You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@dev Provides information about the current execution context, including the
sender of the transaction and its data. While these are generally available
via msg.sender and msg.data, they should not be accessed in such a direct
manner, since when dealing with meta-transactions the account sending and
paying for execution may not be the actual sender (as far as an application
is concerned).
This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
@dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_setOwner(_msgSender());
}
/**
@dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
@dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
@dev Leaves the contract without owner. It will not be possible to call
onlyOwner functions anymore. Can only be called by the current owner.
NOTE: Renouncing ownership will leave the contract without an owner,
thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_setOwner(address(0));
}
/**
@dev Transfers ownership of the contract to a new account (newOwner).
Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
@dev Wrappers over Solidity's arithmetic operations.
NOTE: SafeMath is no longer needed starting with Solidity 0.8. The compiler
now has built in overflow checking. /
library SafeMath {
/*
@dev Returns the addition of two unsigned integers, with an overflow flag.
Available since v3.4.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
@dev Returns the substraction of two unsigned integers, with an overflow flag.
Available since v3.4.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
@dev Returns the multiplication of two unsigned integers, with an overflow flag.
Available since v3.4.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: improve mul performance and reduce gas cost OpenZeppelin/openzeppelin-contracts#522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
@dev Returns the division of two unsigned integers, with a division by zero flag.
Available since v3.4.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
@dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
Available since v3.4.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
@dev Returns the addition of two unsigned integers, reverting on
overflow.
Counterpart to Solidity's + operator.
Requirements:
Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
@dev Returns the subtraction of two unsigned integers, reverting on
overflow (when the result is negative).
Counterpart to Solidity's - operator.
Requirements:
Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
@dev Returns the multiplication of two unsigned integers, reverting on
overflow.
Counterpart to Solidity's * operator.
Requirements:
Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
@dev Returns the integer division of two unsigned integers, reverting on
division by zero. The result is rounded towards zero.
Counterpart to Solidity's / operator.
Requirements:
The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
@dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
reverting when dividing by zero.
Counterpart to Solidity's % operator. This function uses a revert
opcode (which leaves remaining gas untouched) while Solidity uses an
invalid opcode to revert (consuming all remaining gas).
Requirements:
The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
@dev Returns the subtraction of two unsigned integers, reverting with custom message on
overflow (when the result is negative).
CAUTION: This function is deprecated because it requires allocating memory for the error
message unnecessarily. For custom revert reasons use {trySub}.
Counterpart to Solidity's - operator.
Requirements:
Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
@dev Returns the integer division of two unsigned integers, reverting with custom message on
division by zero. The result is rounded towards zero.
Counterpart to Solidity's / operator. Note: this function uses a
revert opcode (which leaves remaining gas untouched) while Solidity
uses an invalid opcode to revert (consuming all remaining gas).
Requirements:
The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
@dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
reverting with custom message when dividing by zero.
CAUTION: This function is deprecated because it requires allocating memory for the error
message unnecessarily. For custom revert reasons use {tryMod}.
Counterpart to Solidity's % operator. This function uses a revert
opcode (which leaves remaining gas untouched) while Solidity uses an
invalid opcode to revert (consuming all remaining gas).
Requirements:
The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
contract StandardToken is IERC20, Ownable, BaseToken {
using SafeMath for uint256;
uint256 public constant VERSION = 1;
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
string private _name;
string private _symbol;
uint8 private _decimals;
uint256 private _totalSupply;
constructor(
string memory name_,
string memory symbol_,
uint8 decimals_,
uint256 totalSupply_,
address serviceFeeReceiver_,
uint256 serviceFee_
) payable {
_name = name_;
_symbol = symbol_;
_decimals = decimals_;
_mint(owner(), totalSupply_);
emit TokenCreated(owner(), address(this), TokenType.standard, VERSION);
payable(serviceFeeReceiver_).transfer(serviceFee_);
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account)
public
view
virtual
override
returns (uint256)
{
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount)
public
virtual
override
returns (bool)
{
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender)
public
view
virtual
override
returns (uint256)
{
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount)
public
virtual
override
returns (bool)
{
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(
sender,
_msgSender(),
_allowances[sender][_msgSender()].sub(
amount,
"ERC20: transfer amount exceeds allowance"
)
);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue)
public
virtual
returns (bool)
{
_approve(
_msgSender(),
spender,
_allowances[_msgSender()][spender].add(addedValue)
);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue)
public
virtual
returns (bool)
{
_approve(
_msgSender(),
spender,
_allowances[_msgSender()][spender].sub(
subtractedValue,
"ERC20: decreased allowance below zero"
)
);
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(
amount,
"ERC20: transfer amount exceeds balance"
);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(
amount,
"ERC20: burn amount exceeds balance"
);
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal virtual {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
The text was updated successfully, but these errors were encountered:
Nama token:cat lovers
Simbol:CAT LOVERS
desimal:18
Suplay:1000000000
Tax:0%
/**
*Submitted for verification at BscScan.com on 2021-11-21
*/
// Dependency file: @openzeppelin/contracts/token/ERC20/IERC20.sol
// SPDX-License-Identifier: MIT
// pragma solidity ^0.8.0;
/**
@dev Interface of the ERC20 standard as defined in the EIP.
