm/lhay7TlT+o+PxGau74BV3wX0OdaB2/Uisl7Jnp8Z1/9iyD89eDAt6j7Gfsp/okgBI2Y/3KT7lfl0oJLoROupcxZ8sICQlpcLOTpHHRGqYBk7mBT6iXAwVTlrD9p9sYwUHOLr8Cn3v/AI/aCVITExNJSkoiOjra2Pxn2jyo9cQutVTCVpke33vWfMj5SikZumAihk1sYW3bJAGUsAm5hWVcmP8d6CDRcxyj3XwxuDV+kje9AckNSTTHnIC7qfymqKgosqctJ2XllURWZJLz/hUEzP8FHF3ZvHkzOTk5FBYWGgMo0+ZBrTGozKmlkmNatKf2Op7qH9+qquJ/6D8AZPa6GoNO317FtSrSC09YJdNeTL+u/pahuiOUqw4UR05vcj3T3lAyQrQ4V/VnlAeMN4mqqiqmxQ1kc9w75KkeBOTvJevft0BNjXFohPpDJJg+oWt1eDBnBH45pkV7aq/jqf55cSBhE/2rD1Op6sn3H2G3vVGlBkpYpfpP4t38gwjc9wEAB30vYkBc01MBmNYWyECaor2lpaVRXFxMWloaANdfPJ7/y13CrSkLCDr5E9nfL2LMmJnGJrw6pjVQWh0e2lIjJsS5aK/jKTk5mfz8fJKTk3Eo/gOA3c4jOHHqDI7uKXZZWyoBlLBK9U/qtRs3cYm6ExSo6HtFs+uZ3oAkJ0q0t7qgqO5fRVG4eMJFvJVxJwvL3yYw4U0cA6OIueHmBuuZ3qhCQ0M5c+YMoaGhrfp8OaZFe2qv48nb25vc3FxcXV2IOfkzKKAbeiNRHj3tNtiXAEpYpbqTuqZGpebDB9ApKvudh7D5UDa9axLkBiI6jWmOSP1xoeqknjiGW2A/Pkq/gtk13+Kx5gGK/Xvi3meccRnTG5W9DSoouraAgAAyMzNxPbMXzz+Tx4dNuhbFTvOfQAIoYaXqblq5VY5MqlgHCpwOnwqnLV0yYc+0EmpNE7u1lql7wnYbcz5rv8jib+pmyj+/gcq71uMY2Fvzs6QpTtiTtLQ0ioqK6V22BhQ41WuW3SaP15EkcmGV6m5apzetwE0pJ8s1Cq9Bk/Hz82t1k4cQ5tJKqDVN7G4u6TbYywXDzStIUKPwqCnkzP9dilpyxuzPlylghK2Kjo4mwEtPtHKUSlVP78l3Njqe7e34lgBKWCVPT09yKxyYWrEaAOfz51FYVNSgycPeTkZheVq94Ex74WlN91I/qBrYI4ifAu4iXfUjqDqDjPdmQlVFo8/SCsRkLkdhqwICAuhRuB2A/d4X4OUfave9oqUJT1il9PR0KjN2Y1DOUKjvhs+I64jMqX2Sl/nGREdp63Qvps1xF58/khXr7uHe/BcJPbuDkx/fRfjN/wJFaXIdIWzZ/n37GFX6OyjgNnoO0HBoA7C/Y14CKGGV8spqmFqzHnRQEnMLno4ujW5u9nYyCtugddyZHpt1ieaffOzJtckPEn7ia9JW9ibsksea3bZMRSRsVU3GNjyVUtKVYKLiLgYaD/lhbz1IJYASVqmoMJdY3VEqcCRowt2ay9jbyShsQ2uOu2uvn8MXb6Vw3ZllGHa8SHyBQo9xN2EwGDRrUOWYFtaopdHKa6priDjxFQCZUbMI/TN5PCwsjLy8PMLCwszajq2RHChhdUorqul57HMAciIuA4+AFtYQwjrpdQqX3fkMPzpPQ4fKkEOvcmL7z4B5o46bk+cnuYCio7WUu5QQ/zO9a1IoUx3pe/E84+t1uYIODg5mbcfWSA2UsDq/bN3NVHUrKBA86X5LF0eIFmlNHlzH3dmBkXPfY9PSaYxREuiT8AwV5/8NgyGsxadwc/L8tObUE6I9aTVb169Nqtr8NgD7/acwtFtQk+vZW9qFBFDCKtQ/GQvjl+Og1JDhPQRDyCBLF02IFiUlJRnzPEwDKIBAHw9+G/oIh3c8RB9dGmnvXU7o/etRnD0bLVufvd1whG3SalquC+7zTmcytXjjnw+89zW7nr01UUsAJayCsWo3r5y/Ff8ECnidf5eliyWEWUynd9EyZngs60qexO/AQ4SVHSHlveuJnPcd6JrOpDDnhiOJ58IS6nrYBWSvx0Gp4aBLDP36jrB0sTqV5ECJTqeVs1HXTl6Qso0Q5QwFOm8SS4Ikr0PYhICAAHr27ElAQPP5ehFhYfwW/QLlqiORp3/jyH8eOOfPNh2nSojOkJaWRkFhAecV/wKAOvJOC5eo80kAJdqVOQmtWomEhYWFFJRXE3t6JQBHfC5kx+49MqCgsAmmx7TWebBp0yY2btxIterET72eAKB38nKO/fx2k9uVBHFhraKjo+mhz6KbUkSmEki/C2c1Wsbej18JoES7MqeXhVbvo8jISEpUHWN1SdSgkB92UaP17P1kFLbL9JjWGlE8Pz+fqqoq8vPzufSG+/ix200AhMU/Qcbu2hH3TY9xrfNJzgNhDXx9/YgrXQ9ARp8bUPSNM4LsrdedKcmBEu3KnKRXrbyO4OAQwjLXApAZMBa/XkPwK0lqMO+djDwurJU5uUojRoww9tTT6RQuuut1fnvtBBeW/4bn/27lrP8vpJw40+AY15o2RnrdCWuw7ddvmUEqJaoz/eoNXVCfvXeCkABKtKu29rLYeOAkkyvXgQJ+4+4m4UQ6p0+fJj093diryd5PRmG7TAcI1ErsrhudvE7e6WxKht9L0uZTRKuHObXiSsJnfQX8VZOlNW2MENYg5OQPAOz2HM8Yb38Ll8YyJIASVuHI+o+5QCnirFMwPv0nw4mfGy1jb11ghf0wrR0151hNSUkhKz2N8iFP0G3XA4RVn+LIt3M57/616JxcAO2HhtDQUM6cOdOgdlaIznT08F7iKreBAqcNE5pczt5bDSQHSlhcWl4JQ7K/AaCgz1Wg0xMbG8uwYcOIjY01Lie5H8JamTOquKm65rmIHj3JueTfFKqu9C7dw/73bgFVBeDw4cPs3r2bw4cPG9eTWilhaad+ehm9orKDATj4hDe5XFvOC1siAZSwuPUb1jFUl0yVquew40BAu2u2vSckiq6lfiA0ZPh5JIx6gypVx6DcVez57EmgdoDOvLw8kpKSjOvZ+01JWJ/6D68Z6akMP1PbWzqvz7UNHnJN2fsQG9KEJyyqukbFJelTABL1g6hw9GlyWcmBEtaqLU0Vpgni50+dxbqcFC5KeYHBh9/kwNoooqOjjYnndUybB+1tglZhfeof39V7v+RCpZKjjn3527X3gKJYuHSWIzVQwqI2HUzjb9W/A6CPntGln2aE7WpLrVB6+l8dJepMuPFRNvheXbvNjQ/iXXOGIUOG0KdPnya3IzWzoqPVHd9+/v7EnPoSgIpR93bp4AkkgBIWduT3L/BRisnT+7OvqBs5OTmWLpIQrdZewb2iKJx319vscBmFs1JJj9/uI2HLrw3Gk0pMTOSTTz4hMTER0A7eJF9QtKe64ztry+f4KMWk6wz0G3eNpYtlcdKEJzpcU00MZ4or6J3xP9DBAbeRnEzPQFV0mpOxCmHrzBnqoG6ZgCve4MgX19K7JoWLCz9jb1k/4zKmExc3N9Er2GfvJ9GxEhMTjU3HddfjktIS+h3/NwCnY+5CycpucDx3xaZkCaBEh2vqYr4mfidXK7XJsd1G3UjYsTPNTsYqhLUyvXlo3UzMGeqg/jKRN39F1vKJRCoZFB94k8qKS3F0cmk0cbHWZ0m+oDCX1vFjGqRnZGQQ/+3bzOA0p5VuDJx6Bz//sr7BgK5dMWiXAEp0ONOLeUZGBkePHqVk66foFJXMbsPxjoilp5rS4mSsQlgj05uH1s3EnKCmfmK5oXsvDl/xKR7fXEF05R62v30Lw+/9tNGAnFqfJWOmCXNpHT+mQfrOnTuJzf4aFEjtPRs/J9dG2+mKQbsEUKLDmV7MU1JS+D3pGDeUrwMdeJ13C7u64NOLsB+mN4+23kxMx3jqE3MeCbn/JPr3OxlxdhWbP/o7PSff26DGoCveuET70Tp+TIP0gtTd9FIyKFRd6T99AUCjJuiuGLRLACU6XWRkJJt2bKeHLpsynRtuMVfgeSC50ZxfQtgK05tHW/OSTIc2yMjIoMg5lD8i72fcsdc478Q7fPeDK2edezT4nK524xLtp6Xjp6qqmqG5/wNgX/BljPLsZtZ6XYH0whOdrpt/EP3yfgXgbOR0cHLX7NIthD0xZ6gD0xqouqDLoddFbAu+DoCpGf/ER1/SoEm8pR530itPNKWlY2Pb2s/pryZTijPRs54ye72uQGqgRKf7cv0OZrIFgMALbgOguLiY0tJSiouLLVk0ITqMOU/szTUFBo9+i8TXTxJT9Afjkp/jcEQfs5N3tZbpir2mRGPNHT9VVdX4bX8VgK1eU+lTpuJuxnpdhQRQosOZXqhzt/8XV6WCTL2B4PARALi7u+Pq6oq7u3sLWxPCfrXUFNhv3mccfHkc/WqSCVk7l4yIdZo5LKbnnNYycgMU0Hy+3pbVnzK25iglqjN71X6UJCRIT896JIASHa7+hbrG1YdxFRtABxkBFxL850i2WmPiCNHVtDQcgrOrJwUTXiZt7Z2EK9kc+NcMQu5by9ixYxtsx5whE+QGKKDpmtHKqmoCd74OwB+uEymu0jVoIZAcKMmBEp2gfu7HhvitDNUlU42CYeJdxmVkmhYhYNOmTWzcuJFNmzYB2tO0VODEuqA7OIsH/WsOc/jtaygrr2iwHXPyreScE83Zsurf9FFTKMaFqr6X4uLiIi0EJqQGSnS4uicVVVWp+uhZAI449qe8WCHYwmUTwprk5+dTVVVFfn4+oF1LVPf/E5URuP52FyPL41n16o1E3/gq4eFhAOTk5HD8+PHa8aQkQBKttGPnLgJ3vgYKHOl5PUPiLsA7IEVqK01IACU6XF0zRKV7EBeU/lo7dYvai+KkJJm2RYh6RowYYZxCA7SbSeq/dkgtpe/v87m4YjX//SKAsAfeRFGURiNJm0OSykWdhPX/5TYllSLVhX5X/p0zRRUtr9QFSQAlOlxdM0RmURLjdZmU40R593EybYsQJkwHMGxJ3wk3siklkTFp73N10ces/rwvU669p9FI0uaQnnpdQ0t/0/LKSi4sWgnA7sArON/Ln4SNqxpM2yJqSQAlOlxkZCQ1qorTurcByAy6kLDIfjJtixDtIN8wgZ8zDjO55jcmHFzMr6uCmXDxzFbX7ra1p54EWbYlISGh2WBo87fvMp5UCnGl+6R7mtyO/N0lgBKdwGAwcLRQ4W/qRlCgIGi0dJ8Woh0d9BqPX2k5w8u3MGLrPfyEM55evs3e3ExvgG3tqSfDIdi2+seBm4cHffcvBWCDy2S6ZeXRo7d2L2n5u0sAJTrJ/k0/cL5SQLHeG7+RVxF1/KQkJArRBqaBT93NLST8Mo5+cQu9ShIYsvVePvN/AGjd4Jqm2jL4p7BupsFQ/eOg7OAqJpJLtuJHt1E3NjvPnfzdJYAS7SwxMdGYBFvXhFBSUUXwie9BgeLe0zGE9cAQ1sPCJRXCNjU3xlPVvO9IXzqO0MrjXJr7NplOHwPazS3tdQOU8YBsi+nfq+7v7+buzuCTH4ICeXGPMHbcxFZtpyuSAEq0K63eP7/uOcZEtgEQcN5NFiubEPagucDHwb0bfnd9T+6yCfSqyaBk1V2cCP+JfRp5L6Y3QMlp6dpy1y1lqFLCCcdI+k66rcF7cmxok4E0m7Bs2TJ69uyJi4sLcXFxbNu2zdJFsgnR0dGEhYU16P1z7I8vcFfKOeMUghI+0oKlE8L2tTQApotfD5xv+R8FiifRHCHj/avJL6tscbtag3YK+2M6CfCmTZvYsOEXxhX+AIAy6VnQ6RusI8eGNgmgNHzxxRcsXLiQxYsXs2vXLmJiYpg8eTLZ2dmWLprVi4mJ4YYbbjDWPuUWlTPwzC8AnAq4AP6cukUI0XEK9b4kDV5EGU6MrtmF/75/0XdQDLGxsU2uY87o5cL2mQZDZ8/mE1f+B05KNYc8RtJ9xCWN1pFjQ5sEUBpee+01br/9dm655RYGDBjAu+++i5ubG8uXL7d00WzOLzv2cYEuEQD/MbMtXBohuoaUlBSO5Duxs/9jVKHjb9W/Ubj5PUrKq5pcR6Z2sT+mtU0AVVVVFBYWUlVVeyz4eTrwN/0OalQFv8tf0FxPjg1tEkCZqKioYOfOnUyc+FcCnU6nY+LEicTHx2uuU15eTkFBQYMfUatw19c4KDXkePYnaMAYSxdHCLujdZOsqzGIOP8acsa/BsDM6pVs/M9zlFVWA7UdPj755BMSExMtUm7R8bSa3tLS0iguLiYtLY3S8kr6HFoGwP7AafhHDQMaz8kotEkAZSI3N5fq6mqCgoIavB4UFERmZqbmOkuWLMHb29v4Ex4e3hlFtXqZ+WUMOvsrAE6xMy1cGiHsk9ZNsn6NQciFt3Bo4AIAbq78nK/efYrK6hpjh4+kpCQLlVx0NK2mt/p5qr998TqD1MMU40Kva14wLpOTk0NFRQU5OTmWKLbNkF547eCxxx5j4cKFxt8LCgokiAI27EziauUAAN7DJIASoiOYMxxB35lPk6arIizpLa7LfZN/v+9J974jyMvLIywsrLOKaiS9ulqvLd+Z1lADddMFHTt5ku5H/wkKnBx8H/38/rpnBQQEUFhYKLNFtEACKBP+/v7o9XqysrIavJ6VlUVwcLDmOs7Ozjg7O3dG8WxK4e5v0Skqp9wHcHRvKpGRDnKxFKKdmTseT9iV/yCtLJ+wIx9zw6kl/LPkYXy6heDgUHsb0BrDzfSm3V6Bj4xi3Xrt+Z2pqsrRzx9lolLIScee9L30wQbv9+nTh/Lycvr06XNOn2PvpAnPhJOTE8OGDWPdunXG12pqali3bh2jR4+2YMmsk1b+BUDG2VKi82ub784EjGrQxNDUOkKIjpGYmMgnn37K6YFzSO9+KQ5KDXfnv8qZgjwiIiIANJv0TJsH26s7u/Tqar32+s4SExN5642XmPDnhMGO019DcXBqsExdknlhYeE5fZa9kxooDQsXLmT27NkMHz6ckSNHsnTpUoqLi7nlllssXTSr09RT0fode7hWOQiA0ncKDkdz8PT0bHYdIUTHqD/A7Q2zl5Px3lUYsjYw98wSvtxoYPbVVxMWFtaoSc+0edCc5kKtWipz5t0TzWuv72zn7kTGnfkMnU7lQMBUvP37s3Hjxg4Zpd7eSQClYdasWeTk5LBo0SIyMzOJjY1l9erVjRLLRdMnWnFCbfNdtvdgzlS7U1V1yvg0IyenEJ2rbmDb6Oho0DtiuO0LTr17GSGnt3Dl/gX8+xtnIgP98PT0NDbpaTHnJq71gCQPTZ3DnCZWj8IDROuOUYQrEde9xo59jf82EuCaRwKoJsyfP5/58+dbuhhWT+tES8srIaZgPejANXaGBExCdDLTG2ld4rCRowshd35D1juXEJS3i0v3zGNF9yUEODsYa4qhbYGP1vku14DO0dLf60DyUSblfgQKZAx9gD7dDNT9SeRv03oSQIl2t2FHEtcphwDwHDIDT5+GQZY8jQrRscw6x5zcCbrzf2S/fTGBBUnckPo4Lzrcg6+vrzHYkgmHbUtdDWJdEFw/kPYPDCb3i3vorxRz0jmKPtPuB+Rvcy4kgBLtrjjxz+Y7nxgCfRoP5yBPo0J0LLPPMRcvAuf+QO6yyQQUHeLBqrd57+gTXPzn2225ucoDkuWYJn/X/1vs2vANl1RuohI9HrP+D/Ry+z9X8g2KdnXyTAmxfzbfucXOACSBVAir5toN/7k/kfPmBILLjnN77nN8+H1Pbp5+Eb/99ptxaINx48Zprm56fpvWgojO01Syv+roxOhDL4ACx/rdSZ/I4cZ1ZEyutpNhDES7+mLlWkb82XznMaQ2gJKZvIXoXK0+59z9CJj/C2fcIglRzjBl5+0s//4X9uxJIi8vzzi0gdYQJKafJV3gGzL9ztprGBet7WjNWVdZrVK9ZjF+SiFpTpH0uerpBtuR63PbSQAl2pWS/DM6ReWoLhK8a7tDy5gvQnSc5ubCqzvntJZp9JpHAL53ryHPvTaIunjXHeQ5eOHj083Yi09rjjTTz5LzvaGOGkvLnO2kpKSwd/MPjKveTBU6PGa9DyZjPkmNYdtJE55oN2l5JZyv7gAFcv1G0OvP16XJToiOo5VzZHrOmT20gEcA3eauIe+dSYQUp3Bn1mK+jv4/LrzwQgDy8/OpqqoiPz/fuG3Tz5LzvaG2jKVlDnMCnxoHZ64t+wwUON7vLqJ6DW+0jNQYtp0EUOKc1G8///1ABtcohwHo8bc7NZeRC6sQ7Uvrhmx6zrVqaIE/g6iz70wiuDiFq5LuYGnFP7n3mksZMWKEMSdKmKejAkytwKf+393LNwDWPoG/UkC6UyRRJk13daRTT9tJACXOSUJCAkeOHKGgoICiQ1vQKSo5ngMI7jPMuIz0yhGi42jdkE3POa1lmr2RewTgM3cNZ/9vKkGFR7jp0Dxe+aichTdd1XA8KWExWoFP3d9dVVUy//cuM6u3UIkDnte816jpro7UGLad5ECJdlFUqdL7zG8AOA66tMF7khMhROcyPecSExP55JNPSExMNC7TYjJzXRDlMwg/pZC5x+/j5Q8+pqyyusFiHZkULVqn7u+emZPFpZnLAMgc+Xe8IkdYuGT2qdUB1OzZs/n99987oizCBsXGxjJs2DCKnf04T7cXAJ8hVzRYRqtniBCi45iec+ZMFKwl42wZB2IXkeszGC+lhHszHubRJS8Tv2O3cZmEhAR27txJQkLCOZVZeoO1TlPf16m8QoYnPo6zUsUR7zGc8BzZICjVCqZF27Q6gMrPz2fixIn07t2b559/nvT09I4ol7ARdRfq8qN/4KxUkefaHQL6NlhGniyFsKywsDDc3d0bTRTcUs1wSkoKh46f4vCQxZwNGYOHUsYL1a/w9Y//I7uwrF3LKDXVfzHnmqmVRL7/UDLuO/5JhJLJaX0Ae4Nmsmnz5ga9JrWCadE2rQ6gvvvuO9LT05k7dy5ffPEFPXv2ZOrUqXz11VdUVlZ2RBmFlSsuryIs61cAavpOA0Vp8L7pk5IEVEJ0rrobbXMTBWupC2p69h6Az63fkOE3GhelkhfUN/jgzX9wLLcYNzc3dDodbm5u51RGqan+i1btkul1Mz09ndOnTxsrMVRVJWPvei5WaocscJj5L06XVFNZWdmg12R0dDRhYWHSEaAdtCmJPCAggIULF7Jw4UJ27drFhx9+yI033oiHhwc33HADd999N717927vsgor9ceBdC5Uaqv0fYdd2eh90yclSSoXomOZ0wvPnPOwUQ+yu3+g6Mu78Tj4X/5e8SZLl52lLGQMFBeTlpam+dltLXNX1pa/1w9r1nBV7jJQ4NSQ+wnvdyEjyn0a9ZpsNLG0aLNz6oV36tQp1q5dy9q1a9Hr9Vx88cUkJSUxYMAAXnrpJe6///72KqewAk1d4I7tWM0UpZQiRz88QlseZ0S6zQrRsczphdemART1jnjMeo+SVQG4bV/GAvVj/nXyNLudxjDQ21vzs9ta5q7MnL9XbGwsXl5eREZGsnnPQYZtvhs3pZzDrrF4DL8VkGCpo7U6gKqsrOT777/nww8/ZM2aNQwePJgFCxZw3XXX4eXlBcC3337LrbfeKgGUndG6wFVU1eCXtgaAkojJeOgatwqbBkzSbVaIjmXOQ0pbBlA0PkQNmY/eMxDnXxczR7+K7yryWXf0BqY38dmmD19aD2PyYNU8079X3XU0+VQuLl/fRKiSyyldCNv9ZtHj2HEMoWFSq9fBWh1AhYSEUFNTw7XXXsu2bduIjY1ttMz48ePx8fFph+IJa6J1gVu57SDj/hx93H/4DM0TVgImITqXOedcWwKWBg9RFyygyj0A5Yf5XK7fRMiZ07z4TU+uHdmj+fUMBrNGT+9MthBoaNUY5hWVc+iDO5imHKJYcaf6ivfpka8Y/6b1x+mz1v2yZa0OoF5//XVmzpyJi4tLk8v4+Phw7NixcyqYsD5aF7g98T9zhXKWElxxi7yAlC3bpBpeCBtgej6bE0SY3sQdhl1PbpUTHqvvJU53kICEW3ju6N8Z4vvXZ2itZ04tVWeyheZD0xqoiqoafvy/x7mxeh3V6KiesZywQecT1sJ2RPtpdS+8G2+8sdngSdgv014gNTUq4fk7AEhxHQwOTjIxpRA2ypxxmLSa/Q5WhrA65F4KHAOI1GWypOjvJGbk4ewX2ux6prQmKu4stnDdqj/MQ02Nynvv/ZPrCz4A4PSYxXgNmtJonbpx+rRaisS5k6lchNlMn9J2p+YxjtoA6qxvLNCwa60kLwphO8xp0mtuTr2S4ItxWD0f39w9LK16ln98kUXpdQu5oE9Ao/W0mpZyc3OpqKggNze3/XeuBdY2oW5zqRCqqvKvTz9lTtZz6BSVfb5/Y+DE+yxc4q5JAihhtkYXwV1bmKPLpEJ1IMdTxhQRwpaZk4PU4px6d/xM2X/n4JK8imd5mw//fZQDE54hzreM48eP4+npicFgoLi4mNLSUoqLi43b8ff3Jz8/H39//3bft5Z0ZgK7VnBk+lpTTYqqqvLh199x9ZEHcVUqOOA4iOrzH2009l4dre3YQr6XrZAASrSZcvgnAA7ro3D28gMgNDSUM2fOEBoa2tyqQggb0OqbrZMbZ8a/THmVDxHH/8MtDj8Tv/4kL7rcxQBdFoCxZloxuemPGTOGkJAQu++FpxXUmL7WVI7YJz+uYU76E3gppZxwHcCOgNlEFDc9Inxbx/8S5pEASpit/olX4+pDdMkW0IESOcHYxm5tVeFCiLZrSy+uhMQ9HMnvx5iohcQce5fR7Ce84hkeUe9jcFjtNE/u7u64uLjg7u5uXK8tSe3tVZuitZ/ttW3T7WjlW5lTA/bZTxu4Kf0p/JRCcjz74zTjIyLSsptNxNeqMZThItqPBFDCbPVPvI17DjFDOQLAwOnzwFvGchFC/CXbdwSOk2ZR9vEswgqPs5yneWHdjRQ4BxBtMLRYU21OTUlba1PMCY7aq6bGdDtaD5mmgU79dUJCQvh0zUZmnHiKYF0emQ5hBN+1Etz9COnZp9VllmFl2o8EUMJs9U+8vK9XoFdUsl17cTjpOJGRuiafeIQQtqktTfL1R8gm0IDL3b9R8fWdOCevZrH+Q1au2sfLXrcz2CEP32Y6m2g9jCUmJhqnJomJiTHrgU0rWNq0aRNHjx7l1KlTzJw5s2GZm/n8lrZtzgCh5my3LsCqqKzk/77+iUuT5mHQnSFT9WWd/61c7+6nuZ4t9Ca0JxJACbPVXRxCwnsQmvMH6CC321BpTxfCDmjd/M1pkm+x2cjVB6frP0eNX0bN2sVM028juvAYj9TcjfNZlYub2K7Ww1hSUpJxzr2YmBizHti0amXy8/OpqqoyTrLbYnK8mdtur4Erk5OTyTubz48bd/BE1VJ8lSIy9SF87XAlgX7dm1xPUig6lwRQwmx1F4vdp0q5SUkAIGD4FUSVeEuTnRA2TivQMK0t0QqyzGrqUhSU8+aj7z6a8s9vontRGh8p/+CNfTN45vswHpoyiLzcrBZrc8LCwsjLyyMszPzhIrVqZUaMGNFokt2WtHX6GXNGYTfl6unNmRNp/EP3Jh5KGWe8B8Jl7xOTkdfsZ0kNVOeSAEqYre7E3bV/P95KCcUOPgTETiFAp7dwyYQQrWUaEGgFA83l5rQmiGjwWfM2UfntPJwO/8hDjv9l945d3HFwIRP6h6KcPm7ctlZtTl1w4OBg/q1Lq1YmICCAnj17EhAQYPZ2zJl+RqvJ05xR2OtLyyvh2PHDvKh7C2elkjOBo/Cd8xU4exLcwnOq1EB1LgmgRKuoqorPqd8BKAobh7sET0LYJNOAwJwmK60aDnN6zzX4rLFjcbz2E0j8nKqVDzGkMpn3ihfw4pZrOeJ9Pn0HudOUtuQltVdXfnOmn9EKYJqaBFirzLn6bpz++WWe4FtQIK/7JHxv/BgcG8/+IRMyW54EUMJsKSkp/LHvBDOrd4EOfIdOl0HZhLBR5jTPmTKnhkMrOKlbp6qqqnYhRYHYa3GIOJ/Kb+fhenwDTzl+xNairbz4/a3McQom1IyeelpMa67M6cpvzr5rbcec8ZvMCWqSjx7lyy3JXFWwnMv1ewAoHHIH3S5ZAnrt27S1TcjcFUkAJcwWGRnJ7/uO01uXTjV6HHtPJGXnXkkiF8IGmdM8Z6qt072kpaVRXFxsTAA38g7DcfZ3sONfVKz6O3G6g3yhPsYH//2D5d4zGe2t0rNesGZOGbVGOTdluu9tTf423de2BDCni8r5fsdhHix8gR76bCoUZ7j0TTyHzGrVZ4vOJwGUaBXP7O0A5PoNI8jVR05iIeyEOedyW6d7qUvW1kzaVhQYcRt53rHo1jxOQO4W5jr8wPSieJ49exPZnn3oX1SOn4ezWTVH7u7uuLq6Nhiksy02bNhgTDQfN26cWfvamiR7VVX5PiGNQ9+/wrM1/8FVV0GeYxDd5nxNRo0fKRs3Njvdi9Q2WZ4EUMJsu/YnE1OxE/TgNqi287GcxELYh448l81J2g7qMxz6/AyHfqLqxwcJK0zj/xxfI37/auYdvIExF0xizvkRjK1Xxk2bNpGSkmIczwnaYeyqPyUlJZGXl0dSUhLjxo1r8xx2pnljGRkZ7NyfzIZDp5iV9SqX6Q6BAuneQ9FdtgyCB5CycWOL070Iy5MASpgtJa+CO3UHAPCMvsTCpRFC2IpWNZH1nYpDxAXw+8vUbF7GaPYzmr/z44b/ce3G64mOCOPmC/oQ1TOc/Px8KisrjeM5QeM8rbbmN0VHRzcY6kBrH8zJgapfnoqqGv7vl704H/4f/9D/F1ddBRV6NwpHPcQxlxFEuvgA2sn65tS+mTOwp2g/EkAJs5Udi8dZqSLHIZgAvyhLF0cIYa+c3MkYcAfp6mAGZH+H25HvuUS/lck1O/jq8AXcd2Q6F50/lmHRQ3Fx2d+gadA00DAneNMKNMaNG9eg6U4rt8o00GkqYb1GVTlc4cPXLy9lTulHDHI4XrvN0PNxn/k2B/am1gZiioLBYCA9PZ3Tp0+TXm+kdnNy1kz3VWqtOpYEUKJJ9S8q/oHBRBbtAB2cDTqPAJOZ1IUQoilaTWQtSUlJITm9gPKoOxh70cPUrF2M49FfuNZhPbPUDaz+YwRvqpfRd9iFDAn4a3Ru00BDK/AxDZjMCbK0cqtaqu2qqVHZm6fj+61HuDp/Obfqk0AHpbhwsu9t9LnmH6AoREbW3opb8/20NaFftB8JoEST6j+9HC9x5II/Rx8vDRhiwVIJIWyNOcnWphrc/IMN6G78Gk7Eo258Hd2Rn7lYv42L2Ub8rgH83/YJpAZN4IoRvbgs1oCPm5NxO1qBT1t63ZkzX17dNbOgvIb/HS5lV/wvTC/5lrf08aCHasWBov7XcsB/Kt37DalNoNf4fswJOLVqu0zXkxzVjiUBlGhS/YvD6s3xnKecpQxn/IddauGSCSFsmTlNSzk5ORw/fhxPT0/jMoln3UhSL2XERdfSJ+cn1KSvGa3fz2j9fvLPLOe7VWOYvXICAX1GclH/QC7qF2hWMNLWgKX+a2WV1WTr/FlfcJbA9au4Xvczc3Up8OdYwxUDrsLpb09SXOpEVUpKs99PWwMfCZg6lwRQokkNTsaj6wA4GzQaQ3hPyxVKCGHzzGla2r59O5mZmZSVlRnzgP56LZi+t71H9qA7KI9/n5CsDXiXZDLbYS2zWcvRoyGsOzKUe74dSlnICC7sF0xloQOuxRV0c3dql5oaVVXJyC/j98M5bNifTtXR37lA3c5r+i34OdQ26VXrHFEHXInDmPk4hQwGICF+VbtMOCwsTwIo0aLsgjL6FW0DPZz26EtNRoac+EKINjMnYHFycmrwL4C3tze5ubl4e3sDcCS7jGR1NFGjr2NsSBXs/pjq/T/QS3eKXrqV3OGwkvzTbvzxx2D++K03b9VEUthtAD38vfCijP7lpxlY6kyojyuBXs446nXodX/ld1bXqJwtqSCvpILTRRVk5Jdy4FQhB9PzKD11gB7lhxinS+AV3R489aXG9SrcDTiNug390Nng7t8u35n0qLM+EkCJFm06cIJpukMAHCwLICglRU5gIUSH8vf3Jy8vD3//vwKQMWPGEBIS0qgGKzIyEgwGiLqIdd9/ReWhn4lxOYWheB/eZWe4RL+FS/RbAKgq1nGoKJwUNYT0FH9Wq35kqH7kqD5UoqdG0YPOERQFp6pifJUC/JV8/CggXMnhYt1xFiqpuCiV4PhXeStdA3DofzFKv2k49brIOAWLaeCj1VxoTnAkPeqsjwRQokXZe37BSanmjFMIQf1HS48OIUSH0wo0TGuutGqyBg0/jxTfYHSRkeiCg0he/x+K9q0mwukMnoXJOBRnM1A5wUBOtFyIZuZKr3Z0p8QzkuOqAefBV9DnwllkZGbWBkIe2U2OFaVVZnOS2qVHnfWRAEo0q7pGxSf9NwCqIi9i7NixFi6REKIr0Ao0zKmpMU0+33JKIa0kmjDfMG6483ooyICM3XD2BOSnQX4aan4aanEOVFeh1lRBTTXVFaWUqU7UuHbDxxDF4Yyz5JTqKe/WmwnX3Y/eN5LCzEzy/ywPOp1mLVF7BT6SIG59JIASTcrIyGDtzsNcWJMAOvAbPNXSRRJC2ClzRtE2DVC0lklKSjJOWhwTE9NwHj5FAe/Q2p96lD9/6suqt20fg4HEL7/k6NGj9ArpBf5RmuXRCpbMCXzaMk6WsDwJoESTUlJS2HdgL7N1WVThgEOvCy1dJCGElWtrsrNpMGJObY7WMqYTF8fExBh78bWGaeBjmn+lVZ7Dhw+TlJREVVVVq/a9LbVLklRueRJACUD7ZIyMjCT8t68BOO07hCBnz+Y2IYQQbU521kwMp/naHK1lzJm4uC1aGgcKGk9ADB0X6EhSueVJACUA7ZPR3SeAAWW7QQ8u/SfJE48QokVtzfkxJ0G8pXXAsoGF6QTE5panLddWSSq3PAmgBKB9Mm4+lMEFuv0AeA+aQtJReeIRQjTPnMCnvR7Gmqo5r/+vOZ/V1vKYrmc6AbFWebS0ZWoZSSq3PAmgBKB9Mh7ZtoqpSjkFel+8gqOJVE8B8sQjhDg37VVLpLUd02uZOZ/V1vKYs55peRITE421VG3JzRLWQwIooUlVVbxObQTglFcMXooiTzxCiHbRXs1PWtsxrRWqqqqisLCQqqqqdi9PW9Yz7SUI0gvPVuksXYD21LNnTxRFafDzwgsvNFhmz549nH/++bi4uBAeHs5LL73UaDtffvkl/fr1w8XFhejoaFatWtVZu2A1DmcVEVezB4B8r/4WLo0QwlZkZGSwceNGMjIymlzGYDAwduzYc34g09pOXa1Qyp8T9qalpVFcXGwMWjqS1r6bvhYdHU1YWFiDPKn2+j5E57K7GqhnnnmG22+/3fi7p+dfPccKCgqYNGkSEydO5N133yUpKYlbb70VHx8f7rjjDgA2b97Mtddey5IlS7jkkkv4z3/+w+WXX86uXbsYNGhQp++PpexI2sf1ulRqVIXEAm9GWrpAQgib0JlJ3ObkQJkOa6ClvZrwtLZj+lpbh1UQ1sfuAihPT0+Cg4M13/v000+pqKhg+fLlODk5MXDgQBISEnjttdeMAdQbb7zBlClTeOihhwB49tlnWbt2LW+99Rbvvvtup+2HpZUeXAvAcV04vWNGWbg0Qghb0Zm9w8zJgdIKWEwDL3PKbE6wprUd6S1nv+wugHrhhRd49tln6d69O9dddx33338/Dg61uxkfH88FF1zQYHbvyZMn8+KLL5KXl0e3bt2Ij49n4cKFDbY5efJkvvvuuyY/s7y8nPLycuPvBQUF7btTnayiqobAnC2gg5LgOPr06WPpIgkhbERH5kq2JfDRYs78dC2tU3/dOuaMFWXOfsmQMbbBrgKoe++9l6FDh+Lr68vmzZt57LHHOHXqFK+99hoAmZmZRERENFgnKCjI+F63bt3IzMw0vlZ/mczMzCY/d8mSJTz99NPtvDeWs/vEGUYpewE4WOCOW0KCnMRCCItrS+CjpS01Th1Zk2ROU6CwPlYfQD366KO8+OKLzS5z4MAB+vXr16DmaPDgwTg5OXHnnXeyZMkSnJ2dO6yMjz32WIPPLigoIDw8vMM+r6Md3LudOOUs5TiR6RiOVDwLIaxBZ07Mazo2U0fWrJnTFCisj9UHUA888AA333xzs8s0dZDFxcVRVVXF8ePH6du3L8HBwWRlZTVYpu73urypppZpKq8KwNnZuUMDtM5WnbwegGyfGGKHj5KTWAhhFTpzKJXi4mJKS0spLi4+p+2Y0xzXllHYheVZfQAVEBDQ5jmNEhIS0Ol0BAYGAjB69Ggef/xxKisrcXR0BGDt2rX07duXbt26GZdZt24dCxYsMG5n7dq1jB49+tx2xMrVneRBoT3onr8ddOA5cDJjx461dNGEEKLTubu74+rqiru7+zltp6OmchGWZ/UBlLni4+PZunUr48ePx9PTk/j4eO6//35uuOEGY3B03XXX8fTTTzNnzhweeeQR9u7dyxtvvMHrr79u3M59993HhRdeyKuvvsq0adP4/PPP2bFjB++9956ldq1T1J3kCZllzFYOAOAzcKKFSyWEEE1rrylYtLTX4JbmNMdJzpNtspsAytnZmc8//5ynnnqK8vJyIiIiuP/++xvkJnl7e7NmzRrmzZvHsGHD8Pf3Z9GiRcYhDADOO+88/vOf//DEE0/w97//nd69e/Pdd9/Z/RhQdSd3wpFkPJVSSvReuAUPtnCphBCiaZ05BUtbmbMdyXmyTXYTQA0dOpQtW7a0uNzgwYP5448/ml1m5syZzJw5s72KZpVMn8Dqfo7+8SkA+UGjcNPpLVxKIYRomqenJw4ODg0GTDZHWwIWrVqr9mp6k5wn22Q3AZRoHa0nsOzCMvqV7gIdeA38myWLJ4QQLaqb466wsLBV67UlYDFnlHHRtUgA1UVpPYFtPXiSycoRANz7XWSRcgkhhLk6sunLnHGgpOmta5MAqovSegLLTFqPk1JNvlMw3r5yQRBCWLeObPrqzDwpYZskgBIAqKqKW/pGAErDxuKtKBYukRBCWI5p7ZI01wlTEkAJAI7lFhNbmQA68I2eZOniCCGERZnWLklznTAlAZQAYN2WndyuOwGAU+/xgAzuJoQQdaS5TpjSWboAwjqc3fsLAOkO4eBRO3J7XZV1SkqKJYsmhBBCWB2pgRLU1Kj0KE0CHeR4DiL0z9elyloIIYTQJgGU4EBmAXHsA8Cjz4XG16XKWgghhNAmTXhdVEZGBhs3biQjI4O9+/bSQ5dNNTpyXHtpLiOEEEKIv0gNVBdVv0tu8eHfAUh36kWPPoM0l5GaKCGEvZAOMqI9SADVRdXlNfWMiCD3l1cAcO57EUHSbVcIYefk4VC0Bwmguqi6/KZ9GfkMrdkLOsjWBVOdkWG8oEgOlBDCHsnDoWgPEkB1cXv37WWWLodqdPxxopKezgkSNAkh7Jo8HIr2IEnkXVzx4d8AOOkYSaXibOHSCCGEELZBaqC6sJoaFd+cbbW/9BjDsJ7DpEpbCCGEMIMEUF1URkYG63cf4fw/85/CR1xCz75jLV0sIYQQwiZIE14XlZKSwt4D++j+Z/6TvudoSxdJCCGEsBkSQHVRkZGRhFSnAZDrNQCcPS1cIiGEEMJ2SADVBWiNKB4cHEL30v0AKD3Pt1TRhBBCCJskOVBdgNagcQcyC4zjP/kNnGDJ4gkhhBA2RwKoLkBr0Lj4LfHcVi//SaY2EEIIIcwnAVQXoDVoXMmRP+e/c+5Fd2dPUlISZWoDIYQQwkwSQHVBNTUq4SV7QYGSwKGATG0ghBBCtIYEUF3QgcwChqn7QYEK3wGATG0ghBBCtIb0wuuC9u7baxz/KWDoNEC7p54QQgghtEkNVBdUl/+U5hyFo6M7oN1TTwghhBDaJIDqAur3sAsJCaFbznYAUmoMlCYkYDAYJAdKCCGEaAUJoLqA+rVLZY5eRFfvBx3kEIhSXAxIDpQQQgjRGhJAdQH1a5e2HTrM5bpTAKTrDIRZsmBCCCGEjZIAqguoX7t0dtVXAKTrw9G5+eLu7m7JogkhhBA2SQKoLsYtcxsA5SEjGdZvmOQ8CSGEEG0gAVQXkl1QRr+K2vnvgodOInLoWEsXSQghhLBJMg5UF7LzyEkGKscBcOt1vmULI4QQQtgwCaC6kNwDf6BXVPKcQsA71NLFEUIIIWyWBFBdiD5tKwDFQcMtXBIhhBDCtkkA1UUUlFUSUbIHAK++F1i4NEIIIYRtkwCqi9idksUQ5QgAXn0vlLnvhBBCiHMgAVQXkbY/HhelkmK9N/j3MY5OnpKSAshkwkIIIURryDAGXYR6PB6APP+huCtKo7nvZDJhIYQQwnwSQHUB5VXVhBQkgA5ce9WO/WQ6951MJiyEEEKYTwKoLmD97iOMUg4C4DtgnOYyMpmwEEIIYT7JgeoCErZswEcppgxnlJAYSxdHCCGEsHkSQHUBngW1tU8nnaJA72jh0gghhBC2TwIoO1dToxJRcRgAfcQYC5dGCCGEsA8SQNm5ozlFxFBbA+UeGWfh0gghhBD2QQIoO3fg4AFCldNUqToSsuXPLYQQQrQHuaPaufwjmwBIVUKp1rtYuDRCCCGEfZAAys65Ze0EINu1F6GhoRYujRBCCGEfZBwoO3a2pIJe5ftABwWu3akqLLR0kYQQQgi7YDM1UM899xznnXcebm5u+Pj4aC6TmprKtGnTcHNzIzAwkIceeoiqqqoGy2zYsIGhQ4fi7OxMVFQUK1asaLSdZcuW0bNnT1xcXIiLi2Pbtm0dsEcdLzElk4HKCQC69R8no4wLIYQQ7cRmAqiKigpmzpzJ3LlzNd+vrq5m2rRpVFRUsHnzZj766CNWrFjBokWLjMscO3aMadOmMX78eBISEliwYAG33XYbP//8s3GZL774goULF7J48WJ27dpFTEwMkydPJjs7u8P3sb3UTQycvOsXHJVq8h38GDHxShlpXAghhGgniqqqqqUL0RorVqxgwYIFnD17tsHrP/30E5dccgkZGRkEBQUB8O677/LII4+Qk5ODk5MTjzzyCCtXrmTv3r3G9a655hrOnj3L6tWrAYiLi2PEiBG89dZbANTU1BAeHs4999zDo48+qlmm8vJyysvLjb8XFBQQHh5Ofn4+Xl5e7bn7Ztm4cSPJycnUpG/l1sr/kBr0N7rP/arTyyGEEELYkoKCAry9vc26f9tMDVRL4uPjiY6ONgZPAJMnT6agoIB9+/YZl5k4cWKD9SZPnkx8fDxQW8u1c+fOBsvodDomTpxoXEbLkiVL8Pb2Nv6Eh4e35661WmRkJBGRvehRcQiAqsBBbNy4kYyMDIuWSwghhLAXdhNAZWZmNgieAOPvmZmZzS5TUFBAaWkpubm5VFdXay5Ttw0tjz32GPn5+cafkydPtscunZOTBdXEUjsCeb6zgeTkZFJSUixcKiGEEMI+WDSAevTRR1EUpdmfgwcPWrKIZnF2dsbLy6vBjyUlJCSQlLgdP6WQShzRG4bg4OCAp6enRcslhBBC2AuLDmPwwAMPcPPNNze7jLk9x4KDgxv1lsvKyjK+V/dv3Wv1l/Hy8sLV1RW9Xo9er9dcpm4btsK/Mg2AHM/+FJSUU1VVRaEMYyCEEEK0C4sGUAEBAQQEBLTLtkaPHs1zzz1HdnY2gYGBAKxduxYvLy8GDBhgXGbVqlUN1lu7di2jR48GwMnJiWHDhrFu3Touv/xyoDaJfN26dcyfP79dytkZYmNjKd32AQA1YSONQagMYyCEEEK0D5sZSDM1NZUzZ86QmppKdXU1CQkJAERFReHh4cGkSZMYMGAAN954Iy+99BKZmZk88cQTzJs3D2dnZwDuuusu3nrrLR5++GFuvfVWfv31V/773/+ycuVK4+csXLiQ2bNnM3z4cEaOHMnSpUspLi7mlltuscRut8np4koG1BwGHfj1Ox9Xg0GGMBBCCCHakc0EUIsWLeKjjz4y/j5kyBAA1q9fz7hx49Dr9fz444/MnTuX0aNH4+7uzuzZs3nmmWeM60RERLBy5Uruv/9+3njjDcLCwvjggw+YPHmycZlZs2aRk5PDokWLyMzMJDY2ltWrVzdKLLdmv+9MYq5S24TnGjnawqURQggh7I/NjQNlC1ozjkRHWL78XW5NfYRch2D8nzjU6Z8vhBBC2KIuOQ6U+Iv76SQAioOGW7gkQgghhH2SAMrOVFTVYCjcA4B71HkWLo0QQghhnySAsjP70s4QoxwBwK/fWAuXRgghhLBPEkDZmZQDO/FSSilTXFACBwJ/TS4sU7kIIYQQ7UMCKDtTcWwLALne0aCv7WSZkpIiU7kIIYQQ7chmhjEQ5vE6nQBAtlMPdBkZGAwGGUhTCCGEaGcSQNmR3KJyelceAh1k1XSjJCUFw5+DaMpAmkIIIUT7kSY8O7I3JY0opTbPybf/hVLjJIQQQnQQqYGyIzkHN6NTVM44BhN30XRLF0cIIYSwW1IDZUfU9J0AFPjFWrYgQgghhJ2TAMpO1NSoBOTXjkDu3HOkhUsjhBBC2DcJoOzEsdwiBqm1A2gq/n1l3CchhBCiA0kAZScOHzpAgJJPFXpSil1l3CchhBCiA0kAZScKkuMByHbrjbuPPw4ODnh6elq4VEIIIYR9kgDKTjhl7QagPGgIhYWFVFVVUVhYaOFSCSGEEPZJhjGwcRkZGRw8cpTwkn2gA6+oUThHyMjjQgghREeSGigbl5KSQvy+FAYpxwDw7XOehUskhBBC2D8JoGxcZGQk3RzLcVEqKdZ5oPhFyeTBQgghRAeTJjwbZzAY8K9MB+C09yDcdTqZPFgIIYToYBJA2biMjAzcsmtHICd0OIBMHiyEEEJ0MGnCs3EJB5LpX5MMgF8/yX8SQgghOoPUQNm4Cr0zvXSnAHCPiLNwaYQQwjpUV1dTWVlp6WIIK+Po6Iher2+XbUkAZWMyMjJISUkhMjISg8FA4Yna8Z9yHEIIcPe3cOmEEMKyVFUlMzOTs2fPWroowkr5+PgQHByMoijntB0JoGxMXQ87qM11Uk9uByDdMYKAP5cxDbKEEKKrqAueAgMDcXNzO+ebpLAfqqpSUlJCdnY2ACEhIee0PQmgbEz9HnaqqtK94ijooNirl3EZ0yBLCCG6gurqamPw5OfnZ+niCCvk6uoKQHZ2NoGBgefUnCcBlI2p38PuRG4Rg5SjAPj2Hm1cRoYxEEJ0RXU5T25ubhYuibBmdcdHZWWlBFBd1ZEjB5ioFFCFnjOOf1VFyjAGQoiuTJrtRHPa6/iQYQxsWH7yVgDSHXoQ0buf8fWMjAw2btxIRkaGpYomhBBC2DUJoGyYPjMRgCrDsAY1TjKVixBC2JZx48axYMECSxcDgO+++46oqCj0ej0LFixgxYoV+Pj4WLpYVkcCKBtVU6MSXLQfgORCJxITE43vRUZGEhUVJTlQQgghANiwYQOKopg1vMOdd97JVVddxcmTJ3n22WeZNWsWhw8fNr7/1FNPERsb23GFtRGSA2WjUnIKGUBtDdPJImdykpKIiYkBJAdKCCFE2xQVFZGdnc3kyZMb3Efqeq+Jv0gNlI06dngPXkoJ5ThS7tmDsLAwSxdJCCGsjqqqlFRUWeRHVdVWlbWqqor58+fj7e2Nv78/Tz75ZINtlJeX8+CDDxIaGoq7uztxcXFs2LDB+P6JEyeYPn063bp1w93dnYEDB7Jq1SqOHz/O+PHjAejWrRuKonDzzTc3+vwNGzbg6ekJwIQJE1AUhQ0bNjRowluxYgVPP/00iYmJKIqCoiisWLGiVftpL6QGysbUDZKZs38jUDuApruXDw4O8qcUQghTpZXVDFj0s0U+e/8zk3FzMv/a/NFHHzFnzhy2bdvGjh07uOOOO+jevTu33347APPnz2f//v18/vnnGAwGvv32W6ZMmUJSUhK9e/dm3rx5VFRU8Pvvv+Pu7s7+/fvx8PAgPDycr7/+mhkzZnDo0CG8vLw0a5TOO+88Dh06RN++ffn6668577zz8PX15fjx48ZlZs2axd69e1m9ejW//PILAN7e3uf2RdkouevamISEBI4cOUJofgIApQGDJd9JCCHsQHh4OK+//jqKotC3b1+SkpJ4/fXXuf3220lNTeXDDz8kNTXV2LT24IMPsnr1aj788EOef/55UlNTmTFjBtHR0UDDsQB9fX0BCAwMbDIh3MnJicDAQOPywcHBjZZxdXXFw8MDBwcHzfe7EgmgbFCNCj2qUkAH/v3GMnDsWEsXSQghrJKro579z0y22Ge3xqhRoxqMUTR69GheffVVqqurSUpKorq6mj59+jRYp7y83Djq+r333svcuXNZs2YNEydOZMaMGQwePPjcd0RokgDKxsTGxlKgujBw23EAVN9ebNy4Uea9E0IIDYqitKoZzVoVFRWh1+vZuXNno9GzPTw8ALjtttuYPHkyK1euZM2aNSxZsoRXX32Ve+65xxJFtnuSRG5jDAYDPq7gppRTqriSnKfKmE9CCGEHtm7d2uD3LVu20Lt3b/R6PUOGDKG6uprs7GyioqIa/NRvSgsPD+euu+7im2++4YEHHuD9998HapvnoHa+wHPl5OTULtuxdRJA2aCSY9sByPboR2Sv3pIDJYQQdiA1NZWFCxdy6NAhPvvsM958803uu+8+APr06cP111/PTTfdxDfffMOxY8fYtm0bS5YsYeXKlQAsWLCAn3/+mWPHjrFr1y7Wr19P//79AejRoweKovDjjz+Sk5NDUVFRm8vZs2dPjh07RkJCArm5uZSXl5/7ztsgCaBsTGJiIpysfUqpCoq1bGGEEEK0m5tuuonS0lJGjhzJvHnzuO+++7jjjjuM73/44YfcdNNNPPDAA/Tt25fLL7+c7du30717d6C2dmnevHn079+fKVOm0KdPH95++20AQkNDefrpp3n00UcJCgpi/vz5bS7njBkzmDJlCuPHjycgIIDPPvvs3HbcRilqaweqEC0qKCjA29ub/Px8vLy82nXbK/79CbHJrxGrO0rO5Hc4VN2d5ORkoqKiGCvJ5EKILqysrIxjx44RERGBi4uLpYsjrFRzx0lr7t+2n1nXxXiHRtL/6AkA/PuMorK89o8vTXhCCCFE55EAysa4VBfgrFRRpHji4RuBQVGk950QQgjRySQHysbkH94EQKZbH6g3XogQQgghOo8EUDbG48xeAE67Rli4JEIIIUTXJQGUDSmrrCay6igA/v3Os3BphBBCiK5LAigbcigthz7KSQAih0+ycGmEEEKIrksCKBuScXAbDkoN+bpuKN5hli6OEEII0WVJAGVDvM8kAZDmFEnGqVMWLo0QQgjRdUkAZUPOi/KnxMmffLxISEiwdHGEEEKILstmAqjnnnuO8847Dzc3N3x8fDSXURSl0c/nn3/eYJkNGzYwdOhQnJ2diYqKYsWKFY22s2zZMnr27ImLiwtxcXFs27atA/aoDeLuZEPsm+xwudDSJRFCCNHFrVixosn7cWe6+eabufzyyzv9c20mgKqoqGDmzJnMnTu32eU+/PBDTp06Zfyp/6UeO3aMadOmMX78eBISEliwYAG33XYbP//8s3GZL774goULF7J48WJ27dpFTEwMkydPJjs7u6N2rVVCQ0Px9Q8gNDTU0kURQgghmnT8+HEURWm3FpP23t65spmRyJ9++mkAzRqj+nx8fAgODtZ879133yUiIoJXX30VgP79+7Nx40Zef/11Jk+eDMBrr73G7bffzi233GJcZ+XKlSxfvpxHH320nfam7QoLC6mqqqKwsNDSRRFCCGFBFRUVODk5WboY58xW98NmaqDMNW/ePPz9/Rk5ciTLly+n/lzJ8fHxTJw4scHykydPJj4+Hqj9I+7cubPBMjqdjokTJxqX0VJeXk5BQUGDn44SGRlJVFSUzH0nhBDmUFWoKLbMT737T0sKCwu5/vrrcXd3JyQkhNdff51x48axYMEC4zI9e/bk2Wef5aabbsLLy4s77rgDgK+//pqBAwfi7OxMz549jZUEdRRF4bvvvmvwmo+Pj7FCoq5m55tvvmH8+PG4ubkRExPT6L63YsUKunfvjpubG1dccQWnT59udp8iImoHfB4yZAiKojBu3Djgrya35557DoPBQN++fc0qZ1Pbq/PKK68QEhKCn58f8+bNo7KystnynSubqYEyxzPPPMOECRNwc3NjzZo13H333RQVFXHvvfcCkJmZSVBQUIN1goKCKCgooLS0lLy8PKqrqzWXOXjwYJOfu2TJEmMNWUczGAwy950QQpirsgSet9A18+8Z4ORu1qILFy5k06ZNfP/99wQFBbFo0SJ27dpFbGxsg+VeeeUVFi1axOLFiwHYuXMnV199NU899RSzZs1i8+bN3H333fj5+XHzzTe3qriPP/44r7zyCr179+bxxx/n2muvJTk5GQcHB7Zu3cqcOXNYsmQJl19+OatXrzaWoSnbtm1j5MiR/PLLLwwcOLBBLdO6devw8vJi7dq1Zpevue2tX7+ekJAQ1q9fT3JyMrNmzSI2Npbbb7+9Vd9Ba1g0gHr00Ud58cUXm13mwIED9OvXz6ztPfnkk8b/DxkyhOLiYl5++WVjANVRHnvsMRYuXGj8vaCggPDw8A79TCGEEPahsLCQjz76iP/85z9cdNFFQG0+r9bD8oQJE3jggQeMv19//fVcdNFFxvtfnz592L9/Py+//HKrA6gHH3yQadOmAbVpMwMHDiQ5OZl+/frxxhtvMGXKFB5++GHj52zevJnVq1c3ub2AgAAA/Pz8GqXWuLu788EHH7Sq6a657XXr1o233noLvV5Pv379mDZtGuvWrbPfAOqBBx5o8Q98Lk1VcXFxPPvss5SXl+Ps7ExwcDBZWVkNlsnKysLLywtXV1f0ej16vV5zmabyqgCcnZ1xdnZuczmFEEJ0EEe32pogS322GVJSUqisrGTkyJHG17y9vY1NW/UNHz68we8HDhzgsssua/DamDFjWLp0KdXV1ej1erOLO3jwYOP/Q0JCAMjOzqZfv34cOHCAK664osHyo0ePbjaAak50dHS75j0NHDiwwb6GhISQlJTUbtvXYtEAKiAgwBhRdoSEhAS6detmDG5Gjx7NqlWrGiyzdu1aRo8eDYCTkxPDhg1j3bp1xt57NTU1rFu3jvnz53dYOYUQQnQQRTG7Gc0WuLu3fl8URWmQDwxo5gc5Ojo2WAdq74EdQWs/zC2nlvplr9tWR5W9js3kQKWmpnLmzBlSU1Oprq42dmOMiorCw8ODH374gaysLEaNGoWLiwtr167l+eef58EHHzRu46677uKtt97i4Ycf5tZbb+XXX3/lv//9LytXrjQus3DhQmbPns3w4cMZOXIkS5cupbi42Ngrz9IyMjJISUkhMjJScqGEEMIOREZG4ujoyPbt2+nevTsA+fn5HD58mAsuuKDZdfv378+mTZsavLZp0yb69OljrJEJCAjgVL3ZK44cOUJJSUmryti/f3+2bt3a4LUtW7Y0u05dDVN1dbVZn9FSOVu7vY5mMwHUokWL+Oijj4y/DxkyBKhNHBs3bhyOjo4sW7aM+++/H1VViYqKMg5JUCciIoKVK1dy//3388YbbxAWFsYHH3xgHMIAYNasWeTk5LBo0SIyMzOJjY1l9erVjRLLLSUlJYXk5GQACaCEEMIOeHp6Mnv2bB566CF8fX0JDAxk8eLF6HQ6Y01QUx544AFGjBjBs88+y6xZs4iPj+ett97i7bffNi4zYcIE3nrrLUaPHk11dTWPPPJIoxqbltx7772MGTOGV155hcsuu4yff/65xea7wMBAXF1dWb16NWFhYbi4uODt7d3k8i2Vs7Xb63CqaHf5+fkqoObn57f7ttPT09U//vhDTU9Pb/dtCyGELSstLVX379+vlpaWWroorVZQUKBed911qpubmxocHKy+9tpr6siRI9VHH33UuEyPHj3U119/vdG6X331lTpgwADV0dFR7d69u/ryyy83eD89PV2dNGmS6u7urvbu3VtdtWqV6u3trX744YeqqqrqsWPHVEDdvXu3cZ28vDwVUNevX2987V//+pcaFhamurq6qtOnT1dfeeUV1dvbu9n9ev/999Xw8HBVp9OpF154oaqqqjp79mz1sssua7RsS+Vszfbuu+8+4/ummjtOWnP/VlS1FQNVCLMUFBTg7e1Nfn4+Xl5eli6OEEJ0CWVlZRw7doyIiAhcXFwsXZxzUlxcTGhoKK+++ipz5syxdHHsSnPHSWvu3zbThCeEEELYq927d3Pw4EFGjhxJfn4+zzzzDECjHnbCekgAJYQQQliBV155hUOHDhl7hP/xxx/4+/tbuliiCRJACSGEEBY2ZMgQdu7caeliiFawu7nwhBBCCCE6mgRQQggh7Ir0jRLNaa/jQwIoIYQQdqFuzKDWDhIpupa646O1Y2GZkhwoIYQQdkGv1+Pj40N2djYAbm5uLQ5EKboOVVUpKSkhOzsbHx+fVs0TqEUCKCGEEHajbuL3uiBKCFM+Pj7G4+RcSAAlhBDCbiiKQkhICIGBgWZPRCu6DkdHx3OueaojAZQQQgi7o9fr2+1GKYQWSSIXQgghhGglCaCEEEIIIVpJAighhBBCiFaSHKgOUDdIV0FBgYVLIoQQQghz1d23zRlsUwKoDlBYWAhAeHi4hUsihBBCiNYqLCzE29u72WUUVca8b3c1NTVkZGTg6enZ7oO4FRQUEB4ezsmTJ/Hy8mrXbdsb+a7MJ9+V+eS7Mp98V+aT78p8HfldqapKYWEhBoMBna75LCepgeoAOp2OsLCwDv0MLy8vOcnMJN+V+eS7Mp98V+aT78p88l2Zr6O+q5ZqnupIErkQQgghRCtJACWEEEII0UoSQNkYZ2dnFi9ejLOzs6WLYvXkuzKffFfmk+/KfPJdmU++K/NZy3clSeRCCCGEEK0kNVBCCCGEEK0kAZQQQgghRCtJACWEEEII0UoSQAkhhBBCtJIEUDbiueee47zzzsPNzQ0fHx/NZRRFafTz+eefd25BrYQ531dqairTpk3Dzc2NwMBAHnroIaqqqjq3oFaoZ8+ejY6jF154wdLFshrLli2jZ8+euLi4EBcXx7Zt2yxdJKvz1FNPNTqG+vXrZ+liWYXff/+d6dOnYzAYUBSF7777rsH7qqqyaNEiQkJCcHV1ZeLEiRw5csQyhbWwlr6rm2++udFxNmXKlE4rnwRQNqKiooKZM2cyd+7cZpf78MMPOXXqlPHn8ssv75wCWpmWvq/q6mqmTZtGRUUFmzdv5qOPPmLFihUsWrSok0tqnZ555pkGx9E999xj6SJZhS+++IKFCxeyePFidu3aRUxMDJMnTyY7O9vSRbM6AwcObHAMbdy40dJFsgrFxcXExMSwbNkyzfdfeukl/vnPf/Luu++ydetW3N3dmTx5MmVlZZ1cUstr6bsCmDJlSoPj7LPPPuu8AqrCpnz44Yeqt7e35nuA+u2333ZqeaxdU9/XqlWrVJ1Op2ZmZhpfe+edd1QvLy+1vLy8E0tofXr06KG+/vrrli6GVRo5cqQ6b9484+/V1dWqwWBQlyxZYsFSWZ/FixerMTExli6G1TO9ZtfU1KjBwcHqyy+/bHzt7NmzqrOzs/rZZ59ZoITWQ+v+Nnv2bPWyyy6zSHlUVVWlBsrOzJs3D39/f0aOHMny5ctRZZgvTfHx8URHRxMUFGR8bfLkyRQUFLBv3z4Llsw6vPDCC/j5+TFkyBBefvlladqktlZz586dTJw40fiaTqdj4sSJxMfHW7Bk1unIkSMYDAYiIyO5/vrrSU1NtXSRrN6xY8fIzMxscIx5e3sTFxcnx1gTNmzYQGBgIH379mXu3LmcPn260z5bJhO2I8888wwTJkzAzc2NNWvWcPfdd1NUVMS9995r6aJZnczMzAbBE2D8PTMz0xJFshr33nsvQ4cOxdfXl82bN/PYY49x6tQpXnvtNUsXzaJyc3Oprq7WPG4OHjxooVJZp7i4OFasWEHfvn05deoUTz/9NOeffz579+7F09PT0sWzWnXXHq1jrKtfl7RMmTKFK6+8koiICI4ePcrf//53pk6dSnx8PHq9vsM/XwIoC3r00Ud58cUXm13mwIEDZidfPvnkk8b/DxkyhOLiYl5++WW7CaDa+/vqSlrz3S1cuND42uDBg3FycuLOO+9kyZIlFp86QdiGqVOnGv8/ePBg4uLi6NGjB//973+ZM2eOBUsm7Mk111xj/H90dDSDBw+mV69ebNiwgYsuuqjDP18CKAt64IEHuPnmm5tdJjIyss3bj4uL49lnn6W8vNwubnzt+X0FBwc36j2VlZVlfM/enMt3FxcXR1VVFcePH6dv374dUDrb4O/vj16vNx4ndbKysuzymGlPPj4+9OnTh+TkZEsXxarVHUdZWVmEhIQYX8/KyiI2NtZCpbIdkZGR+Pv7k5ycLAGUvQsICCAgIKDDtp+QkEC3bt3sIniC9v2+Ro8ezXPPPUd2djaBgYEArF27Fi8vLwYMGNAun2FNzuW7S0hIQKfTGb+nrsrJyYlhw4axbt06Y+/Wmpoa1q1bx/z58y1bOCtXVFTE0aNHufHGGy1dFKsWERFBcHAw69atMwZMBQUFbN26tcUe2ALS0tI4ffp0g+CzI0kAZSNSU1M5c+YMqampVFdXk5CQAEBUVBQeHh788MMPZGVlMWrUKFxcXFi7di3PP/88Dz74oGULbiEtfV+TJk1iwIAB3Hjjjbz00ktkZmbyxBNPMG/ePLsJONsiPj6erVu3Mn78eDw9PYmPj+f+++/nhhtuoFu3bpYunsUtXLiQ2bNnM3z4cEaOHMnSpUspLi7mlltusXTRrMqDDz7I9OnT6dGjBxkZGSxevBi9Xs+1115r6aJZXFFRUYOauGPHjpGQkICvry/du3dnwYIF/OMf/6B3795ERETw5JNPYjAYuuSQNM19V76+vjz99NPMmDGD4OBgjh49ysMPP0xUVBSTJ0/unAJarP+faJXZs2erQKOf9evXq6qqqj/99JMaGxurenh4qO7u7mpMTIz67rvvqtXV1ZYtuIW09H2pqqoeP35cnTp1qurq6qr6+/urDzzwgFpZWWm5QluBnTt3qnFxcaq3t7fq4uKi9u/fX33++efVsrIySxfNarz55ptq9+7dVScnJ3XkyJHqli1bLF0kqzNr1iw1JCREdXJyUkNDQ9VZs2apycnJli6WVVi/fr3mtWn27NmqqtYOZfDkk0+qQUFBqrOzs3rRRRephw4dsmyhLaS576qkpESdNGmSGhAQoDo6Oqo9evRQb7/99gZD03Q0RVWln7sQQgghRGvIOFBCCCGEEK0kAZQQQgghRCtJACWEEEII0UoSQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIUQLcnJyCA4O5vnnnze+tnnzZpycnFi3bp0FSyaEsBSZTFgIIcywatUqLr/8cjZv3kzfvn2JjY3lsssu47XXXrN00YQQFiABlBBCmGnevHn88ssvDB8+nKSkJLZv346zs7OliyWEsAAJoIQQwkylpaUMGjSIkydPsnPnTqKjoy1dJCGEhUgOlBBCmOno0aNkZGRQU1PD8ePHLV0cIYQFSQ2UEEKYoaKigpEjRxIbG0vfvn1ZunQpSUlJBAYGWrpoQggLkABKCCHM8NBDD/HVV1+RmJiIh4cHF154Id7e3vz444+WLpoQwgKkCU8IIVqwYcMGli5dyscff4yXlxc6nY6PP/6YP/74g3feecfSxRNCWIDUQAkhhBBCtJLUQAkhhBBCtJIEUEIIIYQQrSQBlBBCCCFEK0kAJYQQQgjRShJACSGEEEK0kgRQQgghhBCtJAGUEEIIIUQrSQAlhBBCCNFKEkAJIYQQQrSSBFBCCCGEEK0kAZQQQgghRCv9P6+YL/oWMIDTAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "v = s\n", "while len(v.experiment_data) < 1_000: # any condition on the state can be used here.\n", @@ -773,18 +318,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGwCAYAAABmTltaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACVSUlEQVR4nOzdeXhU5dn48e85k30nK9kgQAibISAqsqgoVFS01VrrWpdardalSq1vfdtqtb/Wvq611b5arWJfW5cu2ioWQRSVRUQwGNkhhJCNJGTfJpk55/dHnCNzOEkmyazJ/bmuXIfMnDnnmWEyc5/nuZ/7UXRd1xFCCCGEEB5TA90AIYQQQohQIwGUEEIIIcQgSQAlhBBCCDFIEkAJIYQQQgySBFBCCCGEEIMkAZQQQgghxCBJACWEEEIIMUhhgW7ASKRpGlVVVcTHx6MoSqCbI4QQQggP6LpOa2srWVlZqGr/fUwSQPlAVVUVubm5gW6GEEIIIYbg8OHD5OTk9LuPBFA+EB8fD/T+ByQkJAS4NUIIIYTwREtLC7m5ucb3eH8kgPIB17BdQkKCBFBCCCFEiPEk/UaSyIUQQgghBkkCKCGEEEKIQZIASgghhBBikCSAEkIIIYQYJAmghBBCCCEGSQIoIYQQQohBkgBKCCGEEGKQJIASQgghhBgkCaCEEEIIIQZJAighhBBCiEGSAEoIIYQQYpAkgBJCCCGEGCQJoIQQQgghBkkCKCFCUFVVFevXr6eqqirQTRFCCL8Kls+/sICeXQgxJKWlpezfvx+ArKysALdGCCH8J1g+/ySAEiIETZw40W0rhBCjRbB8/kkAJUQIysrKOu7Kq6qqitLSUiZOnCi9UkKIEcvq8y8QJAdKiBHC1a1dWloa6KYIIYTPSA6UEMKSJz1JVvuYu7WH2iMlPVlCiGAmOVBCCEuefDhY7WPu1rbax5PgKFg+nIQQworkQAkhLHny4RAfH09YWBjx8fGDOk5xcTH79u2jpaWlz+DIWz1ZQgjhC8GSAyUBlBBBxpMPh9bWVhwOB62trX3uU1dXR1lZGfHx8cbx6uvraW1tpb6+HrAOjjzpyRJCiNFOAighgownPT5WvUvmx5WUlFBRUQFAUVERAE1NTTidTpqamgDPgqNg6S4XQohgIrPwhPCh7du389JLL7F9+/Y+9zHPKBnqbLoNGzawfv16NmzYAEBOTg6xsbHk5OQY+4SFhaEoCmFhvddOEydOJD8//7hA7Nj2uHqy6urqBtUeIYTwBZmFJ8QoYNULZGbuBfIkv8kql6muro7u7m4j0HEdwxUsAUyfPp2SkhKmT5/e57HN7fHkOQghhL94ksvpDxJACeFDhYWFblur4TlzwLR3714qKiqIjIw0Ahbz48y5TABpaWm0traSlpYGYORIORwOY5+6ujra29uNIGvDhg2UlpZSXV3NJZdcAhw/ZGd+Dn09DyGE8Aerz79AkABKCB8qKipy67WxunIyJ4TX19fT3d3t9uFgfpw5lwnA6XTicDhwOp0A7Nq1i8bGRnbt2sWiRYuA43upqqqq6OrqcusKNyeRm58DSGK5ECJwrD7/AkECKCECzNzj4xpyO3borb29nc7OTtrb2wFobm5220JvUONwOIzcqY6ODnRdp6Ojw9gnPDzcbesKtlxb8Kx3yZNhRiGEGMkkgBLCSzwJPLKzs2loaCA7O9u4zdzj4xpyO3borbOzE4fDQWdnJwCaprltAVRVddta7dPU1ISu68aVm67rblvoHdY7cOCAMaxn9bw8KaMgw3xCCF/o6upy2waKzMITwks8mT3nym/au3evcZt5pl5qaioRERGkpqYa+zQ2NuJ0OmlsbARAURS3LYDNZnPbWgVirt4o19bcIwVw+PBh7HY7hw8f7vN5mfOrrGbFyNp8QghfCJYASnqghPAST+olNTc343A43IbePvjgAxobG2loaKCoqIgFCxaQmZnpdhxXz5Nrq6oqTqfT6G2C44Ojnp4et62V6OhompqaiI6O7vM4Vs+roqKC9vZ2Y3aeVU6U1I8SQvhCTEwM7e3txMTEBLQdEkAJ4QFPhqM8qSAeFxeHoijExcUZt7mGwVzbvXv3UlJSgsPhMI5nt9vdtla5S2ZWw3NmR44cQdd1jhw50ufjrCqam2fmWeVEBctyC0KI0Gb+/O3u7gYwtoEiAZQQHvBkYV5PgqyKigocDofRcwPHD7Vt3LiRnp4eNm7caMye8xWrQCw6Opr29najV2rDhg3U19fT0tJizMYzz8zzJCdKCCGGwvz568kFpD9IACWEB6yGo8x/1FYlCtatW0dJSQmFhYUsWrTIo14hT4behkpRFHRdd8udMjMHdObEc+jN23I9r6KiIsseKEkiF0J4g/nz12qCTCBIACWEB6yGozzJ8dm8eTNdXV1s3rzZ571JnvAkgDN/OFkFdOZeKaseqGCpFiyECG3Bmg4gAZQQQ2T+o3Y6ndjtdrduZXPAYk4GD0bmgElVVTRNc0tYb29vR9d1oy6VVQ9UsFQLFkKEtmDtzZYyBkJ4SVlZGV1dXZSVlRm35eXlERYWRl5eHuBZD1CwsSqZYE5q3759O2VlZW6LJg8l0TNYFgkVQgSPYC2JIj1QQnhJXl4enZ2dRrAEvTWVHA6HUVMpFFklbJpvq62txel0Ultba+yTkZFBQ0MDGRkZgPVVpPk2WSJGCGEWrCVRJIASwku6urrQdd2tuJu5ptJo0tzcjKZpRs2rd999l/LyckpLS7n66quB4xPxg/WDUggROFu3bjXW9gymCysJoITwwJtvvsmuXbuYNm0aF1xwgeU+Bw4cwG63c+DAAT+3LvCscrtycnJobGwkJycH6C3h4HQ63Uo4mAOmYE0WFUIETnFxMZqmUVxc3OfnbyBIDpQQHigpKaGzs5OSkhLjtjfffJOHHnqIN998Ezg+L2g0sZpWXF5eTnNzM+Xl5cM6tnmpGyHE6BKsuaMSQAlhwZzMbLVm3I4dO+js7GTHjh0BaWOwO3z4ME6n08j/io2NddtC75Xl1q1bKS4u7vM4JSUlVFRUuAWvQojRIyIiwm0bLCSAEsKCedZHUlISiqKQlJRk7GMVVImvmBPNi4qKSE5OdqtgXllZSXNzM5WVlX0ep7CwkJycHGPZGCHE6OJa8y7Qa9+ZSQAlhIWJEyeSn59v5OZ0dnai67pbjo+5Yrdw56ob5doWFxfT0NDg1tvU0NCArus0NDQA1mUM0tLSyMvLIy0tzX+NF0IEjWAdwpMkcjHqWU2vNyczW/0BB8t6TKHCNRvPtQXrIMtcvVxKGwgxelh9HruWkTp2OalgIAGUGPU8+YIeM2YMra2tjBkzxrjNl2vWjQSeBJg2m81t297eTmdnp1HhHIK3BowQwvtC6YIppIbwPvzwQy644AKysrJQFIU33njD7X5d17n33nvJzMwkOjqaJUuWsG/fPrd9GhoauPLKK0lISCApKYnrr7+etrY2t30+//xzTjvtNKKiosjNzeWhhx7y9VMTAdTXQrhSEdv3zAFUbGws0dHRbonmZlb/N/L/JcTIYE6fCGYhFUC1t7dTVFTEU089ZXn/Qw89xO9+9zuefvppNm/eTGxsLEuXLnUrbHjllVeyY8cO1qxZw1tvvcWHH37IjTfeaNzf0tLC2Wefzfjx49m6dSsPP/wwv/jFL/jjH//o8+cnAqOvhXCPnR3W3t6OpmluPSNi+GJiYlAUxS1JVFVVt2RRc0K/1bIOwbrUgxBi5AqpIbxzzz2Xc8891/I+Xdf57W9/y89+9jO+8Y1vAPDnP/+ZjIwM3njjDS677DJ27drFqlWr2LJlCyeddBIAv//97znvvPN45JFHyMrK4i9/+Qvd3d08//zzREREMGPGDIqLi3nsscfcAi0xcngyRNTS0oKu67S0tPirWaNCTU0Nuq5TU1MD9NZ8ampqYvv27SxatAiAxsZGamtrSUlJAaz/v2SYT4iRQYbwAuDgwYPU1NSwZMkS47bExETmzp3Lpk2bANi0aRNJSUlG8ASwZMkSVFVl8+bNxj6nn366W72JpUuXsmfPHhobGy3PbbfbaWlpcfsRwcGT4Z6srCwWLlzo9seanZ1NSkoK2dnZAEYv5rG9mWL4zAU4Xb2Ax/YG7ty5k87OTnbu3Nnncaz+D4UQoUeG8ALAdQXrWrjUJSMjw7ivpqaG9PR0t/vDwsJITk5228fqGMeew+zBBx8kMTHR+MnNzR3+ExJe4clwz7p16/j973/PunXrjH0++eQTSktL+eSTT/zd5FHNKvHcXC5iw4YNrF+/ng0bNvi/gUII8aURE0AF0j333ENzc7Px46q8LALP6mrGfFtJSQmNjY1ula6rq6vRdZ3q6mq/t3moFF2DIKuT4g2Korhtm5ubcTgcbuUQJIlciJHBk3zGCL2LGD3w+aghlQPVn7FjxwJw5MgRMjMzjduPHDnCrFmzjH1qa2vdHudwOGhoaDAeP3bsWI4cOeK2j+t31z5mkZGRREZGeuV5CO+yWpy2rq6OsrIy4uPjycrKorCwkJKSErdK1+a6T6qqommaUa/In3RNI1JrI1ZvI4FmPnnqu5zj3EUqTUQrdpp/8UeidDv3Kr3lFDq0CBp/8Rzf0yNo16OoYwyfPlOFOiaPVGcV7WoCnfQ9yy3YmMtFxMXFoSgKcXFxxj6hlDchhOiba0JPfwWKx2kHuVxZxdvafD+27HgjJoCaMGECY8eOZe3atUbA1NLSwubNm7n55psBmDdvHk1NTWzdupU5c+YA8N5776FpGnPnzjX2+elPf0pPT4+xRMeaNWuYMmWKWw0gEbpca6tB7/IiixYtMhKWXeLi4mhrazO+pK0Wy/UVXdeI0VvI0I/w2cPnM679c36iNIPy5Q51HN93rHz1zxilmxi6GaP03l5ABVSXQDWc+OXjGvQ4vnh4I1Md8dQp6TSpKT5/Xt5SXV2Nw+Fw6x305ENXCBH89u/fT3NzM/v37z/uc9mliN2oik6VFtjVCUIqgGprazOuMqE3cby4uJjk5GTGjRvHHXfcwf/7f/+PyZMnM2HCBH7+85+TlZXFhRdeCMC0adM455xzuOGGG3j66afp6enh1ltv5bLLLjOuWq+44gruv/9+rr/+ev7rv/6LL774gieeeILHH388EE9Z+ICrp8m13b59u9ED5Vqnzd9FMnVdJ15rYPOT13GLvpY0V8D0ZS+1XQ+nVM+kWk8hMmcmX1S20k4sPUTwzUuvIDImgedf/D/QdWw4+fY3L+T1f7xKBHbi9Damj40msq2CuPZDTFIqSVbaSG7fzAm95Zfo0sPZ8dAn9ExaTLTeRqcS12dbAy0uLo7W1la3HqiKigra29uNwNiqmrEQIvjpuo6maX0u29Jae4gT1INoukKlGth845AKoD799FPOPPNM4/fly5cDcM0117BixQruvvtu2tvbufHGG2lqamLhwoWsWrWKqKgo4zF/+ctfuPXWW1m8eDGqqnLxxRfzu9/9zrg/MTGR1atXc8sttzBnzhxSU1O59957pYRBiLL6Ii0qKnJb0HbdunU0NTVx9OhR43a73e629ZXy/V9Q6NjGArWYDLUJ6gEFWvVoSvSJKJPOJGnqGbz6n/Uoam+0c9/37+Pd++83jjF5Ru+sUkUJAwU0wplSNBf7G6uwA62kc+Mt9wFw//3349R1orVWFhSMoXPPOgrVA2QpDczo2Awlm5kF7HPm8AmFtNaV+/T5D0VSUhINDQ1uCzvn5OTQ2NhITk4OYD2kZxUoCyGCS0dHB7qu09HRYXl/6YcvUwQU6/motsAu5B5SAdSiRYv6XUxQURQeeOABHnjggT73SU5O5q9//Wu/55k5cyYfffTRkNspgofVF6k5qHKVnfBX+Qld14nVGtn20HnMat/IOFvve7pVj2bPmDPY0JBMk5oOqsp91/QGPsqqTV47v01R6LYlcPpVP+P++51s1BcSpnVwel44Y6rWMb1nJ5PVCiZTgfPJVZynT6GYGdSo2V5rw3BUVlbS1dVFZWWlcduOHTtoaGhgx44dLFq0yHJIzzx0K4QIPq5ixX0VLY7e/xYAn+nT/NamvoRUACXEYFkVWHz33XcpLy+ntLSUq6++2m/5TbqmMcZRzWJlEzPUMugAFPhYm86nFHFUTee+Ox5g5TG9S/6gKgqaLZYzvtsbrN17371kOQ8zV/mc2ep+TlZ2czK7OarH89mLXUxedrtf22dmtShxQ0OD29Y8pAfHD90KIQLPfEHbX/pEpN5BfucXoMBhddyxqZ8BIQGUGNGsZuEdPXoUp9PJ0aNHgd6eS13XjWnyvhDlbGLnrxdyu20H0JtzVJJ6LmPPvpN3XnnTZ+cdCptq44iax7/0PGK+fSFbXv4VZ6lbyFIaSDn4R3p+/ycW6rPYrhTSqiYHurlAb89yfX09ycm97UlMTKSqqorExERjH/PQrRAi8IqLi9m3bx8tLS0D5itmahWoqs7n2kRQI/rd1x8kgBIjmlXeS35+Prt27SI/Px/wbQBl0zqZp21msW0bOHoDp7f009ijTuOnt/36y72CK4ByURSYMr2IV8JmsFefQbKzmiURxZzg3MViZSuL2coGZyHVu62XV/KncePG0d7ezrhx44De0iPd3d3HlSQRQgSX9vZ2urq6PFpntJC9AHyqT8eH17sek0KaYkRz5b0cWySzq6sLTdOMZVl8MYTX3d3NRy/8Nz/mWRbbtqHpClvHnMdjyvfYYZuFQwmtumE2BZrDMpnxs01sW/pP1jhPQtMVFqglZL7yNRY73yVOs17qyB9KSkro7Ow0/p/tdjtOp9NtEoAU2xQi+MTGxhIVFUVsbP+16SL0ToqUfQCUq+P90bQBSQAlRrTExERUVXUbyqmvr6e7u5v6+nqfnDNMa+fg/8zntENPEak42KJN5VG+y5wfvkyPEu2Tc/qLoiicOG8xG8NO5//pN7HaeTKarrBQ/ZwfKS9wmvMDmmsO+r1d5ryJ7u5uty14VuFYCOFf5nVH+5KpVWJTdHarkyBILkAlgBIjmtVQTnt7O7que9RlPBi6rjPBsZu7+BNTnPtoIZY/at/kbfVcOtTEgQ8QYnRbNJvCTmPXN1ezxtlbSuEsdSsRT5/CZy/+mDDdPzW0AKNUiWubn59PdHS0MUwL1sv6SK+UEIG1d+9eKioq2Lt3b7/7zfhy+K4m6+ygGL4DCaDECGdVlM1VX6SvOiNDUVleyje0N7na9jaRioOS2Hk4btpEtS2PoPlr95EZRaf09khpN/KpVkA03cw++Edu0P9MrvOgX9bncw3HurY2m43IyEhsNpuxT1ZWFgsXLnRLVJVeKSECq7q6Grvd3u+6o+F6F7OV3gAq49Rv+6tpA5IASoxoVlNiw8LC3LbDFeVsJPL5RcxW99Oix/BH7ZsU3vUfkscGxzi9vzhtcbypLuPD2Y9TQQbpSjPfVV/n69qb1B0sGfgAXrR3716amprcrmqtepvMvVLSIyWEf3lyQTtWqyJM0dij5TJ1xmx/NW1AEkCJkOXJl52u68aPi9PpdNsOla7r5Dr28SPlRVJpZq+Wwx+4alT0OvVFVRRO/8Z3SbxrGy84l9GpRzBb3U/SijOY4dyOqvtnrTqrWlHFxcVs3bqV4uJi4zZzr5T0SAnhX55M4pn+5fDdJ/oMn5abGSwpYyBCllWVcbPOzk63LXhn1l1razOnOT9ksW0rANvHnM2/G6eiKfInBRAfF0d52BQe0vJY7PyAhbYv+JaylkNaCW8oSwPSJqvp0q+88goHDhxg0qRJXHbZZZaFV4UQvpOQkMDRo0dJSEiwvN/e1sCJyh4ADip5fmzZwKQHSoSs+Ph4wsLCiI+P73OfxMREFEVxm4U3XHVHqjn827NZbNtKj27jRe18im5/TYInK2ok79q+xoezHuGInsR4tZbbeIni527FafdeDpqnzEtB7d+/H4fD4RaIm/OkZFhPCN9pampy25rtW/dXIhQn+7RsNDXGfw3zgARQImS51jprbW01bjN/2XV3d6Prutt09uFQNDttTy9hunM3zXoMT3EFZbaCUTtk5wlFUTj9whv4g3Itbznnoyo6syr+j6qHTiFBO+q3dhw6dAi73c6hQ4eM2+Li4ty2VmRYTwjvsLoYcU30OHbCx7FsO/8JwCZ9ZtB9zMolswhZVsMt5mG9xsbe4o6u7XDYtHa+x2uM1RupU1J4Ub+Q9hFYnsBXVEXlU9up7HZO4hr1TXKdh7mN/+MN5yJ2qjN9fn6rRUqzs7Pp6uoyatBYVa6XYT0hvGPDhg2UlpZSXV3NJZdcAkB0dDTd3d1ERx9fI6/9aCUF7dtAgYPqBH83d0DSAyVCltVwi6tHyuHoTVb2VpXxSGcTt/F/jFUaKbflYrthjQRPQ6Ao0B6WhuOmjWyMPpMwReNb6ntcqL1JU9WBALXpq8vadevWceDAAdatW2fcZvU+E0IMXl1dHXa7nbq6OuM2qwkfLvvXvYRN0SnRJqArUX5rp6ckgBIjyq5du2hsbGTXrl3AVzkv5tyXwfhswzvcqvyVRKWDEm0iKbe9T3LWJK+0d7TKzMxm3t2v84R2Oa16NDPVA6h/PI2xzsN+bUdTUxN2u93IvzDXkxJCeE9aWhoRERGkpaV5tH/s3jcA+EQvDLrhO5AASoww3giYjhXubCF/9TXEKV1s0abyL/V8YpM8++MX/VMUhSZbJo9zHZ9rE0mgne+rf2OucyOqn6qYNzQ0oOs6DQ0NACQnJ6MoCsnJyX45vxCjyYIFC1i4cCELFiwYcN8ovY18+040XQmate/MJIASI0pubi5RUVHk5uYO+1hhzlZuUf5KvNLJZ9pkVqln45SZdl6nq1H8Xf0G76deAcA56sd8W3uDo4f3+Pzcqqq6bYUQwWGc1jvZoyS8EFUND3BrrMmnhhhR9u3bR2dnJ/v27RvWcWzONm5WXiZR6WBfxHRWqucEtEyBK08nmIrIeZNNUTjz1v/lIec1HNXjmaIeJvxPZ7Jv/d/92g5zj5QQwnsGM6P1JHYA0DTp675u1pBJACVChif1eNra2ty2Q7Fv13ZuUl4hWWljpzae3NvexqkE9grIk6FJc2+Kq/aVN2tg+VpnWAq/5xq2fzmkN/nd65nhLAZ9eJMA+mJeRiI8PNxtK4TwHk9q9wHE6s1MVivo1m1MPvNKP7Vu8CSAEiHDfPWyfft2XnrpJbZv3+61c9TUVBD16rdJVVrYreXyunoBUfFjvHZ8b3FN+T126q95xqGrPtaxdbJCgaJG8E/1G3yQeCEA31Lf41ztHcJ0u8/PHR8fj6Iobh/wUkhTCO/Yvn07ZWVlA35m52kHAfg8ag5ZY4N39qsEUCJkmBd+LSkpoaKigpKSrxaqHU4SuaZrHH32W+RSQ5Wewj/VC3AoEd5p/DCZe5dchUH7KxDqrRIOgaAqCqffsYL3Z/yKTj2CU9RdXKn9nbqDX/j0vK7yF64tWK+hZyZBlhADO3z4ME6nk8OH+5ltq+ucQu/feWfBRX5q2dBIACVChrkeT2JiIqqqemWIStdhoXM9M5y7aCWGv3ARPQGqO+JJYrPVPmFhYW5bq7ypyMhIt635McFEURTOvORWHtWvo1JPIU89QtSLXyNVq/bZOTVNQ9d1t6Czvr6e1tZW6uvr+3ycVCsXYmBWFyhm8Xoj49RaOvUIpp95qeU+wZITKgGUCFlHjhyhu7ubI0eODOs4ug5TnJ/zNdundOs2as97jg7VemHLQDH3rFl9gJg/nAoKCggLC6OgoMDYJyIiwm2bnp6Ooiikp6f7+BkMndMWy7NcwWdaPvF0cBOvMNm5q/c/zsushj3b29vRNM2oYG7V22TuHRVCDE2+3ltQd4NWSEpyiuU+3i5XM1QSQImQYf7iMgcDQ5XuLOdy27sA7Jv7Kyadsmx4DR0kT3qczMGQuScJjk+Attlsxo+LJz1OwXJ1dyxFDecN9XzWx5+DTdG5Qv0P87QNaD3eWePQxWpo1PyaWQ3p1dXVUVZW5lZhWYjRbrBD27qzhwVKb37U50zrc79gKT8iAZQIGZ7kogzWZ5ve5Xr1DQD+pi1mxnk3e+3Ynpo8eTJhYWFMnjwZsA5gLrvsMn76059y2WWXAdb1rubPn09ycjLz588HepdGcDgcbkskmAMEq2n7wToTTVVU5t/xMs86v4FTVzhb/YS9jy2lq9V7JQesrmybmprQdd2oVt7e3k5nZ6fbmnpW+XhCjHaD/czev/FfpCgtHNXjabL1XbA4NzcXRVG8Uu9vOIIv8UEID9XX1+N0OvvNTemPpjkY+86NRCoOPtJm+mVBWyuHDh3C4XBw6FBv4ThVVXE6nQP2SNntdrfhuUWLFrFo0SLj94yMDBoaGsjIyDBuMy9VEh4eTldXl1uwFBYWRnd3t9HjEhkZid1ud+vtChTVplIVNonfOq7kJvVvTO3cRvlvzyBKP5cuJdYn5zSXOujs7MThcNDZ2WnsU1hY6LYVQvRebHR1dbldbPSn89OXAFinnYgtrO8e8LCwMCIiIgKeuyk9UCJkzJo1izlz5jBr1iwA4wvs2C8yT2m6znn6GjI5SpmWwQfq6fhisaWoqCi3rWs47dhhNfNsOaseIHPJBk+mAzc3N6NpmlsPlGsNKtc2NzeXyMjIgF/JDVZbWDq/1a+mljGMc5Zzvf4y8Zp/il9aDfOlpaWRl5fn8RpfQowGsbGxREVFERs78MVNmG5nStN6AHYrU/rdt7CwkJycnIBfsEgAJUKGOc9kOImEU5xfMFfdRSeR/E05H6ePyhWYgyOn0+m2BcjOzsZms5GdnQ1AXFwciqIQFxdn7GMeIjp69ChOp5OjR4/2eW6rD5nY2FgiIyOND7S0tDRiY2PdvvjNbfRWrpm3OWzxdFyzmv1KHqlKCzfxV1Kdvpuh5xIWFoamaW5XvzILT4jjZWdnk5KSYny29SdLO0yk0sNeLZsetf+Aq6ioiKuuuoqioiJvNXVIJIASIWPLli2UlZWxZcsWwDoY8USco5YrbGsAODjvQTpU31XqNrfRFbgce0VWVFREXl6e8WEwbdo0xowZw7RpXyVRmoOh/Px8oqOjyc/PN/YxJ2xa9YqYj1NRUUF7ezsVFRXGPllZWdhsNqNcRGpqKjabjdTUVGMfqyT2QMibUMCY295jkzaDGKWb7yuv8sVbT/n0nIcOHULXdWPIFWQWnhBWKisrOXr0KJWVlQPue9KXtZ826LODagJLfySAEiHDVZ9nOFNXD+z9ghvUfwLwlraA6Uuv91bzLJO/zbNF0tPTsdlsbmUDzB8yrqUOju3hMF9xjRkzhvT0dMaM+apKujlh06pXxBxUWfVSmQO61NRU4uPj3QKoGTNmEB0dzYwZM/p87v6SkpzCKvVs/uOcS5iiccKn/80U5xc+KXPQF09m4UmxTTHaeFJDDSBab6VQLcWpK5SpE/zUuuGTJHIRMlpbW9F1fchLk3TZu+l69XskKB2UaBP5TD2J873YPqshxcjISHp6eoyemra2NjRN63etPlcvRn+9GVb7mD+srPZxBVXQ29Nk1UvV2tqKw+EwXufs7GwaGhrcuuEPHjxIZ2cnBw/2LrkQExNDe3s7MTExxj6KoqDrul+CKlVR+Ng2n2ZnPJfZ3uUydTUrtTY+VU/x/rlUFU3T3JL8N27cSF1dHa2trX0OK5hfeyFGurq6OpxO54DlPSZqB0CF7ZEnovYE1+zf/kgAJUKG3W532w7Wpj//jDOdu2jTo3hb/RqaYhv4QcOUlpZGZ2enW/J2a2urW8Aya9YsEhISjEAnKytrSF+w5uRmq+OYg6ri4mL27dtHS0uLsa95n2N7yFzBgflc5tl90JvL1draauRy+TqgUhWF3baZvD9hFmeUPsoydSNxWgfOHju2cO8NNVotkeNJPp4ngbEQI4knS06h68z/svZTx7Rvw+fDK4zsTzKEJ4KS1XCH1Qw2T4U7W1lY8RwAr/poyrsrUDg2+dtswYIFxo+LeYkaK+bXw2p47uSTTyYvL4+TTz65z+N4ci5PhqNSU1NRFMUY1ktKSnLbwvEfnlb5X96mKHDmNT/nd9pldOs2zlCL2fP4eXR3eG9BZatZkq6eN9fWFwtdCxFqPCncm6TXkaUcpVWPpvCsKyz3CcbiviA9UCJIWQ13DPWPSNOdXM6bhCtOShLPpKI5z6ttdcnOzubAgQNuQ13mITurXqGqqipKS0uZOHFin4GN+fWw6s0oKioa9KwUq+E514w/1zHNPWRw/JInrp6lY3tgenp63LZRUVG0tbUZJR18qTkskyecV3ELrzC941P2/fZsbPpZXpltGRMTQ3Nzs9twZXl5ObquU15eDhz/GoJnQ3ievBeEGEmm6XtBgQ/02ZyfaL2Els1mw+FwDOni2ZekB0oEJVcSdXx8vHGbJwtRmuk6zHZuY4JaQ72SzKTvPuu1ek/mHrGKigocDofbjLa4uDhUVe23V8qTKfDmWV6e9CR5wmqWjCc1VgoLCxkzZoxbAcljf4fje2Vc1c6PrXruSx22FH6nX0WTHsvk7p1cqr1OhD74mmFmrrpax9bXMg/hWb2GnszUk3IIYiQZqFZfd0crC5TPAfiCqX0ex3zxHCwTMqQHSgQlcyIzDK0HKs5Zx4W2jwBoOef3pCZ6r9BheHg4TqfzuCGdY4d2UlNTaWxsdJvBZuZJbsxQ86KGwtyTZdVzYq567lqr79jnMGfOHEpKSowgwip3yNfstkQqv/FPut+4jMlqJVfpf+cvfNPn5x1qYU3JkxIjyUC5gXvWvkih0sUhLZ3OfsrJmMvBBMuEDAmgRFByBU/H9jaZh4QGUld7hO+obwLwb+00vj7Xm3PuenuXurq6jN6lRYsWuQUM0Nv7oqqq23CPmTk48ucwjtXwnJknX+pWyejl5eU0Nzcbw1pWs9f8YcasUzkQ8yZdL13EOLWOa/S/UVt2Del5M3x2znfffZfy8nJKS0u5+uqrAdiwYQOlpaVUV1dzySWXWD7On4GyEN40lM+t6JIvl27RT0Lt58I4KiqKjo4OY/g/WC40ZAhPBKWdO3fS2NjIzp07jdsG24Ox+6XlZChNlGkZbFdne72N5iFFq14Hq0KVA/HnMI63ksqtFtg9cuQITqeTI0d6Z9WMHz8em83G+PHjjX0SExPdtr4yqaCQF5RLOaBlkqk0YFtxHtV7t/nsfJWVlTidTreh0ebmZnp6etyG/oQIVeZhtMEuHFyzbxv53bvo0W0cVCf1u29GRgY2m81Y19NbKQzDJQGUCEoOhwNd1weV73SsSGcjp7W8BcC/lbPRlOF1tlotZ2LuVt6wYYPx45KTk0NsbCw5OTkenyvYqlqbl5GB4z88Y2NjiY6OdpthZ/7QW7JkCYsWLWLJkiXGPtnZ2URFRXm01MOwqRH8n/It9mg5pNBE9F+/TpzW5JNTWQX7GRkZREREGK+HJ3kcwZLrIYTZcC/0Kt97BoANeiGK2n/tp+joaMLDw4mOjh7SuXxFhvBEUEpKSqKlpcVtWrynNF3nUv4DwH+0eTTahp/3ZDWWb56ia9XDYFVVfCDBNoxzbKK4izkHwWoocMmSJUaXPnzVkxUfH288v6amJux2O01NTX55Looazsv6N7lM/Q9TtX3cyMs8p32bFjXFu+exyNerqKigq6vL6I30JI8jWHI9hDAzD6NZzejti6o7yK/uvcDdqg+8IPBgFiX2JwmgxIgzxfkFE2w11Ctj2KrO8coxExMTqa+vdxtqMgd5J5988nE5UMEyVj8cVuURzM/LKugz37Zhwwbq6+tpaWkxjtfW1oau6/1WZvc2RQkj/dZ3+OIPF3CCYwc36q/yrPZtr57DKl/PHIRbzTQ1GwnvHzEymf++rQru9iVDqyRRbaOaFFpsqQMOhXmSqxkIEkCJoFRfX4/T6RxwDSUzm7OdS9T3ADh6xoM4P9g7pPPHxMTQ0dFhJH+np6fT1tbmtoZddHQ0YWFhRreyVaARbL1J3jKU52U1LJuZmUlHRweZmZlA79I3drvd54sUJyenYLvtbbY8upST1d3coL/KgS3LfHrO6dOnU1JSwvTp0wHrmaZmI/X9I0aeyspKmpubPVw4uLd0wb7MC1FrBp5VHax/B5IDJYLSYGfcQe9adxeymnDFyUfaTKYsunzI5zfXMLLqQrbK+xF9y8zMJDIy0giW4PgeKH9WHE5MTGKlupSPtWnEKnayVn6HMVqtz87X0dGBpml0dHQAwZfrJsRw1NfXo+u6RwsHn6juQ9MVxi250U+t840RFUD94he/QFEUt5+pU78qztXV1cUtt9xCSkoKcXFxXHzxxcYMIZfy8nKWLVtGTEwM6enp/PjHPx5yIrMYOlcPxGB6Ij7+2yOcoB6kRY9mvbpg4Af0w/Ul59pmZ2eTkpLiNr4/a9Ys5syZw6xZs4Z1rtFiwYIFLFy40G0Zm8TERMLCwoyh0eGudzhYimJjlbqUjdoMounmRl4l2embtbgOHjxIU1OTsQCzECOJJ+tBAuRr+wAojpxD3qS+i2eGghE3hDdjxgzeffdd4/djk3fvvPNOVq5cyd/+9jcSExO59dZb+eY3v2nMmnI6nSxbtoyxY8eyceNGqqurufrqqwkPD+fXv/6135/LaDZQBVuz6upKZu17EhR4XV9Ctzq82RrmopiffPIJ1dXVdHZ2GsN0wdqtHErS0tKoqakxSj9kZGRQU1NjzFTzB0VReUf9GpGRccyxb+ZGXuOPTus6TcNhrmBuVTtLiJFM0Z2cofSWD7HP/E6AWzN8I6oHCnoDprFjxxo/rgrQzc3N/OlPf+Kxxx7jrLPOYs6cObzwwgts3LiRjz/+GIDVq1ezc+dOXnrpJWbNmsW5557LL3/5S5566qn+V5MWw2aerm0uETCQfa/8hCSlnb1aDmUD1BTxhPlq6ujRo+i6ztGjR4d97NHKatqzuU5WdHQ0NpvN79OVVUVl+h3/4kOtiEilhxuVv7FnwxtePYe5V9UqZ8S8CLGUMRDBwJP3oSdLbaVp1aQoLdTpicxafJnlPsNZNN7fRlwAtW/fPmOx1SuvvNKogrx161Z6enrcatBMnTqVcePGsWnTJgA2bdpEYWGh29Xv0qVLaWlpYceOHX2e026309LS4vYjBsf85eqqVu1J1eowZxsLmnorjv9HOROU4b+tZ8+eTXJyMrNn9xbgnDFjBtHR0cyY4bvq1SOdVc6Pec04c/FNwAimfB1URUdH8556lhFEjV/9Pa8GUa48L9fWKijfsmULZWVlbNmyBZC18URw8OR96MkQnit5/D3tJKKjrRcVz8jIQFEUv/ZCD9WIGsKbO3cuK1asYMqUKVRXV3P//fdz2mmn8cUXX1BTU0NERMRxdYVcQwaA5dCB63fXPlYefPBB7r//fu8+mVHGvHSLp0nkmq5zLu9jU3Q+T1pMU/Pgaz5ZLTFiXtttzpw5jBkzRhJ+h8FqyNM8czEjI4Py8nK3v0NzvS1fUhSF99SzQNM5Xf2c8au/xxj92zTavP9hHhERgd1udyvOai6XIWUMRDDwxvvwSOnnnKzuRtMV9qhT+txvKBOIAmVEBVDnnnuu8e+ZM2cyd+5cxo8fz2uvvebTq9d77rmH5cuXG7+3tLSQm5vrs/ONRPv376e5uZn9+/e7LVI7kGStmhPVfXQSwbhLH4U//nnQ5w4LC6O7u9vtC9pcwFAKGvqHufgm+P8DtTeIWkxsVAxzuj7mRl7jGeelNNnSB37wILiWvTl2+ZuoqChUVTXW/JI8OxEMrN6Hg137rmL178kA1uuF6Dbr3ifo7cFy/QS7ETeEd6ykpCQKCgrYv38/Y8eOpbu7+7iKx0eOHGHs2LEAjB079rhZea7fXftYiYyMJCEhwe1HDI7VUikD0XSNS5V3ANiTfwNJmROGdG6rISLzcJNMOfcPqzWuMjMzsdlsRvmDwQzvDpWiKEz/4RtsjTqVKKWHG5XXSNT6XgtwKKyWe9m/fz+dnZ1GsC5EsNqwYQPr1693W7qqL6rew5Sa3jSLzczqd19XCkwopMKM6ACqra2NAwcOkJmZyZw5cwgPD2ft2rXG/Xv27KG8vJx58+YBMG/ePEpKSqit/aoWzJo1a0hISDCK34ngMdW5g7FKIxV6Kidc8rMhH8dcsgCO/yIPlsUrRyPzGnq5ubkoiuLzXt7o6Gim3/4667VCopXeEgf7t6z26Tnj4uJQFIW4uDifnkeI4aqursZut1NdXT3gvrlaGXF0UqqNpX2AZZMGu2h8II2oAOquu+7igw8+oKysjI0bN3LRRRdhs9m4/PLLSUxM5Prrr2f58uW8//77bN26leuuu4558+Zx