-
Notifications
You must be signed in to change notification settings - Fork 37
/
simplex.cpp
451 lines (393 loc) · 15 KB
/
simplex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
/**
* @file SimplexNoise.cpp
* @brief A Perlin Simplex Noise C++ Implementation (1D, 2D, 3D).
*
* Copyright (c) 2014-2018 Sebastien Rombauts ([email protected])
* Copyright (c) 2021 Valdis Zobēla ([email protected])
*
* This C++ implementation is based on the speed-improved Java version 2012-03-09
* by Stefan Gustavson (original Java source code in the public domain).
* http://webstaff.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java:
* - Based on example code by Stefan Gustavson ([email protected]).
* - Optimisations by Peter Eastman ([email protected]).
* - Better rank ordering method by Stefan Gustavson in 2012.
*
* This implementation is "Simplex Noise" as presented by
* Ken Perlin at a relatively obscure and not often cited course
* session "Real-Time Shading" at Siggraph 2001 (before real
* time shading actually took on), under the title "hardware noise".
* The 3D function is numerically equivalent to his Java reference
* code available in the PDF course notes, although I re-implemented
* it from scratch to get more readable code. The 1D, 2D and 4D cases
* were implemented from scratch by me from Ken Perlin's text.
*
* Distributed under the MIT License (MIT) (See accompanying file LICENSE.txt
* or copy at http://opensource.org/licenses/MIT)
*/
#include "simplex.h"
#include "gameio.h"
#include <cstdint> // int32_t/uint8_t
#include <vector>
#include <algorithm>
#include <random>
#include <ctime>
#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
const double TAU = 2 * M_PI;
/**
* Computes the largest integer value not greater than the float one
*
* This method is faster than using (int32_t)std::floor(fp).
*
* I measured it to be approximately twice as fast:
* float: ~18.4ns instead of ~39.6ns on an AMD APU),
* double: ~20.6ns instead of ~36.6ns on an AMD APU),
* Reference: http://www.codeproject.com/Tips/700780/Fast-floor-ceiling-functions
*
* @param[in] fp double input value
*
* @return largest integer value not greater than fp
*/
static inline int32_t fastfloor(double fp) {
int32_t i = static_cast<int32_t>(fp);
return (fp < i) ? (i - 1) : (i);
}
/* NOTE Gradient table to test if lookup-table are more efficient than calculs
static const double gradients1D[16] = {
-8., -7., -6., -5., -4., -3., -2., -1.,
1., 2., 3., 4., 5., 6., 7., 8.
};
*/
SimplexNoise::SimplexNoise(
const double frequency,
const double amplitude,
const double lacunarity,
const double persistence
) :
mFrequency(frequency),
mAmplitude(amplitude),
mLacunarity(lacunarity),
mPersistence(persistence)
{
const uint32_t N = 256;
perm.reserve(N);
for (uint32_t i = 0; i < N; i++) {
perm.push_back(i);
}
auto rng = std::default_random_engine();
rng.seed( time(0) );
std::shuffle(std::begin(perm), std::end(perm), rng);
}
uint8_t SimplexNoise::h(int32_t i) {
return perm[static_cast<uint8_t>(i)];
}
double SimplexNoise::grad(int32_t hash, double x) {
const int32_t h = hash & 0x0F; // Convert low 4 bits of hash code
double grad = 1.0 + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0
if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient
// double grad = gradients1D[h]; // NOTE : Test of Gradient look-up table instead of the above
return (grad * x); // Multiply the gradient with the distance
}
double SimplexNoise::grad(int32_t hash, double x, double y) {
const int32_t h = hash & 0x3F; // Convert low 3 bits of hash code
const double u = h < 4 ? x : y; // into 8 simple gradient directions,
const double v = h < 4 ? y : x;
return ((h & 1) ? -u : u) + ((h & 2) ? -2.0 * v : 2.0 * v); // and compute the dot product with (x,y).
}
double SimplexNoise::grad(int32_t hash, double x, double y, double z) {
int h = hash & 15; // Convert low 4 bits of hash code into 12 simple
double u = h < 8 ? x : y; // gradient directions, and compute dot product.
double v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15
return ((h & 1) ? -u : u) + ((h & 2) ? -v : v);
}
/**
* 1D Perlin simplex noise
*
* Takes around 74ns on an AMD APU.