/
interface IERC20 {
/*
*/
function totalSupply() external view returns (uint256);
/**
account
.*/
function balanceOf(address account) external view returns (uint256);
/**
amount
tokens from the caller's account torecipient
.*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
spender
will beowner
through {transferFrom}. This is*/
function allowance(address owner, address spender) external view returns (uint256);
/**
amount
as the allowance ofspender
over the caller's tokens.*/
function approve(address spender, uint256 amount) external returns (bool);
/**
amount
tokens fromsender
torecipient
using theamount
is then deducted from the caller's*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
value
tokens are moved from one account (from
) toto
).value
may be zero.*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
spender
for anowner
is set byvalue
is the new allowance.*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// Dependency file: @openzeppelin/contracts/utils/Context.sol
// pragma solidity ^0.8.0;
/**
@dev Provides information about the current execution context, including the
sender of the transaction and its data. While these are generally available
via msg.sender and msg.data, they should not be accessed in such a direct
manner, since when dealing with meta-transactions the account sending and
paying for execution may not be the actual sender (as far as an application
is concerned).
This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}
// Dependency file: @openzeppelin/contracts/access/Ownable.sol
// pragma solidity ^0.8.0;
// import "@openzeppelin/contracts/utils/Context.sol";
/**
@dev Contract module which provides a basic access control mechanism, where
there is an account (an owner) that can be granted exclusive access to
specific functions.
By default, the owner account will be the one that deploys the contract. This
can later be changed with {transferOwnership}.
This module is used through inheritance. It will make available the modifier
onlyOwner
, which can be applied to your functions to restrict their use tothe owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
*/
constructor() {
_setOwner(_msgSender());
}
/**
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
onlyOwner
functions anymore. Can only be called by the current owner.*/
function renounceOwnership() public virtual onlyOwner {
_setOwner(address(0));
}
/**
newOwner
).*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_setOwner(newOwner);
}
function _setOwner(address newOwner) private {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}
// Dependency file: @openzeppelin/contracts/utils/math/SafeMath.sol
// pragma solidity ^0.8.0;
// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.
/**
@dev Wrappers over Solidity's arithmetic operations.
NOTE:
SafeMath
is no longer needed starting with Solidity 0.8. The compilernow has built in overflow checking.
/
library SafeMath {
/*
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: improve mul performance and reduce gas cost OpenZeppelin/openzeppelin-contracts#522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
+
operator.*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
return a + b;
}
/**
-
operator.*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return a - b;
}
/**
*
operator.*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
return a * b;
}
/**
/
operator.*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return a / b;
}
/**
%
operator. This function uses arevert
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return a % b;
}
/**
-
operator.*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b <= a, errorMessage);
return a - b;
}
}
/**
/
operator. Note: this function uses arevert
opcode (which leaves remaining gas untouched) while Solidity*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a / b;
}
}
/**
%
operator. This function uses arevert
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
unchecked {
require(b > 0, errorMessage);
return a % b;
}
}
}
// Dependency file: contracts/BaseToken.sol
// pragma solidity =0.8.4;
enum TokenType {
standard,
antiBotStandard,
liquidityGenerator,
antiBotLiquidityGenerator,
baby,
antiBotBaby,
buybackBaby,
antiBotBuybackBaby
}
abstract contract BaseToken {
event TokenCreated(
address indexed owner,
address indexed token,
TokenType tokenType,
uint256 version
);
}
// Root file: contracts/standard/StandardToken.sol
pragma solidity =0.8.4;
// import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
// import "@openzeppelin/contracts/access/Ownable.sol";
// import "@openzeppelin/contracts/utils/math/SafeMath.sol";
// import "contracts/BaseToken.sol";
contract StandardToken is IERC20, Ownable, BaseToken {
using SafeMath for uint256;
}
The text was updated successfully, but these errors were encountered: