-
Notifications
You must be signed in to change notification settings - Fork 119
/
train.py
307 lines (252 loc) · 8.44 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import argparse
import logging
import os
import pathlib
from typing import List, NoReturn
import lightning.pytorch as pl
from lightning.pytorch.strategies import DDPStrategy
from torch.utils.tensorboard import SummaryWriter
from data.datamodules import *
from utils import create_logging, parse_yaml
from models.resunet import *
from losses import get_loss_function
from models.audiosep import AudioSep, get_model_class
from data.waveform_mixers import SegmentMixer
from models.clap_encoder import CLAP_Encoder
from callbacks.base import CheckpointEveryNSteps
from optimizers.lr_schedulers import get_lr_lambda
def get_dirs(
workspace: str,
filename: str,
config_yaml: str,
devices_num: int
) -> List[str]:
r"""Get directories and paths.
Args:
workspace (str): directory of workspace
filename (str): filename of current .py file.
config_yaml (str): config yaml path
devices_num (int): 0 for cpu and 8 for training with 8 GPUs
Returns:
checkpoints_dir (str): directory to save checkpoints
logs_dir (str), directory to save logs
tf_logs_dir (str), directory to save TensorBoard logs
statistics_path (str), directory to save statistics
"""
os.makedirs(workspace, exist_ok=True)
yaml_name = pathlib.Path(config_yaml).stem
# Directory to save checkpoints
checkpoints_dir = os.path.join(
workspace,
"checkpoints",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
os.makedirs(checkpoints_dir, exist_ok=True)
# Directory to save logs
logs_dir = os.path.join(
workspace,
"logs",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
os.makedirs(logs_dir, exist_ok=True)
# Directory to save TensorBoard logs
create_logging(logs_dir, filemode="w")
logging.info(args)
tf_logs_dir = os.path.join(
workspace,
"tf_logs",
filename,
"{},devices={}".format(yaml_name, devices_num),
)
# Directory to save statistics
statistics_path = os.path.join(
workspace,
"statistics",
filename,
"{},devices={}".format(yaml_name, devices_num),
"statistics.pkl",
)
os.makedirs(os.path.dirname(statistics_path), exist_ok=True)
return checkpoints_dir, logs_dir, tf_logs_dir, statistics_path
def get_data_module(
config_yaml: str,
num_workers: int,
batch_size: int,
) -> DataModule:
r"""Create data_module. Mini-batch data can be obtained by:
code-block:: python
data_module.setup()
for batch_data_dict in data_module.train_dataloader():
print(batch_data_dict.keys())
break
Args:
workspace: str
config_yaml: str
num_workers: int, e.g., 0 for non-parallel and 8 for using cpu cores
for preparing data in parallel
distributed: bool
Returns:
data_module: DataModule
"""
# read configurations
configs = parse_yaml(config_yaml)
sampling_rate = configs['data']['sampling_rate']
segment_seconds = configs['data']['segment_seconds']
# audio-text datasets
datafiles = configs['data']['datafiles']
# dataset
dataset = AudioTextDataset(
datafiles=datafiles,
sampling_rate=sampling_rate,
max_clip_len=segment_seconds,
)
# data module
data_module = DataModule(
train_dataset=dataset,
num_workers=num_workers,
batch_size=batch_size
)
return data_module
def train(args) -> NoReturn:
r"""Train, evaluate, and save checkpoints.
Args:
workspace: str, directory of workspace
gpus: int, number of GPUs to train
config_yaml: str
"""
# arguments & parameters
workspace = args.workspace
config_yaml = args.config_yaml
filename = args.filename
devices_num = torch.cuda.device_count()