6qmnAnD22Wczffp0vvOd77B9+3beeecdfvazn3HLLbf4vDLyaNfU1ITT6fR4TbSDpXu5SF0HwFv6WYRFxgz53FazR8yzoazIDCn/MAevYWFhRERE+CUnKjomhnfVxWzSphOjdJO18iriNd/NxIyMjERVVfm8EUHF6rPOPCmiT7rO6XwKwHv63AGL5LqWNupviaNgMaJyoCoqKrj88ss5evQoaWlpLFy4kI8//tioMfP444+jqioXX3wxdrudpUuX8oc//MF4vM1m46233uLmm29m3rx5xMbGcs011/DAAw8E6imNGoMtoFj5+n1MUHoo1iZxRB148cpjxcbG0t7eblQQj42Npa2tza2ieElJiTG1vq91nSQvKjBycnJobGwkJyfHL+dz1YlSNZ256i5u5FWe0S6jTU32+rlqampwOp3GpJU333yTXbt2MW3aNC644AKvn08IT1h91nmam5ik1zNRraZdj+SwLW/AXpuZM2cet6ZosBpRAdQrr7zS7/1RUVE89dRTPPXUU33uM378eN5++21vN00MYDABlKp1MK/lP6DAOmUBDHLZD/O55syZc9wfrOvf/f0RywypwDAviQLWMym9SVFs/Ec9m5jwcAp7PucG/TX+qF3q9fOY35vFxcVomkZxcbEEUCJgrD7rFEVB1/UBe5Rm65+DAsXJ56A2DVzbybXAtj96mIcr+FsoxDF0HU7XN2FTddZrM2m2pQ76GOYx9rq6Otrb26mr+ypJ2GphYDOZIeUfnsz2MQdQERERdHd3D2pSwkAUxcb42/7NZ48sYba6n+/pr1G+8wrGTT/Fa+ew2WxommYUEfQkH2Sws6GEGCyrzzpP6j5F6h0sUHprP6WceSu8/p8Bz2UuaRPMRlQOlAhdni4iG6U1c4a6HaeusFEZ2heXedZdfX093d3dAy6CKQLDXMTPag1C8yzOwVay91RCwhj+rZ5HiTaRJKWduNcupnJvsdeOP5R2S7FN4Wvr1q3j97//PevWrRvU4yZre7EpOlu0KUyd6dnntXl1gmAmAZTwO6uERE+WAdB0naV8AMDn6V+nUx1auQjzl1RqaioRERHGsj8iuLi68/tLKjUv/+CrAAoAJYx/quezUxtPMi1E/vVCorQBEmk9ZO5xOjZPz8X89yMlNoSvlZSU0NjYSElJicePcdg7WKT0VtTfqJ/o8ePMqxMEMxnCE3431OTrRGcds2376dQjmPSt/wdPvzCk84eHh9PV1WUsFLxgwQIyMzPlCyhIubrzW1tbAev3j9/Xz1LC+Lv6da5U/80k7RDX8Dde0L9NtxI78GMHwWpRbfPzl6Fk4WsRERHouj6oIfEvVj3HLKWVaj2ZBlvfdRTNPEmfCBbSAyX8bihXzF12O19X3gPgbX0BCRnjhnz+1NRUbDab9DiFCE+KmmZlZREVFWUEEp4OCQ+HroQTf8NKDik5jFUa+Y7+D8L1zoEfOAhWOVCe9MgJ4U2NjY1u24HompPkz/8IwCptPqoP/w4DSXqghM+Zk1yHcsX8yb+e5nS1iiY9ll3q8Bb0jY6OJjw83MiBknIEwc38frF6/5h7EQsKCjhw4ACTJk3yadvSM3Opvv4tDv3xbMartVyuvU5j7a0+Pef27dspLy9H07SQuVIXoS0+Ph673e5x0L5n/etMdR6mVY/ikG0SIzN8kgBK+MFwA5Quu50JO3vrdb2tn4ZT9bwbOTw8nJ6eHmO4DnrzSaKiooy8EilHEPrMQVVOTg5dXV0D1orydCp2fzJzJvBL5Vtcr7/KBLWGg88sQ9XPR1OGPwPQZrPhdDrdhiarqqpwOp1GDtT27duNMhwSUIlgoG/8PQDvaPNQwvw0rB4AEkAJnzMHKIP9wP/k389wOjU06HEcUAsGde6IiAh6enrcxu5jYmJQVZWYmN7q5ZJDMvJ4GhR7MhXbE5oaxQvaJdygv8IEZxkXa2/yD/XraEr4wA/uh1UyvHnChSdFX4UYDPOogWuGsiczleO0JqZ1FdOj29ipjuwl0CQHSviceSmODRs2UFpa6tEilJquk7ejt/DpKn0hmjK4mL+7u9ttC70LtjY3N8uCrSOY1dqFvs6LcqgxPMelNJDAdPUQ39DeRtW9X8vGHFTl5OQQGxvrt8rsYuQrLi5m69atFBcXD/qxs/Xe5a+2xS9CVwdekiiUlm4xkwBK+F17ezu6rtPe3j7gvulaBeOooZGEQfc+AUYvk2sLkJiYSFhYGImJiYM+nggNVqUyXEU2j61W7u3Zez1qLPUXvUqTHstM9QDnaauwd3qnxEFfQqlysxjZIvQOTlc+AyD+zDs8eszixYuZNGkSixcv9mHLfEMCKOF3ni7bouk6y/gQgLIp1w+69wl6F2dVFMVtcdYFCxawcOFCFixYMOjjidBgdQVt1QM1ZcoUoqKimDJlitfOXVA0n2f0y2jTo5ij7mXP775JT3eX145vZlW5WRa6FsPR0tJCW1sbLS0tg3rcVG0XYYrG5+FFTDvxNI8eU1RUxFVXXRWSw88SQAm/8zTvJE2rJE89QiMJzPjG8iGdy6pIptXwjhj5rIYKzBMKvKXLlsjT+mV06hHM7NzMF7+7BPS+l2MZjs8//5yGhgY+//xz4zZzdXIJqMRglJaW4nA4BlXdXtV7+JqyGYDuk3/g8VB5KL83pc9X+F1ERARdXV39FmXTdJ3zv6w6XlbwXWbHDK3quBTJHJ1mzZpFQkKC2/97QkICTU1NJCQk9Luft7TbknnaeSm38DKz2z6kXutko7pw0ItfD8SqRo85iV5KdQhfm6DtJ07tYr+WxezFl3j8uFB+b0oPlPC7rq4ut62VVFfvkx7HjAt/NORz1dXVUVZW5rZQsBidamtr0XWd2tpav52zxZbG5/OfwKGrfE3dwknOzcOe8ecJcy+rLPciBqOnp8dtO5DuznaWKhsBeJd5g8opDKXFg80kgBI+N9iFKLt7HEbu03/0BUQMovfJlRju2rqmeA9mDScR+qwW2J02bRrR0dFMmzat3/287aSlV7Ftzm/QdIVlto0UadvQNd8M57m8+eabPPTQQ7z55puAXEgI3yp560nSlGaq9BRq1NxBPTaUFg82kwBK+Nxnn31GQ0MDn332mUf7b1n1f0xUa2jWYygd5Mw7c36VTPEenax6XC644ALuvvtuLrjggj7389Waeqd8/fs8q18EwEXqB3yy4m6vHdtqduGOHTvo7Oxkx44dAGzZsoWysjK2bNnitfMKAaDoTnJ29i7bslI7DUXpO6ywmsgRyp/REkAJn4uLi0NRFOLi4gbcV9d1kot7q46v0U/FOchChOZzyRTv0cnTiQLm/TIyMlAUhYyMDK+3qcaWx/Pa1wGYW/4sEx27vHJcq/XyoqKi3LZWpTtCOXlXeM9w3wfZ2iEy9Hpq9SQqbXn97utaPsu1hdD+jJYASniV1R9jZGQkqqq6lRLoS7TWxDTnXux6OHvVqYM+v/lckvsh+rN9+3Zeeukltm/vLf6XnZ1NYmIi2dnZPjnfYVs+/+c8F4Dv2P5DrtM3xVzNvVIFBQXk5ORQUPBVj64/hi9F8Fu5ciXvvfceK1euHPyDdY2zld6CyCu1hf32PkHvBYrNZnO7QAnlz+jQC/lEULOaUWFVDbwvC/gUgLX6SfSoUYM+v/lcskyL6I95GRSrWXneWC/vWAds09iYPZb5lS/wXfXf/NH5Ta8c91jm5V727t1LZWUlkZGRRr0d11W/q6yDefkOMTocOXIEXdc5cuSIcZvVGqJWMrXD5Kp1NJDAIdvEARcNjo6OJiwszK0HKpRJD5TwKvOHMvR20WqaNmAXrepsZ6FagqYrfKEWDun8+fn5JCYmkp+fP6THi9HFnH9hNfRnlWM0HIoC865/jNedpwNwvfI6297+k1eO7eKq8u/a7tu3j66uLvbt22fs4wqq9u7dC0iP1Gjl+lw+9vPZo1l4usbX6O192jn+OygeFDru7OzE4XDQ2dlp3BbK7zsJoIRXVVZWcvToUSorK43bqqqq0HV9wDH2k/ViAL5IPINOZeB8KSsdHR1omkZHR8eQHi9GLqvhZXP+hdU+5nwib1BUle22ObytzcOm6BRu/jHFa/7qteOb86KsvhCrqqro6uoynmsoD6UIz5nf40OdOJGuVTFBraFJj6Xwwrs8ekxjYyNOp/O4mmWh+r6TITwRHDQ7i9Xe4bvks38M/1gb4AaJkcZqeNlccLK4uJh9+/bR0tLi82EsRVH4RJ1LuNbD19RPmb7+Nt7XL6fFlub1c0VERNDd3e1WvDYiIgJFUYzbZLh7dNiwYQMHDhygurqaSy65xKO6fGa65mTJl71Pb2sLuGJMskePs5qFF8rvO+mBEl41a9Ys5syZw6xZswb1uBnaDsIVJ9u0AnJOWOjRY6z+GId6fjHyeXKlW19fT2trK/X19cZt6enp2Gw20tPTvd4mRVHZqC5kW+xpRCgOblJeJc551OvnsRqmmTZtGmPGjHGriyVGvubmZhwOB83NzYD1LM6BfL7m/5isVtKmR7HP5vlkn8zMTCIjI8nMzBxco4OU9EAJr7K6mhho7bvaI9Wcq24CYKNyEid6eK6EhASam5vdluYI5asZ4VtW7w1zr1R7ezuaphm5QwBLliwxkqt9QlE54fa/s/3x8ynq2sL3eZX/1a7w6imsFvAO5enjYujy8/Pp7Owccp6o09FD8uaHAPiXdjoM4v0z0pbWkr8c4XPmGUFmu1b+jjMUO/u0HI6qntffseqBEmIwzEN4qampNDc3H7f49LGBV2RkJHa73aOyHJ6KiIxiyu1v8OlvzuIkdQ836q+wf/u3vHZ8p9PptgXrCR9i5Btu4Lz9rf/lRK2SRj2O/YPofYKRd4ErAZQIqC67nSnlrwLwAScPaqHVwZRHEMKK+QPdkytkXwRQAFExcbytLiVMczBLPYD2+qVE6pdhV30T4Bw74aOoqEjKGIwSFRUVVFZWDm1ShO4ke/sTAPxLO2NQvU/QW3etpKSEwsJCo5xGKJMcKOFVg61qu+2dlxjLUY7q8VQPcg0l6YES3mZVxsBcbDM/P5/o6GiflMrQlTD+rZ7HDm08Y2jlel4jQmvz+nmgt4xBU1OTlDEYZUpLS3E4HEP6f87TDpCh13OEZMpsA7//XRcZru1IW5tUAijhVYP5ENZ1SPj8OQDe109G86COyLFOOukkkpOTOemkk4bUViHMrC4AzOvI2Ww2IiMjvb5enouuhPNP9QJKbXmkKc1cy98J17xflsOVROzaypCe6I+qOzhf+QCAA9NvQVEG//4vLCwkJyeHwsKh1fkLNhJACa8azIdwhNbKCY6d9Og29qlTBtzfPJNo0aJF3HbbbSxatGhYbRbCxeoCIDExkfDwcLd15HxNUyJIunElB7RMMpUGruFvVB/a69NzWtVwM5P180Kfq7r4QFXGzSY595CitHJYyeSkb9w2pHMXFRVx1VVXjYjhO5AASniZJx/CLrP13m7cnWPOpFsZuLR/eno6iqL4ZDq5EGBd6mDBggXGD/Sul5eSkuK2Xp4r6fzY5PPhSs7I4WX1Qg5p6WQrR3GuuIAjlb4bXtu5cydNTU3s3LnTuM0cMBUXF7N161aKi4t91g7hW7m5uYSFhZGb63nKhKp3c776EQBVs+8kwsP8v4FmYIc6CaCEV7W3t9PV1eU2DdyKrvVw1peFM8ec6dnVTFJSEpGRkSQlJQFyNSy8zyoHynyb1UXCRRddxOLFi7nooou82h6nEs1L6sVU6Knk6DXYnzsfVbcP/MAhMC//AvDuu++ybt063n33XZ+cU/iWOX8Pet+/DofDo4tclxnaFyQoHezRcjhp2fc8fpxV/bGRRAIo4VWVlZV0dXUN+Mc5SdtPpOLgQHgB42ae4dGxY2NjiYqKIjY2FpCkVxE8PvzwQz744AM+/PBDYOjDJFYcSjR/5lvUkMo4vZLLtddRde/PPLVqc21tLU6nk9raWkAK1QY780Xlhg0bKC0tZcOGDcY+bW1tbtuBVJftYpmyHoD/cMagcv/MSeQjzcgMC0XAtLS0uG2taLrO2V8Wzuw88UaPSxdkZ2fT0NBgDJ2Ya/gI4Q+zZs0iISHB7X23f/9+nE6nUZQzJiaG5uZmYmJivHLOHjUG7ap/U/d/55OvVvFt7Q1eU73c22VRK8o803Wk1fEZacyFYR0OB7qu91mDzxM1f7+bTMXBZm0aTerg0ieio6NpamoiOnrgFI1QJAGU8CpFUdB1vd/SAqlaFRlqE3V6ItOWXO3xsVtbW3E4HLS2tgLyYS4Cw+p9Fx4ejtPpNHpvfJH7kTVpBhVXvkH9S+czRa3gEu0NGuuHlsxrxarNg+2tEP5jVbfLfFE5lHXujpXgrGd224c4dYX3lYWDLhmjKAqqqo7YUjMyhCf8Std1Tqd3Ovj7+snYwj3v2g3lVbvFyOZakNe1zczMJCwszOtrfuVMLuJPXEq9nsBU9TB1/3se6D1eObYnQZ8neYeSm+gfnqQwdHZ2um0HRdc4l3UAvK3NH1JB1/z8fBITE31SMy0YSAAlvGqghSl3fraBIrWUHt3GfnXyoI5tleArRDCYPXs2ycnJzJ49G4DGxkacTieNjY1eP1eXGs+f+DYNejwFzv18U3sL9KEP0QyGVVK5zNQLDKsLSm/mhWZqh5iqltOix1Bsmz2kY3R0dKBpGh0d3q9jFgxkCE/4VdOHfwRgk15Ijzoyx8XF6LNo0SK3emQ9PT3ouk5Pj3d6h8y61ASe0y7lRl6lUD2Irr3F6+r5PjnXsY4cOYLT6eTIkSPGbRs2bODAgQNUV1dzySWX+LwNopfVULK38kIV3cFFyloAvsi/CU3m6ViSHijhN7rupKhxNQDblRkBbo0QvpOZmUlkZKTXh/CO1akm0PStv9OoxzJTLeUi7S2aGut9dj7ASIo/Njm+vr6e7u5u6uvrjftUVfVaAv1oNNRhUG/10k/TviBNaeGQls6cb9/t0WNUVXXbwsiftSkBlPCbsdph4pROyrV0GhQphilGrgULFrBw4UKj+CZYf8EMV94Jp/IslxlBVM2T5/k0iHINxRw7JGO329F1Hbu9tz7V/v37aW5uNmaDWZE8qf55MhRnVePJ6rbBqirdydeV3qKZ/2IxkZGejRSY8wBh5KddSAAl/ELXYSHbAPiIOQOWLoiLi3PbChHqBsoPHKpONZHnuIwmPZapzj3UPHmez3KirJKSzUGV1RepmdRw659VfpM56LRamHe4i/XqmsbR124lUunhE20qDepYjx870ms+WZEASvhFhNbKCWoZ3XoYZeqEAfePjo5GUZQRWz9EjGxWAYIvv2A61ESe5TKaiGOqcw/f1N702uy8Y1nN1DMP66WmphIfH++2rI35y9+TAEG4M7+nrBbmdTgcdHd3D7nu07b//InCrq3Y9XDeVc4YVPkBq97JkU6SyMWwrFu3jpKSEgoLC/td1LdQ711fa1fSGThaogY8rq7rxo8QocYqmTclJYXq6mpSUlKA3ouEzs5Or10kdKiJNH/rn/C3iylUD6Jqb/J39QKvHLs/5qFJc8Fb6J2Zt2/fPlpaWvoczjEXgRzNrF4LTxLEq6qq0HV9SEGooveQt+X/AfAP7Ux6wmIH93hT0dXRQHqgxLCUlJTQ2NjYb5expjs5U90KQPyCGz06rqtYpmsrRCixyv1w9Qq4tr7IiRo/Yy4t3/4HDXo8M9QyLtXeoO6I52ueDYUr98m1tVorsL29nc7OTmOdPatSB0Op8zZSe608eS3WrVvHgQMHWLdunXGba9bnUGZ/znZ+RgpNlCvZ7LNNG/Tjs7OzsdlsboHzSCcBVB+eeuop8vLyiIqKYu7cuXzyySeBblJQKiwsZMyYMW7dyGZZznLilC7KtLFMPHmpH1snRPBITU0lIiLCGNry5np5xxo3fS7PHlNss/WZc1F8sHaei3noprKykubmZrcAKjY2lujoaGMdS6tFx4eScDxScqnMgaDVa2EOOq0Wfx6qGK2JZWrvenktS/4HFM/Xu3NZsmQJixYtYsmSJcNuT6iQAMrCq6++yvLly7nvvvvYtm0bRUVFLF261FhQU3yltbWVzs7OPnuKdE3jdKW39+kjTvR43TvXgpX9LVw5Uq8+Reizem+aZ+Z5sm7kUHWpCfyJSzmiJzFRO8RV2j9QNLvXz2OloaEBXddpaGgwbrOazu6N4fmRsjqBJ4GgOej02qQEXeMCfQ2qorMlcSknLPBs2NdqncSRPOPOigRQFh577DFuuOEGrrvuOqZPn87TTz9NTEwMzz//vOX+drudlpYWt5/RoqSkhM7Ozj6H8Eq2rGOaWo5dD6fcg+Rxl5NPPpnk5GROPvnkPvcZKVefYuSxem+av2B8NSvPpUuN5wUu5YiSykS1mmv0v6FoQ1sTbTCsFiWuq6ujrKyMuro64PgeqaEaKV/a8fHxhIWFER/fu1yKVQDe2dlJT0+PMQPSW0PAec59TFUP06jHMunKxz1+nCcXuSOdBFAm3d3dbN261a0bUlVVlixZwqZNmywf8+CDD5KYmGj85Obm+qu5ATfQl0DrphcAWK/PxKF4PvuooKCA2bNnU1BQ0Oc+I+XqU4w85i9EK2FhYW5bX7CrsajX/YcKPZXxai3f41UO7B56jSBPWOXhbNmyhbKyMrZs6V0H05MCiyO1h9nqeZkXSrfKEevu7nbbelIuYiBlu7dxmdpb3Phv+tkkp3uevyQBlARQx6mvr8fpdJKRkeF2e0ZGBjU1NZaPueeee2hubjZ+Dh8+7I+mBgWrq02X1tYWCht718zaoQwuKdGT3qWRcvUpRh7zF6KVBQsWkJyc7FZs0xdfSmnjCvizcgkHtbFkKUdJfOUC9mz/2GvH94Su62iaZgzbWf3tDmVNvVAMsqw+28wXg/X19bS2thrV3aH3OygiIsL4bhp2DpSu0/237xOp9LBJm06Vmjeoh/u6BzUUSBkDL4iMjBxVxcM8VbL2r8xXOqjUU2hU0vrdNzY2lvb2dqNL31trOgkRCJ68fwsKCggLC3Pbx6rOkjf0KNH8Vf0ml2j/pkCtIOyfFxOpX4rdlujV8/SltbUVXdeNgHL79u1G+ZOioiKgd0290tLSQa2pZzXdv6qqitLSUiZOnBiUF1ee9E62t7ejaZpbcNTc3IymaTQ3N3ulHfnOnRSwl2Y9hvfURYMuP9DfxfNoIT1QJqmpqdhsNrfFMqF3Ec2xYz2vyjoSDfZqL2bnqwBs0GcPmDxuHs+X3iURyjx5/65cuZL33nuPlStXGrf5cljEoUTxmnoh+8KnkaS0cYvyF6KdjV4/jxVzb4krWNqwYYOxT11dHXa73ciT8mRNPath/GDPjbQq82DubTPP2ITeoV6n0+mVId9IrYVvq72jAy/r5+FQBq7NZ+aLMhyhZvQ+8z5EREQwZ84c1q5da9ymaRpr165l3rx5AWxZ4HnSpe6iaHZm2j8D4KA6acD9u7q63LZCjHRHjx5F13WOHj1q3JaVlYWiKD67cHAqEeT+cBW7omYRr3Rxu/ISCY4jAz9wmMzDPVZFF83FcysqKmhvb6eioqLP41oFqv7MjfTWEKK5TlZaWhqxsbGkpX3Vc3/w4EEcDgcHDx4c1rl03ck39VWEK04+iz2NGnVoObuuArCjebUICaAsLF++nGeffZYXX3yRXbt2cfPNN9Pe3s51110X6KaFjAlaKaqisztyJl3KwDNtfFUTR4hgNWPGDKKjo5kxY4Zxmz8KyEbFJZF/x9ts0AqJUnq4TX2Zj/72W5+dz4rT6UTXdbfhn7a2Nret1VIlniyW68/e66H0djmdTux2u9tz7+zsxOFwGDPsrBZkNieRD9UMrYQCtYKjejx51/5xyJXDc3NziYyMHFWTpswkB8rCpZdeSl1dHffeey81NTXMmjWLVatWHZdYPtrMmjWLhISEAa/sNF3ndKV34WB74eWwtc4fzRMipFxwwQVccIF7zZ28vDw6OzvJy8vz6bnDo2JZqy6mQ4via+oWTttxH/uc51NuK/C0VNuwuHrdju19MwcIRUVFRn6Uy4YNG6ivr6elpeW4+7zNKk/LbCi5mvv376ezs9MtOGpsbMTpdNLY2Duk6o0ZdlZKNqzkm8r7ALysL+PWtKEHmQUFBdjt9n5nSo900gPVh1tvvZVDhw5ht9vZvHkzc+fODXSTQkas1sR49QjtRDH1rKs8eox5mQshRjqr4Z8xY8aQnp7OmDFjAEhMTHTbepOuqGxUF/Iv7XQAvmt7i2nO7WgBWn/Sk1ldXV1d6Lre71C/t4bVNm7cSGlpKRs3buxzH096u8ztiYuLQ1EU4uLijH3MOWK1tbU4nU6vFm+uqy5n7JpbsCk672incNQ2vB46q1yu0UZ6oITHPF3s8wR2AbAneTEnxiR4dOyYmBi6u7v7TRgVYiTxZMFYnyfqKgrFtpMYVzCH2Xse51LbWlY5W726yPFQvfLKKxw4cIBJkyZx2WWXAZ4NY3nyOWWeqWc1c28oMyKtjmNeSDkpKYmGhgaSkpKMx5lrZ3lzmZbe56BR/cLVzKSRA1oWm9VTh31Mc97WaCQ9UMJjniRnarqT05ViAJLmX+vxsRctWsSkSZNYtGjR8BopRIiw+nsyV+y24ougavblv+B57UIcuso5tk/Y89g5NBytH/iBPrRnzx4cDgd79uwxbjMHGla9TZ58TpknxFjlMi1YsICJEye61ekyG0rtKnNFcfB9Dmi+czczuz+jQ4/k78oydGVwfSdW7zlvVZMPZdIDJbwqQ6siTu2iXE9jwomeLypple8gxEiWlZV1XA9JSUmJMeusqKiIzMxMOjo6yMzMNPbxVa2ow7aJPO28lOv4J7N6itn/1GLQzgfVu3k4w2GevTeU3iYrVrlMnnwmeXL+7OxsGhoayM7urfLd1NSE0+mkqanJ2CcqKoqenh6iogZfTmAgsc6jXK6+A8DuOffR9dngA+PY2FhaW1vdgiVPc2JHMgmghMc2bNjAgQMH+i10dzKfA7BRn81lo7g+iBBD4Zpx5tr6O1H3qC2TZ7QruJZ/kq+V8T1e5gXtEpxqcAytm4NHq8DHPGRm/h2OrzFlFcyaWSWVm4timoMl1+PKy8vRNI2ioiLLfE9fFaVU9W6uVt7Apuh8OuY8Tvr6Lbz52f2DPo7V0Kknr9lIJ99wwmPNzc04HI4+K+GWH9zLyWpvd/tBdfRelQgxVEVFRVx11VXGF7TVkjAJCQluW29rVcegXb+aSjWLbOUot/Nnoh0NPjlXf6yKipqHuj788EM++OADPvzwQ2OfyspKmpubjeRmq2VRPKkxZebqHTx24fTt27dTVlZmlFWwSqwuLy/H6XRSXl4O9NZNUhTFLceso6PDbesNXV2dnKetJl1p5oCWxQnfe2bIx5JlW6xJACU8lp+fT2JiIvn5+Zb3H/rgzwB8pk2mWwmOK1YhQok5p8Yqn8db9YD6k5o7laTb1rFdm0SC0sFy9c+899Jv8OcEPau8G3NQtW/fPhwOB/v27TP2qa+vR9d1I2Cyer0SExNRVdWY3WiVS2WuOWVVl8o8W84qWDP3LlnVwPI2Xdf57OnrmaPupU2P4u/KMqJihx5w+7rAa6iSAEp4bPv27TQ0NFgWsdN1yCx/C4DPmN7vcaRophDWzMnMVtPkp02bRnR0NNOm9S7Q7atSB7FjMviXuoz3tDmEKRpn7X+QGc7P/FbmwJwwDp6VOzEHLGFhYWia5rYEinlduQ0bNhg/LuYep8bGRuPHJTExEUVRjNfeKr/JHPRZ1cDytnHO/cxrWommK7ygX0SX2ve6e55wOByoqiplZkwkgBIec30oHPvh4BKmt5OvHaRbt1Gt5vR7HF/WthEilHkyg2zOnDnMnz+fOXPmADBp0iSio6OZNGngJZMGS1fC+Eg9nde0rwFwie19FmtrceqBWUDWHEBZJdSbb6upqUHXdWpqatyO093dbRynubmZnp4et/SE9vZ27Ha7MU1/y5YtNDQ0sGXLFmOf7u5udF03erfsdrvbFny7vqGVeGct16i9F7N/0c+lwZY5wCMGlpiYSFhYmHxmm0gSufCKydoBsMEWfToONbLffdPT02ltbSU9Pd1PrRMiNHiSmGtOii4rK6Orq4uysjLfNEpR2GUrZNeC85nw0V2crn5OllbPnh0XM2WGf2fOmnNxrAIo8z7x8fHY7XYj0Rt6c6B0XTdyoDIyMmhoaHBbbcI1LOfaWiV6NzQ0uG2tcoWs1v3zlXCtjRuVv2NTdLalXEDpUet0i8GSquPWpAdKDJuu6yxUexcO/pypA+4v9UOEGDpzAcO8vDyioqJ8vvzLtCXX8r9cSa2eRL5axdjXzmXDqpd9ek5viIiIQFEUt2VRzIHO4cOH6erq4vDhw8Y+5lQDT8pHWAVL/shZA6ipLOc7vE6c0sVn2mRmfv85vLUuj9VkBiEBlPCCaK2ZbOUo7URRrw7cXZydnU1KSorbVF8hhGfMFyDm5V98qUVN5nnlckq0CSQq7Zy66WZyHXsDtvyLJ6yG8MyBTnt7O7quu1XVdvVYubauHKpjc6nMx3EtMXPsUjO+qtt1rKP1R2j/0wXkKnUc1tNYqZ5NWMTQa0qZn6u5XIPoJQGUGLZp+l4A9oxZhOZBhdu9e/dSUVHB3r17fdwyIUaeWbNmMWfOHGbNmgX4/8vNrkTzhnoBn6d/A5ui813bW5zm/CBgeVEDsRpWMy/WaxX4mHM+rXKZ/BEcDUTTnRz5368zSSujXk/gL1yEU+k/jWIgkZGRblvpgbImAZQYFk3XWKgWAxAz53KPHlNfX093d7fbVF8hhGfMM/MC8eWmKWHMvPlFdsy6jx7dxhLbNr6rvcL2TzcM/OAgYM5nsgqyzAnrVkNxnuRk+ZKma5yrrWG6czfNxPECl2BX4wZ+4ADS09Ox2WxGnqr0QFmTAEr0yZNVzZO0epKVNur1BApOXebRcVNTU4mIiCA1NXVQ5xJCHM/qy82cv+OTRYkVhRkXLucPXEGNPoY89QgFb15IsqPCr/WihsLcA+UJT0oo+JOu6yzSPuBUdScdRNJw4V/oUL0zS27cuHEkJiYybtw4QHqg+iIBlOiTJwtjFuq7ANioF6GGeVbXacGCBSxcuNBtkU6rxTyFEAOz+nLzScDUhyY1jReUy9miTSVa6eY222vMcX6MUw/eqtWuhXyPXdB3IFY5UIHSZbczz7mBM9XP6NbDqFj6JybMWuS14+/fv5/m5mZjnT9PymuMRoN+J1xzzTVcf/31nH766b5ojwghzU2NLFB7i8ztU/quQaOqKpqmGR/mVlO1rda0EkIMzOpvx9xb4uulOLqVKN5WzyWqYAkz9jzFBbaNzNAO8ummRZw070yfnHM4hvJ6WNV4CgRN1/j88YtYavsEh67ynH4xP5h3wZCPZ7PZcDqdbrld5h46WffO2qAvT5qbm1myZAmTJ0/m17/+tduaP2JkGWi23K51LxOtdFOupdOm9D0DyDVbqL+yBVYVl4UQxzMPd1v97cTFxblt/UJRKLziV/yBK6jVk5ioVjNz1cWsefa/cQb5kF6o0HQn52rvcErXBux6OM/o36bONrzZzGPHjsVmszF27FjjttTUVOLj493SLMTxBh1AvfHGG1RWVnLzzTfz6quvkpeXx7nnnsvf//53t5L7IvStX7+eAwcOsH79esv7w3f/G4DNFPZbbyQ3N5fIyEhyc3N90k4hRhPzcLdV/mBcXBw2m80IoDy5iPGWo2oGzylXsEErJEJx8rXKp1im/QenJt8Pw6HpDi7S3uJUdRcdRPIM36beNvwLTqfTafy4SKkZzwxpgDwtLY3ly5ezfft2Nm/eTH5+Pt/5znfIysrizjvvdFvYUYSu/tZsamyo54TO3iUNypS8fo9TUFBATk6OVLEVwgvM+ShW+YMnn3wyeXl5nHzyyQAkJSVhs9lISkoy9vFlTk+PEsW76hJ2n/wrOolkrrqLu/gTyY4KehzBWe4gmJUd3Mdl2hvMUg/QrMdQd9FrNKoZAz/QA67Z0MfOipakcc8MK8OwurqaNWvWsGbNGmw2G+eddx4lJSVMnz6dxx9/3FttFAHS3xIEuz94lUjFwUFtLB1K/6t87927l8rKSqn7JIQXmIfsrBJ8i4qKuOqqqygq6l1qJSMjg4iICLelSqyWJvEqRWHqslvpvG4dO7XxJCgd3GZ7je2/WSK9UYOwdcNqYl78GtPUco7qCTzL5YwvWuS147uG6Y4drpOkcc8M+tKjp6eHf//737zwwgusXr2amTNncscdd3DFFVeQkND7Rfr666/z3e9+lzvvvNPrDRb+019Nk8g9vcN3W5gx4HIBBw8epKuri4MHDwK9Qw6lpaVMnDhRcp6EGCZPEnybm5vRNM1tsVx/1SxKHj+dJ9WLmKLt4kLlPU5ybGMKO/mz43yO2Mb59NyhTNch2VnJCauvIFLpYb+WxT/V8+lUvJvXZrPZjB8XSRr3zKADqMzMTDRN4/LLL+eTTz4xquEe68wzz3TrKhYji647mdH5KShQpkwYcH9zATrXkAMgf6RC+EFhYaHbFnp7lnVd98sit7qists2gyf1HC6K+piJXTu4xfZ3irVJbNl0BifPW+TzNoQSp64zw/k5l9rWArAjfiGvt87GqXhWKmYwEhMTqa+vJzHxqxpScpHrmUEP4T3++ONUVVXx1FNPWQZP0Dve7uptEKGrryvUDK2KSMVBuZpDpzJwZdqMjAwURTGGD6R7WAj/SktLIy8vj7S0NOO2lJQUt60/tCmJTLz7I17WzqFdj2KWeoATV13Iu49dS4+PSiyEmtIDe1imrTKCp+0Tvsf0O//tteDJvEyL1OUbukH3QH3nO9/xRTtECDmB3QAcyT0Xyge+ej3llFMoKSkxrn6le1gI7/Gkt6C4uJh9+/bR0tJi7BMfH09jY6P/l+dQbey1TecpfTynaps5XS1mScvrzCSRVxznDHtafqjSdUjUakj585lMVNvp0CP4i34BN1zzqFfPk5CQQH19vZFyI3X5hi7wJVVFSNF1J6covdXHM+dfDuVvDfgYmdEhhO94MiTe3t5OZ2cn7e3txm1tbW1omkZbWxtgXVDRlzqVWN63ncXEZXej/ufHZDkrud32Knu0HNa+OQlNB9X3o4tBwalrzHNu4lzbZgB2aeN5S/0aHWr/E3SGIjk5mcbGRpKTk/vcRy5yPSMBlBiUDK2KSNVBuZrLuIITgYEDKLmaEcJ3PPn7io2NJTo62q0OVFxcHA0NDUatKJ/PyutDzknL0IsW8+ovr+Zc5SOmqBVM2XoL8dpU/sMidDXGr+3xJ4fDyUdvvcj39f8j23YUp66wI/8G3jgQja74JpA9fPgwDoeDw4cP++T4o4kEUGJQCo3hu3MYZ5F8apWYKlczQviOJ39f2dnZNDQ0uBVGjI6OJiwsjOjoaMC/SeVmSngUu20zKNUncYJWwlJ1E6eouzmF3XzkLOTDtXOYv+g8v7fLl3RnF9t/s5gzHZ+BApV6Cv/gPG7/zsO8fv/9Pjuvq4fRXz2NI5ksJiw8pzs42Ri+u8J6Fz9NjRZCeK6yspKjR4/2u/SWef2zQOhWothmO5num7fwvjYHp65wmq2E0z+6kpJfnUa4oynkl4Xp1nSmOLbzU+UZ5jg+o5swXtcWsUK5nEY1beADDFN8fDyKovg/920Ekh4o4bH0L4fvSrVMJk45MdDNEUJ4yCoHympYL1jEZUzkQ9sZbNNnU6Rt5wx1G7O1L5ht+4Kd2jjW6nOpOFI/8IGCSI+msfrJ27ibv5No6wBgd8J8Mr/9OJ//6VWfnNOqV1FRFFRVDUhP40gjPVDCY4XsAb4sntmHYLiKFUK4swqWzOudaV+WEdCOKSfQ32oE/tCmJLDBdhqOW7axI/dyuvRwpqvl3Gb7Gwl/OIHpjm30OO049eANBro1J1MdxdzD/3J2/Z9JVDoo08fytP5tpi7/D4k5U312bqsRAfMyP2LopAdKAANPhW5ubDCG7w71s/Zdamoq1dXVsoq3EEFk1qxZJCQkuCWam2fHFhYWsmvXLqZNm2bsEx0dTUdHh5EnFSjRaXnMuP5pfvOLJCZopSxQtpGj1HGJbR2XsI6d2jj+879tpJx6WVDM3uvWFdb84zlid/+NX7CFcFtvYn55RD6r7bOoVHIHXMFBBD8JoAQA7777LuXl5ZSWlnL11Vcfd//u9f9gruLgkJZBp9r32HlkZCSqqhpF2oQQgedJrZ85c+YwZswYtyDLPDMvkInmAHYlmt22GezWp/P9C07m4L9+zUnKLqar5Uw/8gz86xmitAl8qk+nnBxqm9r81rbqhmbCHM1M4QBnqZ+SXPLluRX4XJvIRuVkbrrnGSofeMBvbUpNTaW+vt7tgrakpISKigoAY61EMTQSQAmgN8nU6XT2mWSq7lkJwKdM6/fKybxsixAiOJmDKqt6UtHR0djtdqMHKjw8nO7ubsLDvb+kyKAoCmPnLOOZtz7lA/00srXDzEuoZkLbNmaqB5lJ70oYLY//H6drBewhj1rS2FF6mEm5w58RrGk6h+ub0JxdZOlVTOcAiU88xU9tdmOfBjWZqnFf590yhWbbGKPd/uTKdVLVr7J1rJb1EUMjAZQArPMfXHTdybTWj79c+y6v3+Pk5+fT2dlJfn6+L5ophPARq3pS5s+FYByityvRlNoK+M5df6GnuYZXHl1OHuUUKgdIUDo401bMmRT37vznZynX0zlNy+YIybQQx6qXn0R1tGBXotBQ2PJZMaotjA6nThgOInU7q//5AkmOShJoJZtaDtx/AnlUc7/qXjPrqB7P5/pk9iqT+f5P/0CyLYx/+LAkwUBiY2M5evSoW+6b1bI+YmgkgBJAb9K3w+GwTP5O1I4Sp3ZSqyfRpozp9zhhYWHEx8cTFiZvLSFCidUw3+zZs92WYQr2IfrwxLHst01hP1NYqy/mju8s450XH2IcVYxTqslUGhin1DLOVvvVg/b8i3OOLYn0r98DMOfYKVafw9kWZZNa9Wj26OM4wHjO++5/8+SKf32VgGXz/2dgTEwMHR0dxMT0Fh+Njo4mPDzcLYdNFnP3HvmWEwB0dXW5bY81We9dUHKLNh3C+u+ClqrjQowcBQUFhIWFGX/PjY2NOJ1OGhsbjX38vQSMp3RFJWHSKey0FbKT3gDw3h/fRkPpNla/9izxtBNPGzlxOuHtVSTShg2dMEVDxYlNd9JJFM3E4IhOo7YDWomjnmRO+/p3SJ80m8ee+JMRMF2aNxuUfwfyKRMXF0dnZ6dRXR6Or8knn9HeIwGUAPoewtN1jbnqDgD2KwP/wUnVcSFGDvMixFZlDcLCwnA6nSHR66zEJJNywhL2/mODcdt9d9/H/ccMs913330A7rf95D5WHPP7t0/6+pcHDK6ZdNOmTcPhcBgzKa3KV8hntPcE/zteBFSs1kya2kwrMTSrKYFujhDCj8wFOJOSkmhpaSEpKcnYx+FwuG1F4NTV1dHR0UFdXR1gXb5CeI8EUALoe3ryBL0MgH2J89FbBu6iH6ielBAidJh7MMzr50HwDuGNRnV1ddjtdiOAkt4m35IASvRJ13VO+XL4zjb9Avj40ICPkQRFIUYOcw+G1ZBQdHQ03d3dAS+2OdqEhYXhcDjchk5d5SUCXmZilJAASgDWJf8j9TbGKbXY9XCmLLwIPv7tgMeRBEUhRg5zD0Z2djYNDQ3G8i8gC4gHSnp6OtXV1aSnpxu3yXCqf8laeKJP47RyAD7VpxAVm2i5j2s6s2ublZXFwoULpfdJiBHIvPwLwJgxY1AUhTFjekucpKSkuG0Bo5DjsQUdxeC4ev1c26SkJCIiItzy0VJTU4mIiAiqOl0j2Yh6N+fl5aEoitvPb37zG7d9Pv/8c0477TSioqLIzc3loYceOu44f/vb35g6dSpRUVEUFhby9ttv++sp+E1VVRXr16+nqqqqz31O/HLtu51M7nMfWTxYiNFj4sSJ5Ofnu/UwNzY2ouu6UdrAlUt5bI9Uf4V6hWdiY2NRFMVt+NScs1pQUEBOTg4FBQX+bt6oNOKG8B544AFuuOEG4/f4+K/WbWtpaeHss89myZIlPP3005SUlPDd736XpKQkbrzxRgA2btzI5ZdfzoMPPsj555/PX//6Vy688EK2bdvGCSec4Pfn4ysD5SpVHNzNNLUcp65Qq/bdm+Qafw+FKcxCiOGxSkpOSUmhvb3d6HHKy8ujs7OTvLw8Yx9VVdE0TXqghqGlpQVd12lpaTFuMw+bWvUQCt8Zcd968fHxjB071vK+v/zlL3R3d/P8888TERHBjBkzKC4u5rHHHjMCqCeeeIJzzjmHH//4xwD88pe/ZM2aNTz55JM8/fTTfnsevjZQrtLhTX8nB/hcz8eh9l11WNa+E2J0W7JkiTHzFnqH9NLT040hPejN16mpqXHL1xGDYy52bJXQLzmo/jXiLgd+85vfkJKSwuzZs3n44Yfdkuk2bdrE6aef7jbctHTpUvbs2WN0P2/atIklS5a4HXPp0qVs2rSpz3Pa7XZaWlrcfoLdQLlKcWXvAvBFP8N30H8FcyHEyGf+LHEt5XRs77/r8/XYCubiK1YFSs3MM+xmzZrFnDlzmDVrlrGP5KD614gKoG6//XZeeeUV3n//fb7//e/z61//mrvvvtu4v6amhoyMDLfHuH6vqanpdx/X/VYefPBBEhMTjZ/c3FxvPaWAaG5qYIr9cwAqlJx+983PzycsLEwWDxZilNq+fTsvvfQS27dvB6yHkTyZqTeap+CbXx9XTa1ja2slJia6bUXgBf0Q3k9+8hP+53/+p999du3axdSpU1m+fLlx28yZM4mIiOD73/8+Dz74oE8Xv7znnnvczt3S0hLSQdS+jf/mJMXJIS2Dbltcv/tedtllfmqVECLQrArllpSUUFFRAUBRUZHlMFJqairV1dXG7LDIyEjsdrvb53JPT4/bdjSzKk5qTpeQmnuBF/QB1I9+9COuvfbafvfpa7x37ty5OBwOysrKmDJlCmPHjuXIkSNu+7h+d+VN9bVPX3lV0PthEKyrk/elv4rhzj3/AeAzpgaiaUKIIGX1pV1YWOi2tUo0T0pK4ujRo8aU+6ysLMrLy932k4rmX7EKJjMzM+no6CAzMxOQfKdgEPQBVFpaGmlpaUN6bHFxMaqqGomL8+bN46c//Sk9PT1GN/GaNWuYMmWKkfA4b9481q5dyx133GEcZ82aNcybN294TyTIvPvuu5SXl1NaWsrVV19t3K7rGpObNwJwkHGBap4QIghZfWkXFRVRVFRk/G51cWZOeLbb7Wiaht1uNx6XkZFBdXW1kUJhVWl7pDIvpWWz2XA4HG7BpOt3V16vLNMSeCPmnblp0yY2b97MmWeeSXx8PJs2beLOO+/kqquuMoKjK664gvvvv5/rr7+e//qv/+KLL77giSee4PHHHzeO88Mf/pAzzjiDRx99lGXLlvHKK6/w6aef8sc//jFQT80nDh06hKZpHDrkvjxLjNZCstpCCzG0qMkBap0QIhh58qVt1UtlXhKmra0NXddpa2vr8zgRERE4HI5RUWMuMjKSrq4uYyTDqsp4YmIiVVVVkgMVREZMABUZGckrr7zCL37xC+x2OxMmTODOO+90y01KTExk9erV3HLLLcyZM4fU1FTuvfdeo4QBwPz58/nrX//Kz372M/77v/+byZMn88Ybb4yoGlDQd2G78fRWH98fPxfapCtdCDE4VrPwzIFXfn4+u3btcpt84klQNVK5euJcW/OQJ0BzczOaptHc3ByIJgoLIyaAOvHEE/n4448H3G/mzJl89NFH/e5zySWXcMkll3iraSFlFrsB0AuWwrZat/ukGJ4QYiCeFHO0qhU1e/ZsSkpKjFwqq4u8UPwMMg/PhYeHu6WRQO9wZU9PjzFc2dnZicPhoLOz09jHnGsmAm/EBFBi+GxaJ1PUCpy6Qv78i2DbM4FukhAixHiS3GzVS1VQUEBYWFi/j4uIiKCrqyukhvViYmJob28nJiYGgKioKHp6eoiKijL2iYuLo7Gxkbi43lnPbW1taJrm1htnzjUTgRc6YbzwubF677p4eyOmk5hy/KxDWXVdCOENlZWVHD16lMrKSuM2V+5UaWkpYF2k1zzUZbVIcSDrSVmd21x+wGr5q8zMTKKioowZdnFxcaiqagRUIjhJD5QwTKc38bM5d7Hl/RJACSEGMtT6RJ70XJmHuqw+k6yGyPzFqvyA+TZzOQLonW1eU1NjzDiPjo4mLCyM6OhofzVdDIEEUKKX7mCOsheArFO+YblLVFQUXV1dbl3PQghxLE8CIfOsPCvx8fG0tra6DfOZh7qsAqi0tDTKy8sHVf7GWzWorHK0zMcuKCjAbrdTUFBg7FNRUUF7e7tRkNRqnTsRfCSAEgCM0eqJVHuo0FPJLTjRcp9QzD8QQviXJ6UOrPYpLi5m3759tLS0kJWVxeLFi92SyqF3dlpLS4vb7DSzxsZGdF031t0zJ3HD8ZXQnU6n23aooqKi6OjocLvITEhIoLGxkYSEBMB9+NKV0xQWFobT6TR61jwJMEXgSQAlAMjnIABbtWnk9DHDxWrqsRBC+IJV0nR0dDTh4eHG0JbVcJ3rAs+1HTduHOXl5Ywb91Vh4JSUFKqrq0lJSQG81wMVGxtLZ2enW8/RGWec4RYI1tfX09raSn19vbFPXV0dTqeTuro6QIpkhgoJoEaB/pZtAdCcGicpuwA4qIzv8zhWU4+FEMIbPOl1iY2NJSoqyghQCgsL2bVrF9OmTTP2UVUVRVGMYbSWlhZ0XaelpcXYx5yXZO4lguNTFjwJshYsWHBcr5k5ELSaYVdYWHjc40TwkwBqFBgoqbN0x2bylSY69Aia1ZQ+jyNrLwkhfMWTXhdzkGVVXDI1NZXm5mZj4WJXoHJswGKeLWc1NGhOWbAa5htKwnpaWhqtra1uOVqLFi1i0aJFHh9DBAcJoEYBq5orx6r9bCX5wGd6AahSfVwIEZzMQZZVcckFCxaQmZlpBFnmxHPA6KFy5UVZrc3nScqC+dhbtmyhpqaGrq4uo9fJPAJgbp/VPiI0SAA1ClglLR4rsXIdAHvov2fJnOQphBCBlJaWRl5enltvjjnImjlz5nHDY/n5+XR2dhrBkdUyMuaUBaveJnPPVWJiIvX19W7r1ZlHADxJoBehQQKoUaCyspLm5ma3onUuiu6gwL4TFKhR5A9XCBEcPOmV8aTmlKv3/djCleXl5TQ3N1Ne3rv255gxY2htbXXL7zT33KelpVFdXe0WrJmT2q16lyT1YeSSAGoU6G+RziStjnDVSZmWQY8tpt/jyNRaIYS/eBIcWQUn5sDLap/a2lqcTie1tb3rfZpLH8Dxa/pZLfBrTmq36l0aSm6XCA0SQI0CVpVvXSbphwDYrhccd5+ZTK0VQvjLUHtuPAm8EhMT6ejoMIbazKUPrM5vVdzSW4GPfLaGJgmgRoHa2locDodxteWi6zqz1T0AlCm5Ax5n+/btRi6BLGophPAlT4IKq2DJHPhY5RdlZ2fT0dFBdnY20JtU7vrp6/xWwZIEPqObBFCjQHt7u9vWJVJvJ0s5il0Pp1kdeNmDkpISY6kBCaCEEIE21F4qczBkVVpAiIFIADUK9LUIcKZWBTbYGz0T3X58+QLzcgc5OTk0NjaSk5Pj+0YLIcQArHqAzL1SnvQcWSV/m8lMOWEmAdQoYLVCOMB05QAA7bmLYL9ufhhRUVHY7XajEq/VbBYhhAgm5l6poa7NZ05Gb29vp6ur67iefDF6yTfhCORRUTbdQZGyD4DMk74O+/913C6u6r6urUzHFUJ4gy8LR3orL8nck2WecSeEBFAjkCezUJK0o0SqDir1FMZNngkcH0CZScKkEMIbPPmMCjTzBaOUGhBmEkCNQJ70FOXpvQXkirUpZH+56KaZt1YoF0KIY4VCb7b5glEuIIWZBFAjkEeF25Te8gWlynh/NEkIIQwSjIiRwLrrQYxoFfu/YLxaS49uo7Gf8gWuZQ2OXd5ACCGEENIDNSpVbn2LHKBEn4Su9v0WmDBhAg6HgwkTJvivcUIIIUQIkB6oUSji0AcA7NT7zz/Izs4mJSXFqNYrhBCjVVVVFevXr6eqqirQTRFBQgKoEai/P3RHTzf57Z/17qf2n4NgXkxTCCFGK9fMwdLS0kA3RQQJGcIbgd59913Ky8spLS3l6quvdrvvwPYPmaJ00qTH0qEkoPRxDAiNmTJCCOEP8nkozCSAGoFqa2txOp3HLR4M0Pj5agCK9QKUPsoXuMhMGSGE6CWfh8JMhvBGoMTERBRFITEx8bj7Emo2ALCfcf5ulhBCCDFiSAA1AiUlJREREUFSUpLb7YruYLJ9FwBHlMwAtEwIIYQYGSSAGqEU5fjspkTtKOGKk0olA4caE4BWCSGEECODBFAjUG1tLV1dXcflQI3XDwNQMWZuIJolhBBCjBgSQI1ArrID5vIDhUrv4p1hk8867jGuHiurnishhBBCuJMAagSKiopy2wLY9C4mqVVousLEk8897jESQAkhxPBIsc3RRcoYjEDNzc1uW4A07QiosD8sn4LUscc9Rtd1t60QQojBcRXbBKTkwSggAdQoMZFyAOoz5lNgcb+qqjidTtQBakMJIYSwJsU2RxcJoEYBXdcpUvYBED9tieU+8fHxNDU1ER8f78+mCSHEiCHFNkcX6W4YBaL1VtKVJjr1CCaftNhyn6KiIpKTkykqKvJz64QQQojQIwHUKDBWrwHgcz2fqOhYy306OjrQNI2Ojg5/Nk0IIYQISRJAjQIFHARgjz6hz33a29vp7Oykvb3dX80SQgghQpYEUCOco9vOzC/rP1WpfS/fEhsbS3R0NLGx1j1UQgghhPiKJJGPcKXbP6JAsdOox2FX+k4QnzVrFgkJCTJ7RAghhPCABFAjXOPOtQBs1/NB7btIpsweEUIIITwnAdQIF1u1CYADjO93v+3bt1NSUkJhYaHMxBNCCCEGEDI5UL/61a+YP38+MTExJCUlWe5TXl7OsmXLiImJIT09nR//+Mc4HA63fdatW8eJJ55IZGQk+fn5rFix4rjjPPXUU+Tl5REVFcXcuXP55JNPfPCM/EB3kt/1BQBHlIx+dy0pKaGiooKSkhJ/tEwIIYQIaSETQHV3d3PJJZdw8803W97vdDpZtmwZ3d3dbNy4kRdffJEVK1Zw7733GvscPHiQZcuWceaZZ1JcXMwdd9zB9773Pd555x1jn1dffZXly5dz3333sW3bNoqKili6dCm1tbU+f45D0d/aSwlaI1FKD3V6It1K/8nhOTk5xMbGkpOT46umCiGEECNGyARQ999/P3feeSeFhYWW969evZqdO3fy0ksvMWvWLM4991x++ctf8tRTT9Hd3Q3A008/zYQJE3j00UeZNm0at956K9/61rd4/PHHjeM89thj3HDDDVx33XVMnz6dp59+mpiYGJ5//vk+22a322lpaXH78Zfi4mK2bt1KcXHxcfdlUg301n8yLxJss9nctmFhYcTHxxMWJqO6QgghxEBCJoAayKZNmygsLCQj46uhqqVLl9LS0sKOHTuMfZYscV/KZOnSpWza1Jsn1N3dzdatW932UVWVJUuWGPtYefDBB0lMTDR+cnNzvfnUhqyAMgBKGXfcfa4171zbiRMnkp+fL7PwhBBCCA+MmACqpqbGLXgCjN9ramr63aelpYXOzk7q6+txOp2W+7iOYeWee+6hubnZ+Dl8+LA3npJHsrOzSUlJITs72+12RXcwQ+ktoFlrkf/kyg0z54gJIYQQYmABDaB+8pOfoChKvz+7d+8OZBM9EhkZSUJCgtuPv+zdu5eKigr27t3rdnuC1kik4uAIKfQo0cc9ztwDVVpayv79+yktLfV9o4UQQogQF9CElx/96Edce+21/e7j6ZDS2LFjj5std+TIEeM+19Z127H7JCQkEB0djc1mw2azWe7jOkawOXz4MHa7/bher2x6k8oPJcxBaT2+/lN8fDxNTU3Ex/cW13S9zjKEJ4QQQgwsoAFUWloaaWlpXjnWvHnz+NWvfkVtbS3p6ekArFmzhoSEBKZPn27s8/bbb7s9bs2aNcybNw+AiIgI5syZw9q1a7nwwgsB0DSNtWvXcuutt3qlnd7W2dnptnWZ8uX6d9r4hfBF03GPKyoqMuo+gRTSFEIIIQYjZHKgysvLKS4upry8HKfTSXFxMcXFxbS1tQFw9tlnM336dL7zne+wfft23nnnHX72s59xyy23EBkZCcBNN91EaWkpd999N7t37+YPf/gDr732GnfeeadxnuXLl/Pss8/y4osvsmvXLm6++Wba29u57rrrAvK8h0LVHUxTDgGQM3up5T4dHR1omkZHR4c/myaEEEKMCCEzZ/3ee+/lxRdfNH6fPXs2AO+//z6LFi3CZrPx1ltvcfPNNzNv3jxiY2O55ppreOCBB4zHTJgwgZUrV3LnnXfyxBNPkJOTw3PPPcfSpV8FGZdeeil1dXXce++91NTUMGvWLFatWnVcYnmwsNlsOBwOoxwBQKJ2lHDVyWE9jZwJUwLYOiGEEGJkCpkAasWKFZZVw481fvz444bozBYtWsRnn33W7z633npr0A7Zmem67rYFyKESgC/0SeQq1uvfyeLBQgghxNCFzBCesOYqEuraAkz9Mv+pjOCoRyWEEEKMNBJAhZj+lm4BaG9uYIpSDkC9kt7ncaRsgRBCCDF0ITOEJ3q5Ah/ActZc6dZ3KFR0Dmpj0WyRfR5HyhYIIYQQQycBVIgZKPDp3PshADv0/gMjKVsghBBCDJ0EUCFmoMAnuX4LAIeUHH81SQghhBh1JAdqBOlsbWJCT+/wXoOSGuDWCCGEECOXBFAjyMHi97ApOof1NJxKVKCbI4QQQoxYEkCFmP5m4bXtceU/TaCP8k9CCCGE8ALJgQox/c3CS6jtXUxZ6j8JIYQQviU9UCGmsbGR2tpaGhsb3W5XdAcT7XuA4+s/jR8/HkVRGD9+vN/aKYQQQoxkEkCFmLKyMrq6uigrK3O7PV5rIkJxUEsyDlP+U09Pj9tWCCGEEMMjAVSIKSwsZMyYMRQWFrrdPlavAeBQXBGKKQGqrq4OXdepq6vzWzuFEEKIkUwCqBAzZswY4+dY+V8u39KdM++4xyQmJrpthRBCCDE8EkCFmJKSEioqKigpKfnqRt3JDKV3Tbv0GWce95j4+HhsNhvx8fH+aqYQQggxokkAFWJycnKIjY0lJ+erSuPxejMxSjeNejwTp8857jHt7e1omkZ7e7s/myqEEEKMWBJAhZi6ujo6Ojrc8pnS9SMAlMbMxGazHfeY1NRUIiIiSE2V6uRCCCGEN0gdqBBTXl5OV1cX5eXlxm0TOQxAZ9Zcy8csWLCAzMzMPhcgFkIIIcTgSAAVYlzDcMZwnK5xwpf5TynTF1k+ZqAFiIUQQggxODKEF2J0XXfbxuitJCgdtOpRTCo8fgaeEEIIIbxPAqgQl/Zl/tMX+iQiIiIC3BohhBBidJAAKsRNoAKA/fq4ALdECCGEGD0kgAplus4JygEAqpTMADdGCCGEGD0kgAphR8p2kKK0YtfD6VATAt0cIYQQYtSQACqEVX3+PgA79fGoivxXCiGEEP4i37ohTDv0MQD7JP9JCCGE8CsJoEJYelMxAJWKe40nRVHctkIIIYTwLgmgQlSY3kWu1jsDr1lNdrvPXCtKCCGEEN4lAVSIStIaADigZaEoUlBeCCGE8CcJoEJUFjUA7CLvuPtcCwpbLSwshBBCiOGTACpETaJ3MeHDHL/GXVRUlNtWCCGEEN4lAVQIUnUHU5XeAKpeSTvu/ujoaLetEEIIIbxLAqgQFKs3E6E4OEoiDuX4Xian0+m2FUIIIYR3SQAVgjL0WgBKowtRLUoVhIeHoygK4eHh/m6aEEIIMSpIABWC8jgMQNfYkyzvnz9/PhMnTmT+/Pn+bJYQQggxakgAFWp0nelKGQCJU04LbFuEEEKIUUoCqBATrbcxRmmjSw8nv8i6h6mkpISKigpKSkr83DohhBBidJAKjCEmRa8DBXboE5gTHWO5T2FhodtWCCGEEN4lAVSIyaUK6F1AeE4f+xQVFVFUVOS/RgkhhBCjjAzhhZgpHAKgSskMcEuEEEKI0UsCqBDS3lDNePUIAC2mBYSFEEII4T8SQIWQQ8XvA7BXy0ZRZJ07IYQQIlAkByqEdOzfAMBuPS+wDRFCiCDndDrp6ekJdDNEkAkPD8dm804HRMgEUL/61a9YuXIlxcXFRERE0NTUdNw+ikVV7pdffpnLLrvM+H3dunUsX76cHTt2kJuby89+9jOuvfZat8c89dRTPPzww9TU1FBUVMTvf/97TjnlFG8/pUGLWPgDHnlZp0uxnn0nhBCjna7r1NTUWH5HCAGQlJTE2LFjLWOGwQiZAKq7u5tLLrmEefPm8ac//anP/V544QXOOecc4/ekpCTj3wcPHmTZsmXcdNNN/OUvf2Ht2rV873vfIzMzk6VLlwLw6quvsnz5cp5++mnmzp3Lb3/7W5YuXcqePXtIT0/32fPzxMzpM3g9LCOgbRBCiGDmCp7S09OJiYkZ9pekGDl0Xaejo4Pa2t7l0DIzhzcZK2QCqPvvvx+AFStW9LufK7K08vTTTzNhwgQeffRRAKZNm8b69et5/PHHjQDqscce44YbbuC6664zHrNy5Uqef/55fvKTn3jp2QghhPA2p9NpBE8pKSmBbo4IQtHR0QDU1taSnp4+rOG8EZdEfsstt5Camsopp5zC888/j67rxn2bNm1iyZIlbvsvXbqUTZs2Ab29XFu3bnXbR1VVlixZYuxjxW6309LS4vYjhBDCv1w5TzExkuYg+uZ6fww3Ry5keqA88cADD3DWWWcRExPD6tWr+cEPfkBbWxu333470Nu1m5HhPgSWkZFBS0sLnZ2dNDY24nQ6LffZvXt3n+d98MEHjR4yfwsLC8PhcBAWNqL+K4UQYshk2E70x1vvj4D2QP3kJz9BUZR+f/oLXMx+/vOfs2DBAmbPns1//dd/cffdd/Pwww/78Bn0uueee2hubjZ+Dh8+7PNzurhyvI7N9RJCCCGEbwU0gPrRj37Erl27+v2ZOHHikI8/d+5cKioqsNvtAIwdO5YjR4647XPkyBESEhKIjo4mNTUVm81muU9feVUAkZGRJCQkuP34i6qqKIqCqo640VghhBg1Fi1axB133BHoZgDwxhtvkJ+fj81m44477mDFihVykW4hoOM+aWlppKWl+ez4xcXFjBkzhsjISADmzZvH22+/7bbPmjVrmDdvHgARERHMmTOHtWvXcuGFFwKgaRpr167l1ltv9Vk7hyM1NZXm5mZSU1MD3RQhhBBBat26dZx55pk0NjYOGAx9//vf57rrruP2228nPj6esLAwzjvvPOP+X/ziF7zxxhsUFxf7ttFBLmQSZ8rLy2loaKC8vByn02n8x+Xn5xMXF8ebb77JkSNHOPXUU4mKimLNmjX8+te/5q677jKOcdNNN/Hkk09y9913893vfpf33nuP1157jZUrVxr7LF++nGuuuYaTTjqJU045hd/+9re0t7cbs/KCTUFBAXa7nYKCgkA3RQghRIhra2ujtraWpUuXkpWVZdzumr0mvhIy4z733nsvs2fP5r777qOtrY3Zs2cze/ZsPv30U6C3uuhTTz3FvHnzmDVrFs888wyPPfYY9913n3GMCRMmsHLlStasWUNRURGPPvoozz33nFHCAODSSy/lkUce4d5772XWrFkUFxezatWq4xLLg0VraysOh4PW1tZAN0UIIYKOrut0dDsC8nPsLHBPOBwObr31VhITE0lNTeXnP/+52zHsdjt33XUX2dnZxMbGMnfuXNatW2fcf+jQIS644ALGjBlDbGwsM2bM4O2336asrIwzzzwTgDFjxqAoynEFpKG3lyo+Ph6As846C0VRWLdundsQ3ooVK7j//vvZvn27kas8UHmhkSpkeqBWrFjR73/SOeec41ZAsy+LFi3is88+63efW2+9NWiH7MxcwZPD4Qh0U4QQIuh09jiZfu87ATn3zgeWEhPh+dfsiy++yPXXX88nn3zCp59+yo033si4ceO44YYbgN7vpp07d/LKK6+QlZXF66+/zjnnnENJSQmTJ0/mlltuobu7mw8//JDY2Fh27txJXFwcubm5/OMf/+Diiy9mz549Rt6v2fz589mzZw9TpkzhH//4B/Pnzyc5OZmysjJjn0svvZQvvviCVatW8e677wKQmJg4vBcqRIVMACWsVVRU0N7eTkVFRaCbIoQQYhhyc3N5/PHHURSFKVOmUFJSwuOPP84NN9xAeXk5L7zwAuXl5cbQ2l133cWqVat44YUX+PWvf015eTkXX3wxhYWFAG6TsJKTkwFIT0/vMwcqIiLCWHEjOTnZcvJUdHQ0cXFxhIWF9Tu5ajSQACrE5eTk0NjYSE5OTqCbIoQQQSc63MbOB5YOvKOPzj0Yp556qluNonnz5vHoo4/idDopKSnB6XQel+9qt9uNquu33347N998M6tXr2bJkiVcfPHFzJw5c/hPRFiSACrEhYWFGbMkhBBCuFMUZVDDaMGqra0Nm83G1q1bj1t+JC4uDoDvfe97LF26lJUrV7J69WoefPBBHn30UW677bZANHnEC/131Sjn6qIdTr0sIYQQgbd582a33z/++GMmT56MzWZj9uzZOJ1OamtrOe200/o8Rm5uLjfddBM33XQT99xzD88++yy33XYbERERQO96gcMVERHhleOEupCZhSesZWVlsXDhQrfppkIIIUJPeXk5y5cvZ8+ePbz88sv8/ve/54c//CHQW7Lmyiuv5Oqrr+af//wnBw8e5JNPPuHBBx80SvHccccdvPPOOxw8eJBt27bx/vvvM23aNADGjx+Poii89dZb1NXV0dbWNuR25uXlcfDgQYqLi6mvrzeKVY82EkCFuKqqKtavX09VVVWgmyKEEGIYrr76ajo7OznllFO45ZZb+OEPf8iNN95o3P/CCy9w9dVX86Mf/YgpU6Zw4YUXsmXLFsaNGwf09i7dcsstTJs2jXPOOYeCggL+8Ic/AJCdnc3999/PT37yEzIyMoY10/ziiy/mnHPO4cwzzyQtLY2XX355eE88RCn6YAtViAG1tLSQmJhIc3Oz15d1OXbR4vvuu4/169ezf/9+8vPzWbhwoVfPJYQQoaSrq4uDBw8yYcIEoqKiAt0cEaT6e58M5vtbcqBCnORACSGEEP4nAVSIy8rKkvwnIYQQws8kB0oIIYQQYpAkgBJCCCGEGCQJoEKMqqpuWyGEEEL4n3wLhxjXApBWC0EKIYQQwj8kgAoxqampKIpCampqoJsihBBCjFoSQIWY6upqdF2nuro60E0RQgghRi0JoEJMd3e321YIIYQQ/icBVIgJDw932wohhBCBsGLFCpKSkgLdDK699louvPBCv59XAqgQM3/+fJKTk5k/f36gmyKEEEL0qaysDEVRKC4uDsrjDZcEUCFmzJgxxo8QQojRa6SkcoTq85AAKsRs2bKFsrIytmzZEuimCCFE8NN16G4PzI+ue9zM1tZWrrzySmJjY8nMzOTxxx9n0aJF3HHHHcY+eXl5/PKXv+Tqq68mISGBG2+8EYB//OMfzJgxg8jISPLy8nj00Ufdjq0oCm+88YbbbUlJSaxYsQL4qmfnn//8J2eeeSYxMTEUFRWxadMmt8esWLGCcePGERMTw0UXXcTRo0f7fU4TJkwAYPbs2SiKwqJFi4Cvhtx+9atfkZWVxZQpUzxqZ1/Hc3nkkUfIzMwkJSWFW265hZ6enn7bN1yyFl6ISUxMpL6+nsTExEA3RQghgl9PB/w6QOuF/ncVRMR6tOvy5cvZsGED//73v8nIyODee+9l27ZtzJo1y22/Rx55hHvvvZf77rsPgK1bt/Ltb3+bX/ziF1x66aVs3LiRH/zgB6SkpHDttdcOqrk//elPeeSRR5g8eTI//elPufzyy9m/fz9hYWFs3ryZ66+/ngcffJALL7yQVatWGW3oyyeffMIpp5zCu+++y4wZM4iIiDDuW7t2LQkJCaxZs8bj9vV3vPfff5/MzEzef/999u/fz6WXXsqsWbO44YYbBvUaDIYEUCFmwYIFZGZmMnHixEA3RQghhBe0trby4osv8te//pXFixcD8MILL1guFH/WWWfxox/9yPj9yiuvZPHixfz85z8HoKCggJ07d/Lwww8POoC66667WLZsGQD3338/M2bMYP/+/UydOpUnnniCc845h7vvvts4z8aNG1m1alWfx0tLSwMgJSWFsWPHut0XGxvLc8895xYEDaS/440ZM4Ynn3wSm83G1KlTWbZsGWvXrpUASnwlKyvL8o9KCCGEhfCY3p6gQJ3bA6WlpfT09HDKKacYtyUmJhpDW8c66aST3H7ftWsX3/jGN9xuW7BgAb/97W9xOp3YbDaPmztz5kzj35mZmQDU1tYydepUdu3axUUXXeS2/7x58/oNoPpTWFg4qOBpIDNmzHB7rpmZmZSUlHjt+FYkgBJCCDFyKYrHw2ihIDZ28M9FURR0Uz6WVX7QseVxFEUBQNO0QZ/PE1bPw9N2WjGX9lEUxWdtd5Ek8hBTVVXF+vXrqaoK0BWVEEIIr5o4cSLh4eFuk4Oam5vZu3fvgI+dNm0aGzZscLttw4YNFBQUGD0yaWlpbqtX7Nu3j46OjkG1cdq0aWzevNntto8//rjfx7h6mJxOp0fnGKidgz2er0kPVIgpLS1l//79ADKUJ4QQI0B8fDzXXHMNP/7xj0lOTiY9PZ377rsPVVWNnqC+/OhHP+Lkk0/ml7/8JZdeeimbNm3iySef5A9/+IOxz1lnncWTTz7JvHnzcDqd/Nd//degizHffvvtLFiwgEceeYRvfOMbvPPOOwMO36WnpxMdHc2qVavIyckhKiqq3wlQA7VzsMfzNemBCjETJ04kPz9fksiFEGIEeeyxx5g3bx7nn38+S5YsYcGCBUybNo2oqKh+H3fiiSfy2muv8corr3DCCSdw77338sADD7glkD/66KPk5uZy2mmnccUVV3DXXXcRE+NZfpbLqaeeyrPPPssTTzxBUVERq1ev5mc/+1m/jwkLC+N3v/sdzzzzDFlZWcflapkN1M7BHs/XFN084CiGraWlhcTERJqbm0lISAh0c4QQYlTo6uri4MGDTJgwYcDAI9i1t7eTnZ3No48+yvXXXx/o5owo/b1PBvP9LUN4QgghRIB99tln7N69m1NOOYXm5mYeeOABgID3soi+SQAlhBBCBIFHHnmEPXv2EBERwZw5c/joo49ITU0NdLNEHySAEkIIIQJs9uzZbN26NdDNEIMgSeRCCCGEEIMkAZQQQogRReZGif546/0hAZQQQogRwVUzaLBFIsXo4np/DLYWlpnkQAkhhBgRbDYbSUlJ1NbWAhATEzNgIUoxeui6TkdHB7W1tSQlJQ1qnUArEkAJIYQYMcaOHQtgBFFCmCUlJRnvk+GQAEoIIcSIoSgKmZmZpKene7wQrRg9wsPDh93z5CIBlBBCiBHHZrN57YtSCCuSRC6EEEIIMUgSQAkhhBBCDJIEUEIIIYQQgyQ5UD7gKtLV0tIS4JYIIYQQwlOu721Pim1KAOUDra2tAOTm5ga4JUIIIYQYrNbWVhITE/vdR9Gl5r3XaZpGVVUV8fHxXi/i1tLSQm5uLocPHyYhIcGrxx5p5LXynLxWnpPXynPyWnlOXivP+fK10nWd1tZWsrKyUNX+s5ykB8oHVFUlJyfHp+dISEiQPzIPyWvlOXmtPCevlefktfKcvFae89VrNVDPk4skkQshhBBCDJIEUEIIIYQQgyQBVIiJjIzkvvvuIzIyMtBNCXryWnlOXivPyWvlOXmtPCevleeC5bWSJHIhhBBCiEGSHighhBBCiEGSAEoIIYQQYpAkgBJCCCGEGCQJoIQQQgghBkkCqBDxq1/9ivnz5xMTE0NSUpLlPoqiHPfzyiuv+LehQcKT16u8vJxly5YRExNDeno6P/7xj3E4HP5taBDKy8s77n30m9/8JtDNChpPPfUUeXl5REVFMXfuXD755JNANyno/OIXvzjuPTR16tRANysofPjhh1xwwQVkZWWhKApvvPGG2/26rnPvvfeSmZlJdHQ0S5YsYd++fYFpbIAN9Fpde+21x73PzjnnHL+1TwKoENHd3c0ll1zCzTff3O9+L7zwAtXV1cbPhRde6J8GBpmBXi+n08myZcvo7u5m48aNvPjii6xYsYJ7773Xzy0NTg888IDb++i2224LdJOCwquvvsry5cu577772LZtG0VFRSxdupTa2tpANy3ozJgxw+09tH79+kA3KSi0t7dTVFTEU089ZXn/Qw89xO9+9zuefvppNm/eTGxsLEuXLqWrq8vPLQ28gV4rgHPOOcftffbyyy/7r4G6CCkvvPCCnpiYaHkfoL/++ut+bU+w6+v1evvtt3VVVfWamhrjtv/93//VExISdLvd7scWBp/x48frjz/+eKCbEZROOeUU/ZZbbjF+dzqdelZWlv7ggw8GsFXB57777tOLiooC3YygZ/7M1jRNHzt2rP7www8btzU1NemRkZH6yy+/HIAWBg+r77drrrlG/8Y3vhGQ9ui6rksP1Ahzyy23kJqayimnnMLzzz+PLmW+LG3atInCwkIyMjKM25YuXUpLSws7duwIYMuCw29+8xtSUlKYPXs2Dz/8sAxt0turuXXrVpYsWWLcpqoqS5YsYdOmTQFsWXDat28fWVlZTJw4kSuvvJLy8vJANynoHTx4kJqaGrf3WGJiInPnzpX3WB/WrVtHeno6U6ZM4eabb+bo0aN+O7csJjyCPPDAA5x11lnExMSwevVqfvCDH9DW1sbtt98e6KYFnZqaGrfgCTB+r6mpCUSTgsbtt9/OiSeeSHJyMhs3buSee+6hurqaxx57LNBNC6j6+nqcTqfl+2b37t0BalVwmjt3LitWrGDKlClUV1dz//33c9ppp/HFF18QHx8f6OYFLddnj9V7bLR/Llk555xz+OY3v8mECRM4cOAA//3f/825557Lpk2bsNlsPj+/BFAB9JOf/IT/+Z//6XefXbt2eZx8+fOf/9z49+zZs2lvb+fhhx8eMQGUt1+v0WQwr93y5cuN22bOnElERATf//73efDBBwO+dIIIDeeee67x75kzZzJ37lzGjx/Pa6+9xvXX///27iek6T+O4/jrpzSNlqZsNgsUzRpJ1iDZ6hQhGB2ioIMFyYofnexQaZ2SiGqHDjHoUHev3Yo62FAINAlh4SnYaFhI36IOYf/T9+/wo0H0I/2W/j5rPR8wGN+NfV+8+bK9+G6f7/52mAzl5NChQ8X7HR0d2rp1qzZs2KDR0VF1dXUt+/4pUA719/fr6NGjP3xOa2vrT79+IpHQxYsX9fHjx7L44FvKeUUike9WT3meV3ys3PzK7BKJhL58+aJCoaBoNLoM6X4PoVBIlZWVxePkK8/zyvKYWUpr1qzRpk2blMvlXEcpaV+PI8/z1NjYWNzueZ5isZijVL+P1tZWhUIh5XI5ClS5C4fDCofDy/b62WxWdXV1ZVGepKWd186dO3X58mW9ePFCDQ0NkqTh4WHV1NSovb19SfZRSn5ldtlsVhUVFcU5/akCgYC2b9+uTCZTXN06Pz+vTCajEydOuA1X4mZnZ5XP59Xb2+s6SklraWlRJBJRJpMpFqY3b95oYmJiwRXYkJ49e6ZXr159Uz6XEwXqNzE9Pa3Xr19renpac3NzymazkqS2tjYFg0HdunVLnudpx44dqq6u1vDwsFKplAYGBtwGd2SheXV3d6u9vV29vb26cuWKnj9/rnPnzqmvr69sCufPGB8f18TEhHbv3q3Vq1drfHxcp06d0pEjR1RXV+c6nnOnT59WMplUZ2en4vG40um03r59q2PHjrmOVlIGBga0b98+NTc3a2ZmRufPn1dlZaUOHz7sOppzs7Oz35yJe/LkibLZrOrr69XU1KSTJ0/q0qVL2rhxo1paWjQ4OKh169b9kZek+dGs6uvrdeHCBR08eFCRSET5fF5nz55VW1ub9uzZ8/8EdLb+D74kk0mT9N1tZGTEzMzu3r1rsVjMgsGgrVq1yrZt22Y3btywubk5t8EdWWheZmaFQsH27t1rK1eutFAoZP39/fb582d3oUvA5OSkJRIJq62tterqatu8ebOlUin78OGD62gl49q1a9bU1GSBQMDi8bg9ePDAdaSS09PTY42NjRYIBGz9+vXW09NjuVzOdaySMDIy8p/vTclk0sz+vZTB4OCgrV271qqqqqyrq8seP37sNrQjP5rVu3fvrLu728LhsK1YscKam5vt+PHj31yaZrn9ZcY6dwAAAD+4DhQAAIBPFCgAAACfKFAAAAA+UaAAAAB8okABAAD4RIECAADwiQIFAADgEwUKAADAJwoUAACATxQoAAAAnyhQAAAAPlGgAGABL1++VCQSUSqVKm4bGxtTIBBQJpNxmAyAK/yZMAAswp07d3TgwAGNjY0pGo0qFotp//79unr1qutoABygQAHAIvX19enevXvq7OzU1NSUHj58qKqqKtexADhAgQKARXr//r22bNmip0+fanJyUh0dHa4jAXCE30ABwCLl83nNzMxofn5ehULBdRwADnEGCgAW4dOnT4rH44rFYopGo0qn05qamlJDQ4PraAAcoEABwCKcOXNGN2/e1KNHjxQMBrVr1y7V1tbq9u3brqMBcICv8ABgAaOjo0qn0xoaGlJNTY0qKio0NDSk+/fv6/r1667jAXCAM1AAAAA+cQYKAADAJwoUAACATxQoAAAAnyhQAAAAPlGgAAAAfKJAAQAA+ESBAgAA8IkCBQAA4BMFCgAAwCcKFAAAgE8UKAAAAJ/+ARQLcewmPvaRAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "def cycle(state: StandardState) -> StandardState:\n", " s_ = state\n", @@ -838,20 +372,7 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [ - { - "ename": "TypeError", - "evalue": "'NoneType' object is not subscriptable", - "output_type": "error", - "traceback": [ - "\u001B[0;31m---------------------------------------------------------------------------\u001B[0m", - "\u001B[0;31mTypeError\u001B[0m Traceback (most recent call last)", - "Cell \u001B[0;32mIn[15], line 1\u001B[0m\n\u001B[0;32m----> 1\u001B[0m \u001B[38;5;28mprint\u001B[39m(\u001B[38;5;124mf\u001B[39m\u001B[38;5;124m\"\u001B[39m\u001B[38;5;132;01m{\u001B[39;00m\u001B[43mv0\u001B[49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mmodel\u001B[49m\u001B[38;5;132;01m=}\u001B[39;00m\u001B[38;5;124m, \u001B[39m\u001B[38;5;130;01m\\n\u001B[39;00m\u001B[38;5;132;01m{\u001B[39;00mv0\u001B[38;5;241m.