*
* @param[in] x double coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
double SimplexNoise::noise(const double x) {
double n0, n1; // Noise contributions from the two "corners"
// No need to skew the input space in 1D
// Corners coordinates (nearest integer values):
int32_t i0 = fastfloor(x);
int32_t i1 = i0 + 1;
// Distances to corners (between 0 and 1):
double x0 = x - i0;
double x1 = x0 - 1.0;
// Calculate the contribution from the first corner
double t0 = 1.0 - x0*x0;
// if(t0 < 0.0) t0 = 0.0; // not possible
t0 *= t0;
n0 = t0 * t0 * grad(h(i0), x0);
// Calculate the contribution from the second corner
double t1 = 1.0 - x1*x1;
// if(t1 < 0.0) t1 = 0.0; // not possible
t1 *= t1;
n1 = t1 * t1 * grad(h(i1), x1);
// The maximum value of this noise is 8*(3/4)^4 = 2.53125
// A factor of 0.395 scales to fit exactly within [-1,1]
return 0.395 * (n0 + n1);
}
/**
* 2D Perlin simplex noise
*
* Takes around 150ns on an AMD APU.
*
* @param[in] x double coordinate
* @param[in] y double coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
double SimplexNoise::noise(const double x, const double y) {
double n0, n1, n2; // Noise contributions from the three corners
// Skewing/Unskewing factors for 2D
static const double F2 = 0.366025403; // F2 = (sqrt(3) - 1) / 2
static const double G2 = 0.211324865; // G2 = (3 - sqrt(3)) / 6 = F2 / (1 + 2 * K)
// Skew the input space to determine which simplex cell we're in
const double s = (x + y) * F2; // Hairy factor for 2D
const double xs = x + s;
const double ys = y + s;
const int32_t i = fastfloor(xs);
const int32_t j = fastfloor(ys);
// Unskew the cell origin back to (x,y) space
const double t = static_cast<double>(i + j) * G2;
const double X0 = i - t;
const double Y0 = j - t;
const double x0 = x - X0; // The x,y distances from the cell origin
const double y0 = y - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int32_t i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
i1 = 1;
j1 = 0;
} else { // upper triangle, YX order: (0,0)->(0,1)->(1,1)
i1 = 0;
j1 = 1;
}
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
const double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
const double y1 = y0 - j1 + G2;
const double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
const double y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
const int gi0 = h(i + h(j));
const int gi1 = h(i + i1 + h(j + j1));
const int gi2 = h(i + 1 + h(j + 1));
// Calculate the contribution from the first corner
double t0 = 0.5 - x0*x0 - y0*y0;
if (t0 < 0.0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 * t0 * grad(gi0, x0, y0);
}
// Calculate the contribution from the second corner
double t1 = 0.5 - x1*x1 - y1*y1;
if (t1 < 0.0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * grad(gi1, x1, y1);
}
// Calculate the contribution from the third corner
double t2 = 0.5 - x2*x2 - y2*y2;
if (t2 < 0.0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * grad(gi2, x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 45.23065 * (n0 + n1 + n2);
}
/**
* 3D Perlin simplex noise
*
* @param[in] x double coordinate
* @param[in] y double coordinate
* @param[in] z double coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
double SimplexNoise::noise(const double x, const double y, const double z) {
double n0, n1, n2, n3; // Noise contributions from the four corners
// Skewing/Unskewing factors for 3D
static const double F3 = 1.0 / 3.0;
static const double G3 = 1.0 / 6.0;
// Skew the input space to determine which simplex cell we're in
double s = (x + y + z) * F3; // Very nice and simple skew factor for 3D
int i = fastfloor(x + s);
int j = fastfloor(y + s);
int k = fastfloor(z + s);
double t = (i + j + k) * G3;
double X0 = i - t; // Unskew the cell origin back to (x,y,z) space
double Y0 = j - t;
double Z0 = k - t;
double x0 = x - X0; // The x,y,z distances from the cell origin
double y0 = y - Y0;
double z0 = z - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; // X Y Z order
} else if (x0 >= z0) {
i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; // X Z Y order
} else {
i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; // Z X Y order
}
} else { // x0<y0
if (y0 < z0) {
i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; // Z Y X order
} else if (x0 < z0) {
i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; // Y Z X order
} else {
i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; // Y X Z order
}
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
double y1 = y0 - j1 + G3;
double z1 = z0 - k1 + G3;
double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
double y2 = y0 - j2 + 2.0 * G3;
double z2 = z0 - k2 + 2.0 * G3;
double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
double y3 = y0 - 1.0 + 3.0 * G3;
double z3 = z0 - 1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
int gi0 = h(i + h(j + h(k)));
int gi1 = h(i + i1 + h(j + j1 + h(k + k1)));
int gi2 = h(i + i2 + h(j + j2 + h(k + k2)));
int gi3 = h(i + 1 + h(j + 1 + h(k + 1)));
// Calculate the contribution from the four corners
double t0 = 0.6 - x0*x0 - y0*y0 - z0*z0;
if (t0 < 0) {
n0 = 0.0;
} else {
t0 *= t0;
n0 = t0 * t0 * grad(gi0, x0, y0, z0);
}
double t1 = 0.6 - x1*x1 - y1*y1 - z1*z1;
if (t1 < 0) {
n1 = 0.0;
} else {
t1 *= t1;
n1 = t1 * t1 * grad(gi1, x1, y1, z1);
}
double t2 = 0.6 - x2*x2 - y2*y2 - z2*z2;
if (t2 < 0) {
n2 = 0.0;
} else {
t2 *= t2;
n2 = t2 * t2 * grad(gi2, x2, y2, z2);
}
double t3 = 0.6 - x3*x3 - y3*y3 - z3*z3;
if (t3 < 0) {
n3 = 0.0;
} else {
t3 *= t3;
n3 = t3 * t3 * grad(gi3, x3, y3, z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0*(n0 + n1 + n2 + n3);
}
/**
* Fractal/Fractional Brownian Motion (fBm) summation of 1D Perlin Simplex noise
*
* @param[in] octaves number of fraction of noise to sum
* @param[in] x double coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
double SimplexNoise::fractal(const size_t octaves, const double x) {
double output = 0.;
double denom = 0.;
double frequency = mFrequency;
double amplitude = mAmplitude;
for (size_t i = 0; i < octaves; i++) {
output += (amplitude * noise(x * frequency));
denom += amplitude;
frequency *= mLacunarity;
amplitude *= mPersistence;
}
return (output / denom);
}
/**
* Fractal/Fractional Brownian Motion (fBm) summation of 2D Perlin Simplex noise
*
* @param[in] octaves number of fraction of noise to sum
* @param[in] x x double coordinate
* @param[in] y y double coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
double SimplexNoise::fractal(const size_t octaves, const double x, const double y) {
double output = 0.;
double denom = 0.;
double frequency = mFrequency;
double amplitude = mAmplitude;
for (size_t i = 0; i < octaves; i++) {
output += (amplitude * noise(x * frequency, y * frequency));
denom += amplitude;
frequency *= mLacunarity;
amplitude *= mPersistence;
}
return (output / denom);
}
/**
* Fractal/Fractional Brownian Motion (fBm) summation of 3D Perlin Simplex noise
*
* @param[in] octaves number of fraction of noise to sum
* @param[in] x x double coordinate
* @param[in] y y double coordinate
* @param[in] z z double coordinate
*
* @return Noise value in the range[-1; 1], value of 0 on all integer coordinates.
*/
double SimplexNoise::fractal(const size_t octaves, const double x, const double y, const double z) {
double output = 0.;
double denom = 0.;
double frequency = mFrequency;
double amplitude = mAmplitude;
for (size_t i = 0; i < octaves; i++) {
output += (amplitude * noise(x * frequency, y * frequency, z * frequency));
denom += amplitude;
frequency *= mLacunarity;
amplitude *= mPersistence;
}
return (output / denom);
}
double SimplexNoise::cylinderNoise(const double nx, const double ny) {
double angle_x = TAU * nx;
/* In "noise parameter space", we need nx and ny to travel the
same distance. The circle created from nx needs to have
circumference=1 to match the length=1 line created from ny,
which means the circle's radius is 1/2π, or 1/tau */
return noise(cos(angle_x) / TAU, sin(angle_x) / TAU, ny);
}
// Fractal/Fractional Brownian Motion (fBm) noise summation
double SimplexNoise::cylinderFractal(const size_t octaves, const double nx, const double ny) {
double angle_x = TAU * nx;
/* In "noise parameter space", we need nx and ny to travel the
same distance. The circle created from nx needs to have
circumference=1 to match the length=1 line created from ny,
which means the circle's radius is 1/2π, or 1/tau */
return fractal(octaves, cos(angle_x) / TAU, sin(angle_x) / TAU, ny);
}