forked from hjd1964/OnStep
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AlignEq.ino
468 lines (394 loc) · 14.1 KB
/
AlignEq.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
// -----------------------------------------------------------------------------------
// GEOMETRIC ALIGN FOR EQ MOUNTS
//
// by Howard Dutton
//
// Copyright (C) 2012 to 2019 Howard Dutton
//
// -----------------------------------------------------------------------------------
// ADVANCED GEOMETRIC ALIGN FOR EQUATORIAL MOUNTS (GOTO ASSIST)
#if MOUNT_TYPE != ALTAZM
// Initialize
void TGeoAlign::init() {
avgDec=0.0;
avgHA =0.0;
ax1Cor=0; // align internal index for Axis1
ax2Cor=0; // align internal index for Axis2
altCor=0; // for geometric coordinate correction/align, - is below the pole, + above
azmCor=0; // - is right of the pole, + is left
doCor =0; // declination/optics orthogonal correction
pdCor =0; // declination/polar orthogonal correction
dfCor =0; // fork or declination axis flex
tfCor =0; // tube flex
geo_ready=false;
}
// remember the alignment between sessions
void TGeoAlign::readCoe() {
ax1Cor=nv.readFloat(EE_ax1Cor);
ax2Cor=nv.readFloat(EE_ax2Cor);
dfCor=nv.readFloat(EE_dfCor); // dfCor is ffCor for fork mounts
tfCor=nv.readFloat(EE_tfCor);
doCor=nv.readFloat(EE_doCor);
pdCor=nv.readFloat(EE_pdCor);
altCor=nv.readFloat(EE_altCor);
azmCor=nv.readFloat(EE_azmCor);
}
void TGeoAlign::writeCoe() {
nv.writeFloat(EE_ax1Cor,ax1Cor);
nv.writeFloat(EE_ax2Cor,ax2Cor);
nv.writeFloat(EE_dfCor,dfCor); // dfCor is ffCor for fork mounts
nv.writeFloat(EE_tfCor,tfCor);
nv.writeFloat(EE_doCor,doCor);
nv.writeFloat(EE_pdCor,pdCor);
nv.writeFloat(EE_altCor,altCor);
nv.writeFloat(EE_azmCor,azmCor);
}
// Status
bool TGeoAlign::isReady() {
return geo_ready;
}
// I=1 for 1st star, I=2 for 2nd star, I=3 for 3rd star
// N=total number of stars for this align (1 to 9)
// RA, Dec (all in degrees)
CommandErrors TGeoAlign::addStar(int I, int N, double RA, double Dec) {
// First star, just sync
if (I == 1) {
CommandErrors e=syncEqu(RA,Dec);
if (e != CE_NONE) return e;
}
mount[I-1].ha=getInstrAxis1()/Rad;
mount[I-1].dec=getInstrAxis2()/Rad;
actual[I-1].ha=haRange(LST()*15.0-RA)/Rad;
actual[I-1].dec=Dec/Rad;
if (getInstrPierSide() == PierSideWest) { actual[I-1].side=-1; mount[I-1].side=-1; } else
if (getInstrPierSide() == PierSideEast) { actual[I-1].side=1; mount[I-1].side=1; } else { actual[I-1].side=0; mount[I-1].side=0; }
// two or more stars and finished
if ((I >= 2) && (I == N)) model(N);
return CE_NONE;
}
// kick off modeling
void TGeoAlign::model(int n) {
static bool busy=false;
static int numStars=0;
if (busy) return; // busy
if (n > 0) { numStars=n; return; } // command
if (numStars > 0) { busy=true; autoModel(numStars); busy=false; numStars=0; } // waiting to solve
}
// returns the correction to be added to the requested RA,Dec to yield the actual RA,Dec that we will arrive at
void TGeoAlign::correct(double ha, double dec, double pierSide, double sf, double _deo, double _pd, double _pz, double _pe, double _df, double _ff, double _tf, double *h1, double *d1) {
double DO1,DOh;
double PD,PDh;
double PZ,PA;
double DF,DFd,TF,FF,FFd,TFh,TFd;
double cosDec=cos(dec);
double tanDec=tan(dec);
double sinHa=sin(ha);
double cosHa=cos(ha);
// ------------------------------------------------------------
// A. Misalignment due to tube/optics not being perp. to Dec axis
// negative numbers are further (S) from the NCP, swing to the
// equator and the effect on declination is 0. At the SCP it
// becomes a (N) offset. Unchanged with meridian flips.
DO1 =_deo*sf;
// works on HA. meridian flips effect this in HA
DOh = DO1*(1.0/cosDec)*pierSide;
// ------------------------------------------------------------
// B. Misalignment, Declination axis relative to Polar axis
// expressed as a correction to where the Polar axis is pointing
// negative numbers are further (S) from the NCP, swing to the
// equator and the effect on declination is 0.
// At the SCP it is, again, a (S) offset
PD =_pd*sf;
// works on HA.
PDh = -PD*tanDec*pierSide;
// ------------------------------------------------------------
// Misalignment, relative to NCP
// negative numbers are east of the pole
// C. polar left-right misalignment
PZ =_pz*sf;
// D. negative numbers are below the pole
// polar below-above misalignment
PA =_pe*sf;
// ------------------------------------------------------------
// Axis flex
DF =_df*sf;
DFd =-DF*(cosLat*cosHa+sinLat*tanDec);
// ------------------------------------------------------------
// Fork flex
FF =_ff*sf;
FFd =FF*cosHa;
// ------------------------------------------------------------
// Optical axis sag
TF =_tf*sf;
TFh =TF*(cosLat*sinHa*(1.0/cosDec));
TFd =TF*(cosLat*cosHa-sinLat*cosDec);
// ------------------------------------------------------------
*h1 =(-PZ*cosHa*tanDec + PA*sinHa*tanDec + DOh + PDh + TFh);
*d1 =(+PZ*sinHa + PA*cosHa + DFd + FFd + TFd);
}
void TGeoAlign::do_search(double sf, int p1, int p2, int p3, int p4, int p5, int p6, int p7, int p8, int p9)
{
long l,
_deo_m,_deo_p,
_pd_m,_pd_p,
_pz_m,_pz_p,
_pe_m,_pe_p,
_df_m,_df_p,
_tf_m,_tf_p,
_ff_m,_ff_p,
_oh_m,_oh_p,
_od_m,_od_p,
_deo,_pd,_pz,_pe, _df,_tf,_ff, _ode,_ohe;
double sf1=sf/(3600.0*Rad);
// search
// set Parameter Space
_deo_m=-p1+round(best_deo/sf); _deo_p=p1+round(best_deo/sf);
_pd_m =-p2+round(best_pd/sf); _pd_p=p2+round(best_pd/sf);
_pz_m =-p3+round(best_pz/sf); _pz_p=p3+round(best_pz/sf);
_pe_m =-p4+round(best_pe/sf); _pe_p=p4+round(best_pe/sf);
_tf_m =-p5+round(best_tf/sf); _tf_p=p5+round(best_tf/sf);
_ff_m =-p6+round(best_ff/sf); _ff_p=p6+round(best_ff/sf);
_df_m =-p7+round(best_df/sf); _df_p=p7+round(best_df/sf);
_od_m =-p8+round(best_ode/sf); _od_p=p8+round(best_ode/sf);
_oh_m =-p9+round(best_ohe/sf); _oh_p=p9+round(best_ohe/sf);
double md,mh;
for (_deo=_deo_m; _deo <= _deo_p; _deo++)
for (_pd=_pd_m; _pd <= _pd_p; _pd++)
for (_pz=_pz_m; _pz <= _pz_p; _pz++)
for (_pe=_pe_m; _pe <= _pe_p; _pe++)
for (_df=_df_m; _df <= _df_p; _df++)
for (_ff=_ff_m; _ff <= _ff_p; _ff++)
for (_tf=_tf_m; _tf <= _tf_p; _tf++)
for (_ohe=_oh_m; _ohe <= _oh_p; _ohe++)
for (_ode=_od_m; _ode <= _od_p; _ode++) {
ode=((double)_ode)*sf1;
odw=-ode;
ohe=((double)_ohe)*sf1;
ohw=ohe;
// check the combinations for all samples
for (l=0; l < num; l++) {
mh=mount[l].ha;
md=mount[l].dec;
if (mount[l].side == -1) // west of the mount
{
mh=mh+ohw;
md=md+odw;
} else
if (mount[l].side == 1) // east of the mount, default (fork mounts)
{
mh=mh+ohe;
md=md+ode;
}
correct(mh,md,mount[l].side,sf1,_deo,_pd,_pz,_pe,_df,_ff,_tf,&h1,&d1);
delta[l].ha=actual[l].ha-(mh-h1);
if (delta[l].ha > PI) delta[l].ha=delta[l].ha-PI*2.0; else
if (delta[l].ha < -PI) delta[l].ha=delta[l].ha+PI*2.0;
delta[l].dec=actual[l].dec-(md-d1);
delta[l].side=mount[l].side;
}
// calculate the standard deviations
sum1=0.0; for (l=0; l < num; l++) sum1=sum1+sq(delta[l].ha*cos(actual[l].dec)); sh=sqrt(sum1/(num-1));
sum1=0.0; for (l=0; l < num; l++) sum1=sum1+sq(delta[l].dec); sd=sqrt(sum1/(num-1));
max_dist=sqrt(sq(sh)+sq(sd));
// remember the best fit
if (max_dist < best_dist) {
best_dist =max_dist;
best_deo =((double)_deo)*sf;
best_pd =((double)_pd)*sf;
best_pz =((double)_pz)*sf;
best_pe =((double)_pe)*sf;
best_tf =((double)_tf)*sf;
best_df =((double)_df)*sf;
best_ff =((double)_ff)*sf;
if (p8 != 0) best_odw=odw*Rad*3600.0; else best_odw=best_pe/2.0;
if (p8 != 0) best_ode=ode*Rad*3600.0; else best_ode=-best_pe/2.0;
if (p9 != 0) best_ohw=ohw*Rad*3600.0;
if (p9 != 0) best_ohe=ohe*Rad*3600.0;
}
// keep the main loop running
loop2();
}
}
void TGeoAlign::autoModel(int n) {
num=n; // how many stars?