\u001B[39mexperiment_data\u001B[38;5;132;01m=}\u001B[39;00m\u001B[38;5;124m\"\u001B[39m)\n", - "File \u001B[0;32m~/Documents/GitHub/AutoResearch/autora-core/src/autora/state.py:1557\u001B[0m, in \u001B[0;36mStandardStateDict.model\u001B[0;34m(self)\u001B[0m\n\u001B[1;32m 1555\u001B[0m \u001B[38;5;250m\u001B[39m\u001B[38;5;124;03m\"\"\"Alias for the last model in the `models`.\"\"\"\u001B[39;00m\n\u001B[1;32m 1556\u001B[0m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[0;32m-> 1557\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[38;5;241;43m.\u001B[39;49m\u001B[43mdata\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[38;5;124;43mmodels\u001B[39;49m\u001B[38;5;124;43m\"\u001B[39;49m\u001B[43m]\u001B[49m\u001B[43m[\u001B[49m\u001B[38;5;241;43m-\u001B[39;49m\u001B[38;5;241;43m1\u001B[39;49m\u001B[43m]\u001B[49m\n\u001B[1;32m 1558\u001B[0m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mIndexError\u001B[39;00m:\n\u001B[1;32m 1559\u001B[0m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;01mNone\u001B[39;00m\n", - "\u001B[0;31mTypeError\u001B[0m: 'NoneType' object is not subscriptable" - ] - } - ], + "outputs": [], "source": [ "print(f\"{v0.model=}, \\n{v0.experiment_data=}\")" ] From 659191951673ecc9f5ae132abed5fceb440b6281 Mon Sep 17 00:00:00 2001 From: Younes Strittmatter Date: Thu, 31 Aug 2023 19:35:39 -0400 Subject: [PATCH 3/4] fix: changed order of arguments in add_field --- src/autora/state.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/autora/state.py b/src/autora/state.py index 71fa8860..10892094 100644 --- a/src/autora/state.py +++ b/src/autora/state.py @@ -49,7 +49,7 @@ class StateDict(UserDict): def __init__(self, data: Optional[Dict] = None): super().__init__(data) - def add_field(self, name, default=None, delta="replace", aliases=None): + def add_field(self, name, delta="replace", default=None, aliases=None): self.data[name] = default if "_metadata" not in self.data.keys(): self.data["_metadata"] = {} From 58cbc06998b4779552b2f4cf8d7fab0fbcf49055 Mon Sep 17 00:00:00 2001 From: Younes Strittmatter Date: Fri, 1 Sep 2023 15:00:42 -0400 Subject: [PATCH 4/4] docs: add jupiter notebook to add fields and alter delta behaviour --- ...lly Extending and Altering the State.ipynb | 525 ++++++++++++++++++ 1 file changed, 525 insertions(+) create mode 100644 docs/cycle/Dynamically Extending and Altering the State.ipynb diff --git a/docs/cycle/Dynamically Extending and Altering the State.ipynb b/docs/cycle/Dynamically Extending and Altering the State.ipynb new file mode 100644 index 00000000..cdc6a83a --- /dev/null +++ b/docs/cycle/Dynamically Extending and Altering the State.ipynb @@ -0,0 +1,525 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamically Extending And Altering The States" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can add fields to the `State` or alter the behaviour of the fields dynamically.\n", + "\n", + "Here, we show how to use different experimentalists to sample from a common pool and combine the outputs.\n", + "We achieve this by adding a `pool` field to the `StandardState` and dynamically changing the behaviour of the `conditions` field so instead of replacing the `conditions` they get extended." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Defining The State\n", + "\n", + "We use the standard State object bundled with `autora`: `StandardState`. This state has four build in fields:\n", + "`variables`, `conditions`, `experiment_data` and `models`. We can initialize some (or all) of these fields:\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "from autora.variable import VariableCollection, Variable\n", + "from autora.state import StandardState\n", + "\n", + "s = StandardState(\n", + " variables=VariableCollection(independent_variables=[Variable(\"x\", value_range=(-15,15))],\n", + " dependent_variables=[Variable(\"y\")]),\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'replace'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-15, 15), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': None, 'experiment_data': None, 'models': None}" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Adding Pool To The State\n", + "First, we add a new field to `s`. We want the content of this field to be replaced each time a function writes into the field." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "s.add_field(name='pool', delta='replace')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use `random_pool` as our pooler and define the output to be the newly created `pool` field:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'_metadata': {'variables': {'default': None, 'delta': 'replace'}, 'conditions': {'default': None, 'delta': 'extend'}, 'experiment_data': {'default': None, 'delta': 'extend'}, 'models': {'default': None, 'delta': 'extend'}, 'pool': {'default': None, 'delta': 'replace', 'aliases': None}}, 'variables': VariableCollection(independent_variables=[Variable(name='x', value_range=(-15, 15), allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], dependent_variables=[Variable(name='y', value_range=None, allowed_values=None, units='', type=, variable_label='', rescale=1, is_covariate=False)], covariates=[]), 'conditions': None, 'experiment_data': None, 'models': None, 'pool': x\n", + "0 -12.659490\n", + "1 5.983803\n", + "2 -10.337078\n", + "3 9.287066\n", + "4 -3.707592\n", + "5 -14.107050\n", + "6 4.233732\n", + "7 -10.066782\n", + "8 -10.494731\n", + "9 -2.577266}" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from autora.experimentalist.random import random_pool\n", + "from autora.state import on_state\n", + "\n", + "pool = on_state(random_pool, output=[\"pool\"])\n", + "\n", + "s_1 = pool(s, num_samples=10)\n", + "s_1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Defining The Experimentalists\n", + "\n", + "Here, we use a random sampler To make it use the pool as input, we wrap them in a function. The output will be written into the conditions field." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
x
4-13.405719
912.941968
55.300515
73.970537
6-3.867838
\n", + "
" + ], + "text/plain": [ + " x\n", + "4 -13.405719\n", + "9 12.941968\n", + "5 5.300515\n", + "7 3.970537\n", + "6 -3.867838" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from autora.experimentalist.random import random_sample\n", + "from autora.state import Delta\n", + "\n", + "@on_state\n", + "def sample(pool, **kwargs):\n", + " return Delta(conditions=random_sample(pool, **kwargs))\n", + "\n", + "s_2 = sample(s_1, num_samples=5)\n", + "s_2.conditions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we run the sampler on the state again, the conditions get replaced:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
x
912.941968
6-3.867838
311.739368
\n", + "
" + ], + "text/plain": [ + " x\n", + "9 12.941968\n", + "6 -3.867838\n", + "3 11.739368" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s_3 = sample(s_2, num_samples=3)\n", + "s_3.conditions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can change this behaviour, by setting the delta of the state:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
x
012.941968
1-3.867838
211.739368
3-3.867838
4-9.164803
511.739368
6-1.972083
\n", + "
" + ], + "text/plain": [ + " x\n", + "0 12.941968\n", + "1 -3.867838\n", + "2 11.739368\n", + "3 -3.867838\n", + "4 -9.164803\n", + "5 11.739368\n", + "6 -1.972083" + ] + }, + "execution_count": null, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s_3.set_delta('conditions', 'extend')\n", + "s_4 = sample(s_3, num_samples=4)\n", + "s_4.conditions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Defining A Cycle That Dynamically Alters The Behaviour Of A Field\n", + "\n", + "We can use this to dynamically switch between replacing and extending the field. This is a toy example since we use the same experimentalist twice, but we could also use other sampling strategies and combine the outputs via this method." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "cycle 0, first sample: x\n", + "8 6.243647\n", + "6 -2.637910\n", + "cycle 0, combined sample: x\n", + "0 6.243647\n", + "1 -2.637910\n", + "2 10.854779\n", + "3 -9.031437\n", + "\n", + "cycle 1, first sample: x\n", + "3 -4.390997\n", + "2 -13.689377\n", + "cycle 1, combined sample: x\n", + "0 -4.390997\n", + "1 -13.689377\n", + "2 8.103764\n", + "3 0.587679\n", + "\n", + "cycle 2, first sample: x\n", + "9 13.485559\n", + "5 -8.526151\n", + "cycle 2, combined sample: x\n", + "0 13.485559\n", + "1 -8.526151\n", + "2 8.072581\n", + "3 12.135963\n", + "\n", + "cycle 3, first sample: x\n", + "5 13.168087\n", + "7 -4.252829\n", + "cycle 3, combined sample: x\n", + "0 13.168087\n", + "1 -4.252829\n", + "2 9.545601\n", + "3 13.168087\n", + "\n", + "cycle 4, first sample: x\n", + "1 -11.610008\n", + "8 -5.419989\n", + "cycle 4, combined sample: x\n", + "0 -11.610008\n", + "1 -5.419989\n", + "2 10.730890\n", + "3 10.875790\n", + "\n", + "cycle 5, first sample: x\n", + "0 -0.913466\n", + "6 13.441385\n", + "cycle 5, combined sample: x\n", + "0 -0.913466\n", + "1 13.441385\n", + "2 -2.473232\n", + "3 -0.913466\n", + "\n", + "cycle 6, first sample: x\n", + "5 11.894723\n", + "6 4.894433\n", + "cycle 6, combined sample: x\n", + "0 11.894723\n", + "1 4.894433\n", + "2 -6.875161\n", + "3 0.735716\n", + "\n", + "cycle 7, first sample: x\n", + "4 -7.696556\n", + "3 -6.535279\n", + "cycle 7, combined sample: x\n", + "0 -7.696556\n", + "1 -6.535279\n", + "2 -7.981432\n", + "3 5.399625\n", + "\n", + "cycle 8, first sample: x\n", + "7 -4.805527\n", + "8 -4.611733\n", + "cycle 8, combined sample: x\n", + "0 -4.805527\n", + "1 -4.611733\n", + "2 -4.611733\n", + "3 2.183176\n", + "\n", + "cycle 9, first sample: x\n", + "5 -8.000647\n", + "7 4.524020\n", + "cycle 9, combined sample: x\n", + "0 -8.000647\n", + "1 4.524020\n", + "2 -8.000647\n", + "3 -11.450967\n", + "\n" + ] + } + ], + "source": [ + "def cycle(s, i):\n", + " s = pool(s, num_samples=10)\n", + " s.set_delta(\"conditions\", \"replace\")\n", + " s = sample(s, num_samples=2) # now there are always 2 conditions in the field\n", + " print(f'cycle {i}, first sample:', s.conditions)\n", + " s.set_delta(\"conditions\", \"extend\")\n", + " s = sample(s, num_samples=2) # now there are 4 conditions in the field\n", + " print(f'cycle {i}, combined sample:', s.conditions)\n", + " print()\n", + " return s\n", + "\n", + "for i in range(10):\n", + " s = cycle(s, i)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +}