Skip to content

Latest commit

 

History

History
25 lines (13 loc) · 658 Bytes

README.md

File metadata and controls

25 lines (13 loc) · 658 Bytes

Data imputation using Determinantal Point Process (DPP) - based methods

Please contact Philip Teare with any questions about this repo.

This work presents an implementation of the models presented in the "Improved clinical data imputation via classical and quantum determinantal point processes" paper

Prerequisites

Python 3.9

Usage

from models.imputers import DPPMissForest

ddpp_mf = DPPMissForest(batch_size=100, max_iter=5, n_estimators=10)

X_imputed = ddpp_mf.fit_transform(X_missing)

License

MIT