lat=latitude/Rad;
cosLat=cos(lat);
sinLat=sin(lat);
best_dist =3600.0*180.0;
best_deo =0.0;
best_pd =0.0;
best_pz =0.0;
best_pe =0.0;
best_tf =0.0;
best_ff =0.0;
best_df =0.0;
best_ode =0.0;
best_ohe =0.0;
// figure out the average HA offset as a starting point
ohe=0;
for (l=0; l < num; l++) {
h1=actual[l].ha-mount[l].ha;
if (h1 > PI) h1=h1-PI*2.0;
if (h1 < -PI) h1=h1+PI*2.0;
ohe=ohe+h1;
}
ohe=ohe/num; best_ohe=round(ohe*Rad*3600.0); best_ohw=best_ohe;
#if MOUNT_TYPE == FORK
Ff=1; Df=0;
#else
Ff=0; Df=1;
#endif
// only search for cone error if > 2 stars
int Do=0; if (num > 2) Do=1;
// search, this can handle about 9 degrees of polar misalignment, and 4 degrees of cone error
// DoPdPzPeTfFf Df OdOh
do_search(16384,0 ,0,1,1,0, 0, 0,1,1);
do_search( 8192,Do,0,1,1,0, 0, 0,1,1);
do_search( 4096,Do,0,1,1,0, 0, 0,1,1);
do_search( 2048,Do,0,1,1,0, 0, 0,1,1);
do_search( 1024,Do,0,1,1,0, 0, 0,1,1);
do_search( 512,Do,0,1,1,0, 0, 0,1,1);
#ifdef HAL_SLOW_PROCESSOR
// DoPdPzPeTfFf Df OdOh
do_search( 256,Do,0,1,1,0, 0, 0,1,1);
do_search( 128,Do,0,1,1,0, 0, 0,1,1);
#else
if (num > 4) {
// DoPdPzPeTfFf Df OdOh
do_search( 256,Do,1,1,1,0,Ff,Df,1,1);
do_search( 128,Do,1,1,1,1,Ff,Df,1,1);
do_search( 64,Do,1,1,1,1,Ff,Df,1,1);
#ifdef HAL_FAST_PROCESSOR
do_search( 32,Do,1,1,1,1,Ff,Df,1,1);
do_search( 16,Do,1,1,1,1,Ff,Df,1,1);
#endif
} else {
do_search( 256,Do,0,1,1,0, 0, 0,1,1);
do_search( 128,Do,0,1,1,0, 0, 0,1,1);
do_search( 64,Do,0,1,1,0, 0, 0,1,1);
do_search( 32,Do,0,1,1,0, 0, 0,1,1);
#ifdef HAL_FAST_PROCESSOR
do_search( 16,Do,0,1,1,0, 0, 0,1,1);
#endif
}
#endif
// geometric corrections
doCor=best_deo/3600.0;
pdCor=best_pd/3600.0;
azmCor=best_pz/3600.0;
altCor=best_pe/3600.0;
tfCor=best_tf/3600.0;
#if MOUNT_TYPE == FORK || MOUNT_TYPE == ALTAZM
dfCor=best_ff/3600.0;
#else
dfCor=best_df/3600.0;
#endif
ax1Cor=best_ohw/3600.0;
ax2Cor=best_odw/3600.0;
geo_ready=true;
}
// takes the topocentric refracted coordinates and applies corrections to arrive at instrument equatorial coordinates
void TGeoAlign::equToInstr(double HA, double Dec, double *HA1, double *Dec1, int PierSide) {
double p=1.0; if (PierSide == PierSideWest) p=-1.0;
if (Dec > 90.0) Dec=90.0;
if (Dec < -90.0) Dec=-90.0;
// breaks-down near the pole (limited to > 1' from pole)
if (fabs(Dec) < 89.9833) {
// initial rough guess at instrument HA,Dec
double h=HA/Rad;
double d=Dec/Rad;
for (int pass=0; pass < 3; pass++) {
double sinDec=sin(d);
double cosDec=cos(d);
double sinHA =sin(h);
double cosHA =cos(h);
// ------------------------------------------------------------
// misalignment due to tube/optics not being perp. to Dec axis
// negative numbers are further (S) from the NCP, swing to the
// equator and the effect on declination is 0. At the SCP it
// becomes a (N) offset. Unchanged with meridian flips.
