diff --git a/azureml/eval_prompts.yml b/azureml/eval_prompts.yml new file mode 100644 index 0000000..96287fa --- /dev/null +++ b/azureml/eval_prompts.yml @@ -0,0 +1,32 @@ +$schema: https://azuremlschemas.azureedge.net/latest/commandJob.schema.json +command: > + python -m autora.doc.pipelines.main eval-prompts + ${{inputs.data_dir}}/data.jsonl + ${{inputs.data_dir}}/all_prompt.json + --model-path ${{inputs.model_path}} + --param do_sample=${{inputs.do_sample}} + --param temperature=${{inputs.temperature}} + --param top_k=${{inputs.top_k}} + --param top_p=${{inputs.top_p}} +code: ../src +inputs: + data_dir: + type: uri_folder + path: azureml://datastores/workspaceblobstore/paths/data/sweetpea/ + # Currently models are loading faster directly from HuggingFace vs Azure Blob Storage + # model_dir: + # type: uri_folder + # path: azureml://datastores/workspaceblobstore/paths/base_models + model_path: meta-llama/Llama-2-7b-chat-hf + temperature: 0.01 + do_sample: 0 + top_p: 0.95 + top_k: 1 +# using a curated environment doesn't work because we need additional packages +environment: # azureml://registries/azureml/environments/acpt-pytorch-2.0-cuda11.7/versions/21 + image: mcr.microsoft.com/azureml/curated/acpt-pytorch-2.0-cuda11.7:21 + conda_file: conda.yml +display_name: autodoc_multi_prompts_prediction +compute: azureml:v100cluster +experiment_name: evaluation_multi_prompts +description: Run code-to-documentation generation on data_file for each prompt in prompts_file