# Read config file.
configs = parse_yaml(config_yaml)
# Configuration of data
max_mix_num = configs['data']['max_mix_num']
sampling_rate = configs['data']['sampling_rate']
lower_db = configs['data']['loudness_norm']['lower_db']
higher_db = configs['data']['loudness_norm']['higher_db']
# Configuration of the separation model
query_net = configs['model']['query_net']
model_type = configs['model']['model_type']
input_channels = configs['model']['input_channels']
output_channels = configs['model']['output_channels']
condition_size = configs['model']['condition_size']
use_text_ratio = configs['model']['use_text_ratio']
# Configuration of the trainer
num_nodes = configs['train']['num_nodes']
batch_size = configs['train']['batch_size_per_device']
sync_batchnorm = configs['train']['sync_batchnorm']
num_workers = configs['train']['num_workers']
loss_type = configs['train']['loss_type']
optimizer_type = configs["train"]["optimizer"]["optimizer_type"]
learning_rate = float(configs['train']["optimizer"]['learning_rate'])
lr_lambda_type = configs['train']["optimizer"]['lr_lambda_type']
warm_up_steps = configs['train']["optimizer"]['warm_up_steps']
reduce_lr_steps = configs['train']["optimizer"]['reduce_lr_steps']
save_step_frequency = configs['train']['save_step_frequency']
resume_checkpoint_path = args.resume_checkpoint_path
if resume_checkpoint_path == "":
resume_checkpoint_path = None
else:
logging.info(f'Finetuning AudioSep with checkpoint [{resume_checkpoint_path}]')
# Get directories and paths
checkpoints_dir, logs_dir, tf_logs_dir, statistics_path = get_dirs(
workspace, filename, config_yaml, devices_num,
)
logging.info(configs)
# data module
data_module = get_data_module(
config_yaml=config_yaml,
batch_size=batch_size,
num_workers=num_workers,
)
# model
Model = get_model_class(model_type=model_type)
ss_model = Model(
input_channels=input_channels,
output_channels=output_channels,
condition_size=condition_size,
)
# loss function
loss_function = get_loss_function(loss_type)
segment_mixer = SegmentMixer(
max_mix_num=max_mix_num,
lower_db=lower_db,
higher_db=higher_db
)
if query_net == 'CLAP':
query_encoder = CLAP_Encoder()
else:
raise NotImplementedError
lr_lambda_func = get_lr_lambda(
lr_lambda_type=lr_lambda_type,
warm_up_steps=warm_up_steps,
reduce_lr_steps=reduce_lr_steps,
)
# pytorch-lightning model
pl_model = AudioSep(
ss_model=ss_model,
waveform_mixer=segment_mixer,
query_encoder=query_encoder,
loss_function=loss_function,
optimizer_type=optimizer_type,
learning_rate=learning_rate,
lr_lambda_func=lr_lambda_func,
use_text_ratio=use_text_ratio
)
checkpoint_every_n_steps = CheckpointEveryNSteps(
checkpoints_dir=checkpoints_dir,
save_step_frequency=save_step_frequency,
)
summary_writer = SummaryWriter(log_dir=tf_logs_dir)
callbacks = [checkpoint_every_n_steps]
trainer = pl.Trainer(
accelerator='auto',
devices='auto',
strategy='ddp_find_unused_parameters_true',
num_nodes=num_nodes,
precision="32-true",
logger=None,
callbacks=callbacks,
fast_dev_run=False,
max_epochs=-1,
log_every_n_steps=50,
use_distributed_sampler=True,
sync_batchnorm=sync_batchnorm,
num_sanity_val_steps=2,
enable_checkpointing=False,
enable_progress_bar=True,
enable_model_summary=True,
)
# Fit, evaluate, and save checkpoints.
trainer.fit(
model=pl_model,
train_dataloaders=None,
val_dataloaders=None,
datamodule=data_module,
ckpt_path=resume_checkpoint_path,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--workspace", type=str, required=True, help="Directory of workspace."
)
parser.add_argument(
"--config_yaml",
type=str,
required=True,
help="Path of config file for training.",
)
parser.add_argument(
"--resume_checkpoint_path",
type=str,
required=True,
default='',
help="Path of pretrained checkpoint for finetuning.",
)
args = parser.parse_args()
args.filename = pathlib.Path(__file__).stem
train(args)