-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathbenchmark.py
116 lines (87 loc) · 3.43 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
from tqdm import tqdm
import numpy as np
from evaluation.evaluate_audioset import AudioSetEvaluator
from evaluation.evaluate_audiocaps import AudioCapsEvaluator
from evaluation.evaluate_vggsound import VGGSoundEvaluator
from evaluation.evaluate_music import MUSICEvaluator
from evaluation.evaluate_esc50 import ESC50Evaluator
from evaluation.evaluate_clotho import ClothoEvaluator
from models.clap_encoder import CLAP_Encoder
from utils import (
load_ss_model,
calculate_sdr,
calculate_sisdr,
parse_yaml,
get_mean_sdr_from_dict,
)
def eval(checkpoint_path, config_yaml='config/audiosep_base.yaml'):
log_dir = 'eval_logs'
os.makedirs(log_dir, exist_ok=True)
device = "cuda"
configs = parse_yaml(config_yaml)
# AudioSet Evaluators
audioset_evaluator = AudioSetEvaluator()
# AudioCaps Evaluator
audiocaps_evaluator = AudioCapsEvaluator()
# VGGSound+ Evaluator
vggsound_evaluator = VGGSoundEvaluator()
# Clotho Evaluator
clotho_evaluator = ClothoEvaluator()
# MUSIC Evaluator
music_evaluator = MUSICEvaluator()
# ESC-50 Evaluator
esc50_evaluator = ESC50Evaluator()
# Load model
query_encoder = CLAP_Encoder().eval()
pl_model = load_ss_model(
configs=configs,
checkpoint_path=checkpoint_path,
query_encoder=query_encoder
).to(device)
print(f'------- Start Evaluation -------')
# evaluation on Clotho
SISDR, SDRi = clotho_evaluator(pl_model)
msg_clotho = "Clotho Avg SDRi: {:.3f}, SISDR: {:.3f}".format(SDRi, SISDR)
print(msg_clotho)
# evaluation on VGGSound+ (YAN)
SISDR, SDRi = vggsound_evaluator(pl_model)
msg_vgg = "VGGSound Avg SDRi: {:.3f}, SISDR: {:.3f}".format(SDRi, SISDR)
print(msg_vgg)
# evaluation on MUSIC
SISDR, SDRi = music_evaluator(pl_model)
msg_music = "MUSIC Avg SDRi: {:.3f}, SISDR: {:.3f}".format(SDRi, SISDR)
print(msg_music)
# evaluation on ESC-50
SISDR, SDRi = esc50_evaluator(pl_model)
msg_esc50 = "ESC-50 Avg SDRi: {:.3f}, SISDR: {:.3f}".format(SDRi, SISDR)
print(msg_esc50)
# evaluation on AudioSet
stats_dict = audioset_evaluator(pl_model=pl_model)
median_sdris = {}
median_sisdrs = {}
for class_id in range(527):
median_sdris[class_id] = np.nanmedian(stats_dict["sdris_dict"][class_id])
median_sisdrs[class_id] = np.nanmedian(stats_dict["sisdrs_dict"][class_id])
SDRi = get_mean_sdr_from_dict(median_sdris)
SISDR = get_mean_sdr_from_dict(median_sisdrs)
msg_audioset = "AudioSet Avg SDRi: {:.3f}, SISDR: {:.3f}".format(SDRi, SISDR)
print(msg_audioset)
# evaluation on AudioCaps
SISDR, SDRi = audiocaps_evaluator(pl_model)
msg_audiocaps = "AudioCaps Avg SDRi: {:.3f}, SISDR: {:.3f}".format(SDRi, SISDR)
print(msg_audiocaps)
# evaluation on Clotho
SISDR, SDRi = clotho_evaluator(pl_model)
msg_clotho = "Clotho Avg SDRi: {:.3f}, SISDR: {:.3f}".format(SDRi, SISDR)
print(msg_clotho)
msgs = [msg_audioset, msg_vgg, msg_audiocaps, msg_clotho, msg_music, msg_esc50]
# open file in write mode
log_path = os.path.join(log_dir, 'eval_results.txt')
with open(log_path, 'w') as fp:
for msg in msgs:
fp.write(msg + '\n')
print(f'Eval log is written to {log_path} ...')
print('------------------------- Done ---------------------------')
if __name__ == '__main__':
eval(checkpoint_path='checkpoint/audiosep_base.ckpt')