// expressed as a correction to the Polar axis misalignment
double DOh=doCor*(1.0/cosDec)*p;
// ------------------------------------------------------------
// misalignment due to Dec axis being perp. to RA axis
double PDh=-pdCor*(sinDec/cosDec)*p;
#if MOUNT_TYPE == FORK
// Fork flex
double DFd=dfCor*cosHA;
#else
// Axis flex
double DFd=-dfCor*(cosLat*cosHA+sinLat*(sinDec/cosDec));
#endif
// Tube flex
double TFh=tfCor*(cosLat*sinHA*(1.0/cosDec));
double TFd=tfCor*(cosLat*cosHA-sinLat*cosDec);
// polar misalignment
double h1=-azmCor*cosHA*(sinDec/cosDec) + altCor*sinHA*(sinDec/cosDec);
double d1=+azmCor*sinHA + altCor*cosHA;
*HA1 =HA +(h1+PDh+DOh+TFh);
*Dec1=Dec+(d1+DFd+TFd);
// improved guess at instrument HA,Dec
h=*HA1/Rad;
d=*Dec1/Rad;
}
} else {
// just ignore the the correction if right on the pole
*HA1 =HA;
*Dec1=Dec;
}
// finally, apply the index offsets
*HA1=*HA1-ax1Cor;
*Dec1=*Dec1-ax2Cor*-p;
}
// takes the instrument equatorial coordinates and applies corrections to arrive at topocentric refracted coordinates
void TGeoAlign::instrToEqu(double HA, double Dec, double *HA1, double *Dec1, int PierSide) {
double p=1.0; if (PierSide == PierSideWest) p=-1.0;
HA =HA +ax1Cor;
Dec=Dec+ax2Cor*-p;
if (Dec > 90.0) Dec=90.0;
if (Dec < -90.0) Dec=-90.0;
// breaks-down near the pole (limited to > 1' from pole)
if (fabs(Dec) < 89.98333333) {
double h=HA/Rad;
double d=Dec/Rad;
double sinDec=sin(d);
double cosDec=cos(d);
double sinHA =sin(h);
double cosHA =cos(h);
// ------------------------------------------------------------
// misalignment due to tube/optics not being perp. to Dec axis
// negative numbers are further (S) from the NCP, swing to the
// equator and the effect on declination is 0. At the SCP it
// becomes a (N) offset. Unchanged with meridian flips.
// expressed as a correction to the Polar axis misalignment
double DOh=doCor*(1.0/cosDec)*p;
// as the above offset becomes zero near the equator, the affect
// works on HA instead. meridian flips affect this in HA
double PDh=-pdCor*(sinDec/cosDec)*p;
#if MOUNT_TYPE == FORK
// Fork flex
double DFd=dfCor*cosHA;
#else
// Axis flex
double DFd=-dfCor*(cosLat*cosHA+sinLat*(sinDec/cosDec));
#endif
// Tube flex
double TFh=tfCor*(cosLat*sinHA*(1.0/cosDec));
double TFd=tfCor*(cosLat*cosHA-sinLat*cosDec);
// ------------------------------------------------------------
// polar misalignment
double h1=-azmCor*cosHA*(sinDec/cosDec) + altCor*sinHA*(sinDec/cosDec);
double d1=+azmCor*sinHA + altCor*cosHA;
*HA1 =HA -(h1+PDh+DOh+TFh);
*Dec1=Dec-(d1+DFd+TFd);
} else {
// just ignore the the correction if right on the pole
*HA1=HA;
*Dec1=Dec;
}
while (*HA1 > 180.0) *HA1-=360.0;
while (*HA1 < -180.0) *HA1+=360.0;
if (*Dec1 > 90.0) *Dec1=90.0;
if (*Dec1 < -90.0) *Dec1=-90.0;
}
#endif